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Abstract. Expectiles and quantiles can both be defined as the solution of minimization problems.
Contrary to quantiles though, expectiles are determined by tail expectations rather than tail probabil-
ities, and define a coherent risk measure. For these two reasons in particular, expectiles have recently
started to be considered as serious candidates to become standard tools in actuarial and financial
risk management. However, expectiles and their sample versions do not benefit from a simple explicit
form, making their analysis significantly harder than that of quantiles and order statistics. This dif-
ficulty is compounded when one wishes to integrate auxiliary information about the phenomenon of
interest through a finite-dimensional covariate, in which case the problem becomes the estimation of
conditional expectiles. In this paper, we exploit the fact that the expectiles of a distribution F are in
fact the quantiles of another distribution E explicitly linked to F , in order to construct nonparametric
kernel estimators of extreme conditional expectiles. We analyze the asymptotic properties of our es-
timators in the context of conditional heavy-tailed distributions. Applications to simulated data and
real insurance data are provided.

Keywords. Conditional distribution, expectiles, extrapolation, extreme value analysis, kernel
estimation, heavy tails.

1 Introduction

The concept of quantile is a fundamental tool for risk measurement. In a financial or actuarial setting,
it is commonly known as Value-at-Risk, see Embrechts et al. (1997) and Linsmeier and Pearson (2000)
for a basic introduction. For a real-valued random variable Y , having distribution function F , the
quantile at a level α ∈ (0, 1) is defined as the generalized inverse q(α) = inf{y ∈ R |F (y) ≥ α}. A
traditional way of analyzing extreme risk is to estimate high quantiles of a variable Y appropriate to
the situation at hand, such as the negative daily log-return of a stock market index in finance, or the
magnitude of a claim in insurance. Despite the simplicity and interpretability of quantiles, using them
as the single tool for risk assessment is not without disadvantages. For instance, quantiles do not, in
general, induce a coherent risk measure in the sense of Artzner et al. (1999), because they fail to be
subadditive (see Acerbi, 2002). Besides, quantiles only use information on the frequency of tail events
and not on their actual magnitudes; this is an issue in risk management, where the focus is not only
what constitutes an extreme level of loss but also what a typical extreme loss will be.

These drawbacks of quantiles motivated the introduction of a number of alternative risk measures,
among which expectiles, which are the focus of the present paper. Expectiles were introduced by Newey
and Powell (1987), following earlier work of Koenker and Bassett (1978) which characterized quantiles
as solutions of an L1−minimization problem:

q(α) ∈ arg min
t∈R

E (ρα(Y − t)− ρα(Y )) (1.1)

where ρα(y) = |α−1{y≤0}| |y| is the quantile check function and 1{·} is the indicator function. Note the
∈ sign, accounting for the fact that the minimizer may not be unique in (1.1); there is actually equality
if the distribution function of Y is increasing. The idea of Newey and Powell (1987) was to replace
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L1−minimization by L2−minimization, giving rise to expectiles as minimizers of an asymmetrically
weighted mean squared deviations criterion:

e(α) = arg min
t∈R

E (ηα(Y − t)− ηα(Y )) , (1.2)

where ηα(y) = |α − 1{y≤0}| y2 is the expectile check function. Quantiles and expectiles both belong
to the family of Lp−quantiles, introduced in Chen (1996), themselves part of the wider family of
M−quantiles (see Breckling and Chambers, 1988). However, unlike quantiles, expectiles are deter-
mined by tail expectations rather than tail probabilities, and therefore depend on both the probability
of tail values and their actual realizations (see Kuan et al., 2009). Expectiles at a level α > 1/2 are also
the only M−quantiles that define a coherent risk measure (see Bellini et al., 2014). In fact, expectiles
induce the only coherent law-invariant risk measure that is elicitable (see Ziegel, 2016) and, as such,
benefit from the existence of a natural backtesting methodology (see Gneiting, 2011). This makes
expectiles a sensible tool for risk management and a number of authors have experimented their use in
this context: for instance, Taylor (2008) relates expectiles to the Expected Shortfall, Kuan et al. (2009)
work on risk assessment with expectiles in an autoregressive model, Cai and Weng (2016) introduce a
reinsurance methodology based on expectiles and Bellini and Di Bernardino (2017) explore financial
risk management with expectiles. Recent advanced theoretical developments, on expectiles of a fixed
level and therefore staying away from the extremes of the data, have been brought by Holzmann and
Klar (2016) and Krätschmer and Zähle (2017).

It often happens in practical applications that Y is recorded along with auxiliary information repre-
sented by a random covariate X ∈ Rp. In this context, one can give a more precise answer to the
problem of inferring the extremes of Y by focusing on the conditional extremes of Y given X. Some
recent applied examples are the development of a general strategy by Chavez-Demoulin et al. (2016)
for the construction of stratified models for large operational losses, and modeling large insurance
claims conditional on climate variables in Rohrbeck et al. (2018). An interesting question, on which
there is a growing body of literature, is then to infer the conditional extremes of Y given X under
a general extreme value setting, when one only assumes that the distribution of Y given X belongs
to the domain of attraction of a Generalized Extreme Value distribution (see Chapter 1 of de Haan
and Ferreira, 2006). This problem has typically been tackled from the perspective of extreme condi-
tional quantile estimation, namely, the estimation of extreme quantiles of the conditional distribution
function. Recent contributions in this area include Daouia et al. (2011) who used a fixed number of
nonparametric conditional quantile estimators to estimate the conditional tail index, later generalized
in Daouia et al. (2013) to a regression context with conditional response distributions belonging to the
general max-domain of attraction; the latter situation is also considered in Goegebeur et al. (2017).
The context when the response variable Y is randomly right-censored is examined in Stupfler (2016).

By contrast, extreme conditional expectile estimation has been left virtually untouched. The only
attempt in the literature so far seems to have been made by Usseglio-Carleve (2018), who estimates
a variety of extreme conditional risk measures, including expectiles, under the assumption that the
vector (X, Y ) has a so-called consistent elliptical distribution. This is a rather strong distributional
assumption which does not appear to be easy to check on real data. In fact, the theory on extreme
expectiles is still largely unexplored even in the unconditional case. This is in no small part due to
the absence of a closed form expression for expectiles, making the analysis of extreme expectiles much
harder than that of extreme quantiles. Although asymptotic equivalents and expansions of extreme
population expectiles were derived by Bellini et al. (2014), Mao et al. (2015), Mao and Yang (2015)
and Bellini and Di Bernardino (2017), the work on extreme expectile estimation is so far restricted to
the papers by Daouia et al. (2018, 2019b) that constructed and studied classes of estimators in the
unconditional heavy-tailed case. It is the purpose of this paper to introduce a fully nonparametric
methodology for the estimation of extreme conditional expectiles, in the case when Y given X has a
heavy-tailed, or equivalently Pareto-type, distribution. This technique allows us to avoid the strong
modeling condition of Usseglio-Carleve (2018), while still working within a framework of heavy tails
which is appropriate to the description of actuarial and financial data; see e.g. the discussions on p.9
of Embrechts et al. (1997) and p.1 of Resnick (2007).
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Our work plan is the following. We start by recalling that, in the words of Jones (1994), expectiles are
quantiles of an explicitly known distribution, so that the problem of estimating conditional expectiles
reduces to estimating a suitable conditional distribution function and then inverting this estimator.
This is done under conditional analogues of standard extreme value conditions, plus mild conditions on
the regularity of the density of X and of the conditional distribution function of Y . Such assumptions
are tailored to our construction of nonparametric kernel estimators of extreme conditional expectiles.
We start by estimating so-called intermediate conditional expectiles, whose order αn → 1 as the sample
size n→∞ with αn not too large (the meaning of which will be explained in the text). Under these
assumptions, we obtain the pointwise asymptotic normality of our intermediate conditional expectile
estimators. We then exploit the conditional heavy-tailed assumption to construct an extrapolated
Weissman-type estimator (see Weissman, 1978) of extreme conditional expectiles, whose order αn can
tend to 1 at any rate. The asymptotic distribution of the extrapolated estimator is obtained under
sensible conditions we shall explain in detail, including a second-order condition which is standard in
extreme value analysis and that quantifies the gap between the underlying distribution and a purely
Pareto distribution. One drawback of the Weissman-type extrapolation methodology that is specific
to the estimation of extreme expectiles is that its use incurs bias due not only to the distance between
the distribution of interest and a relevant Pareto-type distribution, as would be the case for extreme
quantile estimation, but also to the actual heaviness of the tail of the distribution. The finite-sample
performance of the Weissman-type estimator typically deteriorates quite strongly due to this latter
source of bias. This motivates our final estimators, whose structure is designed precisely to deal with
this bias using a very simple multiplicative correction factor.

