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It is well known that in the disk-algebra A(D) every zero-free function has a logarithm in A(D). This is no longer true if we look at invertible matrices over A(D).

In this paper we give a sufficient condition on the trace of a 2 × 2-matrix M in order M = e L for some matrix L ∈ A(D). We compute all the logarithms of the identity matrix in M2(A(D)) and observe that the anti-diagonal elements can be arbitrarily prescribed. We also characterize those upper (or lower) triangular matrices which are exponentials in M2(A(D)) and determine all their logarithms. This will enable us to prove that exp M2(A(D)) is neither closed nor open within the principal component of M2(A(D)) -1 . Finally, we show that every invertible matrix in M2(A(D)) is a product of four exponential matrices and give conditions for reducing this number. These results will be put into the more general setting of commutative Banach algebras whenever possible.
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Introduction

Let B = (B, || • ||) be a unital Banach algebra over K = R or K = C. It is a classical result that if for some u ∈ B one has ||u -1|| < 1, then u ∈ exp B := {e a : a ∈ B}. In particular u is invertible. As a consequence, if M > ||g||, then M • 1 -g ∈ exp B. Note that in the real case we do not necessarily have that the opposite g -M • 1 belongs to exp B. One of the most used criterium for the existence of logarithms in Banach algebras reads as follows:

Proposition 0.1. Let B be a unital complex Banach algebra (not necessarily commutative) and let a ∈ B. Suppose that 0 belongs to the unbounded connected component of C \ σ B (a), where σ B (a) is the spectrum of a. Then there exists b ∈ B such that e b = a. This is usually proved via the abstract functional calculus (see e.g. [4] or [START_REF] Kaniuth | A Course in Commutative Banach Algebras[END_REF]). An entirely elementary proof is given in [START_REF] Mortini | Logarithms and exponentials in Banach algebras[END_REF]. There, one also finds the counterpart for real Banach algebras R. Recall that the real-symmetric spectrum σ * R (x) of x ∈ R is defined as follows:

σ * R (x) : = {λ ∈ C : (x -λ • 1) (x -λ • 1) not invertible in R} = {λ ∈ C : x 2 -2(Re λ) x + |λ| 2 • 1 not invertible in R} = {α + iβ ∈ C : (x -α • 1) 2 + β 2 • 1 not invertible in R}.
Note that the first line in the preceding definition is only a formal expression, since complex scalars are not necessarily elements of R.

Proposition 0.2 ( [START_REF] Mortini | Logarithms and exponentials in Banach algebras[END_REF]). Let R be a unital real Banach algebra (not necessarily commutative) and let x ∈ R.

(1) Suppose that 0 belongs to the unbounded connected component of C \ σ * R (x). Then there exists y ∈ R such that e y = x 2 .

(2) If ]-∞, 0] is contained in the unbounded connected component of C\σ * R (x), then there exists v ∈ R such that e v = x.

However, such conditions are far from being necessary. In this paper we are interested in the matrix algebra M 2 (A) of 2 × 2 matrices over a commutative unital Banach algebra A, with emphasize on the disk-algebra A(D) of all functions holomorphic in the open unit disk D and continuously extendable to its closure.

Each of the following matrices has a logarithm in A(D):

M 1 = 1 0 f 1 , M 2 = 1 g f 1 with ||f || 2 ∞ + ||g|| 2 ∞ < 1.
In fact, M 1 and M 2 are perturbations of the identity matrix I 2 by, either a nilpotent element, or a matrix with Hilbert-Schmidt norm ||f || 2 ∞ + ||g|| 2 ∞ < 1. In general it is quite hard to determine whether a given matrix has a logarithm. This is mainly due to the fact that, in general, exp M 2 (A) is neither closed nor open in the group G of all invertible matrices in M 2 (A) (see Corollary 5.6). Thus, small perturbations of an invertible matrix M may yield opposite behaviours. This reflects the known situation for the algebra B(H) of bounded linear operators on a Hilbert space H ( [START_REF] Deckard | On rootless operators and operators without logarithms[END_REF]).

One of our goals is to explicitely determine the logarithms for several classes of 2 × 2 matrices, as, for example, the identity matrix or triangular matrices over A(D). Our constructions and proofs of non-existence of logarithms matrices will often be based on the following formula in [START_REF] Bernstein | Some explicit formulas for the matrix exponential[END_REF] (see also [7]). A version for general (commutative, unital) Banach algebras will be given in Theorem 3. Let us mention, that besides logarithms in Banach algebras, we also consider logarithms of matrices whose entries are holomorphic functions on a domain D. These are defined as follows: If M = (f i,j ) 1≤i,j≤n is an n × n-matrix over H(D) then L = (h i,j ) 1≤i,j≤n is said to be a logarithm of M in H(D) if h i,j ∈ H(D) and e L(z) = M (z) for all z ∈ D. This is denoted by e L = M . Abusing notation we also write M = (f i,j (z)).

Some Examples of logarithms of matrices in the disk-algebra

We begin with the following elementary Lemma on a certain branch of the inverse function to cosh z. This type of functions will play a central role in discussions on the existence of logarithms of matrices in A(D).

Lemma 1.1. Let cosh z = (e z +e -z )/2. There exists a function g holomorphic on the domain

G := C \ ] -∞, -1] ∪ [1, ∞[ such that cosh g(z) = z for every z ∈ G.
Moreover, for any such inverse function to cosh,

(1) Z(g) = ∅.

(2) For suitable branches of the square-root and the logarithm we have

g(z) = log(z + √ z 2 -1) and g (z) = 1 √ z 2 -1 . (3) g| D has a continuous extension to D. (4) If g(0) = iπ/2 then, for |z| < 1, -ig(z) = arccos z = π 2 -arcsin z = π 2 -z - 1 2 z 3 3 - 1 • 3 2 • 4 z 5 5 - 1 • 3 • 5 2 • 4 • 6 z 7 7 -• • • .
(5) There does not exist a function ∆ holomorphic in a neighborhood U of ±1 such that cosh ∆(z) = z for every z ∈ U .

Proof. Suppose there is such an inverse function g.

(1) If g(z 0 ) = 0 for some z 0 ∈ G, then z 0 = cosh g(z 0 ) = cosh 0 = 1; a contradiction.

(2 ) By taking derivatives, and squaring, 1 = (g ) 2 (sinh g) 2 = (g ) 2 ((cosh g) 2 -1).

Hence (g (z)) 2 = (z 2 -1) -1 . Since G is a Cauchy domain, there is holomorphic branch of q(z) := 1 √ z 2 -1 with q(0) := -i. We claim that q is a logarithmic derivative; that is q = f /f for some f ∈ H(G), Z(f ) = ∅. In fact, let

f (z) = z + z 2 -1 with f (0) = i. Then f ∈ H(G) and is zero-free (because otherwise (-z) 2 = z 2 -1, implying 0 = -1). Moreover, f (z) = 1 + z √ z 2 -1 and so f (z) f (z) = √ z 2 -1 + z √ z 2 -1 f (z) = 1 √ z 2 -1 .
Since g = f /f = q, it suffices to consider the derivative of the function H := f e -g to conclude that the primitive g of f /f , defined by

g(z) = iπ 2 + [0,z] q(ξ) dξ, z ∈ G,
has the property that e g = f . Consequently,

e g + e -g = f + 1 f = z + z 2 -1 + 1 z + √ z 2 -1 = z + z 2 -1 + z - √ z 2 -1 1 = 2z.
In other words, cosh g(z) = z for every z ∈ G and g(z

) = log(z + √ z 2 -1). (3) Since g ∈ H(G) and D \ {-1, 1} ⊆ G, it suffices to show that g| D has a continuous extension to ±1. Let s(z) := √ z 2 -1, z ∈ G. Since |s(z)| ≤ |z 2 -1|, s is continuously extendable to {-1, 1}
. The continuity at ±1 of f follows. Now the log in the definition of g(z) = log(z + √ z 2 -1) does not come, a priori, from a branch of log z in a certain domain in the image space of f . Thus we cannot deduce the existence lim z→±1 g(z) directly, and we have to make some 'detour'. Let U be a small disk centered at 1 in C ⊇ f (G). The standard branch, L, of the logarithm w ∈ U → log w := log |w| + i arg w, -π < arg w < π, is of course continuous at 1. Hence L • f admits a continuous extension to 1. Now, for z ∈ G, z close to 1, e (L•f )(z) = f (z) and e g(z) = f (z). Thus, close to 1, g(z) = L • f (z) + 2kπi for some k ∈ Z. Hence g has a continous extension to 1. A similar procedure works for -1 by taking the branch L * , of the logarithm w ∈ U (-1) → log w := log |w| + i arg w, 0 < arg w < 2π.

