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Abstract

A numerical study is presented for fiber suspension flows through a parallel plate channel and a planar 4:1 contraction. Besides examining a
Newtonian suspending fluid, a non-Newtonian matrix exhibiting a pseudoplastic behavior and describing a power-law model is also investi-
gated. Furthermore, instead of using orientation tensors for the macroscopic constitutive modeling, the proposed approach addresses the mac-
roscopic scale by describing the fiber orientation state with the probability distribution function (PDF). It enables us to eliminate the error
introduced due to the closure approximation when using orientation tensor description as our numerical scheme solves the PDF in both the
spatial and configurational spaces. This allows us to correctly implement expressions for both the fiber extra stress, especially for the suspend-
ing matrix displaying a pseudoplastic behavior, and the fiber orientation state, describing the configuration. Hence, these two constitutive rela-
tions for suspensions are used to perform simulations in which flow and fiber orientation are fully coupled. Results are presented in planar
geometries involving channel and 4:1 contraction flows. It is found that the coupling effect flattens the velocity profile for both suspending
fluids but has a small impact on the fiber orientation distributions at the geometry outlets. However, in the corner region where a vortex is
observed, its magnitude increases with the coupling and this enhancement is more pronounced for the Newtonian suspending fluid. The
Newtonian viscosity model is replaced with the Carreau model and results are compared to a bi-viscosity model. It gives qualitatively correct
results if no rapid fiber orientation change occurs along the streamlines. © 2019 The Society of Rheology.
https://doi.org/10.1122/1.5081016

I. INTRODUCTION

Rigid-fiber suspensions, such as short glass and carbon
fibers in polymers, are encountered in several engineered
products and represent an important class of non-Newtonian
fluids. However, these systems exhibit a complex flow behav-
ior due to the addition of fillers (i.e., fiber dynamics are
affected by the fluid flow and conversely, the flow profile is
modified by the presence of the particles) and the
non-Newtonian character of the suspending matrix (i.e., a
shear-thinning behavior is usually observed for composite
materials made of polymers). Therefore, predicting and be
able to control the orientation state of fiber suspensions are
of major interest to design a successful manufacturing
process and to predict the physical properties of the final
product. This could be achieved by performing numerical
simulations which uses a rigorous formulation to describe the
coupled nature of flow and fiber orientation accurately.

Over the past four decades, various researchers have
developed numerical strategies to perform fiber orientation
predictions for flows inside complex geometries by address-
ing the coupling between the flow field and the fiber orienta-
tion distribution. This is a key element in predicting the
behavior of fiber suspensions since the work of Evans [1],

who considered the flow of suspensions of rigid rodlike parti-
cles in a Newtonian fluid through simple geometries. Their
results are based on the aligned-fiber approximation, which
considers that fibers rotate rapidly to align with the stream-
lines. Lipscomb et al. [2] developed a numerical methodol-
ogy to investigate the streamlines in a 4.5:1 axisymmetric
contraction at low Reynolds number, using a Newtonian fluid
with low concentrations of high aspect ratio fibers. Their
results agreed quantitatively with their experimental observa-
tions despite the use of the aligned-fiber approximation.
Ranganathan and Advani [3] considered the effect of fiber–
fiber interaction based on the Folgar–Tucker model [4] in an
axisymmetric diverging radial flow. Kabanemi et al. [5] have
highlighted the effect of both three-dimensional flow and
fountain flow on fiber orientation during the injection
molding of thick wall parts. Reddy and Mitchell [6] have
developed a finite-element (FE) solver for fiber suspension
flows in complex geometries, such as the benchmark 4:1
contraction problem, and were able to reproduce an enhance-
ment in the magnitude of the zone of recirculation with
increasing fiber concentration. Verweyst and Tucker [7] used
a fully coupled solution to predict the flow of fiber suspen-
sions through a variety of complex geometries including axi-
symmetric contractions, expansions, and center-gated disk.
They also observed that the coupling enhances the corner
vortex in the contraction, in quantitative agreement with
experiments and calculations. In addition, they found that the
aligned-fiber approximation is not quite correct in the
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recirculating region and in the axisymmetric expansion flow.
Some experimental works confirmed that fibers modify the
flow pattern of suspensions. Yasuda et al. [8] introduced
short fibers in a Newtonian matrix and forced the suspension
to flow through a channel with a rectangular cross section.
The velocity profiles were measured with a magnetic reso-
nance imaging velocimetry. They observed that fibers modify
the velocity profile becoming flatter as the fiber volume frac-
tion increases. As for the center-gated disk, Verweyst
and Tucker [7] showed that the effects of coupling are
modest and are only noticeable near the center of the disk.
Mazahir et al. [9,10] conducted coupled transient simulations
to predict fiber orientation in a center-gated disk, employing
slow orientation kinetics such as the reduced strain closure
model [11]. They found that the coupling effect is very small
when assessed against experimental data measured in the
shell, transition, and core layers but an improvement is
observed in the frontal flow region. A detailed review of the
fundamentals and numerical simulations for predicting fiber
orientation during injection molding process of polymer
composites is given by Park and Park [12].

However, these approaches to fiber orientation modeling
are based on using moment tensors of the fiber orientation
probability distribution function (PDF) [13] and inevitability
involve the well known problem of the choice of accurate
closure approximations. Note that calculations using the
aligned-fiber approximation do not require a closure approxi-
mation. Hence, some numerical strategies have been
developed to circumvent this issue by solving directly the
Fokker–Planck equation in both the spatial and configurational
spaces. In rheology modeling of viscoelastic fluids (i.e., FENE
model), the Fokker–Planck equation has been used to study
the flow past a confined cylinder [14,15]. Moosaie and
Manhart [16] proposed a two-way coupled direct simulation
technique for the numerical problem of Brownian fiber sus-
pension flows in complex geometries. This procedure yields a
direct solution of the Fokker–Planck equation without requir-
ing a closure model. Krochak et al. [17] investigated the effect
of the two-way coupling between the flow field and the orien-
tation state of rigid-fiber suspensions flowing through a
tapered channel, where the orientation distribution function
evolves according to a Fokker–Planck type equation. They
showed that the orientation anisotropy is significantly different
when the two-way coupling is included. A recent technique
such as the proper generalized decomposition can also be used
to treat problems involving spatial and configurational spaces
[18,19]. These findings would suggest that the two-way cou-
pling plays a fundamental role in predicting both the flow field
and fiber orientation state during the flow of fiber suspensions.
Furthermore, it is now conceivable to solve both the spatial
and orientation domains when directly computing the orienta-
tion distribution function.

