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One-component inner functions II

We continue our study of the set I c of inner functions u in H ∞ (D) with the property that there is η ∈]0, 1[ such that the level set Ω u (η) := {z ∈ D : |u(z)| < η} is connected. These functions are called one-component inner functions. Here we show that the composition of two one-component inner functions is again in I c . We also give conditions under which a factor of one-component inner function belongs to I c .

Introduction

Let H ∞ = H ∞ (D) be the space of all bounded holomorphic functions in the open unit disk D. In this paper we study an important class of inner functions, the socalled one-component inner functions. Recall that a function u ∈ H ∞ is said to be inner if the boundary values of u have modulus one almost everywhere. Such an inner function u now is said to be a one-component inner function if there is η ∈]0, 1[ such that the level set (also called sublevel set or filled level set) Ω u (η) := {z ∈ D : |u(z)| < η} is connected. We denote the collection of all one-component inner functions by I c . Unimodular constants are considered to belong to I c . These functions were first studied by B. Cohn [START_REF] Cohn | Carleson measures for functions orthogonal to invariant subspaces[END_REF] in connection with embedding theorems and Carlesonmeasures. It was shown in [7, p. 355] for instance, that arclength on {z ∈ D : |u(z)| = ε} is a Carleson measure whenever Ω u (η) is connected for some η < ε < 1. Many operator-theoretic applications appear in [START_REF] Aleksandrov | On embedding theorems for coinvariant subspaces of the shift operator. II[END_REF][START_REF] Aleman | Trace ideal criteria for embeddings and composition operators on model spaces[END_REF]3,[START_REF] Bessonov | Fredholmness and compactness of truncated Toeplitz and Hankel operators[END_REF]. A detailed study of the elements in I c was undertaken by A.B. Aleksandrov [START_REF] Aleksandrov | On embedding theorems for coinvariant subspaces of the shift operator. II[END_REF]. Classes of explicit examples of one-component inner functions were given by the present authors in [6]. The most fundamental ones are finite Blaschke products and singluar inner functions S µ with finite singularity set (or spectrum) Sing(S µ ). Infinite interpolating Blaschke products with real zeros (x n ) satisfying 0 < η 1 ≤ ρ(x n , x n+1 ) ≤ η 2 < 1 (where ρ is the pseudohyperbolic distance in D) were also shown to belong to I c . On the other hand, no finite product of thin interpolating Blaschke products (these are (infinite) Blaschke products B whose zeros (z n ) satisfy lim n ∏ k:k =n ρ(z n , z k ) = 1) can be in I c . It also turned out that the class of one-component inner functions is invariant under taking finite products. In the present note, we are considering when a factor of a one-component inner function is in I c again. A sufficient criterion is provided. On the other hand, as it is shown, there exist two non one-component inner functions u and v such that uv ∈ I c . Our main result will show that the class of one-component inner functions is also invariant under taking compositions, generalizing special cases dealt with in [6]. The results of this note stem from December 2016. Meanwhile (May 2018) a manuscript by A. Reijonen [START_REF] Baranov | Symbols of truncated Toeplitz operators[END_REF] provides other classes of one-component inner functions.

Main tools

Our results will mainly be based on the following known results which we recall for citational reasons.

Lemma 1. Given a non-constant inner function u and η

∈ ]0, 1[, let Ω := Ω u (η) = {z ∈ D : |u(z)| < η} be a level set. Suppose that Ω 0 is a component (=maximal connected subset) of Ω . Then (1) Ω 0 is a simply connected domain; that is, C \ Ω 0 has no bounded components. (2) inf Ω 0 |u| = 0. (3) Either Ω 0 ⊆ D or Ω 0 ∩ T has measure zero.
A detailed proof of parts (1) and ( 2 Theorem 1 (Aleksandrov). Let u be an inner function. The following assertions are equivalent:

(1) u ∈ I c .