(4) Let |z| < 1. Then -ig (z) =

1 i √ z 2 -1 = -1 √ 1-z 2 (
note that the minus sign has to be taken in the last term, in order to insure that at the origin both functions agree). Since

g(0) = iπ/2, integration z 0 (-ig )(ξ) dξ yields -ig(z) = π 2 - z 0 ∞ n=0 -1 2 n (-ξ 2 ) n dξ = π 2 -z - 1 2 z 3 3 - 1 • 3 2 • 4 z 5 5 - 1 • 3 • 5 2 • 4 • 6 z 7 7 -• • • .
(5) Suppose that ∆ ∈ H(U ) satisfies cosh ∆(z) = z for z ∈ U . Then ∆ (z) sinh ∆(z) = 1 and so, by squaring,

1 = ∆ (z) 2 (cosh 2 ∆(z) -1) = ∆ (z) 2 (z 2 -1).
This is an obvious contradiction (at z = ±1).

The formula g(z) = log(z + √ z 2 -1) can also be obtained (pointwise) by solving the equation cosh w = z ⇐⇒ e w + e -w = 2z ⇐⇒ (e w ) 2 -2z(e w ) + 1 = 0

⇐⇒ e w = z ± z 2 -1. (1.1)
The following class of examples shows that it is not a trivial venture to come up with (invertible) matrices in A(D) that do not possess logarithms. Let us point out that, in contrast to this, every invertible n × n-matrix over C admits a logarithm (for an elementary proof without the use of the Jordan form, see [START_REF] Mortini | Logarithms and exponentials in Banach algebras[END_REF]).

Proposition 1.2. Let M := z z 2 -1 1 z . Then (1) M has a logarithm in M 2 (H(D)).
(2) M has a logarithm in M 2 (A(rD)) for every r ∈ [0, 1[ but not in M 2 (A(D)).

(3) M does not have a logarithm in M 2 (H(rD)) for any r > 1.

(4) M is a product of two exponential matrices in A(rD) for 1 ≤ r < 2. 1 (5) M is a product of three exponential matrices in H(C), and so, in A(rD) for every r

In Example 3.5, we will add a 6-th property.

1 In Theorem 6.1 (3) it will be shown that every invertible matrix in A(D) is the product of four exponential matrices.

Proof.

(1) For z ∈ D, let g be an inverse function to cosh on the disk; that is cosh g(z) = z. Note that by Lemma 1.1, g(z) = log(z + √ z 2 -1), that g ∈ A(D) and that g = 0 in D \ {1}. We may assume that g(0) = iπ/2. Define on D, the matrix L by

L :=    0 g sinh g g sinh g 0    =   0 √ z 2 -1 log(z + √ z 2 -1) log(z + √ z 2 -1) √ z 2 -1 0   . Write L = a b c d and let ∆ ∈ H(D) satisfy ∆ 2 = D/4, where D := (a -d) 2 + 4bc = 4g 2 .
Then ∆ = g (or ∆ = -g). Since e (trL)/2 = 1, by Lemma 0.3,

exp L =    cosh ∆ b sinh ∆ ∆ c sinh ∆ ∆ cosh ∆    =   cosh g sinh 2 g 1 cosh g   = z z 2 -1 1 z .
Hence, we have found L ∈ M 2 (H(D)) for which exp L = M .

(2) Since L|rD ∈ A(rD) for any r ∈ [0, 1[, we obtain the first part of assertion (2). Note that the third entry in the matrix L above is unbounded (at -1). Let us mention that for r = 0, we have L = 0 -π/2 π/2 0 .

(3) This assertion (and the rest of (2)) will be shown using an argument of the referee, which turned out to be simpler than our original version, which was based on Lemma 0.3. In fact, if for some a in a unital Banach algebra A there exists b ∈ A with e b = a, then a also has a square-root c; just take c = e b/2 . Then c 2 = a. Hence, to prove (3), it suffices to show that the matrix M = z z 2 -1 1 z does not have a square-root in M 2 (H(rD)) for r > 1.

Suppose, to the contrary, that there are continuous functions a, b, c, d :

D → C such that (1.2) z z 2 -1 1 z = a(z) b(z) c(z) d(z) 2 (z ∈ D).
We claim that c is an unbounded function. To see this, we note that by (1.2),

         a 2 + bc = z d 2 + bc = z (a + d)c = 1 (a + d)b = z 2 -1. (1.3) 
Subtracting the first two equations gives a 2 -d 2 ≡ 0. The third equation implies that a + d = 0. Hence a = d, c = 1/2a and b = (z 2 -1)/2a. By substituting these equalities back into the first equation, we obtain

a 2 + (z 2 -1)/4a 2 = z,
or equivalently,

(a 2 -z/2) 2 = 1/4.
Hence, for fixed z ∈ D, either a 2 (z) = (z + 1)/2 or a 2 (z) = (z -1)/2. Thus, either 2c 2 (z) = 1/(z + 1) or 2c 2 (z) = 1/(z -1). Now we use the continuity of the functions. Define

S + : = {z ∈ D : 2c(z) 2 = 1/(z + 1)} S -: = {z ∈ D : 2c(z) 2 = 1/(z -1)}.
Then S + and S -are disjoint (relatively)-closed subsets of D. Since S + ∪ S -= D, the connectedness of D implies that either S + or S -equals D. We conclude that c is unbounded. This finishes the proof of ( 3) and (2).

(4) Now let 0 ≤ r < 2. Observe that

z z 2 -1 1 z = z -1 1 0 1 z 0 1 . Let R 1 := 1 z 0 1 and R 2 := z -1 1 0 . It is easy to see that L = 0 z 0 0 is a logarithm of R 1 (just compute the exponential e L ).
To see that R 2 has a logarithm, we show that the

M 2 (A(rD))-spectrum σ(R 2 ) of R 2 is disjoint from ] -∞, 0]. In fact, λ ∈ C belongs to σ(R 2 )
if and only if (z -λ)(-λ) + 1 = 0 for some z ∈ D, or equivalently, λ + λ -1 = z. Since for negative λ, this quotient is always less than -2, we see that σ(R 2 ) ∩ ] -∞, 0] = ∅ (note that |z| ≤ r < 2.) Thus we conclude from Proposition 0.1 that R 2 has a logarithm in A(rD) for every r ∈ [0, 2[. Another way to see this, is to use Proposition 2.2 by noticing that the trace

z of R 2 is disjoint from ] -∞, -2].
(5) Compared to (4), it is now easier (and entirely elementary) to show that z z 2 -1 1 z is a product of three exponential matrices in H(C). In fact,

z z 2 -1 1 z = 0 -1 1 0 1 0 -z 1 1 z 0 1 = exp 0 -π/2 π/2 0 exp 0 0 -z 0 exp 0 z 0 0 . Remark 1.3.
We actually see that for each r with 0 < r < 1, the matrix M := z z 2 -1 1 z has a logarithm in the real Banach algebra