II. THEORETICAL BACKGROUND OF FIBER
SUSPENSIONS

A. Fiber orientation dynamics

In practice, it is usual to describe the orientation of a
single and rigid ellipsoid of revolution by the two angles θ

and f in a spherical coordinate system or equivalently by a
unit vector p directed along its principal axis of symmetry
[13]. As for its dynamics, Jeffery [20] solved the creeping
flow equations for such a particle freely suspended in a
Newtonian fluid assuming a linearly varying flow. It is found
that the center of the particle translates with the local fluid
velocity and its rotational motion is given by [including only
the first two terms on the right-hand side of Eq. (1)]

_p ¼ � 1
2
ω � pþ λ

2
_γ � p� _γ:pppð Þ � CI j _γj

Ψ

@Ψ

@p
: (1)

In the above equation, ω and _γ are the vorticity and the
deformation rate tensors, respectively (see [21] for their defi-
nitions). The shape factor is defined by λ ¼ (a2r � 1)=
(a2r þ 1), where ar is the particle aspect ratio obtained from
ar ¼ L=D, where L and D (or 2R) being its length and diam-
eter, respectively. For a slender particle (i.e., cylindrical
fiber), particle thickness can be ignored, setting λ ¼ 1 (this
condition will be used through this work). The last term in
the right-hand side of Eq. (1) was later introduced by Folgar
and Tucker [4] to take into account particle interactions
encountered in concentrated suspensions of non-Brownian
fibers. j _γj denotes the magnitude of the effective deformation
rate (i.e., the second invariant of the strain-rate tensor) and CI

represents the interaction coefficient. Some authors [22,23]
have attempted to relate CI with fiber aspect ratio and fiber
volume fraction, ff , and others [24–26] have considered it as
an anisotropic rotary diffusion tensor. Ψ is the PDF giving a
complete and unambiguous description for representing the
orientation state of a group of fibers.

For non-Newtonian suspending fluids, Laurencin et al.
[27] investigated the fiber kinematics for non-Newtonian
dilute fiber suspensions subjected to lubricated compression
experiments using a microrheometer mounted in a synchro-
tron x-ray microtomograph. It allowed them to observe fast
and in situ 3D imaging of the translation and rotation of
fibers in the suspending fluid. They found that the Jeffery
theory with its related affine assumption led to rather good
estimations for the kinematics of a single fiber suspended in
a non-Newtonian fluid (i.e., exhibiting a shear-thinning
behavior) even by changing the macroscale compression
strain rate. Thus, they concluded that the non-Newtonian
character of the matrix has a minor effect on the kinematics
of dilute fibers. Around the same time, based on the
Giesekus formulation [28], Férec et al. [29] showed that
Jeffery’s equation (with the assumption of slender bodies)
is satisfactory when considering that the suspending fluid
follows a power-law behavior. This result was supported
numerically in simple shear flow for a single ellipsoidal
fiber with a large aspect ratio suspended in a power-law
fluid [30]. Domurath et al. [31] also performed numerical
simulations and showed that the particle motion for very
large aspect ratio is not influenced by the non-Newtonian
character of the suspending matrix given by a Carreau
model.

From the PDF, it is useful to introduce its even-order
moments (the odd-order ones being all zero) also known as
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orientation tensors [13]. For instance, pph i ¼ Ð
p ppΨdp and

pppph i ¼ Ð
p ppppΨdp are the second- and fourth-order ori-

entation tensors, respectively, and provide a more compact
representation of the fiber orientation state in order to
improve computational efficiency (

Ð
p †Ψdp refers to an

average over all possible fiber orientations). The eigenvectors
of pph i give the principal directions of fiber alignment, while
the associated eigenvalues give the magnitude of fiber align-
ment in that direction. Following Eq. (1), Advani and Tucker
[13] derived the evolution equation for pph i for particles
suspended in a Newtonian fluid by taking into account
fiber–fiber interactions

@

@t
pph i þ u � ∇ pph i ¼ � 1

2
ω � pph i � pph i � ωð Þ

þ λ

2
_γ � pph i þ pph i � _γ � 2 _γ: pppph ið Þ

� 2CI j _γj δ � α pph ið Þ, ð2Þ

where δ is the identity tensor, u is the velocity vector of the
suspending fluid, and ∇ represents the differential operator
with respect to the spatial coordinates. α equals 3 for three-
dimensional orientation and α equals 2 for planar orienta-
tion. It should be noted that this governing equation
contains pppph i and, therefore, a closure approximation to
express pppph i in terms of pph i is needed to solve the
system of equations. Various closure approximations have
been proposed and their accuracies are difficult to quantify,
yielding to some questionable results [32–34]. As for a
power-law fluid, Férec et al. [29] expressed the time evolu-
tion equation for a second-order conformation tensor
without considering fiber interactions. Once again, a fourth-
order tensor appears in the evolution equation for pph i,
the second-order tensor describing the rod microstructure.
This time it involves a scalar potential leading to develop
new closure approximations and exposing the results to
criticism.

B. Fiber stress expression

Several approaches exist for deriving the total stress
expression of fiber-filled composites. Among them, cell
models (or self-consistent schemes) can give realistic consti-
tutive equations with a simple but rigorous framework for
slender bodies (i.e., particles with a high aspect ratio, λ ¼ 1).
The seminal work was initiated by Batchelor [35,36] for an
elongational flow of a Newtonian fluid containing fibers par-
allel to the stretching direction, which was extended by
Goddard [37,38] to include the strain-thinning behavior of
the matrix by assuming a power-law model. Later, the cell
model was updated to consider homogeneous flows for both
the Newtonian and the power-law fluids. For instance,
Souloumiac and Vincent [39] and later Férec et al. [29]
established a stress expression for a fiber suspension, which
includes the pseudoplastic character of the neat matrix
modeled by a power-law relationship. Their results are in
agreement with Gibson and Toll [40] and have the following

form

σ ¼ �Pδ þ Kj _γjm�1 _γ

þ Kj _γjm�1ff
amþ1
r

2m�1(mþ 2)
1� m

m 1� (R=h)
1�m
m

h i
24 35m

� _γ: je_γ:ppjm�1pppp
D E

:

(3)

In the above expression, the first term represents the total
hydrostatic contribution, where P is the isotropic fluid pres-
sure. The second term is the suspending fluid contribution,
where K and m are the consistency and the power-law index
of the matrix, respectively. Finally, the last term on the right-
hand side refers to the particle contribution to the extra stress
tensor in which e_γ is the dimensionless strain-rate tensor
related to the strain-rate tensor by _γ ¼ j _γj e_γ and h corre-
sponds to the average distance between fibers. In the limit as
m tends to unity, Eq. (3) yields the stress expression for a
fiber suspension in a Newtonian fluid of viscosity η0 by sub-
stituting K with η0

σ ¼ �Pδ þ η0 _γ þ η0ff
a2r

3 log (h=R)
_γ: pppph i: (4)

This rheological constitutive model for fiber suspensions was
previously obtained by Dinh and Armstrong [41], and it is
widely used in process simulations. When the fibers are
randomly oriented, the concentration limits of interest in
Eqs. (3) and (4) are given by a�2

r , ff , a�1
r . This corre-

sponds to the semiconcentrated regime and both limits
decrease when increasing ar. However, if the fibers are all
parallel to one another, then the previous limits are replaced
by a�2

r , ff , 1.
As discussed above and when dealing with macroscopic

descriptors, a closure approximation is required in Eq. (4) to
express pppph i in terms of pph i and some potentially
tedious works are required to find a closed-form for Eq. (3).
Therefore, a reasonable and theoretically exact approach con-
sists of using a macroscopic descriptor such as the PDF. Up
to now, it is well established that the main disadvantage of
using the PDF to describe the orientation is that it makes the
calculations to predict orientation in flowing suspensions
very cumbersome [13]. But with the development of ever-
faster and higher-performing computers, such preconceived
idea can be overcome leading to explore the efficiency of
new rheological models without considering approximations
such as closure relations. For fibers suspended in a fluid, the
extra stress depends on both the deformation rate and the
fiber orientation state. This leads to a two-way coupling
between the solutions for velocity and orientation.

Understanding the evolution of the final fiber orientation
state during the processing of the polymer fiber suspension
into a polymer composite part is essential to predict and
tailor the performance of the composite. Much of the focus
have been dedicated to better predict the fiber dynamics in
Newtonian fluids by considering the slow orientation kinetics
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and anisotropic rotary diffusion in concentrated systems, with
some improvements but at the expense of introducing addi-
tional parameters. However, investigating the effect of the
non-Newtonian character of the suspending fluid on the fiber
orientation distribution has not been yet well explored and
remains a formidable challenge. Hence, the main focus of
this work is to handle this issue and, therefore, a general pro-
cedure is delineated to solve the flow and fiber orientation in
a coupled way. Furthermore, the developed tool is capable of
analyzing and testing more realistic physics into the model-
ing. This paper is organized as follows. In Sec. III, the theo-
retical fundamentals of the numerical model is outlined.
Then, in Sec. IV, computational results in 2D are presented
and concern the fiber suspension flows in the Newtonian and
the non-Newtonian matrices through a parallel plate channel
and a planar 4:1 contraction, respectively. Section V aims to
investigate the use of the Carreau law by considering a
bi-viscosity model, and finally, Sec. VI concludes the paper.

III. MODEL DEFINITION

A. Continuity equation for the PDF

Let Ψ be the PDF for a fiber in the configuration x, p, tð Þ,
where x designates the position vector for its center of
gravity, p its orientation, and t the time. Therefore, the loca-
tion and orientation of a single and rigid fiber at a time t is
given by specifying the Cartesian components x, y, z for x
and px, py, pz for p, respectively. This set of six coordinates
can be represented as a particular system point in a six-
dimensional spatial and configurational space. Thus, for a
medium containing a large number of particles, the time rate of
change of system points with a six-dimensional hypercube of
volume V ¼ ΔxΔyΔzΔpx Δpy Δpz is _ΨΔxΔyΔzΔpx Δpy Δpz.
The rate at which system points enter the hypercube is
_xΨð Þjx ΔyΔzΔpx Δpy Δpz � _xΨð ÞjxþΔx ΔyΔzΔpx Δpy Δpz plus
10 additional terms describing the position and orientation
change in the other five coordinate directions. These two
expressions can now be equated and then divided by V. When
Δx, Δy, etc., tend to zero, it results in

_Ψ ¼ �∇x � _xΨð Þ � ∇p � _pΨð Þ, (5)

which is called the equation of continuity for Ψ. _Ψ represents
the partial time derivative of the PDF and more generally, the
over-dot symbol refers to the partial time derivative. The
symbol ∇x is the useful differential operator in position space,
and ∇ p corresponds to the differential operator on the surface
of a unit sphere, such as ∇ p †ð Þ ¼ eθ @†

@θ þ ef @†
sin θ@f, with eθ

and ef being the polar and azimuthal unit vectors, respec-
tively. Note that the first right-hand side term of Eq. (5)
becomes null in the case of steady homogenous flows.

B. Configurational discretization by using a finite
volume method

When the time evolution for p, given by Eq. (1), is
inserted into the continuity equation, Eq. (5), one obtains the
so-called Smoluchowski equation also known as the Fokker–
Planck equation (the latter designation will be used in the

following with the acronym FP). Similar to the rotational dif-
fusion encountered in Eq. (1) (i.e., the term including CI),
some translational diffusion (parallel and perpendicular to
the particle axis) may occur for the time evolution of the
center of mass of the fiber. As a homogeneous system is con-
sidered, it will remain homogeneous even if the orientational
distribution is not isotropic [42]. Thus, the translational diffu-
sion terms can be discarded and the center of mass of the
fiber is moving with the fluid velocity (affine motion). In this
form, no analytical solution is available for the FP equation,
especially when both the spatial configuration is taken into
account and fiber interactions are considered (CI = 0). The
difficulty is that the FP equation must be solved in both phys-
ical and configurational spaces, and this requires a suitable
discretization procedure for all relevant variables, namely,
space x, configuration p, and time t. Thus, in the following,
only problems dealing with steady-state regime are investi-
gated, but even under this assumption, a numerical approach
is still required to solve the equation below

u � ∇xΨþ ∇p � _pΨð Þ ¼ 0: (6)