(2) There is a constant C > 0 such that for every 

ζ ∈ T \ Sing(u) we have i) |u (ζ )| ≤ C |u (ζ )|

Splitting off factors

In this section we give a condition under which a factor of a one-component inner function is in I c again. Recall from [6] that for the atomic inner function S(z) = exp(-1+z 1-z ) and a thin Blaschke product with positive zeros, SB ∈ I c , but not B. For a = 0, let

φ a (z) = |a| a a -z 1 -az
and φ 0 (z) = z. A Blaschke product B is written as B = e iθ ∏ ∞ j=1 φ a j , where we have

∑ ∞ j=1 (1 -|a j |) < ∞,
and each a j appearing as often as its multiplicity needs. The following result tells us that one can split off finitely many zeros without leaving the class of one-component inner functions. Any inner function u has the form u = BS µ , where B is a Blaschke product and S µ a singular inner function

S µ (z) := exp - T ζ + z ζ -z dµ(ζ )
associated with a positive Borel measure µ which is singular with respect to Lebesgue measure on T.

Proposition 1. Let Θ ∈ I c and a ∈ D. If Θ (a) = 0, then v := Θ /ϕ a ∈ I c .
Proof. Note that Θ = ϕ a v. We may assume that v is not constant, otherwise we are done. Choose η ∈ ]0, 1[ so that Ω Θ (η) is connected. Let

δ := inf{|ϕ a (z)| : |Θ (z)| = η}.
We claim that η < δ < 1. In fact, since the set L := {z ∈ D : |Θ (z)| = η} is not empty, and

|ϕ a | < 1 in D, we see that δ < 1. Moreover, if z 0 ∈ L, then L := {|ϕ a (z)| : |Θ (z)| = η, |ϕ a (z)| ≤ |ϕ a (z 0 )|} is a compact set in [0, 1], and so inf{|ϕ a (z)| : |Θ (z)| = η} = inf L = min L . Hence δ = |ϕ a (z 1 )| for some z 1 ∈ L. Since v is not a unimodular constant, we deduce from |Θ (z 1 )| = |ϕ a (z 1 )| |v(z 1 )| that η < δ . Consequently, if |Θ (z)| = η, |v(z)| = |Θ (z)| |ϕ a (z)| ≤ η δ := η < 1. (1) 
We claim that

Ω v (η) ⊆ Ω Θ (η) ⊆ Ω v (η ).
Notice that the first inclusion is obvious. To verify the second inclusion, let z 0 ∈ Ω Θ (η). We discuss three cases: ρ(z 0 , a) < δ , ρ(z 0 , a) = δ and ρ(z 0 , a) > δ .

To this end, we first note that

D ρ (a, δ ) ⊆ Ω Θ (η). In fact, if ρ(a, z) = |ϕ a (z)| < δ , then |Θ (z)| < η, since otherwise Θ (a) = 0 implies the existence of z 0 ∈ D ρ (a, δ )
with |Θ (z 0 )| = η and so, by the definition of δ , |ϕ a (z)| ≥ δ . This is an obvious contradiction.

Hence

|Θ (z)| ≤ η for ρ(z, a) = δ . Thus (1) holds true for z ∈ ∂ D ρ (a, δ ). By the maximum principle, |v(z)| < η on D ρ (a, δ ). If ρ(z, a) ≥ δ and |Θ (z)| < η, then, as in (1), |v(z)| < η , too. We deduce that Ω Θ (η) ⊆ Ω v (η ).
Now we are able to prove that Ω v (η ) is connected. Assuming the contrary, there would exist a component Ω 1 of Ω v (η ) distinct (and so disjoint) from that containing the connected set Ω Θ (η). In particular, |v| ≥ |Θ | ≥ η on Ω 1 . By Lemma 1, inf Ω 1 |v| = 0, which is an obvious contradiction.

The preceding result admits the following generalization.

Proposition 2. Let u, v be two non-constant inner functions and put Θ = uv. Suppose that

(i) Θ ∈ I c and that η ∈]0, 1[ is chosen so that Ω Θ (η) is connected. (ii) σ := sup |Θ |=η |v| ∈ ]η, 1[ (or equivalently, δ := inf |Θ |=η |u| ∈ ]η, 1[).
Then v ∈ I c . The assertion does not necessarily hold if σ = 1 (or, equivalently, if δ = η).