A(rD) sym := {f ∈ A(rD) : f (z) = f (z)}.
In fact, one deduces from Lemma 1.1 that g(z) = log(z + √ z 2 -1) = i arccos z and that the entries of L are real on ] -1, 1[. More precisely, if -1 < x < 1, then (by using that the second entry satisfies g sinh g( 0

) = (iπ/2) i sin(π/2) = -π/2 < 0) x 2 -1 log(x + x 2 -1) = i x 2 -1 -i log(x + x 2 -1) = -1 -x 2 arccos x and log(x + √ x 2 -1) √ x 2 -1 = -i log(x + √ x 2 -1) -i √ x 2 -1 = arccos x √ 1 -x 2 .
In particular, exp

   0 - √ 1 -x 2 arccos x arccos x √ 1 -x 2 0    =   x x 2 -1 1 x   .
Remark 1.4. From the proof of Proposition 1.2 it becomes clear that the points ±1 are responsible for the non-existence of logarithms of M (z) in M 2 (A(rD)) for r ≥ 1. Of course, when viewed pointwise, each M (z) has a logarithm in M 2 (C). For z = ±1, we have

-1 0 1 -1 = exp iπ 0 -1 iπ and 1 0 1 1 = exp 0 0 1 0 .

Some trace-criteria for the existence of logarithms

We begin with a result which is surely known, but for which we couldn't find an explicit reference. Recall that if B is a unital Banach algebra (real or complex), then the connected component in B -1 of the identity element (called the principal component) has the form

P = P(B) := {exp a 1 • • • exp a n : a j ∈ B}
(see [START_REF] Palmer | Banach algebras and the general theory of * -algebras[END_REF]). This applies in particular to B = M n (A), where A is a commutative unital Banach algebra over K.

Proposition 2.1. Let A be a commutative unital Banach algebra over K and let M ∈ M n (A) be an invertible matrix.

(

) If M ∈ P(M n (A)), then det M ∈ exp A. (2) If M is homotopic in (M n (A)) -1 to I n , then det M is homotopic in A -1 to 1. Proof. (1) Let M = exp M 1 • • • exp M s , where M j ∈ M n (A). Then the map H : [0, 1] → A -1 , 1 
given by

H(t) := det exp (1 -t)M 1 • • • exp (1 -t)M s is a continuous map with H(0) = det M and H(1) = det I n = 1.
Thus det M belongs to the principal component of A -1 and so det M ∈ exp A.

(2) Recall that, by assumption, there is a continuous curve Φ : [0, 1] → M n (A) -1 joining M to I n . Assertion (2) is now a direct consequence of (1) and the fact that the principal component of

M n (A) -1 is P(M n (A)).
Given a commutative unital Banach algebra A over K, let X(A) denote the character space (spectrum) of A; that is the set of non-zero K-linear algebra homomorphisms of A into C, where in the case of a real algebra, C is looked upon as a 2-dimensional algebra over

R. Moreover, if R is a real unital Banach algebra then, by definition, σ R (x) := {λ ∈ R : x -λ • 1 / ∈ R -1 }.
Here are now the companion criteria to Propositions 0.1 and 0.2.

Proposition 2.2. Let A be a commutative unital Banach algebra over K.

Given M ∈ M 2 (A), suppose that (1) det M = 1, (2) σ A (tr M ) ∩ ] -∞, -2] = ∅. Then M ∈ exp M 2 (A). Proof. Case 1 A is a complex Banach algebra.
We are going to show that σ A (M ) ⊆ C\ ] -∞, 0]. Note that the characteristic polynomial det(M -λI 2 ) of M has the form

p(λ) = λ 2 • 1 -tr M λ + 1, where p(λ) ∈ A. Now λ ∈ σ A (M ) if and only if ∆ := M -λI 2 is not invertible in M 2 (A).
Since ∆∆ ad = ∆ ad ∆ = (det ∆) I 2 , where ∆ ad is the adjunct or adjungated matrix to ∆, we deduce that

λ ∈ σ A (M ) if and only if det(M -λI 2 ) / ∈ A -1 . Thus λ ∈ σ A (M ) if and only if there is m ∈ X(A) such that λ 2 -tr M (m) :=2z 0 λ + 1 = 0.
We claim that, under the hypothesis

σ A (tr M ) ∩ ] -∞, -2] = ∅, a solution λ to the equation λ 2 -2z 0 λ + 1 = 0 can never be negative. In fact, if λ ∈ R is a solution, then λ 2 + 1 = 2z 0 λ implies that z 0 =: x ∈ R. Note that λ = x ± x 2 -1. Now, for every m ∈ X(A), x = tr M (m) 2 / ∈ ] -∞, -1]. If x ≥ 1, then λ > 0 and if -1 < x < 1
, then the root is purely imaginary and so λ is not real. This verifies the claim. We conclude that σ A (M ) ⊆ C\ ] -∞, 0]. By Proposition 0.1, M now admits a logarithm.

Case 2 R := A is a real Banach algebra. We claim that under the hypothesis ( 1) and (2), the real-symmetric spectrum of

M satisfies σ * M 2 (R) (M ) ⊆ C\ ] -∞, 0]. This can be seen as follows: suppose that λ ∈ R ∩ σ * M 2 (R) (M ). Then M 2 -2 (Re λ) M + |λ| 2 I 2 / ∈ R -1 .
Hence det(M -λI 2 ) 2 , and so det(M -λI 2 ), is not invertible in R. This is the situation we encountered above. From Proposition 0.2 (2) we conclude that M admits a logarithm in M 2 (R).

As an application, here is just one example. For the case ε = 1, the starting point of our paper, we inquired on Mathoverflow [START_REF] Israel | Logarithms of matrices in the disk algebra[END_REF].

Example 2.3. Let M 3 = 1 ε z εz + 1 , 0 < ε ≤ 1. Then det M 3 = 1 and tr M 3 = 2 + εz. Now 2 + εz ∈ ] -∞, -2] if |z| ≤ 1. Hence M 3 has a logarithm in A(D) (actually in A(rD) for every r ∈ ]0, 4[ ) by Proposition 2.2.
The previous result 2.2 holds in particular if trM = 0. We now present an independent approach, giving at the same time an explicit formula for L.

Proposition 2.4. Let A be a commutative unital Banach algebra over K and let M ∈ M 2 (A) be an invertible matrix. Suppose that (1) det M belongs to the principal component of A -1 , say e 2a = det M , where a ∈ A.

(2) tr M = 0. Then aI 2 + (π/2)e -a M is a logarithm of M .

Proof. By pure calculation (or the Cayley-Hamilton Theorem),

0 = M 2 -(tr M ) M + det M • I 2 = M 2 + det M • I 2 . Thus, for b ∈ A, (bM ) 2 = -b 2 det M • I 2 .
By assumption, det M = e 2a . Let b := (π/2)e -a . We show that (2.1) exp(bM ) = e -a M, and hence M = exp aI 2 + bM . In fact, let S := bM . Then, with e a b = π/2 • 1,

S 2 = -(π/2) 2 I 2 , S 3 = -(π/2) 2 S, S 4 = (π/2) 4 I 2 , • • • . Inductively, S 2n = (-1) n (π/2) 2n I 2 and S 2n+1 = (-1) n (π/2) 2n S. Hence e S = I 2 + S + 1 2! S 2 + 1 3! S 3 + 1 4! S 4 + 1 5! S 5 + • • • = I 2 1-(π/2) 2 2! + (π/2) 4 4! - (π/2) 6 6! +-••• + S 1- (π/2) 2 3! + (π/2) 4 5! - (π/2) 6 7! +-••• = I 2 cos(π/2) + S sin(π/2) π/2 = 2 π bM = e -a M.