The paper is organized as follows. Section 2 states our nonparametric framework and the basic
building blocks of our estimation procedures. Section 3 introduces our estimators and gives our main
results, first in the intermediate case and then in the properly extreme case. Section 4 showcases the
performance of our estimators on several simulated situations. We illustrate the applicability of our
procedures on a real sample of actuarial data in Section 5. All proofs are relegated to the Appendix.

2 Nonparametric conditional expectile estimation

Let (Xi, Yi), i = 1, . . . , n, be independent realizations of a random vector (X, Y ) ∈ Rp×R. We denote
by g the probability density function of X and let, throughout the paper, x be a fixed point in Rp
such that g(x) > 0. We write F (y|x) = P (Y ≤ y|X = x) for the conditional distribution function of
Y given X = x. Our central assumption throughout is that Y |X = x has a heavy-tailed distribution.
In other words, we assume that there exists γ(x) > 0, called the conditional tail index, such that the
survival function F (·|x) = 1− F (·|x) is regularly varying with index −1/γ(x):

∀y > 0, lim
t→∞

F (ty|x)

F (t|x)
= y−1/γ(x). (2.1)

Equivalently, according to Theorem 1.2.1 in de Haan and Ferreira (2006), the conditional distribution
function F (·|x) belongs to the Fréchet maximum domain of attraction. The parameter γ(x) tunes the
tail heaviness of the conditional distribution. In particular, if γ(x) > a then E[Y 1/a1{Y >0} |X = x] =
∞ (a precise statement is Exercise 1.16 p.35 in de Haan and Ferreira, 2006). Since the definition of
expectiles in (1.2) requires E[|Y | |X = x] < ∞, our minimal working assumption throughout will be
that γ(x) < 1 and E[Y− |X = x] <∞, where Y− = max(−Y, 0).

Our work is based on the following observation made by Jones (1994). For any α ∈ (0, 1), the
conditional expectile of level α, that is

e(α|x) = arg min
t∈R

E (ηα(Y − t)− ηα(Y ) |X = x) , (2.2)

is actually the quantile of level α associated to the distribution function E(y|x) defined by

1− E(y|x) =
E
[
(Y − y)1{Y >y} |X = x

]
2E
[
(Y − y)1{Y >y} |X = x

]
+ (y − E [Y |X = x])

.
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For convenience, we define E(y|x) = 1− E(y|x), as well as (whenever these definitions make sense)

∀k ∈ {0, 1, 2, . . .}, ψ(k)(y|x) = E
[
(Y − y)k 1{Y >y} |X = x

]
g(x) and m(k)(x) = E[Y k |X = x].

This allows us to write e(α|x) = inf{y ∈ R |E(y|x) ≤ 1− α}, with

E(y|x) =
ψ(1)(y|x)

2ψ(1)(y|x) +
(
y −m(1)(x)

)
g(x)

. (2.3)

Our construction of an estimator of e(α|x), for α→ 1, thus follows the idea of Daouia et al. (2013): we
first estimate the conditional survival function E(y|x) for high values of y, and our expectile estimator
is obtained from the inverse of this estimator of the conditional survival function.

To estimate E(y|x), we note that the unknown quantities appearing in Equation (2.3) are either the
density of X or conditional moments of certain functions of Y . An appropriate class of nonparametric
estimators for the estimation of density functions and conditional moments is the family of kernel
estimators. Let K be a probability density function on Rp, and define the following kernel estimators:

ĝn(x) =
1

nhpn

n∑
i=1

K

(
x−Xi

hn

)
, m̂(1)

n (x) =
1

nhpn

n∑
i=1

YiK

(
x−Xi

hn

)/
ĝn(x)

and ψ̂(k)
n (y|x) =

1

nhpn

n∑
i=1

(Yi − y)kK

(
x−Xi

hn

)
1{Yi>y}

where hn is a positive bandwidth sequence such that hn → 0 and nhpn →∞ as n→∞. The estimators

ĝn(x) and m̂
(1)
n (x) are respectively known in the literature as the Parzen-Rosenblatt estimator (see

Rosenblatt, 1956; Parzen, 1962) and the Nadaraya-Watson estimator (see Nadaraya, 1964; Watson,
1964). The conditional survival function of Y is obtained as F (y|x) = ψ(0)(y|x)/g(x). Its estimator

F̂n(y|x) = ψ̂
(0)
n (y|x)/ĝn(x) plays a central role in the construction of the (extreme) conditional quantile

estimator q̂n(α|x) of Daouia et al. (2013), as the latter is nothing but its generalized inverse:

q̂n(α|x) = inf
{
y ∈ R | F̂n(y|x) ≤ 1− α

}
. (2.4)

In our context of conditional expectile estimation, we estimate the survival function E(·|x) by

Ên(y|x) =
ψ̂
(1)
n (y|x)

2ψ̂
(1)
n (y|x) +

(
y − m̂(1)

n (x)
)
ĝn(x)

and we obtain a conditional expectile estimator at level α ∈ (0, 1) by inverting this empirical survival

function Ên(·|x):

ên(α|x) = inf
{
y ∈ R | Ên(y|x) ≤ 1− α

}
. (2.5)

It is remarkable that this conditional expectile estimator is actually also the expectile of the empirical
conditional distribution

F̂n(y|x) = 1− ψ̂
(0)
n (y|x)

ĝn(x)
=

n∑
i=1

K
(
x−Xi
hn

)
∑n

j=1K
(
x−Xj

hn

)1{Yi≤y}
in the sense that

ên(α|x) = arg min
t∈R

n∑
i=1

ηα(Yi − t)K
(
x−Xi

hn

)
= arg min

t∈R

∫
R
ηα(y − t)dF̂n(y|x).
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This is readily checked by noting that the above minimization criterion is a strictly convex, continu-
ously differentiable function of t whose derivative cancels at the value of t satisfying

1− α =
ψ̂
(1)
n (t|x)

2ψ̂
(1)
n (t|x) +

(
t− m̂(1)

n (x)
)
ĝn(x)

= Ên(t|x).

The estimator ên(α|x) can therefore be seen as a nonparametric version of the expectile estimator
introduced originally in Newey and Powell (1987) in the standard linear regression model, and as a
kernel smoothed version of the LAWS estimator studied in the unconditional extreme case in Daouia
et al. (2018). A similar construction is used in Guo and Härdle (2012), where the asymptotic properties
of the estimator are derived for a fixed α. Our contribution in this paper is to consider an expectile
level α = αn such that αn → 1 as n→∞, which is the appropriate framework in the management of
extreme risk. This is the focus of our next section.

3 Main results

3.1 Estimation of intermediate expectiles

We start by studying the joint asymptotic properties of estimators (2.4) and (2.5), when α = αn → 1.
Choose a norm ‖·‖ on Rp. We make the following assumption, which is standard in the nonparametric
literature.

(K) The density function K is bounded and its support S is the unit ball in Rp for the norm ‖ · ‖.