Proof. Due to hypothesis (ii), we have the following estimate on |Θ | = η:

|u| = |Θ | |v| ≥ η σ = δ . (2) 
Note that δ ∈ ]η, 1[. We claim that

Ω u (δ ) ⊆ Ω Θ (η) ∩ Ω v (σ ). (3) 
To this end, we first show that |Θ | < η on Ω u (δ ). In fact, assuming the contrary, there exists

z 0 ∈ Ω u (δ ) such that |Θ (z 0 )| ≥ η. Let Ω 0 be that component of Ω u (δ ) containing z 0 . By Lemma 1(2), inf Ω 0 |u| = 0. Since u is a factor of Θ , we conclude that there exists z 1 ∈ Ω 0 ⊆ Ω u (δ ) such that |Θ (z 1 )| < η. Thus, the connected set Ω 0 meets {|Θ | < η} as well as its complement. Hence Ω 0 meets the topological boundary of Ω Θ (η). Because Ω 0 ⊆ D, we obtain z 2 ∈ Ω 0 such that |Θ (z 2 )| = η. Hence, by (ii), |v(z 2 )| ≤ σ and so |u(z 2 )| ≥ δ by (2). Both assertions |u(z 2 )| ≥ δ and z 2 ∈ Ω 0 ⊆ Ω u (δ ) cannot hold.
Thus our assumption right at the beginning of this paragraph was wrong. We deduce that

Ω u (δ ) ⊆ Ω Θ (η). (4) 
By continuity, this inclusion implies that |Θ | ≤ η on {|u| = δ }. Hence, for |u(z

)| = δ , |v(z)| = |Θ (z)| |u(z)| ≤ η δ (2) 
= σ .

(5) 

Now ∂ Ω u (δ )∩D = {|u| = δ }. If Ω is a component of Ω u (δ )
Ω u (δ ) ⊆ Ω v (σ ). (6) 
Thus (3) holds. Next we will deduce that

Ω v (η) ⊆ Ω Θ (η) ⊆ Ω v (σ ). (7) 
To see this, observe that the first inclusion is obvious because v is a factor of Θ . To prove the second inclusion, we write the η-level set of Θ as

Ω Θ (η) = Ω Θ (η) ∩ Ω u (δ ) ∪ Ω Θ (η) \ Ω u (δ ) .
By (6), the first set in this union is contained in

Ω v (σ ). The second set is also contained in Ω v (σ ), because if |u(z)| ≥ δ and z ∈ Ω Θ (η), then |v(z)| = |Θ (z)| |u(z)| < η δ (2) = σ . (8) 
To sum up, we have shown that for every z ∈ Ω Θ (η) we have |v(z)| < σ both in the case where |u(z)| < δ and |u(z)| ≥ δ . Thus

Ω Θ (η) ⊆ Ω v (σ ),
and so, (7) holds. Using these inclusions [START_REF] Cohn | Carleson measures for functions orthogonal to invariant subspaces[END_REF], we are now able to prove that Ω v (σ ) is connected. Assuming the contrary, there would exist a component Ω 1 of Ω v (σ ), distinct (and so disjoint) from that containing the connected set Ω Θ (η). In particular, |v| ≥ |Θ | ≥ η on Ω 1 . By Lemma 1 (2), inf Ω 1 |v| = 0, which is an obvious contradiction. Finally we construct an example showing that in (ii) the parameter σ cannot be taken to be 1. In fact, let v be a thin interpolating Blaschke product with positive zeros clustering at 1, for example Observation We know from [6, Proposition 12] that u, v ∈ I c implies uv ∈ I c . Here is an example showing that neither u nor v must belong to I c for uv to be in I c . In fact, let b be a thin Blaschke product with real zeros clustering at 1 and -1 (just consider b(z) = v(z)v(-z), v as above). Let ũ := Sb and ṽ(z) := S(-z)b(z). Then Θ := ũ ṽ ∈ I c , because Θ = S(z)v 2 (z) S(-z)v 2 (-z) is the product of two functions in I c (same proof as in [6, Proposition 11]), but neither ũ nor ṽ belong to I c . This can be seen as follows: since S(-1) = 1, ũ = Sb behaves as b close to -1. Thus, for η arbitrarily close to 1, the level set Ω ũ(η ) is contained in a union of pairwise disjoint pseudohyperbolic disks D ρ (x n , η * ), n = 0, 1, 2, • • • , together with some tangential disk D at 1, where x 0 = 0 and x n is the n-th negative zero of b (this works similarily as in [6, Corollary 21] and [6, Proposition 11]).