The exponential of a matrix in M

2 (A)
In general, it is not so easy to explicitely compute the exponential of a matrix in A. In case of 2 × 2-matrices, an explicit formula is available; we have already seen the classical case of matrices in M 2 (C)) (Lemma 0.3). The main role will be played by the following functions, where later the complex variable is replaced by an element of the algebra A (via the functional calculus for entire functions).

Lemma 3.1. For z ∈ C, let C(z) := ∞ k=0 1 (2k)! z 4 k and S(z) := ∞ k=0 1 (2k + 1)! z 4 k . Then (1) C 2 (z) - z 4 S 2 (z) = 1.
(2) S(z) = 0 ⇐⇒ z ∈ {-4π 2 j 2 : j ∈ Z * }. All these zeros are simple.

(3) If z j = -4π 2 j 2 , then C(z j ) = (-1) j . Moreover, these are the only points where C takes the values ±1. (4) C = 1 8 S.

(5) C : C → C is surjective.

Proof.

(1) First we note that identity (1) is true in case z = 0, because

C(0) = S(0) = 1. Let w 2 = z/4. Then C(z) = ∞ k=0 1 (2k)! w 2k = cosh w and, for z = 0, S(z) = ∞ k=0 1 (2k + 1)! w 2k = sinh w w .
Hence

C 2 (z) - z 4 S 2 (z) = (cosh w) 2 -w 2 sinh w w 2 = (cosh w) 2 -(sinh w) 2 = 1.
(2) follows from the equivalences 2 sinh w = e w -e -w = 0 ⇐⇒ e 2w = 1 ⇐⇒ w ∈ {jπi : j ∈ Z}, and the fact that S(0) = 1.

(3) The first assertion follows from the identity cosh(±iπj) = (1/2)(e iπj + e -iπj ) = (-1) j . The rest is a combination of ( 1) and ( 2).

(4)

C (z) = 1 2 ∞ k=1 2k (2k)! z 4 k-1 1 4 = 1 8 ∞ k=1 1 (2k -1)! z 4 k-1 j:=k-1 = 1 8 ∞ j=0 1 (2j + 1)! z 4 j = 1 8 S(z).
(5) Follows from the surjectivity of cosh z (relation (1.1)).

Remark 3.2. If g is a local right inverse for C, then 16g(z) = (z 2 -1)g (z) 2 .
In fact, if C(g(z)) = z for z ∈ U then, by taking derivatives, 1 = C (g(z))g (z), and so, by Lemma 3.1 (4),

1 = C (g(z)) 2 g (z) 2 = 1 64 S(g(z)) 2 g (z) 2 .
Hence, by multiplying with 16 g and using Lemma 3.1 (1), Proof. We first note that, by pure computation, M 2 -(tr

16 g(z) = g(z) 4 S(g(z)) 2 g (z) 2 = C 2 (g(z)) -1 g (z) 2 = = (z 2 -1)g (z) 2 .
M ) M + (det M ) I 2 = O. Hence M - a + d 2 I 2 2 = a + d 2 2 I 2 -(ad -bc)I 2 .
Consequently,

(3.2) M - a + d 2 I 2 2 = D 4 I 2 .
Now we compute2 the exponential of the matrix Moreover,

B := M - a + d 2 I 2 : exp B = I 2 + 1 1! B + 1 2! B 2 + 1 3! B 3 + 1 4! B 4 + • • • = 1 + 1 2! D 4 + 1 4! D 4 2 + • • • I 2 + 1 + 1 3! D 4 + 1 5! D 4 2 + • • • B = C(D) I 2 + S(D) B = C(D) + a -a+d 2 S ( 
C(D) = ∞ j=0 1 (2j)! a -d 2 2j = cosh a -d 2 .
Consequently,

e (a+d)/2 C(D) - a -d 2 S(D) = 1 2 e (a+d)/2 e (a-d)/2 + e -(a-d)/2 -e (a-d)/2 -e -(a-d)/2 = e d .
Similarily, for the first entry of the matrix. This yields (3.3). To obtain (3.4), just note that

(a -d)be (a+d)/2 S(D) = 2 be (a+d)/2 sinh a -d 2 = be (a+d)/2 (e (a-d)/2 -e -(a-d)/2 ) = b(e a -e d ),
and apply (3.3). These formulas will be applied in the next sections to determine logarithms. Right now, we reconsider the example in Proposition 1.2: Example 3.5. Let M be the matricial-valued function given by

M (z) := z z 2 -1 1 z .
Then, for every z 0 ∈ C, M admits a holomorphic logarithm in small neighborhoods of z 0 . More exactly, there is an open disk U (z 0 ) centered at z 0 and a 2 × 2 matrix L whose entries are holomorphic functions in U (z 0 ) such that exp L(z) = M (z) for all z ∈ U (z 0 ). C is surjective by Lemma 3.1 ( 5)). Then S(w 0 ) = 0. If z 0 = 1, then we let w 0 = 0 and so S(w 0 ) = 1 = 0. Hence, for z 0 = -1, there is a disk U (z 0 ) centered at z 0 and a holomorphic function D * : U (z 0 ) → V (w 0 ) with D * (z 0 ) = w 0 and C(D * (z)) = z for every z ∈ U (z 0 ) (see figure 1). We may choose U (z 0 ) so small that S(D * (z)) = 0 on U (z 0 ). Hence, 

L := 0 z 2 -1 S(D * ) 1 S(D * )
1 = C 2 • D * - D * 4 (S • D * ) 2 = z 2 - D * 4 (S • D * ) 2 .
If z 0 = -1, then again, we let w 0 = 0 so that S(w 0 ) = 1 = 0. Now there is a disk U (-1) centered at -1 and a holomorphic function D * : U (-1) → V (-1) with D * (-1) = 0 and (-C) • D * = id on U (-1); in other words C(D * (z)) = -z. The logarithm L for M is now defined by

L = iπ -z 2 -1 S(D * ) -1 S(D * )
iπ .

Logarithms of the identity matrix in M 2 (A)

Our next goal is to determine all the logarithms of the identity matrix I 2 in M 2 (A) for a large class of complex Banach algebras. Let us observe that if A = C, then the following matrices are logarithms of the identity matrix in M 2 (C) (use Lemma 0.3) :

(1) 2kπi 0 0 2kπi , k ∈ Z, (2) 2kπi b 0 2nπi and 2kπi 0 c 2nπi , k = n, b, c ∈ C arbitrary 3 , (3) S 2kπi 0 0 2nπi S -1 , k, n ∈ Z, S ∈ M 2 (C) invertible.
In particular, as has been known for a long time, there are non-commuting logarithms (just take two distinct b's in (2)). For the reader's convenience, we also present the proof of the converse:

Proposition 4.1. All logarithms L of I 2 in M 2 (C) are given by the matrices above.