We assume in this section that nhpn(1 − αn) → ∞. Such quantile (or expectile) levels αn therefore
converge to 1 but cannot do so too quickly; we follow here the conventions of extreme value theory and
call such a level αn intermediate throughout the paper. The reason behind this assumption is that the
average number of observations relevant to the estimation of e(αn|x) is asymptotically proportional to
nhpn(1−αn), and this quantity should thus tend to infinity for our procedure to be consistent. Indeed,
roughly speaking, the estimator ên(αn|x) can only be expected to be a consistent estimator of e(αn|x)

if Ên(y|x) is a consistent estimator of E(y|x) for y in a neighborhood of e(αn|x). Therefore, since the

consistency of Ên(y|x) crucially depends on that of

ψ̂(1)
n (y|x) =

1

nhpn

n∑
i=1

(Yi − y)K

(
x−Xi

hn

)
1{Yi>y},

there should be a growing number of observations (Xi, Yi) such that ‖x − Xi‖ ≤ h and Yi >
e(αn|x). The average number of such observations is intuitively asymptotically proportional to
nhpnF (e(αn|x)|x). By Formula (4) in Daouia et al. (2018), F (e(αn|x)|x) is asymptotically propor-
tional to 1− αn, so that the average number of relevant observations for the estimation of e(αn|x) is
asymptotically proportional to nhpn(1− αn) as announced. The condition nhpn(1− αn)→∞ can also
be found in Daouia et al. (2013), and is the analogue of the condition n(1−αn)→∞ used in Daouia
et al. (2018, 2019b) for the estimation of unconditional intermediate expectiles.

To estimate intermediate conditional expectiles, we refine our heavy tails condition (2.1) in the fol-
lowing way:

C1(γ(x)) The survival function F (·|x) is continuously differentiable and satisfies

lim
y→∞

yF
′
(y|x)

F (y|x)
= − 1

γ(x)
.

It follows from Theorem 1.1.11 in de Haan and Ferreira (2006) that condition (2.1) is indeed satisfied
if C1(γ(x)) holds. Another consequence of condition C1(γ(x)) is that the conditional density function
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f(·|x) = −F ′(·|x) is also regularly varying, with index −1/γ(x) − 1. Assuming that F (·|x) is con-
tinuously differentiable is unlikely to be very restrictive in practice; Newey and Powell (1987) point
out in their Theorem 1 that it is a reasonable sufficient condition for expectiles to characterize the
underlying distribution.

Our final assumption in this section is a local Lipschitz condition on the density function g and the con-
ditional moments m(1)(x) and m(2)(x). Similar conditions are used, for instance, in Krzyzak (1986),
or more recently in Daouia et al. (2013) and El Methni et al. (2014) in the context of conditional
extreme value analysis. We denote by B(x, r) the ball with center x and radius r and by ∨ the
maximum operator.

(L) We have g(x) > 0, m(2)(x) <∞ and there exist c, r > 0 such that

∀x′ ∈ B(x, r),
∣∣g(x)− g(x′)

∣∣ ∨ ∣∣∣m(1)(x)−m(1)(x′)
∣∣∣ ∨ ∣∣∣m(2)(x)−m(2)(x′)

∣∣∣ ≤ c ‖x− x′‖.
Before we state our first main result, we introduce some useful notation for the oscillation of the
conditional survival function F (·|x) above a high level yn:

ωhn(yn|x) = sup
z≥yn

x′∈B(x,hn)

1

log z

∣∣∣∣log
F (z|x′)
F (z|x)

∣∣∣∣ . (3.1)

The quantity ωhn(yn|x) measures the discrepancy between the extremes of the conditional distributions
of Y at neighboring points. Similar quantities are introduced in Gardes and Stupfler (2014, 2019)
and Stupfler (2013, 2016). In order to get an idea of the typical asymptotic behavior of ωhn(yn|x),
consider the Karamata representation of F (·|x) (see Theorem 1.3.1 in Bingham et al., 1989):

∀z ≥ 1, F (z|x) = z−1/γ(x) exp

(
η(z|x) +

∫ z

1

ε(u|x)

u
du

)
,

where η(·|x) and ε(·|x) are measurable functions converging, respectively, to a constant and 0 at
infinity. In this context, it is straightforward to prove that if there are c, r > 0 with

∀x′ ∈ B(x, r),
∣∣γ(x)− γ(x′)

∣∣ ∨ sup
z≥yn

∣∣∣∣η(z|x)− η(z|x′)
log z

∣∣∣∣ ∨ sup
z≥1

∣∣ε(z|x)− ε(z|x′)
∣∣ ≤ c ‖x− x′‖

then ωhn(yn|x) = O(hn). The same kind of discussion may be found in Stupfler (2013, 2016).

We are now ready to write our first result on the asymptotic properties of the estimator ên(αn|x)
in the intermediate case nhpn(1 − αn) → ∞. We actually obtain the joint asymptotic normality of a
finite number J of empirical conditional intermediate expectiles ên(αn,j |x), with 1−αn,j = τj(1−αn),
0 < τ1, . . . , τJ ≤ 1, together with an empirical conditional intermediate quantile q̂n(an|x). Let ||K||22 =∫
SK

2(u)du denote the squared L2−norm of K.

Theorem 1. Assume that (K), (L) and C1(γ(x)) hold. Suppose also that γ(x) < 1/2 and that there
exists δ ∈ (0, 1) with E[Y 2+δ

− |X = x] < ∞. Let αn → 1, hn → 0, and an = 1− τ(1 − αn)(1 + o(1)),

where τ > 0. Assume that nhpn(1− αn)→∞, nhp+2
n (1− αn)→ 0 and√

nhpn(1− αn) log(1− αn)×
[
ωhn((1− δ)e(αn|x)|x) + ωhn((1− δ)q(an|x)|x)

]
→ 0. (3.2)

Then√
nhpn(1− αn)

{(
ên(αn,j |x)

e(αn,j |x)
− 1

)
1≤j≤J

,

(
q̂n(an|x)

q(an|x)
− 1

)}
d−→ N

(
0J+1,

||K||22
g(x)

γ2(x)Σ(x)

)
,
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where 1 − αn,j = τj(1 − αn) for some 0 < τ1 < τ2 < · · · < τJ ≤ 1 and Σ(x) is the symmetric matrix
having entries

Σj,l(x) = τ−1l

[
1

1− 2γ(x)

(
τl
τj

)γ(x)
− 1

]
,

Σj,J+1(x) = τ−1j

(τj
τ

)γ(x) [( 1

γ(x)−1 − 1
∧ τj
τ

)1−γ(x)
+

(
1

γ(x)−1 − 1
∧ τj
τ

)−γ(x)
−
(τj
τ

)−γ(x)]
,

ΣJ+1,J+1(x) = τ−1,

for j, l ∈ {1, . . . , J}, j ≤ l.

Theorem 1 requires the conditions γ(x) < 1/2 and E[Y 2+δ
− |X = x] < ∞, which essentially amount

to assuming that the conditional variance of Y given X = x is finite. The two conditions

nhp+2
n (1− αn)→ 0

and
√
nhpn(1− αn) log(1− αn)×

[
ωhn((1− δ)e(αn|x)|x) + ωhn((1− δ)q(an|x)|x)

]
→ 0

ensure that the bias incurred by the use of the kernel smoothing technique is asymptotically negligible.

Theorem 1 is useful for jointly estimating conditional intermediate expectiles at several different levels,
and will be used in the next paragraph for the analysis of our extrapolation technique. We conclude
this section by stating below a simpler but instructive corollary in the joint distribution of empirical
conditional expectile and quantile. This result is a direct consequence of Theorem 1 in the case J = 1,
τ1 = 1 and τ = 1.

Corollary 1. Under the conditions of Theorem 1, with assumption (3.2) replaced by the weaker
assumption √

nhpn(1− αn) log(1− αn)× ωhn((1− δ)e(αn|x)|x)→ 0,

one has √
nhpn(1− αn)

(
ên(αn|x)

e(αn|x)
− 1,

q̂n(αn|x)

q(αn|x)
− 1

)
d−→ N

(
02,
||K||22
g(x)

γ2(x)Λ(x)

)
,

where the matrix Λ(x) is defined as

Λ(x) =


2γ(x)

1− 2γ(x)

(
γ(x)−1 − 1

)γ(x)
1− γ(x)

− 1(
γ(x)−1 − 1

)γ(x)
1− γ(x)

− 1 1

 .