To obtain Eq. (6), the notation for the velocity vector _x has
been replaced by u and the requirement for incompressible
flow has been used. Furthermore, this work focuses on a 2D
problem reducing the problem to three variables issue, i.e.,
two spatial Cartesian coordinates (x and y) and one configu-
rational coordinate (f) related to the fiber orientation distri-
bution. This multidimensional problem imposes a mesh for
the fiber orientation angle f domain at each spatial node.
Hence, a finite volume method (FVM) is used to discretize
the partial differential equation, Eq. (6), in the configurational
space. The FVM is recognized for its local conservativeness
property needed to fulfill the normalization condition for the
PDF, which is included in the formalism of the model.
Following the work of Férec et al. [43], the numerical
approach has been updated to deal with a two-dimensional
representation of fiber orientation state (i.e., planar orientation
state), leading to considering the angle for particle orientation,
f. In this context, all the possible orientations describe half
circle of unit radius since a fiber head is undistinguished from
its tail, and it results in the following periodic boundary condi-
tions: Ψ(f) ¼ Ψ(fþ π). Thus, the perimeter of the half circle
has been discretized into N equal intervals of length
Δf ¼ π=N. In the configurational space, an upwinding power-
law scheme is used to solve the convection–diffusion problem
[44]. Therefore, the discretized form for nodal points P, E,
and W (see Fig. 1) of the FP equation, Eq. (6), is

Δf u � ∇xΨP þ aPΨP � aWΨW � aEΨE ¼ 0: (7)

The Appendix presents the expressions for the coefficients
aE, aW , and aP.

At each node of the mesh of the volume, N components
of the PDF are known or computed. For N directions
called pi, the value of the probability to find fiber in this
direction, Ψi, is also known or computed. Terms such as
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pppph i are computed with the use of the N components of
PDF substituting the integral for a sum as

pppph i ¼
ð
p
ppppΨdp � 2Δf

XN
i¼1

pipipipiΨi: (8)

In the same manner, the term into brackets in Eq. (3) can be
computed as

je_γ:ppjm�1pppp
D E

� 2Δf
XN
i¼1

je_γ:pipijm�1pipipipiΨi: (9)

In this work, values of conformation tensors are only the
result of post treatment.

C. Numerical implementation

COMSOL Multiphysics 5.2 is used to solve the full
problem (i.e., flow field and fiber orientation) since its frame-
work allows coupling the existing laminar flow interface with
partial differential equation (PDE) interfaces, required for
implementing the extra fiber stress. As the discretization in the
configurational space involves N nodal points, the coupled
system of PDEs is represented by using the matrix forms of
coefficients. The unknowns are the values for the PDF at each
node in the configurational space and, therefore, it involves N
coefficient forms. Equation (7) is a convection equation in the
spatial domain and is then stabilized by adding a numerical
isotropic diffusion term. In this case, the diffusion coefficient
is an artificial diagonal N � N matrix with Δf cnum on its diag-
onal. This provides the only spatial diffusion for the FP equa-
tion. Under this assumption, Eq. (7) becomes

Δfu �∇xΨP þ Δf cnum ΔxΨP þ aPΨP � aWΨW � aEΨE ¼ 0,

(10)

where Δx represents the Laplacian operator. This equation is
implemented in Comsol Multiphysics by taking advantage of
the similarity with the coefficient form PDE, presented in the
software. Hence, coefficients in the above equation are identi-
fied with the ones for the convection–diffusion problem.
Note that the absorption coefficients are introduced with
respect to the connectivity table from the mesh in the config-
urational domain.

D. Model statement

The two constitutive equations for a Newtonian or a
power-law suspending fluids must be solved together with
the continuity equation for an isothermal and incompressible
fluid, and the Cauchy momentum equation in the limit of
creeping flow with negligible body forces

∇x � u ¼ 0, (11)

∇x � σ ¼ 0, (12)

where u is the velocity vector and σ denotes the total stress
tensor, given by relations (3) or (4). The FP equation,
Eq. (10), provides the rod orientation dynamics equation rep-
resented by Ψ, from which the tensorial terms in angular
brackets, arising in Eqs. (3) and (4), are straightforwardly
numerically computed. It is recalled that no closure approxi-
mation is required thanks to this framework.

All the computations were carried out on a laptop HP
EliteBook Folio 1040 G3 Notebook PC Series with Intel(R)
Core(TM) i7-6600U CPU (2.6GHz) and 16GB RAM and
did not exceed 3 h of CPU time. The Comsol Multiphysics
default mesh settings, i.e., type physics-controlled mesh
sizes, were used. The mesh is optimized in order to generate
boundary layers around no-slip boundaries and edges.
Boundary layers (thin quadrangles) are useful along all
boundaries across where strong gradients of the velocity
develop. Hence, considering both accuracy and computa-
tional time, a fine mesh size was selected for all the computa-
tions done in this paper.

Also, in all computations presented in this work, the
parameters have the following values: ar ¼ 20, ff ¼ 10%,

h=R ¼
ffiffiffiffiffiffiffiffiffiffi
π=ff

q
(this condition corresponds to the case of

aligned fibers and is kept constant over the different simula-
tions even if the particles orient), η0 ¼ 1 Pa s, K ¼ 1 Pa sm,
and m ¼ 0:3. An interaction coefficient of CI ¼ 0:01 was
selected for the example problem and the artificial numerical
diffusion coefficient, cnum, is set to 10�5 m2=s for the spatial
diffusion in the FP equation, Eq. (10). The value of the
parameters are summarized in Table I.

The proposed models do not account for any particle
migration that is known to occur near boundaries because of
the fiber-wall contacts. This first study aims to investigate
the bulk flow of fiber suspensions in the Newtonian and the
power-law suspending fluids; however, considering the
depletion of particles near the boundary could be the focus
for a future work.

FIG. 1. Control volume used to perform flux balances for the PDF (repre-
sented by the red-dotted box). The edges of the control volume labeled as e
and w refers to east and west directions.

TABLE I. Parameter values used for the numerical simulations.