Proof. Let λ be an eigenvalue of L with corresponding eigenvector v. Then This gives assertion [START_REF] Bernstein | Some explicit formulas for the matrix exponential[END_REF]. The matrices in (2) are special cases of those in (3). In fact, let

(e L )(v) = ∞ n=0 1 n! L n (v) = ∞ n=0 1 n! (λ n v) = e λ v.
S = 1 µ-ν -b 0 µ-ν . Then 1 µ-ν -b 0 µ-ν µ 0 0 ν µ-ν b 0 1 µ-ν = µ b 0 ν .
Recall that a semi-simple Banach algebra over K is a commutative unital Banach algebra for which the Gefand map f → f is an isomorphism. Proposition 4.2. Let A be a semi-simple Banach algebra over C. Let a ∈ A satisfy e a = 1. Then there exist finitely many idempotents e j and k j ∈ Z such that a = n j=1 2πik j e j .

If, additionally, X(A) is connected, then a = 2πik • 1 for some k ∈ Z.

Proof. Since e a = e a ≡ 1, we deduce that for every m ∈ X(A), a(m) ∈ {2kπi : k ∈ Z}.

Since the preimage E k of each value 2kπi is a closed-open subset of the compact space X(A), there exists finitely many k n ∈ Z such that

X(A) = m n=1 E kn . By Shilov's idempotent theorem [4], there is b ∈ A such that b = 2k n πi on E kn . Since A is semi-simple, a = b = m n=1 2k
n πi e n for some idempotents e n . If X(A) is connected, then A admits no nontrivial idempotents, and so a is a multiple of the identity.

Here is now a characterization of those matrices in the matrix algebra M 2 (A) whose exponential coincides with the identity matrix. (1) e L = I 2 .

(2) There exists an integer k ∈ Z such that

a + d = 2kπi • 1,
and an integer j ∈ Z such that

D := (a -d) 2 + 4bc = -4π 2 j 2 • 1
and, in case j = 0, the integer k is even, a = d = kπi • 1 and b = c = 0, that is

L = 2 πi 0 0 2 πi ,
and in case j = 0, the difference j -k is even.

Proof.

(1) =⇒ (2) Here, and in the next argument, we use that A is semi-simple. By Jacobi's trace formula, 1 = det I 2 = det e L = e tr L = e a+d . In view of Proposition 4.2, the connectedness of X(A) implies that (4.1)

a + d = 2kπi • 1
for some k ∈ Z. Hence e (a+d)/2 = (-1) k . Using Theorem 3.3, we conclude that

(4.2) exp a b c d = (-1) k C(D) + a-d 2 S(D) b S(D) c S(D) C(D) -a-d 2 S(D) = 1 0 0 1 .
Computing the trace, gives 1 = tr I 2 = (-1) k C(D). Passing to the Gelfand transform yields that (-1) k C( D) ≡ 1. Hence, by Lemma 3.1, for every x ∈ X(A), D(x) ∈ {-4π 2 j 2 : j ∈ Z}.

Since X(A) is connected, exactly one of these values belongs to the image of D. Now A is semi-simple. Hence D = -4π 2 j 2 • 1 for a unique j ∈ Z. This implies that C(D) = 1 if j is even and C(D) = -1 if j is odd (Lemma 3.1 (3)). Now, if j = 0, then D = 0 and we have

(-1) k 1 + a-d 2 • 1 b • 1 c • 1 1 -a-d 2 • 1 . Hence b = c = 0 and 1 ± a-d 2 = (-1) k • 1.
This implies that a = d and k is even. Since by (4.1), a

+ d = 2kπi • 1, we conclude that a = d = 2 πi • 1 for some ∈ Z. Consequently, L = 2 πi 0 0 2 πi .
By Lemma 3.1, if j = 0, we have C(-4π 2 j 2 • 1) = (-1) j and S(-4π 2 j 2 • 1) = 0. Hence

I 2 = (-1) k (-1) j • 1 + a-d 2 • 0 b • 0 c • 0 (-1) j • 1 -a-d 2 • 0 = (-1) k (-1) j • 1 0 0 (-1) j • 1 .
Consequently (-1) k (-1) j = 1, from which we conclude that j -k is even.

(2) =⇒ (1) Just verify that the entries in the middle matrix in formula (4.2) coincide with the entries of the identity matrix.

Of course (2) implies (1) for every commutative unital Banach algebra over C. (2) There exists an integer-valued

k ∈ A (that is k(X(A)) ⊆ Z) such that a + d = 2kπi,
and an integer-valued j ∈ A with

D := (a -d) 2 + 4bc = -4π 2 j 2 ,
such that k is even on the zero-set Z( j) and a = d = kπi, b = c = 0 on Z( j), and the difference j -k is even outside Z( j).

As an interesting corollary we can now show that one can prescribe in an arbitrary way the anti-diagonal elements b and c: (1) a

+ d = 2kπi • 1, (2) D = (a -d) 2 + 4bc = -4v 2 + 4bc = 4(bc -u) = -4π 2 j 2 • 1.
Here is an explicit example in A(D):

Example 4.6. Let √ w be the principal square root in C \ ] -∞, 0]. Then, for z ∈ D,

L = i(π + √ π 2 + z 2 ) z z i(π - √ π 2 + z 2 ) is a logarithm in A(D) of 1 0 0 1 .
The following diagonalization procedure is a well known classroom result. We only present it here, because we need the formulas later in case of matrices over Banach algebras. 

4.3) det S = bc -(µ -a)(ν -d) = (a -µ)(d -µ) -(µ -a)(ν -d) = (a -µ)(ν -µ) = 0. Now observe that S µ 0 0 ν = bµ ν(ν -d) µ(µ -a) cν . Since (a -µ)(d -µ) = (a -ν)(d -ν) = bc we obtain a b c d S = a b c d b ν -d µ -a c = ab + b(µ -a) a(ν -d) + bc cb + d(µ -a) c(ν -d) + dc = bµ a(ν -d) + (a -ν)(d -ν) (a -µ)(d -µ) + d(µ -a) cν = bµ ν(ν -d) µ(µ -a)
cν .

The rest is clear.

Here is now the 'to be expected' characterization of the set of logarithms of the identity matrix in M 2 (A). (2) There are integers n, m ∈ Z and a matrix S ∈ M 2 (A) -1 such that

S 2nπi 0 0 2mπi S -1 = L.
Proof.

(2) =⇒ ( 1) is clear.

(1) =⇒ (2). Let e L = I 2 . By Theorem 4.3 there exists an integer k ∈ Z such that

a + d = 2kπi • 1,
and an integer j ∈ Z such that

D := (a -d) 2 + 4bc = -4π 2 j 2 • 1.
If j = 0, then by Theorem 4.3, L = 2 πi I 2 for some ∈ Z.

If j = 0, j -k is even. Let ∆ := πij • 1 (so that ∆ 2 = D/4), u := (a + d)/2 + ∆ and v := (a + d)/2 -∆. Then u = (kπi + jπi) • 1 = 2nπi • 1 and v = (kπi -jπi) • 1 = 2mπi • 1 with m = n (because u = v in view of ∆ = 0). Let S = b v -d u -a c = b a-d 2 -∆ d-a 2 + ∆ c . For any s ∈ A, f (s) 
:= det(L -sI 2 ) = s - a + d 2 2 -∆ 2 .
Replacing s by u (respectively v) immediately yields that

f (u) = f (v) = 0. Hence f (s) = (a -s)(d -s) -bc = 0 for s ∈ {u, v}. Thus (4.4) bc = (a -u)(d -u) = (a -v)(d -v).
By the formal calculus in Lemma 4.7,

S u 0 0 v = LS.
and (as in (4.3)), det S = (a -u)(v -u). Since bc is assumed to be invertible, implying (by (4.4)) the invertibility of a -u, and since u -v = 2πij • 1 with j = 0, we see that det S is invertible.