This corollary gives in particular the asymptotic normality of ên(αn|x) as√
nhpn(1− αn)

(
ên(αn|x)

e(αn|x)
− 1

)
d−→ N

(
0,
||K||22
g(x)

× 2γ3(x)

1− 2γ(x)

)
,

of which an unconditional analogue is Theorem 2 in Daouia et al. (2018). More generally, Corollary 1
can be seen as a conditional analogue of Theorem 3 of Daouia et al. (2019b).

Our main results so far are restricted to intermediate levels αn, therefore preventing us from estimating
the properly extreme conditional expectiles which are of interest in risk assessment. Providing esti-
mators of arbitrarily extreme conditional expectiles, based on an extrapolation procedure warranted
by the assumption of conditional heavy tails, is the focus of our next section.
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3.2 Estimation of extreme conditional expectiles by extrapolation

In this section, the aim is to estimate conditional expectiles at a level βn such that nhpn(1−βn)→ c <∞
as n → ∞. Contrary to intermediate levels, such levels of conditional expectiles are rarely, if at
all, observed in the sample. For that purpose, we can therefore no longer use estimator (2.5). To
construct an adapted estimator, we note that Assumption (2.1) can be rewritten (see Theorem 1.2.1
and Corollary 1.2.10 in de Haan and Ferreira, 2006)

∀y > 0, lim
t→∞

q(1− 1/(ty)|x)

q(1− 1/t|x)
= yγ(x).

Now, by Proposition 1 in Daouia et al. (2019b),

e(α|x)

q(α|x)
→ (γ(x)−1 − 1)−γ(x) as α→ 1. (3.3)

It follows that

∀y > 0, lim
t→∞

e(1− 1/(ty)|x)

e(1− 1/t|x)
= yγ(x).

This suggests that when αn and βn satisfy suitable conditions, we may write an extrapolation formula
linking e(βn|x) to e(αn|x):

e(βn|x) ≈
(

1− βn
1− αn

)−γ(x)
e(αn|x). (3.4)

When αn is an intermediate sequence, this approximation can be used to define a plug-in estimator of
e(βn|x), based on an estimator of γ(x) and on the estimator ên(αn|x). Estimators of γ(x) typically
rely on the highest observations in the ball B(x, hn) only (see e.g. Gardes and Stupfler, 2014). It is
therefore more convenient, in the extrapolation context, to set αn = 1− kn/n, where kn/n→ 0 is the
fraction of those observations used in the estimation of γ(x), and work with this sequence kn satisfying
knh

p
n = nhpn(1 − αn) → ∞. Since knh

p
n is asymptotically proportional to the local average number

of (high) observations relevant to the estimation of e(αn|x) within the ball B(x, hn), the condition
knh

p
n → ∞ is the analogue of the assumption kn → ∞ classically encountered in the unconditional

case for the estimation of the tail index (see Chapter 3 in de Haan and Ferreira, 2006). Using this
parametrization, we introduce the following class of extrapolated estimators:

êWn,kn(βn|x) =

(
kn

n(1− βn)

)γ̂kn (x)
ên(1− kn/n|x). (3.5)

Here γ̂kn(x) is any consistent estimator of γ(x). This is a class of Weissman-type estimators (see
Weissman, 1978, for the estimation of unconditional extreme quantiles).

To study the asymptotic properties of estimators part of the class (3.5), we have to quantify precisely
the bias incurred by the use of the extrapolation formula (3.4). Our key tool for this is the following
second-order condition.

C2(γ(x), ρ(x), A(·|x)) Condition C1(γ(x)) holds, and there exist ρ(x) ≤ 0 and a positive or negative
function A(·|x) such that:

∀y > 0, lim
t→∞

1

A(t|x)

(
q(1− 1/(ty)|x)

q(1− 1/t|x)
− yγ(x)

)
=

y
γ(x) y

ρ(x) − 1

ρ(x)
if ρ(x) < 0,

yγ(x) log y if ρ(x) = 0.

(3.6)

According to Theorem 2.3.9 in de Haan and Ferreira (2006), condition (3.6) itself indeed generalizes
condition (2.1), since it is equivalent to

∀y > 0, lim
t→∞

1

A(1/F (t|x)|x)

(
F (ty|x)

F (t|x)
− y−1/γ(x)

)
= y−1/γ(x)

yρ(x)/γ(x) − 1

γ(x)ρ(x)
.
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By Theorem 2.3.3 in de Haan and Ferreira (2006), the function |A(·|x)| is then regularly varying
with index ρ(x), and this function is the primary driver of bias in typical extrapolation procedures
for heavy-tailed distributions. More on this interpretation of this condition can be found in Beirlant
et al. (2004) and de Haan and Ferreira (2006) along with a number of examples of commonly used
continuous distributions satisfying it. Under this condition, it can be shown that (see Lemma 8 in the
Appendix):

e(βn|x)

e(1− kn/n|x)
=

(
kn

n(1− βn)

)γ(x)
(1 +O (|A(n/kn|x)|) +O (1/e(1− kn/n|x))) . (3.7)

We are now in a position to write a general asymptotic result for the class of estimators (3.5).

Theorem 2. Assume that (K), (L) and C2(γ(x), ρ(x), A(·|x)) hold. Suppose also that γ(x) < 1/2,
ρ(x) < 0 and that there exists δ ∈ (0, 1) with E[Y 2+δ

− |X = x] <∞. Let βn → 1, hn → 0, kn →∞ be

such that nhpn(1− βn)→ c <∞, knh
p
n →∞ and kn/n→ 0. Assume further that knh

p+2
n → 0 and

(i)
√
knh

p
nA(n/kn|x) = O(1) and

√
knh

p
n /e(1− kn/n|x) = O(1),

(ii)
√
knh

p
n log(kn/n)× ωhn((1− δ)e(1− kn/n|x)|x)→ 0,

(iii)
√
knh

p
n/ log(kn/[n(1− βn)])→∞.

If in addition √
knh

p
n

(
γ̂kn(x)− γ(x),

ên(1− kn/n|x)

e(1− kn/n|x)
− 1

)
d−→ (Γ,∆) ,

then √
knh

p
n

log(kn/[n(1− βn)])

(
êWn,kn(βn|x)

e(βn|x)
− 1

)
d−→ Γ.

We observe that the limiting distribution of êWn,kn(βn|x) is controlled by the asymptotic distribution
of γ̂kn(x). This is typical of Weissman-type estimators, and is here a consequence of the fact that the
convergence of êWn,kn(βn|x) is governed by that of the extrapolation factor (kn/[n(1− βn)])γ̂kn (x). The

latter approximates the theoretical factor (kn/[n(1 − βn)])γ(x) at a slower rate than both the rate of
convergence of ên(1−kn/n|x) to e(1−kn/n|x), given by Corollary 1, and the speed of convergence to 0
of the bias term that is incurred by the use of (3.4) and which can be controlled by (3.7). Controlling
this bias term is precisely the purpose of the bias condition (i) in Theorem 2.

In view of Equation (3.3), another class of estimators may be introduced, exploiting the asymptotic
relationship between quantiles and expectiles. Instead of noting that the conditional tail expectile
function is regularly varying with index γ(x), one may simply write

e(βn|x) ≈ (γ(x)−1 − 1)−γ(x)q(βn|x).

This approximation suggests to estimate the extreme conditional expectile e(βn|x) by plugging in a
Weissman-type estimator of the extreme conditional quantile q(βn|x) and an estimator of the condi-
tional tail index γ(x), thus resulting in the following class of extrapolated estimators:

ẽWn,kn(βn|x) =

(
kn

n(1− βn)

)γ̂kn (x)
q̂n(1− kn/n|x)

(
γ̂kn(x)−1 − 1

)−γ̂kn (x) . (3.8)

The following high-level result states the rate of convergence of the estimators from the class (3.8).