Model parameters Symbol Value Unit

Fiber volume fraction ff 0.1 —

Fiber aspect ratio ar 20 —

Suspending fluid viscosity η0 1 Pa s
Suspending fluid consistency K 1 Pa sm

Power-law index m 0.3 —

Interaction coefficient CI 0.01 —
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IV. COMPUTATIONS ON 2D DOMAINS

Two 2D computational domains are considered: a channel
domain, where the flow gradient is predominantly shearlike,
and a 4:1 contraction domain, displaying regions with shear
flow, contraction/elongation flow, and recirculating flow in the
corner. The advantage of these configurations is that the flow
is two-dimensional and the orientation state is described by
just the angle f. This allows us to investigate the effect of ori-
entation on the kinematics of a nonhomogeneous flow. This
will lead us to better understand the nature of the coupling
between the flow and fiber orientation, for both the Newtonian
and the power-law suspending matrices. For both geometries,
the boundary conditions involve the following cases: At the
entrance, a laminar inflow (BC1) is assumed with imposing a
Dirichlet condition for the velocity such as its x-component

is given by uNx ¼ 3
2U 1� y=Hð Þ2

h i
for the Newtonian

suspending fluid and uPLx ¼ 2mþ1
mþ1 U 1� jyj=Hð Þ(mþ1)=m

h i
for

the power-law ones, respectively (the average velocity, U, is
set to 1m/s). The outlet boundary is a pressure outlet condi-
tion, which includes a normal flow and a suppressed back-
flow (BC2). A zero-slip boundary condition (BC3) is
applied to the walls and a symmetry boundary condition
(BC4) which states that there is no flow across the boundary
and zero tangential stress along the line of symmetry.
Finally at the channel entrance, fibers are assumed to
present a random-planar distribution leading to impose a
Dirichlet-type boundary condition, Ψ ¼ 1=(2π), for the FP
equation (this equation is hyperbolic and, therefore, only
requires a boundary condition at the inlet).

A. Planar channel flow

As the first example, the flow of a fiber suspension is
assumed to occur in a planar channel geometry, correspond-
ing to a laminar flow between two parallel plates. The com-
putation domain is a rectangle with a length of 3H in the
x-direction and a height of 2H in the y-direction, where
H ¼ 1m. Due to the symmetry about the y ¼ 0 axis, only
the half rectangular duct is considered (see Fig. 2). The
boundary at x ¼ 0 and at the opposite boundary at x ¼ 3H
are a laminar inflow and an pressure outlet conditions,
respectively. The top wall at y=H ¼ 1 has a zero-slip boun-
dary condition and there is a symmetry boundary condition
at y=H ¼ 0. This flow is not a true filling calculation but is
intended to highlight the differences between the two

constitutive models when the flow field and fiber orientation
are coupled or not. The domain is discretized using 2451 ele-
ments as shown in Fig. 2.

First, the Newtonian suspending fluid with no coupling
between the flow field and the fiber orientation is examined.
The flow field is assumed to be steady and fully developed.
In this case, the streamlines are parallel to the walls, hence,
this is a pure shear flow except on the bottom boundary,
where the velocity gradient vanishes. Therefore, since the
velocity gradient is constant along a streamline, each infini-
tesimal fluid element experiences a constant shear flow. It
should be recalled that fiber orientation predictions made
under these assumptions do not correspond to any physical
process. However, the results provide information on the
effect of flow on fiber orientation. For that purpose, the use-
fulness of these calculations is to check the implementation
of the computer code.

The background color in Fig. 3 symbolizes the general-
ized shear rate distribution in the fluid domain (which equals
to shear rate for this flow) and the white unfilled ellipses
describe the average fiber orientation. The eigenvalues and
the eigenvectors of pph i give the two major axes of the
ellipse and indicate the degree of orientation along these
directions. For instance, the ellipse becomes a circle for a
planar random orientation and elongates into a line along the
major axis for fiber orientation with a preferential alignment
in that particular direction. Thus, fibers along the fixed wall
become highly oriented and obtain the steady state instantly
and fibers further away from the bottom boundary must
travel quite a bit downstream to attain the steady state. As
predicted by the Folgar–Tucker model, the nonzero value for
CI tends to randomize the orientations leading to not align all
the fibers along the streamlines.

The same steady state can also be obtained by performing
steady single-point calculations (SPCs). Indeed, an observer
moving with the fluid allows one to calculate the dynamic
orientation history along a streamline. Following Férec et al.
[29], the pxpxh i and pxpy

� �
components are directly com-

puted from the FP equation for planar orientations with the
assumption of homogeneous shear flow and with prescribing
a constant velocity gradient value along a streamline. To
perform this calculation, the half circle of unit radius is
discretized into 100 equal intervals of length, whereas the
FE scheme considers only N ¼ 30 elements for the

FIG. 2. FE mesh for planar channel: BC1, laminar inflow; BC2,
pressure outlet; BC3, zero� slip condition; and BC4, symmetry condition.

FIG. 3. Generalized shear rate distribution of fluid domain in the xy-plane
for a Newtonian fluid (uncoupled solution). Ellipsoids represent the average
fiber orientation and eigenvalues are scaled with 1/10 for better visualization.
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configurational space. Therefore, to directly compare the FE
results with SPCs, orientation state components are expressed
as a function of total strain, jγj. Recall that pxpxh i is propor-
tional to the magnitude of the alignment and that pxpy

� �
indi-

cates the direction of alignment. Figure 4 shows a
comparison of FE and transient SPCs for a streamline, here
represented in Fig. 3 by the black dashed line parallel to the
symmetry centerline at y ¼ 0:85H. The FE results are found
to be consistent with the SPCs in providing the right dynam-
ics and an accurate steady state and, hence, validates the
implementation of the FE code and also the choice of N ¼
30 elements as sufficient for the configurational mesh.

A major concern is what would be the fiber orientation
distribution if Eq. (2) is used. This requires a closure approxi-
mation in order to express pppph i as a function of pph i. As
pppph i cannot be uniquely defined in terms of pph i, the
eigenvalue based orthotropic fitted closure based on the
works of Cintra and Tucker [32] or the invariant based ortho-
tropic fitted closure (IBOF) of Chung and Kwon [45] are typ-
ically used to approximate the coefficients used based on
typical flow fields. The IBOF closure is known to be relevant
and is therefore used for the calculations. Hence, Fig. 4
shows that the pxpxh i component given by the IBOF closure
exhibits a larger overshoot and an overestimate of the steady
plateau value (relative error of 3.5%). As for the component
pxpy
� �

, the prediction is less accurate as the dynamic
response is longer as compared to the PDF solution and the
steady plateau value is underestimated (relative error of
18.6%).