v(z) = ∞ ∏ n=1 1 -1/n! -z 1 -(1 -1/n!)z

Composition of one-component inner functions

In [6] we showed that for every finite Blaschke product B, the atomic singular inner function S and Θ ∈ I c , the compositions S • B ∈ I c and B • Θ ∈ I c . Using the following standard lemma, we will extend this to arbitrary one-component inner functions.

Lemma 2. 1) Let B be a Blaschke product with zero sequence (a n ) n∈N . Then the following inequalities hold for every ξ ∈ T \ Sing(B) and n 0 ∈ N:

|B (ξ )| = ∑ n∈N 1 -|a n | 2 |a n -ξ | 2 ≥ 1 -|a n 0 | 1 + |a n 0 | > 0.
2) If u is an inner function for which Sing(u) = T, then

δ u := inf{|u (ξ )| : ξ ∈ T \ Sing(u)} > 0.
Proof. 1) Just compute the logarithmic derivative B /B and note that on T \ Sing(B) the Blaschke product B converges.

2) Let ϕ a (z) = (az)/(1az). By Frostman's theorem (see [9, p. 79]) there is

a ∈ D such that B := ϕ a • u is a Blaschke product. Of course, Sing(u) = Sing(B), u = ϕ a • B and ϕ a (z) = -(1 -|a| 2 )/(1 -az) 2 . Hence, for ξ ∈ T \ Sing(u), |u (ξ )| = |ϕ a (B(ξ ))| |B (ξ )| ≥ 1 -|a| 2 |1 -aB(ξ )| 2 δ B ≥ 1 -|a| 1 + |a| δ B > 0.
This concludes the proof. 

Sing(Θ ) = Sing(v) ∪ {ξ ∈ T \ Sing(v) : v(ξ ) ∈ Sing(u)}. Since v ∈ I c , lim inf r→1 |v(rζ )| < 1 for every ζ ∈ Sing(v) (Theorem 1). Hence there exists a sequence (r n ) in ]0, 1[, r n → 1, such that v(r n ζ ) → w 0 ∈ D. Then Θ (r n ζ ) = u(v(r n ζ )) → u(w 0 ) ∈ D. (9) 
If ξ ∈ Sing(Θ ) \ Sing(v), then v(rξ ) → v(ξ ) = e iθ ∈ Sing(u) for some θ ∈ R. By Lemma 2, v (ξ ) = 0; hence v is a conformal map in small neighborhoods of ξ ; in particular, due to the angle conservation law, the curve γ : r → v(rξ ) stays in a cone

C = C(θ ) := {z ∈ D : |z| ≥ r 0 , | arg z -θ | < σ }
with curved base, aperture 0 < 2σ < π and cusp at e iθ ∈ Sing(u) (see the figure, where we sketched the situation for θ = 0).

Fig. 1 The curve γ, the cone C(0) with cusp at 1, and the envelope of a series of pseudohyperbolic disks of fixed radius ρ 0 .

Since u ∈ I c , lim inf |u(re iθ )| < 1. We claim that lim inf |u(v(rξ ))| < 1, too. To see this, choose a pseudohyperbolic radius ρ 0 so big that for some r 0 ∈ ]0, 1[ the cone C is entirely contained in the domain

V := -1<x<1 D ρ (xe iθ , ρ 0 ).
Note that by [11], the boundary of V is the union of two arcs of circles cutting the line {se iθ : s ∈ R} at e iθ under an angle α with σ < α < π/2 (see figure 1).