Theorem 3. Assume that (K), (L) and C2(γ(x), ρ(x), A(·|x)) hold. Suppose also that γ(x) < 1,
ρ(x) < 0 and that there exists δ ∈ (0, 1) with E[Y− |X = x] < ∞. Let βn → 1, hn → 0, kn → ∞ be
such that nhpn(1− βn)→ c <∞, knh

p
n →∞ and kn/n→ 0. Assume further that knh

p+2
n → 0 and

(i)
√
knh

p
nA(n/kn|x) = O(1) and

√
knh

p
n /e(1− kn/n|x) = O(1),
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(ii)
√
knh

p
n log(kn/n)× ωhn((1− δ)q(1− kn/n|x)|x)→ 0,

(iii)
√
knh

p
n/ log(kn/[n(1− βn)])→∞.

If in addition
√
knh

p
n (γ̂kn(x)− γ(x))

d−→ Γ, then√
knh

p
n

log(kn/[n(1− βn)])

(
ẽWn,kn(βn|x)

e(βn|x)
− 1

)
d−→ Γ.

The finite-sample performances of the two classes of estimators êWn,kn(βn|x) and ẽWn,kn(βn|x) are com-
pared in a simulation study in Section 4.

In the previous definitions, γ̂kn(x) is a generic estimator of γ(x) converging at an appropriate rate.
Some examples of such conditional tail index estimators may be found for instance in Daouia et al.
(2013), El Methni et al. (2014) and Gardes and Stupfler (2014). We now study a handful of other
alternatives exclusively based on the use of high conditional expectiles.

3.3 Estimation of the conditional tail index

In Daouia et al. (2013), the following class of estimators is proposed, based on empirical quantiles and
inspired by the Pickands estimator introduced in Pickands (1975):

γ̂Pkn(x) =
1

log(2)
log

(
q̂n(1− kn/(4n)|x)− q̂n(1− kn/(2n)|x)

q̂n(1− kn/(2n)|x)− q̂n(1− kn/n|x)

)
.

It is proved therein that, under suitable conditions,
√
knh

p
n

(
γ̂Pkn(x)/γ(x)− 1

)
is asymptotically Gaus-

sian with asymptotic variance

||K||22
g(x)

V (x) where V (x) =

(
22γ(x)+1 + 1

)(
2γ(x) − 1

)2
log2(2)

.

The asymptotic proportionality relationship in (3.3) motivates our first alternative estimator of γ(x):
we replace empirical conditional quantiles by empirical conditional expectiles, thus producing the
estimator

γ̂
(1)
kn

(x) =
1

log(2)
log

(
ên(1− kn/(4n)|x)− ên(1− kn/(2n)|x)

ên(1− kn/(2n)|x)− ên(1− kn/n|x)

)
.

Due to the presence of the estimator ên(1 − kn/(4n)|x), which has significantly larger variance than
the other two quantities ên(1− kn/(2n)|x) and ên(1− kn/n|x), this estimator has a large asymptotic
variance (see Theorem 4). We then propose the simpler, modified Pickands-type estimator

γ̂
(2)
kn

(x) =
1

log(2)
log

(
ên(1− kn/(2n)|x)

ên(1− kn/n|x)

)
.

This estimator has, as we will see, the advantage of having a substantially lower asymptotic variance.
We finally introduce a different, arguably simpler estimator outside of the Pickands-type framework,
which has the advantage of depending upon a single empirical conditional expectile. This estimator
is motivated by rewriting the asymptotic relationship (3.3) as

F (e(α|x)|x)

1− α
→ γ(x)−1 − 1 as α→ 1.

We deduce from this relationship the estimator

γ̂
(3)
kn

(x) =

(
1 +

F̂n (ên(1− kn/n|x)|x)

kn/n

)−1
.

Our next theorem provides the asymptotic distributions of each of these three conditional tail index
estimators.
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Theorem 4. Assume that (K) and (L) hold. Suppose also that C2(γ(x), ρ(x), A(·|x)) is fulfilled with
γ(x) < 1/2, and that there exists δ ∈ (0, 1) with E[Y 2+δ

− |X = x] < ∞. Let (kn) and (hn) be two

sequences such that hn → 0, knh
p
n →∞, kn/n→ 0. Assume further that knh

p+2
n → 0 and

(i)
√
knh

p
n/e(1− kn/n|x)→ λ ∈ R,

(ii)
√
knh

p
nA(n/kn|x)→ 0,

(iii)
√
knh

p
n log(kn/n)× ωhn ((1− δ)e(1− kn/n|x)|x)→ 0.

Then for q = 1, 2, 3 (assuming ρ(x) < 0 for q = 3):

√
knh

p
n

(
γ̂
(q)
kn

(x)

γ(x)
− 1,

ên(1− kn/n|x)

e(1− kn/n|x)
− 1

)
d−→ N

(λm(1)(x)bq(x)
0

)
,
||K||22
g(x)

vq(x) cq(x)

cq(x)
2γ3(x)

1− 2γ(x)


 ,

where b1(x) = 0, b2(x) =
(
2−γ(x) − 1

)
/ log(2), b3(x) = 1− γ(x) and

c1(x) =
γ(x)

(
2γ(x) − 1

)
log(2)(1− 2γ(x))

, v1(x) =
2γ(x)+1 + 2(1 + γ(x))− 23γ(x)+1

log2(2)
(
2γ(x) − 1

)2
(1− 2γ(x))

− 22γ(x)+1

log2(2)
(
2γ(x) − 1

)2 ,
c2(x) =

γ(x)
(
2γ(x) − 1

)
log(2)(1− 2γ(x))

, v2(x) =
2

log2(2)

1 + γ(x)− 2γ(x)

1− 2γ(x)
,

c3(x) =
γ2(x)

1− 2γ(x)
, v3(x) =

γ(x)(1− γ(x))

1− 2γ(x)
.

Figure 1: Left panel: bias terms b1(x) (green), b2(x) (blue) and b3(x) (red). Right panel: Asymptotic
variance terms V (x) (black), v1(x) (green), v2(x) (blue) and v3(x) (red), on the log-scale. x−axis:
value of γ(x) ∈ (0, 1/2).

Even though our result only highlights that the estimators γ̂
(q)
kn

(x), for q = 2, 3, suffer from one
specific source of bias due to the tail heaviness of the conditional distribution through the magnitude
of 1/e(1 − kn/n|x) (see condition (i) in Theorem 4 above), their use may actually incur further
bias due to the second-order framework (see condition (ii)) and the local regression context (see
condition (iii)). The latter two biases are, however, typically difficult to correct; in particular, modern
correction methods for the bias due to the second-order framework involve the estimation of the
(conditional) second-order parameter ρ(x), which even in the unconditional case is a notoriously
difficult problem (see e.g. the Introduction of Cai et al., 2013). By contrast, the simple expression
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of the bias component λm(1)(x)bq(x) makes its elimination a very simple task. In addition, due to
the fact that the tail conditional expectile function t 7→ 1/e(1− t−1|x) and the second-order function
t 7→ |A(t|x)| are respectively regularly varying with indices −γ(x) > −1/2 and ρ(x), the source
of bias due to the second-order framework can only dominate if |ρ(x)| < γ(x) < 1/2. Such cases
of a second-order parameter close to 0 are situations where a Pareto tail tends to be an unreliable
representation of the tail of the underlying distribution, and this is known to be very difficult to handle
in the extreme value theory setup (see e.g. Resnick, 2007, and in particular the discussion about “Hill
horror plots”). This is our rationale for specifically emphasising the bias incurred purely due to the

expectile methodology. In terms of variance, γ̂
(2)
kn

(x) and γ̂
(3)
kn

(x) seem to be very close, and much

better than γ̂
(1)
kn

(x) across the range 0 < γ(x) < 1/2, as Figure 1 illustrates. In other words, γ̂
(2)
kn

(x)

and γ̂
(3)
kn

(x) both appear to be much less variable than both γ̂Pkn(x) and γ̂
(1)
kn

(x), but they do suffer
from finite-sample bias.