Then, the power-law suspending matrix is explored, still
considering the decoupled solution between the fluid flow
and the orientation evolution (see Fig. 5). In a planar
channel, the power-law character of the fluid affects the
velocity profile and a low value of the power-law index flat-
tens the velocity profile (as m tends to zero, the velocity
profile becomes a pluglike). In this flattened region, the shear

rate is nearly zero and fibers are advected through the flow
without changing their orientation distribution (the ellipses
maintain their circular shapes). Also, close to the wall fibers
become highly oriented and obtain the steady-state
quasi-instantly, similar to the Newtonian case.

When the coupling effect is considered, the suspension
becomes a non-Newtonian fluid since the fiber stress contri-
bution is taken into account in the momentum equation.
Indeed, viscosity becomes anisotropic when the average ori-
entation of the fibers leaves their random-planar configura-
tion. Hence, due to the non-Newtonian nature of the flow,
the velocity profile is expected to change through the cross-
sections of the channel. Figure 6 depicts the numerical
results when assuming a Newtonian suspending fluid and a
coupling between the flow field and fiber orientation. Starting
from a prescribed parabolic velocity profile at the inlet, the
velocity profile tends to flatten out along cross-sections
through the duct. Hence, due to the flat velocity profile, the
effective deformation (i.e., shear rate) decreases in the central
region of the channel when compared with the uncoupled sol-
ution. Furthermore, near the inlet, the streamline divergence
leading to extension in the y-direction and thus more aligned
fibers in the perpendicular direction to the flow.

The PDF can be recovered once the fiber orientation
tensors are known thanks to a Fourier series expansion,
where the coefficients transform as tensors under rigid rota-
tions of the material element [46]. This property is then
exploited to evaluate how the truncation limits given by ori-
entation tensors can effectively describe the fiber orientation

FIG. 4. Comparison of the FE to single-point calculations (SPC) of pxpxh i
and pxpy

� �
in parallel plate channel for the streamlines along the line

y=H ¼ 0:85. Predictions obtained with the IBOF closure approximation [45]
are also shown.

FIG. 5. Generalized shear rate distribution of fluid domain in the xy-plane
for a power-law fluid with a power-law index of m ¼ 0:3 (uncoupled solu-
tion). Ellipsoids represent the average fiber orientation and eigenvalues are
scaled with 1/10 for better visualization.

FIG. 6. Generalized shear rate distribution of fluid domain in the xy-plane
for a Newtonian fluid (coupled solution). Ellipsoids represent the average
fiber orientation and eigenvalues are scaled with 1/10 for better visualization.
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distribution. For planar orientation states, a fourth-order trun-
cation Ψ4 is given by [13]

Ψ4 ¼ 1
2π

þ 2
π
f2:V2 þ 8

π
f4::V4, (13)

where :: is the scalar product (quadruple contraction) of
two fourth-order tensors. In the above relationship, V2

and V4 represent the second- and the fourth-order devia-
toric fiber orientation tensors defined in terms of index
notation as

Vij ¼ pip j

� �� 1
2
δij, (14a)

Vijkl ¼ pipjpkpl
� �� 1

6
δij pkplh i þ δik p jpl

� �
δil p jpk
� �þ δ jk piplh i þ δ jl pipkh i þ δkl pip j

� �� �þ 1
24

δijδkl þ δikδ jl þ δilδ jk

� �
, (14b)

and f2 and f4 are their associated tensor basis functions of p such as

fij ¼ pip j � 1
2
δij, (15a)

fijkl ¼ pip jpkpl � 1
6

δijpkpl þ δikp jpl þ δilp jpk þ δ jkpipl þ δ jlpipk þ δklpip j

� �þ 1
24

δijδkl þ δikδ jl þ δilδ jk

� �
: (15b)

Note that the second-order truncation bΨ2 is obtained by con-
sidering the first two terms of Eq. (13). At the channel
entrance, the random-planar distribution sets Ψ ¼ 1=(2π)
leading to express this fiber orientation state by a black
dashed line in Fig. 7. This fiber conformation is perfectly
described by any order of truncation. The three other curves
in Fig. 7 show some fiber orientation distributions at the
channel outlet at y ¼ 0:85H (represented by a black penta-
gram in Fig. 6). The red curve (square-shaped dots) in Fig. 7
represents the fiber distribution obtained from our numerical
simulation. With regard to Fig. 6 with ellipsoidal

representation, most fibers are aligned in the flow direction
(the flow direction being at an angle of f ¼ 90� ) and, conse-
quently, few of them are oriented along the flow-gradient
direction (corresponding to f ¼ 0� and its opposite being at
f ¼ 180�). The green curve (triangle-shaped dots) in Fig. 7
is the fourth-order truncation Ψ4, where the deviatoric fiber
orientation tensors are computed from Ψ. It leads that infor-
mation about the fourth-order, given by pip jpkpl

� �
, is insuffi-

cient to represent quasialigned distributions, which represents
most steady-state solutions for flow-induced orientation. In
other words, handling orientation tensors up the fourth-order,
which commonly done in flow processing, provides some
erroneous values in describing fiber orientation states. It is
obvious that inaccurate representations are observed when
using the second-order truncation Ψ2 (see the blue curve
with circle-shaped dots in Fig. 7).

The numerical results for a power-law suspending fluid by
considering a coupled flow kinematics and fiber evolutions
are presented in Fig. 8. Once again, the coupling effect tends
to more flatten the velocity profile when a laminar flow, iden-
tical to the uncoupled case, is imposed at the entrance. Thus,
in the central region near the centerline where the shear rate
is mostly null, more fibers are convected through the flow
when compared to the uncoupled solution.

To illustrate the flatness of the velocity profile with the
coupling effect and the nature of the suspending fluid, Fig. 9
shows the velocity profiles at the outlet (i.e., x ¼ 3H). Note
that both red curves also correspond to the velocity profiles
at the inlet (i.e., x ¼ 0) on the left side for the Newtonian
suspending fluid and on the right side for the power-law sus-
pending fluid, respectively. As already stated, the coupling
tends to flatten the velocity profiles and this effect is notice-
able for both suspending fluids. This flattening behavior is

FIG. 7. PDF compared to recovered distribution functions using second-
order and fourth-order tensors at x ¼ 3H and y ¼ 0:85H (represented by a
pentagram in Fig. 6) for a Newtonian fluid (coupled solution).
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induced by the fiber orientation distribution in the sense as
higher is the fiber alignment lower is the shear viscosity of
the suspension. Hence close to the wall where fibers are
strongly aligned, the viscosity is lower than at the centerline
leading to flatten the velocity profile.