Choose r n so that lim u(r n e iθ ) = a ∈ D. Then the curve γ cuts the boundary of infinitely many disks D ρ (r n e iθ , ρ 0 ) twice. But for z ∈ D ρ (r n e iθ , ρ 0 ) we have

|u(z)| -|u(r n e iθ )| 1 -|u(r n e iθ )| |u(z)| ≤ ρ(u(z), u(r n e iθ )) ≤ ρ(z, r n e iθ ) ≤ ρ 0 ,
and so

|u(z)| ≤ ρ 0 + |u(r n e iθ )| 1 + |u(r n e iθ )| ρ 0 .
This clearly implies that lim inf |u(v(rξ

))| < 1.
Consequently, lim inf |Θ (rξ )| < 1 for every ξ ∈ Sing(Θ ). Next we verify the first condition in Aleksandrov's theorem (Theorem 1). By an elementary calculation, we obtain To conclude, we want to give some useful (surely known) informations on the relations between Sing(u) and Ω u (η). To this end, let X and ∂ X denote the closure, respectively boundary, in C of a set X, X ⊆ D.

A := (u • v) [(u • v) ] 2 = u • v (u • v) 2 + (u • v) (u • v) 2 v (v ) 2 (10) 
= u • v (u • v) 2 + 1 u • v v (v ) 2 . If ζ ∈ T \ Sing(u • v),
Observation 4 Let u be an inner function. Then the following assertions hold:

(1) For all η ∈]0, 1[, we have

E := Ω u (η) ∩ T = ∂ Ω u (η) ∩ T = Sing(u), (2) 
X := n ∂ Ω n may be a strict subset of ∂ Ω v (η) (but not always) whenever Ω n are the components of Ω v (η) for a non one-component inner function v.

Proof.

(1) Note that E = / 0 whenever u is a finite Blaschke product. Hence (1) obviously holds in that case. Now suppose that E = / 0. We first show that Ω u (η) ∩ T ⊆ Sing(u). To see this, let ξ ∈ E. Then there is z n ∈ Ω u (η) such that z n → ξ . In particular, by taking a subsequence, u(z n k ) → w for some w ∈ D with |w| ≤ η. Hence w ∈ Cl(u, ξ ), and so ξ ∈ Sing(u).

One may also see this in the following way: if ξ ∈ T \ Sing(u), then u has an analytic extension u * around ξ with |u * (ξ )| = 1. Hence, given 0 < η < η < 1, we see that |u * (z)| ≥ η for every z ∈ U, where U is a neighborhood of ξ in C. In particular, U ∩ Ω u (η) = / 0. Thus ξ / ∈ Ω u (η). To prove the other inclusion, let ξ ∈ Sing(u). Then there is a sequence (z n ) in D with z n → ξ and u(z n ) → 0. Hence z n ∈ Ω u (η) for almost all n. Thus ξ ∈ Ω u (η). Consequently, Ω u (η) ∩ T = Sing(u).

Since Ω u (η) is an open set with Ω u (η) ∩ T = / 0, we also obtain that

∂ Ω u (η) ∩ T = Ω u (η) \ Ω u (η) ∩ T = Sing(u).
(2) Let B be a thin Blaschke product and S the atomic inner function with Sing(S) = {1}. Then for any η ∈]0, 1[, Ω B (η) has infinitely many components all of them are relatively compact in D. So Sing(B) ∩ X = / 0. On the other hand, if B is a thin Blaschke product with negative zeros clustering at -1, then u = SB is a non-one component inner function whose level sets Ω u (η) consist of infinitely many components which are relatively compact in D (and clustering at -1) and a component whose closure contains 1.