Logarithms of triangular matrices in M 2 (A)

Next we shall give an explicit description of those triangular matrices in M 2 (A) that admit logarithms. Note that by Proposition 2.1, the determinant of such a matrix necessarily belongs to exp A. Proposition 5.1. Let A be a commutative unital complex Banach algebra without zero divisors. Let h, g ∈ A and suppose that h ∈ A \ {0}. Consider the upper triangular matrix M := 1 h 0 e g , and for x ∈ A, let

S(x) = ∞ n=0 1 (2n + 1)! x 4 n .
Then the following assertions are equivalent:

(1) M has a logarithm L in M 2 (A);

(2) There is an integer k ∈ Z such that he r k /2 is a multiple of S r k 2 , where r k := -g + 2kπi • 1.

• Moreover, in that case, L has the form

L = 2jπi • 1 b 0 g + 2mπi • 1 , for some j, m ∈ Z and b ∈ A such that h = b e g/2-(j-m)πi•1 S (g -2(j -m)πi • 1) 2 .
• If h itself is invertible, then the result holds without the assumption on A of having no zero-divisors.

Proof. Thus e a = 1, and e g = e d . Since A has no zero-divisors, it follows from Shilov's idempotent theorem [4] that X(A) is connected. Hence, by Proposition 4.2, a = 2jπi • 1 for some j ∈ Z and d = g + 2mπi • 1 for some m ∈ Z. Moreover,

δ = a -d 2 = - g 2 + (j -m)πi • 1,
and so

D = (a -d) 2 = -g + 2(j -m)πi • 1 2 .
Since e (a+d)/2 = e jπi+mπi e g/2 , we deduce from e jπi = e -jπi , that h = be (m-j)πi e g/2 S(D).

In other words, he -g/2+(j-m)πi is a multiple of S (g -2(j -m)πi • 1) 2 .

(2) =⇒ (1) If h = b e g/2-kπi•1 S (g -2kπi • 1) 2 for some k ∈ Z and b ∈ A, then we let

L := 2jπi • 1 b 0 g + 2(j -k)πi • 1 .
By Corollary 3.4, we get that e L = 1 h 0 e g .

Proof.

(1) Just use that Here is an interesting corollary. First we note that if G is the group of invertible matrices in M 2 (A(D)), then the principal component

1 1 0 e 2πiz = 1 0 0 e 2πiz
P := {exp L 1 • • • exp L n : n ∈ N, L j ∈ M 2 (A(D))}
of G coincides with G (in other words, G is connected). In fact, if M ∈ G, where M (z) = (a ij (z)) 1≤i,j≤2 , then M can be joined within G to the constant matrix M (0) by the curve Γ(t) = (a ij (tz)) 1≤i,j≤2 . Since M (0) ∈ exp M 2 (A(D)) ⊆ P, so does M . Proof. The matrices R t = 1 1 0 e 2πitz , (0 ≤ t ≤ 1), from Example 5.5 show that exp A(D) is not closed in P; just let t → 1.

For 0 < t ≤ 1, let h(z) := (1 -z 2 ) t be the principal branch of the t-th power of 1 -z 2 . Note that h ∈ A(D), due to the fact that |h(z)| ≤ |1 -z 2 | t , so that h is continuously extendable to z = ±1. Define the matrices

M t = 1 (1 -z 2 ) t 0 e 2πiz .
We claim (1) M t is a product of two exponential matrices.

(2) M t has a logarithm in A(D) if and only if t = 1.

(3) M t converges in the Hilbert-Schmidt norm to M 1 as t → 1. In fact, (1) holds in view of

1 (1 -z 2 ) t 0 e 2πiz = 1 0 0 e 2πiz 1 (1 -z 2 ) t 0 1 = exp 0 0 0 2πiz exp 0 (1 -z 2 ) t 0 0 .
(2) By Proposition 5.1, if L is a logarithm of M t for 0 < t < 1, then there is an integer k ∈ Z such that (1 -z 2 ) t e r k /2 is a multiple of S r k 2 , where r k (z) := -2πiz + 2kπi. If k = 0, then S(r k (0) 2 ) = S(-4k 2 π 2 ) = 0; a contradiction, because (1 -z 2 ) t e r k /2 does not vanish at z = 0. So k = 0. Hence (1 -z 2 ) t S(-4π 2 z 2 ) ∈ A(D).

However, the entire function S(-4π 2 z 2 ) has a simple zero at z = ±1 (Lemma 3.1). Thus the function (1 -z 2 ) t /S(-4π 2 z 2 ) would be unbounded near z = ±1 (note that 0 < t < 1). A contradiction, again. We conclude that M t does not admit a logarithm for 0 < t < 1. If t = 1, then it can be seen in the same way as for (5.1) that

L =    0 (1 -z 2 )e -πiz S(-4π 2 z 2 ) 0 2πiz    =    0 2πiz(1 -z 2 ) e 2πiz -1 0 2πiz    is a logarithm of 1 1 -z 2 0 e 2πiz in A(D).
(3) This assertion follows from the fact that (1 -z 2 ) t converges uniformly to (1 -z 2 ) on

D as t → 1, 1/2 ≤ t < 1: |(1 -z 2 ) t -(1 -z 2 )| = |(1 -z 2 ) t | |1 -(1 -z 2 ) 1-t | ≤ ε t • 3 ≤ 3ε 1/2 if |1 -z 2 | < ε, 2ε if ε ≤ |1 -z 2 | and t 1.
From ( 1),(2) and ( 3) it now follows that exp M 2 (A(D)) is not an open set, because M 1 ∈ exp M 2 (A(D)) is a limit point of the matrices M t , t → 1 which do not belong to exp M 2 (A(D)).

Remark 5.7. That M t has no logarithm in A(D) for 0 < t < 1 can, according to the referee, also be proven along the lines of Proposition 1.2 (3). He showed us, more generally, that if a, b, c, d, f : D → C are continuous functions with

1 f (z) 0 e 2πiz = a(z) b(z) c(z) d(z) 2 , (z ∈ D), then either f (0) = 0 or f (z)/(1 -z 2 ) is bounded in D.

How many exponentials are needed to represent

M ∈ M 2 (A) -1 ?
It is a classical result in the theory of unital Banach algebras B, that the connected component of the identity has the form P = {exp a 1 • • • exp a n : a j ∈ B}. This applies in particular to B = M 2 (A). It is therefore an interesting question to ask whether there may be an upper bound on the number of such exponentials representing the elements in P. It is a well known result in operator theory (see e.g. [11, Theorem 12.37]) that every invertible bounded linear operator on a Hilbert space is a product of two exponentials. In case of our matrix algebra M 2 (A) we obtain a positive answer under suitable conditions. One of these conditions will be in terms of the Bass stable rank. Recall that a commutative unital algebra A over K = R or C is said to have the Bass stable rank 1 (denoted by bsr A = 1) if for every pair (f, g) of elements in A with f A + gA = A there is v ∈ A such that f + vg ∈ A -1 . It is well known that bsr A(D) = bsr C([0, 1], C) = 1; see for instance [START_REF] Jones | Stable rank of the disc algebra[END_REF], for A(D) and [START_REF] Vasershtein | Stable rank of rings and dimensionality of topological spaces[END_REF] resp. [START_REF] Mortini | A note on some uniform algebra generated by smooth functions in the plane[END_REF] for C([0, 1], C). Theorem 6.1. Let A be a commutative unital Banach algebra over K such that A -1 is connected (equivalently exp A = A -1 ). Given an invertible matrix M ∈ M 2 (A), the following assertions hold:

(1) If M = u h 0 v
, where u, v ∈ A -1 , then M is a product of two exponentials.

(

) If M = a b c v 2 
, where v ∈ A -1 , then M is a product of three exponentials.

(3) If bsr A = 1, then M is a product of four exponential matrices.