The previous results suggest that taking into account the
coupling effect has a minor impact on the fiber orientation
distribution for the fluid flow in a planar channel. However,
the pressure drop increases considerably when considering
the coupling. Figure 10 depicts the computed pressure drop
along the symmetrical axis (i.e., y=H ¼ 0) for the four inves-
tigated systems, in which the largest enhancement of the
pressure drop is obtained for the Newtonian suspending
fluid. Also shown in Fig. 10 are the analytical solutions
given by the Hagen–Poiseuille equation for both unfilled sus-
pending fluids.

B. Planar contraction flow

The second example consists in investigating the flow
for a fiber suspension in a 4:1 contraction. A lot of numeri-
cal studies have focused on suspension flows through

channel with abrupt expansion [47] or contraction [2]. Such
flows are often encountered in a real molding process and
therefore represent some relatively important benchmark
cases. In fact, the contraction flow and its reverse (i.e.,
expansion flow) are geometries where the coupling has a
large effect on the flow pattern [48]. In this case, the com-
putational domain consists of two connected rectangles and
is discretized using 2161 elements, as shown in Fig. 11.
The boundary at x ¼ �6m is the inlet and the outlet is
defined at the opposite end, that is, at x ¼ 6m. y=H ¼ 0 cor-
responds to the centerline of symmetry and the remaining
boundaries are treated as walls.

The numerical results for an uncoupled solution when
considering a Newtonian suspending fluid is depicted in
Fig. 12. This time, the background color represent the magni-
tude of the x-component of the velocity and some streamlines
are also visualized for a better understanding. A vortex is
observed near the corner at x ¼ 0 and its effect is clearly
seen in the fiber orientation field, where most fibers are paral-
lel to the streamlines. This is highlighted in Fig. 16(a), in
which a magnification of the black dashed-line rectangle
zone is done. The alignment is not perfect as the fiber–fiber
interaction coefficient is not zero (i.e., CI = 0). Furthermore,
fibers close to the centerline are subjected to elongational
flow, especially near the entry region, and consequently align
them in the flow direction.

FIG. 9. Velocity profiles along the y-direction at the channel exit. On the
left, the Newtonian suspending fluid. On the right, the power-law suspending
fluid.

FIG. 8. Generalized shear rate distribution of fluid domain in the xy-plane
for a power-law fluid with a power-law index of m ¼ 0:3 (coupled solution).
Ellipsoids represent the average fiber orientation and eigenvalues are scaled
with 1/10 for better visualization.

FIG. 10. Computed pressure drop along the symmetrical axis in the planar
channel.

FIG. 11. FE mesh for 4:1 contraction: BC1, laminarinflow; BC2,
pressureoutlet; BC3, zero� slipcondition; and BC4, symmetrycondition.
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When the coupling is taken into account, the size of the
corner vortex increases [see Fig. 13 and in more detail in
Fig. 16(b)]. This observation is confirmed experimentally by
Lipscomb et al. [2], who showed an enhancement of the
vortex size when slender fibers are added to a Newtonian
fluid, even at low Reynolds numbers, and by Yasuda et al.
[49], who employed polymeric fibers made from cellulose
acetate propionate in a suspension made of glycerin and
polyethylene glycol.

The case where the suspending fluid is non-Newtonian
and follows a power-law model is now investigated.
Figure 14 presents the numerical results for the uncoupled
solution. It can be pointed out that the pseudoplastic behavior
of the unfilled matrix (characterized with a power-law index
of m ¼ 0:3) reduces the upstream vortex, as compared to the
Newtonian case. The vortex is pushed completely into the
corner and occupies a very little room there, as shown in
Fig. 16(c). This outcome has already been confirmed numeri-
cally for highly shear-thinning fluid (m � 0:37) [50,51]. As
for the fiber orientation field, fibers are mostly aligned along
the streamlines.

The results for the coupled solution of fibers suspended in
a power-law fluid is given in Fig. 15. The magnitude of the
recirculating zone increases slightly with the coupling [see
Fig. 16(d)], but its size remains small when compared to the
Newtonian cases. It can be concluded that the pseudoplastic
behavior of the suspending matrix considerably reduces the

size of the corner vortex. As observed previously, fibers
tends to orient along the streamlines.

In terms of pressure drop, the difference between the
uncoupled and coupled solutions is also significant.
Figure 17 shows the computed pressure drop along the sym-
metrical axis (i.e., y=H ¼ 0) in the 4:1 planar contraction. By
taking into account the coupling effect, the pressure drop
increases considerably by at least a factor of 2 independently
of the nature of the suspending fluids and under considered
simulation conditions. The maximum enhancement is
observed for the system involving a Newtonian suspending
fluid due to the largest size of the recirculation [see
Fig. 16(b)].

V. TOWARD A SUSPENDING CARREAU FLUID

It is well known that most melt polymers follow a
Newtonian law at low effective deformation rates and then
exhibit a pseudoplastic behavior above the attainment of
critical effective deformation rates. The shear-thinning and
strain-thinning behaviors have been observed for fiber com-
posites made with such suspending matrices [52,53]. In
view of this, a simple modeling representation for these
materials can be obtained from a bi-viscosity model
wherein the transition between viscosities is determined by
a critical effective deformation rate condition, _γc. It is then
assumed that a composite material follows the Newtonian

FIG. 12. x-component velocity distribution of fluid domain in the xy-plane
for a Newtonian fluid (uncoupled solution). Ellipsoids represent the average
fiber orientation, and eigenvalues are scaled with 1/10 for better visualiza-
tion. Red lines denote the computed streamlines in a 4:1 contraction.

FIG. 13. x-component velocity distribution of fluid domain in the xy-plane
for a Newtonian fluid (coupled solution). Ellipsoids represent the average
fiber orientation, and eigenvalues are scaled with 1/10 for better visualiza-
tion. Red lines denote the computed streamlines in a 4:1 contraction.