This discussion motivates the introduction of a simple technique to deal with what is generally the

source of the most substantial part of the bias in the estimators γ̂
(q)
kn

(x) for q = 2, 3. We propose to
correct them as follows:

γ̃
(q)
kn

(x) = γ̂
(q)
kn

(x)

(
1− m̂(1)

n (x)
b̂q(x)

ên(1− kn/n|x)

)
,

where b̂q(x) is an estimator of bq(x) obtained by plugging in the estimator γ̂
(q)
kn

(x) in place of γ(x).
We then have the following result stating that the bias specific to the high expectile methodology has
been successfully eliminated thanks to this multiplicative correction.

Corollary 2. Under the conditions of Theorem 4, one has for q = 2, 3 that

√
knh

p
n

(
γ̃
(q)
kn

(x)

γ(x)
− 1

)
d−→ N

(
0,
||K||22
g(x)

vq(x)

)
.

We now examine the finite-sample performance of our extrapolation methodology combined with our
bias reduction device in the simulation study below.

4 Simulation study

In this section, we propose to showcase our estimators on simulated samples of conditionally heavy-
tailed data. For that purpose, we consider a one-dimensional covariate (p = 1) which is uniformly
distributed on the unit interval [0, 1] along with two conditional distributions for Y givenX = x ∈ [0, 1]:

• A Pareto distribution with tail index −1/γ(x), namely

∀y > 1, F (y|x) = y−1/γ(x).

• A Burr type XII distribution with parameters γ(x) and ρ(x), that is

∀y > 0, F (y|x) =
(

1 + y−ρ(x)/γ(x)
)1/ρ(x)

.

The Pareto distribution is the “ideal” case in the statistical analysis of heavy tails, as it defines
a homogeneous function of degree −1/γ(x) rather than merely a regularly varying function as in
our basic heavy-tailed assumption (2.1). As such it does not, strictly speaking, satisfy condition
C2(γ(x), ρ(x), A(·|x)), although it is straightforward to see that our theorems also hold for this dis-
tribution with the convention that A(·|x) = 0 (a similar remark is made on p.74 of de Haan and
Ferreira, 2006). Our Burr type XII distribution, meanwhile, satisfies condition C2(γ(x), ρ(x), A(·|x))
with A(y|x) = γ(x)yρ(x), for y > 0. We specify the functions γ and ρ as

∀x ∈ [0, 1], γ(x) =
1

4
+

sin(2πx)

20
and ρ(x) ≡ −1.

12



We simulate N = 500 replications of a sample of size n = 1,000 independent copies from the distribu-
tion of (X,Y ). Our aim will be to estimate the conditional expectiles of level βn = 1 − 1/n = 0.999.
These conditional expectiles do not have a simple closed form, so we approximate them with high
accuracy by calculating numerically the derivative of the cost function in the right-hand side of Equa-
tion (2.2), for α = βn, and then by finding the unique root of this derivative using the standard R
routine uniroot.

Our general extrapolation technique described in Equation (3.5) requires the use of threshold and
bandwidth sequences kn and hn. We choose these sequences by an adapted cross-validation algorithm
about which we give details below.

4.1 Cross-validation procedure

The first step will be to select a bandwidth hn within a data-driven grid H. We let throughout K be
the Epanechnikov kernel

K(t) =
3

4

(
1− t2

)
1{|t|<1}.

Our grid H of values of h is the regular mesh of size 30 of the interval (hmin, hmax], where

hmin := 4 max
x∈G

min
1≤i≤n

|x−Xi| and hmax := 1/2, with G := {0, 0.01, 0.02, . . . , 1}.

Our selected value h∗n of hn is

h∗n = arg min
hn∈H

∑
`∈Hn

∑
xj∈G

∣∣∣∣∣log

(
ê
(−j)
n (0.95|xj)
e`(0.95|xj)

)∣∣∣∣∣ ,
where ê

(−j)
n (0.95|xj) is the conditional expectile estimator (2.5) calculated at level 0.95 and based

on those observations (Xi, Yi) such that hn/4 < |Xi − xj | < hn, while e`(0.95|xj) is the empirical
0.95−expectile based on the observations (Xi, Yi) such that |Xi − xj | ≤ `/4. The idea behind this
cross-validation criterion is to choose a bandwidth hn which allows a reasonably accurate estimation of
high (but not too extreme) expectiles across the whole of the interval [0, 1]; the true value of e(0.95|x)
is of course unknown and is here estimated using the quantity e`(0.95|x). A similar criterion may be
found in Durrieu et al. (2015) in the context of extreme quantile estimation. Once hn has been chosen
as h∗n, we select our value k∗n of kn to be the first local minimum of the cross-validation score

k 7→
∑
xj∈G

(
γ
(−j)
k (xj)− γ̌H(xj)

)2
,

over k, where γ
(−j)
k (xj) is the conditional tail index estimator γ̃

(2)
k (xj) or γ̃

(3)
k (xj) based on observations

(Xi, Yi) such that h∗n/2 < |Xi−xj | < h∗n, and γ̌H(xj) is the Hill estimator (see for instance de Haan and
Ferreira, 2006) of γ(xj) based on those nj observations Yi such that |Xi−xj | ≤ h∗n/2 (calculated with
an effective sample size equal to bn0.6j c). A similar approach is developed in El Methni et al. (2014).
Those choices of hn and kn are expected to provide fairly accurate estimates of both the intermediate
conditional expectile and conditional tail index that are the building blocks for our extrapolation
procedures.

4.2 Bias correction

In practice, our extrapolated estimators (3.5) and (3.8) are biased even if the estimator γ̂kn(x) therein
is chosen to be one of our bias-reduced estimators γ̃kn(x). This is obvious from reading Equation (3.7).
A more careful analysis of the remainder term of this expansion reveals that(

kn
n(1− βn)

)γ(x) e(1− kn/n|x)

e(βn|x)
= 1 +m(1)(x)γ(x)

(
γ(x)−1 − 1

)γ(x)( 1

q(1− kn/n|x)
− 1

q(βn|x)

)
+ O(|A(n/kn|x)|).
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See Equation (6.1) in the proof of Lemma 8. Just as in Section 3.3, we propose to correct the bias
due to the remainder term 1/q(1− kn/n|x). In addition, and although it is asymptotically negligible
compared to 1/q(1− kn/n|x), we introduce a bias correction for the remainder term due to 1/q(βn|x)
(this offers, in our experience, a substantial improvement in finite-sample performance). Applied to
the class of estimators êWn,kn(βn|x), this results in the following class of estimators:

êW,RBn,kn
(βn|x)

= êWn,kn(βn|x)

(
1 + m̂(1)

n (x)γ̃
(q)
kn

(x)
(
γ̃
(q)
kn

(x)−1 − 1
)γ̃(q)kn

(x)
(

1

q̂Wn (βn|x)
− 1

q̂n(1− kn/n|x)

))
,

where q̂Wn (βn|x) is the Weissman-type estimator of q(βn|x) deduced by extrapolating q̂n(1− kn/n|x)

and estimating γ(x) with γ̃
(q)
kn

(x). It is straightforward to show that êW,RBn,kn
(βn|x) and êWn,kn(βn|x)

have the same asymptotic properties. This principle can also be applied to the construction of a
bias-reduced version of êWn,kn(βn|x) as follows:

ẽW,RBn,kn
(βn|x) = ẽWn,kn(βn|x)

1 + m̂(1)
n (x)γ̃

(q)
kn

(x)

(
γ̃
(q)
kn

(x)−1 − 1
)γ̃(q)kn

(x)

q̂Wn (βn|x)

 .

These two versions of our estimators are therefore used in the sequel in place of êWn,kn(βn|x) and

ẽWn,kn(βn|x). To illustrate the performance of our methodologies, we compare them with the naive

extrapolated versions êWn,kn(βn|x) and ẽWn,kn(βn|x) where the estimator γ̂kn(x) is the local Hill estimator
calculated using the kn top observations Yi whose covariates Xi have a distance from x which is
not greater than hn, with the pair (hn, kn) chosen using the cross-validation procedure explained in
Section 4.1.