Questions i) Given any countable closed subset E of T, does there exist u ∈ I c such that Ω u (η) ∩ T = E?

ii) Is the set Ω u (η) ∩ T necessarily countable whenever u ∈ I c ? We do not think so. As indicated by Carl Sundberg [START_REF] Berman | The level sets of the moduli of functions of bounded characteristic[END_REF], the usual Cantor ternary set may be the support of some singular measure µ whose associated singular inner function S µ belongs to I c .

iii) Give a description of those closed subsets E of T such that for some singular inner function S µ with Sing(S µ ) = E every inner factor of S µ belongs to I c .

For example, finite subsets of T have this property [6, Corollary 17]) .

  ) is given in [6]; part (3) is in [4, p. 733]. Recall that the spectrum Sing(u) of an inner function u is the set of all boundary points ζ for which u does not admit a holomorphic extension; or equivalently, for which Cl(u, ζ ) = D, where Cl(u, ζ ) = {w ∈ C : ∃(z n ) ∈ D N , lim z n = ζ and lim u(z n ) = w} is the cluster set of u at ζ (see [9, p. 80]). The pseudohyperbolic disk of center z 0 ∈ D and radius r is denoted by D ρ (z 0 , r).

  whose closure belongs to D, then by the maximum principle and (5), |v| < σ on Ω . If E := Ω ∩ T = / 0, then E has measure zero by Lemma 1 (3). The maximum principle with exceptional points (see [4, p. 729] or [8]) now implies that |v| < σ on Ω . Consequently,

,

  and let u(z) = S(z) := exp[-(1 + z)/(1z)] be the atomic inner function. Then, by [6, Proposition 11], Θ = uv ∈ I c . However, v / ∈ I c , see [6, Corollary 21]. Thus, by the main assertion of this proposition, σ = sup |Θ |=η |v| = 1. A direct proof of the assertion σ = 1 can also be given using [10, p. 55], by noticing that the boundary of the component Ω Θ (η) is a closed curve in D ∪ {1}.

Theorem 2 .

 2 If u and v are two non-constant inner functions in I c , then u • v ∈ I c . Proof. As in [6], we shall use Aleksandrov's theorem (Theorem 1).(1) Let Θ := u • v. It is well known that Θ is an inner function again (see e.g. [12, p. 83]). Now

) 2 )

 2 then |v(ζ )| = 1 and ξ := v(ζ ) ∈ Sing(u). Since u, v ∈ I c , we deduce from Lemma 2 and Aleksandrov's theorem 1 that|A(ζ )| ≤ sup β / ∈Sing(u) |u (β )| |u (β )| 2 + 1 δ u sup α / ∈Sing(v) |v (α)| |v (α)| 2 =: C < ∞,whereδ u := inf{|u (ξ )| : ξ ∈ T \ Sing(u)}.Hence Θ ∈ I c .Theorem 3. 1) Let E ⊆ T be a closed finite set. Then there exists a one-component inner function u such that for some η 0 ∈ ]0, 1[ (and hence for all η ∈ [η 0 , 1[) the associated level set Ω u (η) is connected and has the property thatΩ u (η) ∩ T = Sing(u) = E. (11There exists u ∈ I c such that Ω u (η) ∩ T = Sing(u) is an infinite set. Proof. 1) Let E = {λ 1 , . . . , λ N } be finite. Then the function S µ given by S µ (z) = N ∏ j=1 exp -λ j + z λ jz belongs to I c (by [6, Corollary 17]) and satisfies (11). 2) Let E = S -1 (1) be the countably infinite set of points where the atomic inner function S(z) = exp(-(1+z)/(1-z)) takes the value 1, and let b be the interpolating Blaschke product with zeros 1 -2 -n . Then b and S belong to I c (see [6, Theorem 6]). By Theorem 2, u := b • S ∈ I c . It is easy to see that Ω u (η) ∩ T = Sing(u) = E. The same holds true for S • b as well; just note that the argument function of b on T \ {1} is unbounded when approaching 1 from both sides on the circle (see [9, p. 92]), so that b -1 ({1}) is infinite. Thus we have a singular inner function in I c with infinitely many singularities.
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