Proof. (1) Since

A -1 = exp A, M = u 0 0 v 1 u -1 h 0 1 = e ũ 0 0 e ṽ I 2 + 0 u -1 h 0 0 = exp ũ 0 0 ṽ exp 0 u -1 h 0 0 . (2) Let M = a b c v ∈ M 2 (A) -1 and v ∈ A -1 . We first assume that det M = 1. Noticing that 1 = av -bc ⇐⇒ v -1 + v -1 bc = a, we obtain M = v -1 b 0 v 1 0 v -1 c 1 .
Hence, using v = e ṽ and (1), M = exp -ṽ 0 0 ṽ exp 0 vb 0 0 exp 0 0 v -1 c 0 .

If δ := det M , then δ = e 2m for some m ∈ A. Hence, by diving each entry of M by e m we obtain a new matrix M with det M = 1. Thus M = exp P exp Q exp R, and so M = exp(mI 2 + P ) exp Q exp R.

(

) 5 Let M = a b c d ∈ M 2 (A) -1 . 3 
In particular, ad -bc ∈ A -1 . Thus dA + bA = A and, since bsr A = 1, there is h ∈ A such that

u := d + hb ∈ A -1 . Hence 1 0 h 1 a b c d = a b ah + c u .
Multiplying at the right with a special lower triangular matrix with invertible entries yields:

S := 1 0 h 1 a b c d 1 0 u 1 = a b ah + c u 1 0 u 1 = a + u b b ah + c + u u u .
Now we choose u ∈ A so that the lower left entry vanishes. That is, let u := -u -1 (ah + c). Hence

S = a + u b b 0 u .
By taking determinants we see that (a + u b)u = ad -bc ∈ A -1 . In particular, a + u b ∈ A -1 .

By (1), S is a product of two exponentials. Since the matrices 1 0 g 1 are exponentials, we conclude that M is a product of four exponentials.

We don't know whether assertion (3) holds for n × n-matrices, nor do we know whether the number 4 is best-possible. Strengthening the hypothesis, though, yields yet a stronger result: Theorem 6.2. Let A be a commutative unital Banach algebra such that exp A is dense in A. Then every invertible matrix M ∈ M 2 (A) is a product of two exponential matrices.

Proof. First we note that exp A = A -1 . In fact, if not, then A -1 would not be connected and A -1 would be the disjoint union of exp A with the other open components of A -1 . In that case exp A could no longer be dense in A.

Let M = a b c d ∈ M 2 (A) -1 . By assumption, det M = ad -bc ∈ A -1 = exp A. Let U = {x ∈ A : ||x|| < ε}, where ε > 0 is so small that (6.1) ad -(b + U )(c + U ) ⊆ exp A.
As before, consider D = (a -d) 2 + 4bc. Then

V := (a -d) 2 + 4(b + U )(c + U )
is an open set containing D. We shall prove that there are r, s ∈ U such that We do not know whether this result carries over to n × n-matrices over A.

Next we show that in Theorem 6.2 we cannot reduce (in general) the number of exponentials from 2 to 1: Example 6.3. Let A = C([0, 1], C). Then, by Borsuk's theorem [2, p.99], every zero-free function in A is an exponential. Since tsr A = 1 ( [START_REF] Vasershtein | Stable rank of rings and dimensionality of topological spaces[END_REF] or [START_REF] Mortini | A note on some uniform algebra generated by smooth functions in the plane[END_REF]), we see that A satisfies the assumption of Theorem 6.2: namely exp A is dense in A. Now let

M = 1 1 0 e 2πiz .
By Example 5.4, M does not admit a logarithm in A.

Our final result tells us that, locally, always two continuous exponentials suffice to represent an invertible matrix in a uniform algebra. Proposition 6.4. Let A be a uniform algebra with spectrum X. Then, given any invertible matrix M ∈ M n (A) and x 0 ∈ X, there is a neighborhood U of x 0 and two matrices L 1 and L 2 in M n (C(X, C)) such that for every x ∈ U M (x) = exp L 1 (x) exp L 2 (x).

Proof. First we note that M (x 0 ) = exp L 1 for some L 1 ∈ M(C). For an elementary proof without using Jordan decomposition or the abstract functional calculus, see [START_REF] Mortini | Logarithms and exponentials in Banach algebras[END_REF]. Due to continuity, there is a closed neighborhood E of x 0 such that ||M (x 0 ) -M (x)|| HS < (1/2)||M (x 0 ) -1 || -1 HS for every x ∈ U . In other words,

||I n -M (x 0 ) -1 M (x)|| HS < 1/2.
Hence, there is L 2 ∈ M n (C(E, C)) with M (x 0 ) -1 M (x) = exp L 2 (x) for all x ∈ E. Consequently, M (x) = exp L 1 exp L 2 (x) with x ∈ U . Tietze's extension theorem now yields the desired matrices L j ∈ M n (C(X, C)). Proof. In the preceding proof, take E to be a ball whose closure is contained in D n (resp B n ) and replace C(E, C) by the ball algebra A(E). Then choose the ball B so that z 0 ∈ B ⊆ E.
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 3 Lemma 0.3 (Bernstein-So). Let M = a b c d ∈ M 2 (C).
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 1122 If (a -d) 2 + 4bc = 0, then e M = e (a+d)/2 1 + a-d 2 If D := (a -d) 2 + 4bc = 0 and ∆ 2 = D/4, then e M = e (a+d)/2 cosh ∆ + a-d
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 1 Figure 1. The inverse function to C(z)

0

  is a well-defined matrix of holomorphic functions on U (z 0 ). By formula (3.1) in Theorem 3.3, e L = M , because D := 4bc = 4(z 2 -1) S(D * ) 2 coincides with D * in view of the relations (see Lemma 3.1)

So e λ

  is an eigenvalue of e L . However, e L = I 2 has only the eigenvalue 1. Thus e λ = 1 and so λ ∈ E := {2kπi : k ∈ Z}. If L is diagonalizable (in particular, if µ and ν are two distinct eigenvalues of L), then L = S∆S -1 , where the columns of S are eigenvectors to µ respectively ν. Hence (3) holds. If L is not diagonalizable, then L has a single eigenvalue, say µ ∈ E. By the Cayley-Hamilton theorem, (L -µI 2 ) 2 = O. Hence e -µ I 2 = e -µ e L = e L-µI 2 = I 2 + (L -µI 2 ), and due to e µ = 1, L = (e -µ -1 + µ)I 2 = µI 2 .

Theorem 4. 3 .

 3 Let A be a semi-simple Banach algebra over C with connected spectrum. Let L = a b c d , with a, b, c, d ∈ A. The following assertions are equivalent:
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 4 An analysis of the proof shows that, in case the spectrum is disconnected, one obtains the following version of Theorem 4.3: Let A be a semi-simple Banach algebra over C and let L = a b c d , with a, b, c, d ∈ A. The following assertions are equivalent: (1) e L = I 2 .
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 5 Let A be a commutative unital complex Banach algebra and let b, c ∈ A. Then there is a logarithmL of I 2 in M 2 (A) with L = * b c * Proof. Choose j ∈ N so big that π 2 j 2 ≥ ||bc|| + 1. Then u := π 2 j 2 • 1 + bc ∈ exp A.In particular, u has a square root v. Now, given k ∈ Z, j -k even, leta := kπi • 1 + iv and d = kπi • 1 -iv.Then exp a b c d = I 2 , because all the conditions in Theorem 4.3 are satisfied:

Lemma 4. 7 .