4.3 Results

Figures 2 and 3 give an overview of the performances of our estimators. A general comment is that
the simpler estimators êWn,kn(βn|x) and ẽWn,kn(βn|x) which do not feature any bias reduction perform
overall quite poorly, especially for large values of γ(x). Another general remark is that the variability
of each estimator increases as γ(x) increases, as expected in view of the monotonicity of the asymptotic
variances v2 and v3 in Theorem 4.

Our estimators êW,RBn,kn
(βn|x) and ẽW,RBn,kn

(βn|x) seem to have fairly good performance overall. There is
not clearly a best estimator among the four versions that were tested; in the Pareto case, the estimator

ẽW,RBn,kn
(βn|x) using γ̃

(2)
kn

(x) seems to perform well but has a fairly high variance, while its counterpart

êW,RBn,kn
(βn|x) has a lower variance but appears to underestimate the true extreme conditional expectile

for the highest values of γ(x) (around x = 1/4). The higher finite-sample variability of ẽW,RBn,kn
(βn|x)

comes from the fact that it is a bias-reduced version of ẽWn,kn(βn|x), which is constructed using the

multiplicative factor (γ̃
(q)
kn

(x)−1 − 1)γ̃
(q)
kn

(x). This quantity becomes very large as the estimator γ̃
(q)
kn

(x)
gets closer to 1. Making an error in the estimation of γ(x) is therefore more detrimental to the stability
of ẽW,RBn,kn

(βn|x) than it is to that of êW,RBn,kn
(βn|x). In addition, the versions of these estimators which

use γ̃
(3)
kn

(x) instead seem to perform well for the highest values of γ(x) but still overestimate the true

value for the lowest values of γ(x). In the case of the Burr distribution, the estimator êW,RBn,kn
(βn|x)

with γ̃
(2)
kn

(x) performs very well and better than its counterpart ẽW,RBn,kn
(βn|x). The versions of these

estimators based on γ̃
(3)
kn

(x) maintain a respectable level of accuracy.

5 Real data example

We study here a data set on motorcycle insurance. The data was collected from the former Swedish in-
surance provider Wasa, and comprises data on motorcycle insurance policies and claims over the period

14



Figure 2: Simulation results in the case of the Pareto distribution, with βn = 1 − 1/n. Top panels:
Naive extrapolated estimators êWn,kn(βn|x) (left) and ẽWn,kn(βn|x) (right) based on local Hill conditional

tail index estimation. Middle panels: Bias-reduced extrapolated estimators êW,RBn,kn
(βn|x) (left) and

ẽW,RBn,kn
(βn|x) (right) based on the conditional tail index estimator γ̃

(2)
kn

(x). Bottom panels: Bias-

reduced extrapolated estimators êW,RBn,kn
(βn|x) (left) and ẽW,RBn,kn

(βn|x) (right) based on the conditional

tail index estimator γ̃
(3)
kn

(x). The red curve is the true extreme conditional expectile curve x 7→ e(βn|x)
to be estimated.

1994-1998. The data set, available from www.math.su.se/GLMbook and the R package insuranceData
and analyzed in Ohlsson and Johansson (2010), contains among others the claim severity Y (defined
as the ratio of claim cost by number of claims for each given policyholder) in SEK, and the age X
of the policyholder in years. This results in n = 670 pairs (Xi, Yi). Our goal is to infer some of the
features of the conditional extremes of this data set.

We first carry out, in Figure 4, visual checks of whether the heavy-tailed assumption makes sense
for this sample of data. The boxplot and histogram of the Yi both give descriptive evidence that Y

15



Figure 3: As in Figure 2, but with a Burr distribution where ρ(x) ≡ −1.

has a heavy right tail. To further confirm that the heavy-tailed framework is appropriate, we drew a
quantile-quantile plot of the weighted log-spacings within the top of the data against the quantiles of
the unit exponential distribution. Formally, let Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n denote the order statistics
of the sample (Y1, . . . , Yn). Let Zi,n = i log(Yn−i+1,n/Yn−i,n), 1 ≤ i ≤ n− 1, denote the weighted log-
spacings computed from the consecutive top order statistics. It is known that, if Y is heavy-tailed with
tail index γ then, for low i, the Zi,n are approximately independent copies of an exponential random
variable with mean γ (see e.g. Beirlant et al., 2004, pp.109–110). The bottom panel of Figure 4
therefore gives a quantile-quantile plot of the Zi,n for 1 ≤ i ≤ bn/5c (b·c denotes the floor function)
versus the exponential distribution. The relationship in this quantile-quantile plot is approximately
linear, which constitutes further evidence that the heavy tail assumption on Y makes sense.
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We therefore carry out our analysis of conditional extremes using the methodology described in Sec-
tions 4.1 and 4.2. Our cross-validation procedure (H being in this case a finer, regular grid of size
100 of the interval (hmin, 40]) yields h∗n = 7.82 ≈ (Xmax − Xmin)/8, which motivates us to estimate
an extreme conditional expectile at level βn = 1 − 8/n ≈ 0.988. To simplify the presentation, we
only calculate and represent our estimate êW,RBn,kn

(βn|x) of the extreme conditional expectile using the

estimator γ̃
(2)
kn

(x). We compare this estimate to the extreme conditional quantile estimate q̂Wn (βn|x)

based on the estimator γ̃
(2)
kn

(x). The cross-validation procedure on kn then chooses k∗n = 190. The
results are represented in Figure 5.

It can be seen in this Figure that the extreme conditional quantile estimate shows a slight increase
on the interval x ∈ [20, 60] but arguably stays quite flat and does not appear to flag any difference
in conditional tail behaviour as x varies. By contrast, the extreme conditional expectile estimate is
markedly different for young policyholders and middle-aged policyholders. This reflects the change in
the conditional behavior of extremes in the data: it can be seen in Figure 5 that claim severity for
older policyholders is typically much more right-skewed than for younger policyholders. In this sense,
the extreme conditional expectile methodology captures information about conditional tail behavior
that the extreme conditional quantile cannot identify.

Figure 5: Swedish motorcycle insurance data analysis. x−axis: age of policyholder, y−axis: claim

severity. Green curve: extreme conditional quantile estimate x 7→ q̂Wn (βn|x) using γ̃
(2)
kn

(x), red curve:

extreme conditional expectile estimate êW,RBn,kn
(βn|x) based on γ̃

(2)
kn

(x).
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6 Appendix

6.1 Preliminary results

The first lemma controls the relative oscillation of F (yn|·) in a neighborhood of x. It is a straight-
forward consequence of a combination of the definition of ωhn(y|x) in (3.1) with a first-order Taylor
expansion of the exponential function.

Lemma 1. Let x ∈ Rp be such that g(x) > 0. Let yn →∞, hn → 0 be such that ωhn(yn|x) log(yn)→
0. Then uniformly in x′ ∈ B(x, hn),

F (yn|x′)
F (yn|x)

− 1 = O (ωhn(yn|x) log(yn)) .

In the next lemma and throughout, B(·, ·) denotes the Beta function (see p.258 of Abramowitz and
Stegun, 1966, for details).

Lemma 2. Let x ∈ Rp be such that g(x) > 0.

i) If C1(γ(x)) holds, then for all a ∈ [0, 1/γ(x)),

ψ(a)(y|x) =
B
(
a+ 1, γ(x)−1 − a

)
γ(x)

g(x)yaF (y|x)(1 + o(1)) as y →∞.

ii) If C2(γ(x), ρ(x), A(·|x)) holds, then for all a ∈ [0, 1/γ(x)),

ψ(a)(y|x) = g(x)yaF (y|x)

{
B
(
a+ 1, γ(x)−1 − a

)
γ(x)

+ A(1/F (y|x)) a

∫ 1

0
(1− u)a−1u1/γ(x)−a−1

u−ρ(x)/γ(x) − 1

γ(x)ρ(x)
du(1 + o(1))

}

as y →∞, with the convention (ut − 1)/t = log u when t = 0.