FIG. 14. x-component velocity distribution of fluid domain in the xy-plane
for a power-law fluid with a power-law index of m ¼ 0:3 (uncoupled solu-
tion). Ellipsoids represent the average fiber orientation, and eigenvalues are
scaled with 1/10 for better visualization. Red lines denote the computed
streamlines in a 4:1 contraction.

FIG. 15. x-component velocity distribution of fluid domain in the xy-plane
for a power-law fluid with a power-law index of m ¼ 0:3 (coupled solution).
Ellipsoids represent the average fiber orientation, and eigenvalues are scaled
with 1/10 for better visualization. Red lines denote the computed streamlines
in a 4:1 contraction.
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behavior predicted by Eq. (4) at low j _γj and the power-law
form given by Eq. (3) at high j _γj. This is mathematically
summarized below

σ ; σN for j _γj � _γc, (16a)

σ ; σPL for j _γj . _γc, (16b)

where σN and σPL stands for Eqs. (4) and (3), respectively.
In practice, only the power-law model is considered, the
Newtonian behavior being obtained by setting the power-law
index very close to 1 (i.e., n ¼ 0:99).

The same simulation parameters (as in Sec. IV) have
been used and the critical effective deformation rate con-
dition is set to _γc ¼ 1 s�1. Hence, Fig. 18 (on the top
from the black dashed line) shows the regions in the
planar contraction, where j _γj exceeds _γc, or in other
words, where the fiber suspension exhibits a pseudoplas-
tic behavior. These regions are located at the contraction
entrance and close the wall in the capillary. The associ-
ated components of the second-order orientation tensor,
pph i, are depicted in Fig. 19 for pxpxh i and in Fig. 20

FIG. 16. Higher magnification of the recirculation zones displayed in Figs. 12–15. (a) Uncoupled solution for a Newtonian suspending fluid, (b)
coupled solution for a Newtonian suspending fluid, (c) uncoupled solution for a power-law suspending fluid, and (d) coupled solution for a power-
law suspending fluid.

FIG. 17. Computed pressure drop along the symmetrical axis in the 4:1
planar contraction.

FIG. 18. Predicted regions where j _γj exceeds _γc for a coupled problem: the
bi-viscosity model on the top and the Carreau model on the bottom.
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for pxpy
� �

(on the top from the black dashed line),
respectively. As previously discussed in Sec. IV B, the
fibers exhibit a preferred orientation parallel to the
streamlines.

In order to deal with pseudoplastic matrices and instead
of considering a bi-viscosity model, it is convenient to
replace the Newtonian viscosity in Eq. (4) by the one of the
Carreau model given by η0 ; η0(1þ (j _γj= _γc)2)(m�1)=2.
This concept of empirical substitution is useful in commer-
cial injection molding simulation software. With this mind,
Fig. 18 (on the bottom from the black dashed line) presents
this time the regions, where j _γj exceeds _γc. As compared to
Fig. 18 (on the top from the black dashed line), there are no
significant differences between the two patterns, except at
the geometry entrance close to the wall. This is explained
by a flow rearrangement as the velocity profile at the
laminar inflow condition is the one given by the power-law
model. For this simulation condition, Figs. 19 and 20 (on
the bottom from the black dashed line) show pxpxh i and
pxpy
� �

, respectively. Thus, no meaningful differences in
term of fiber orientation are observed in connection with
Figs. 19 and 20 (on the top from the black dashed line), for
which a bi-viscosity model is assumed, except in the size of
the recirculating region. From these considerations, it
maybe stated that replacing the Newtonian viscosity by the
one of the Carreau law in order to take into account the
pseudoplastic behavior of the suspending matrix is appro-
priate if no rapid fiber orientation change along streamlines
are encountered (this generally corresponds to a significant
geometrical changes in the model).

VI. CONCLUDING REMARKS

A numerical method for computing the flow of fiber
suspensions with large aspect ratio in planar and converg-
ing geometries is proposed. The key point of this work is
that the PDF is used to describe the fiber conformation
instead of its usual moments. Furthermore, a Newtonian
and a nonlinear viscous suspending fluids and their asso-
ciated particle stress contributions are investigated. The
coupling analysis of flow field and fiber orientation
shows a close agreement between the coupled and decou-
pled solutions in terms of fiber distribution. However, the
pressure drop increases noticeably with the coupling,
being most prominent with the Newtonian suspending
fluid. A flattening of the velocity profile is also observed
with the coupling and this effect is more pronounced for
the Newtonian suspending fluid. The magnitude of the
vortex appearing in the corner region for the 4:1 contrac-
tion geometry broadens with the coupling. This increase
is more noticeable for the Newtonian suspending fluid as
compared to the pseudoplastic one. These numerical
results are in qualitative agreement with experimental
observations available in the literature. Lastly, the
Newtonian viscosity is replaced by the one given by the
Carreau model. It is found that this empirical viscosity
substitution is relevant if no rapid fiber orientation
change along streamlines are encountered. This numerical
approach will allow us to explore the flow predictions for
viscoelastic fluids and fibers suspended in viscoelastic
fluids [54], without being hampered by errors arising due
to the use of closure approximations.
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APPENDIX: EXPRESSIONS FOR aE, aWAND AP

For the upwinding power-law scheme [44], the coeffi-
cients aP, aE, and aW are determined by

aP ¼ aE þ aW þ Fe

2
� Fw

2
, (A1)

aE ¼ De max 0, 1� 0:1
Fe

De

���� ����� 	5
" #

þmax �Fe, 0½ �, (A2)

aW ¼ Dw max 0, 1� 0:1
Fw

Dw

���� ����� 	5
" #

þmax Fw, 0½ �, (A3)

for which the fluxes are evaluated as

Fe ¼ _fe, (A4)

FIG. 19. pxpxh i component pattern representation obtained with a coupled
solution: the bi-viscosity model on the top and the Carreau model on the
bottom.

FIG. 20. pxpy
� �

component pattern representation obtained with a coupled
solution: the bi-viscosity model on the top and the Carreau model on the
bottom.
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Fw ¼ _fw, (A5)

De ¼ Dw ¼ CI j _γj
Δf

: (A6)

In the above relationships, _fe and _fw represent the rotary
motion of a rigid fiber (with λ ¼ 1) given by Eq. (1) and
expressed at the edges of the control volume.
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