 7 Let L = a b c d ∈ M 2 (C). Suppose that L has two distinct eigenvalues µ and ν. Let D := (a -d) 2 + 4bc, ∆ 2 = D/4 and S := b ν -d µ -a c or S := µ -d b c ν -a Then ∆ = 0, {µ, ν} = { a+d 2 + ∆, a+d 2 -∆} and S µ 0 0 ν = LS. Moreover, S is invertible if bc = 0. If bc = 0, but not both are zero, then {µ, ν} = {a, d}, and the invertible matrices S c := a -If b = c = 0, then L already is a diagonal matrix. Proof. Without loss of generality, let S = b ν -d µ -a c (in both cases, the row vectors are eigenvectors and raise from the solution to the equation (a -λ)x + by = 0 cx + (d -λ)y = 0 with vanishing determinant and where λ ∈ {µ, ν}). Note that bc = (a -µ)(d -µ) = (a -ν)(d -ν), because µ and ν are eigenvalues. If bc = 0, then µ = a. Hence

(

  

Theorem 4. 8 .

 8 Let A be a semi-simple complex Banach algebra with connected spectrum. Let L = a b c d , with a, b, c, d ∈ A. Suppose that b and c are invertible. Then the following assertions are equivalent: (1) e L = I 2 .

  (1) =⇒ (2) Let L = a b c d and D := (a -d) 2 + 4bc. By Theorem 3.3 exp a b c d = e (a+d)/2 C(D) + a-d 2 S(D) b S(D) c S(D) C(D) -a-d 2 S(D) = 1 h 0 e g . Hence, cS(D) = 0. Since, by assumption, A has no zero-divisors, either c = 0 or S(D) = 0. The second case cannot occur, though, because in that case h = bS(D) = 0, a contradiction. Hence c = 0 and so D = (a -d) 2 . Note that this also holds in case h is invertible; because h = bS(D) then implies that S(D) is invertible and so cS(D) = 0 automatically implies that c = 0 (without using the assumption on A having no zero-divisors). Hence, with δ := (a-d)/2, exp a b c d = e (a+d)/2 cosh δ + sinh δ bS(D) 0 cosh δ -sinh δ = e a b e (a+d)/2 S(D)

Example 5 . 5 .

 55 If there would exist L = a b c d ∈ M 2 (A) with e L = M , then L has the form for some j, m ∈ Z and b ∈ A (Proposition 5.1) and, by Theorem 3.3, e L = e (a+d)/2 * b S(D)with D = (a -d) 2 = (-2πiz + 2kπi) 2 for some k ∈ Z. In particular b S(D) = 0 on [0, 1]. This is not true, though. In fact, if k = 0, then we choose z = 1 to conclude that D = -4π 2 and so S(D) = 0 by Lemma 3.1, and if k = 0, then we choose z = 0 to conclude that D = -4k 2 π 2 , and again S(D) = 0. If in the preceding example we choose A = A(D) for example, we do have the following refinement:Let t ≥ 0 and R t = 1 1 0 e 2πitz ∈ M 2 (A(D)) -1 . Then R t has a logarithm in M 2 (A(D)) if and only if 0 ≤ t < 1.Proof. By Example 5.4, R 1 has no logarithm in A(D). It immediately follows that for no t > 1, R t can have a logarithm L in A(D), because otherwise e L(z) 2πi(tz) |z|≤1/t would imply that L(w/t) is a logarithm in A(D) of 1 1 0 e 2πiw for |w| ≤ 1, w = zt. If 0 ≤ t < 1, then we let g(z) = 2πitz. The function S(g 2 ) = S(-4π 2 t 2 z 2 ) now has no zeros in D, because the 'first' zero of S is -4π 2 (Lemma 3.1) and |t 2 z 2 | ≤ t < 1 for z ∈ D. Using Proposition 5.1, we let j = m = 0 and put (Then e L = R t . In fact, by Corollary 3.4, e L = 1 * 0 e 2πitz and the entry * of e L has the form e -πitz S(-4π 2 t 2 z 2 ) e πitz S((2πitz) 2 ) = 1, as desired.

Corollary 5 . 6 .

 56 The set exp M 2 (A(D)) is neither closed nor open in the group G of invertible matrices in M 2 (A(D)).

( 1 )=

 1 b := b + r ∈ exp A and c := c + s ∈ exp A; (2) D := (a -d) 2 + 4b c ∈ exp A; (3) ad -b c ∈ exp A; (4) u := (a + d)/2 + ∆ ∈ exp A and v := (a + d)/2 -∆ ∈ exp A, where ∆ 2 = D /4; -a)(u -v ) ∈ exp A. In fact, since D = (a -d) 2 + 4bc ∈ V and V ∩ exp A is open and non-void (note that by assumption exp A is dense in A), the continuity of the algebraic operations implies that there is an open subset U ⊆ U so that (a -d) 2 + 4(b + U )(c + U ) ⊆ V ∩ exp A. Hence, there are r, s ∈ U such that b := b + r ∈ exp A and c := c + s ∈ exp A and (a -d) 2 + 4b c ∈ V ∩ exp A. Hence (1) and (2) hold. By (6.1), also (3) holds. Let ad -b c = det M ∈ exp A, we deduce that u and v belong to A -1 = exp A. Hence (4) holds. We claim that det b c = (a -u )(d -u ).In fact,(a -u )(d -u ) -b c = adet S = b c -(u -a)(v -d) = (a -u )(d -u ) -(u -a)(v -d) = (a -u )(d -u + v -d) = (a -u )(v -u ).By (6.2), the invertibility of b c implies the one of a -u . Now v -u = -2∆ . But ∆ 2 = D /4(2)∈ exp A; hence ∆ is invertible. Consequently, det S, and henceforth S, is invertible. This yields[START_REF] Jones | Stable rank of the disc algebra[END_REF]. The formal computation in Lemma 4.7 now implies thatS u 0 0 v S -1 = a b c d = M .Since u = e x and v = e y for some x, y ∈ A, we see that M is the conjugate to an exponential matrix. Hence M itself is an exponential matrix; say M = exp M . We may assume that b and c have been chosen so close to b and c that ||M -M || HS < ||M -1 || -1 HS , where ||M || HS is the Hilbert-Schmidt norm of a matrix. Then ||I 2 -M -1 M || HS = ||M -1 M -M )|| HS < 1, and so M -1 M ∈ exp M 2 (A); say M -1 M = exp H. Hence M = exp M exp(-H).

  Recall that B n denotes the open Euclidean unit ball in C n . Corollary 6.5. Let A = A(D n ) be the polydisk algebra and A = A(B n ) the ball algebra. Given M ∈ M n (A), M invertible, there exists for every z 0 ∈ D n (rep. z 0 ∈ B n ) an open ball B centered at z 0 , a constant matrix L 1 and a matrix L 2 holomorphic in B such that M = exp L 1 exp L 2 on B.

A similar approach was used in the case of matrices over C in[7]; a fact we got aware after the first round of the refereeing process.

Let us note that by (3.3), b = 0 if n = k

This proof is motivated by[START_REF] Vaserstein | Commutators and companion matrices over rings of stable rank 1[END_REF].

Addendum

After this paper had been written, we got aware of the example in [15] which is related to Example 5.4. The approach is totally different.
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Remark 5.2. In case A has zero-divisors, a logarithm of M = 1 h 0 e g does not necessarily has the form

Then L, given by

is a logarithm of M . 

However, if j = m, then S(-4π 2 (j -m) 2 ) = 0 (Lemma 3.1). Hence h = 0; a contradiction. Consequently, j = m and so b = h.

As an application of Proposition 5.1, we give the following example. (1) M is a product of two exponentials;

(2) M has no logarithm in A.

4 g = 2kπi works of course in the same way.