Proof. In the case a = 0, ψ(0)(y|x) = F (y|x)g(x) and there is nothing to prove. We focus on the case
a > 0. Note that H(t) = (t − 1)a1{t≥1} defines an absolutely continuous function with nonnegative
derivative H ′(t) = a(t− 1)a−11{t≥1} almost everywhere and we have, for any b with a < b,∫ ∞

1
H ′(t)t−bdt = a

∫ ∞
1

(t− 1)a−1t−bdt = aB(a, b− a) = bB(a+ 1, b− a)

by using the change of variables u = 1− t−1. The result then follows by applying Lemma 1(i) and (ii)
in Daouia et al. (2019a) with this choice of H.

The corollary below follows from Lemma 2. Statement iii) is obtained from Karamata’s theorem (see
Theorem B.1.5 in de Haan and Ferreira, 2006).

Corollary 3. Let x ∈ Rp be such that g(x) > 0. Suppose C1(γ(x)) holds with γ(x) < 1 and E[Y− |X =
x] <∞. Then:

i) We have the asymptotic proportionality relationship

lim
y→∞

E(y|x)

F (y|x)
=

γ(x)

1− γ(x)
.

ii) The function E(·|x) is regularly varying, i.e.

∀y > 0, lim
t→∞

E(ty|x)

E(t|x)
= y−1/γ(x) and thus lim

t→∞

e(1− 1/(ty)|x)

e(1− 1/t|x)
= yγ(x).
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iii) The function E(·|x) is continuously differentiable with

lim
y→∞

yE
′
(y|x)

E(y|x)
= lim

y→∞

yF
′
(y|x)

F (y|x)
= − 1

γ(x)
.

Lemma 3. Assume that (L) and C1(γ(x)) hold. Let yn →∞, hn → 0 be such that ωhn(yn|x) log(yn)→
0. Then, uniformly in x′ ∈ B(x, hn) and for all a ∈ [0, 1/γ(x)),

ψ(a)(yn|x′)
ψ(a)(yn|x)

− 1 = O(hn) +O(ωhn(yn|x) log(yn)).

Proof. For a = 0 we have, in view of Lemma 1 and condition (L),

ψ(0)(yn|x′)
ψ(0)(yn|x)

=
F (yn|x′)g(x′)

F (yn|x)g(x)
= 1 +O(hn) +O (ωhn(yn|x) log(yn))

uniformly in x′ ∈ B(x, hn), hence the first result. We turn to the second result. For any a ∈
(0, 1/γ(x)), we have, by an integration by parts,

ψ(a)(yn|x)

g(x)
= a

∫ ∞
yn

(z − yn)a−1F (z|x)dz.

From Equation (3.1), we find

a

∫ ∞
yn

(z − yn)a−1F (z|x)z−ωhn (yn|x)dz ≤ ψ(a)(yn|x′)
g(x′)

≤ a
∫ ∞
yn

(z − yn)a−1F (z|x)zωhn (yn|x)dz.

This implies∫∞
yn

(z − yn)a−1F (z|x)(z−ωhn (yn|x) − 1)dz∫∞
yn

(z − yn)a−1F (z|x)dz
≤ ψ(a)(yn|x′)

ψ(a)(yn|x)

g(x)

g(x′)
− 1

≤
∫∞
yn

(z − yn)a−1F (z|x)(zωhn (yn|x) − 1)dz∫∞
yn

(z − yn)a−1F (z|x)dz

and thus, by the inequality |et − 1| ≤ |t|e|t|,∣∣∣∣∣ψ(a)(yn|x′)
ψ(a)(yn|x)

g(x)

g(x′)
− 1

∣∣∣∣∣ ≤ ωhn(yn|x)

∫∞
yn

(z − yn)a−1F (z|x)zωhn (yn|x) log(z)dz∫∞
yn

(z − yn)a−1F (z|x)dz
.

With the change of variables z = tyn, we find

∣∣∣∣∣ψ(a)(yn|x′)
ψ(a)(yn|x)

g(x)

g(x′)
− 1

∣∣∣∣∣ ≤ ωhn(yn|x)y
ωhn (yn|x)
n

∫ ∞
1

(t− 1)a−1
F (tyn|x)

F (yn|x)
tωhn (yn|x) log(tyn)dt∫ ∞

1
(t− 1)a−1

F (tyn|x)

F (yn|x)
dt

.

Using Potter bounds (see Theorem 1.5.6 p.25 in Bingham et al., 1989) we find, for n large enough and
δ > 0 so small that a+ δ < 1/γ(x),∫ ∞

1
(t− 1)a−1

F (tyn|x)

F (yn|x)
tωhn (yn|x) log(tyn)dt∫ ∞

1
(t− 1)a−1

F (tyn|x)

F (yn|x)
dt

≤ (1 + log(yn))

∫∞
1 (t− 1)a−1tδ−1/γ(x)dt∫∞
1 (t− 1)a−1t−δ−1/γ(x)dt

and the right-hand side is a O(log(yn)). Since ωhn(yn|x) log(yn)→ 0, we get∣∣∣∣∣ψ(a)(yn|x′)
ψ(a)(yn|x)

g(x)

g(x′)
− 1

∣∣∣∣∣ = O(ωhn(yn|x) log(yn)).

Using condition (L) concludes the proof.
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Lemma 4. Assume that (K) and (L) hold. If hn → 0 is such that nhpn →∞, then

E [ĝn(x)] = g(x) +O(hn) and Var [ĝn(x)] =
g(x)‖K‖22

nhpn
(1 + o(1)).

Moreover,

if E[|Y | |X = x] <∞ then E
[
m̂(1)
n (x)ĝn(x)

]
= m(1)(x)g(x) +O(hn)

and if E[Y 2 |X = x] <∞ then Var
[
m̂(1)
n (x)ĝn(x)

]
=
m(2)(x)g(x)‖K‖22

nhpn
(1 + o(1)).

Proof. The first two results are classical (see Parzen, 1962, for a proof). For n large enough, the

expectation E[m̂
(1)
n (x)ĝn(x)] may be written as

1

hpn
E
[
Y K

(
x−X
hn

)]
=

1

hpn

∫
Rp

m(1)(t)g(t)K

(
x− t
hn

)
dt =

∫
S
m(1)(x− uhn)g(x− uhn)K(u)du.

Assumption (L) entails m(1)(x− uhn) = m(1)(x) +O(hn) and g(x− uhn) = g(x) +O(hn) uniformly
on u ∈ S, hence the second identity. The final asymptotic equivalent is obtained through similar
calculations.

Lemma 5. Assume that (K), (L) and C1(γ(x)) hold. Let yn → ∞, hn → 0 be such that nhpn → ∞
and ωhn(yn|x) log(yn)→ 0 as n→∞. Then, for any a ∈ [0, 1/γ(x)) and b ≥ 1,

E
[
(Y − yn)aKb

(
x−X
hn

)
1{Y >yn}

]
= hpnψ

(a)(yn|x)

∫
S
Kb(u)du(1 +O(hn) +O(ωhn(yn|x) log(yn))).

Proof. The result is immediate by noting that

E
[
(Y − yn)aKb

(
x−X
hn

)
1{Y >yn}

]
=

∫
Rp

∫ ∞
yn

(z − yn)aKb

(
x− t
hn

)
f(z|t)g(t) dt dz

= hpn

∫
S
ψ(a)(yn|x− hnu)Kb(u)du

(with the change of variables t = x− hnu) and using Lemma 3.

Lemma 6. Assume that (K), (L) and C1(γ(x)) hold. Suppose also that γ(x) < 1/2 and that there
exists δ ∈ (0, 1) with E[Y 2+δ

− |X = x] < ∞. Let yn → ∞, hn → 0 and bn = θyn(1 + o(1)), where

θ > 0. Assume further that nhpnF (yn|x)→∞, nhp+2
n F (yn|x)→∞ and√

nhpnF (yn|x) ωhn((1− δ)(θ ∧ 1)yn|x) log(yn)→ 0.

Then if, for all j ∈ {1, . . . , J}, yn,j = τ
−γ(x)
j yn(1 + o(1)) with 0 < τ1 < τ2 < . . . < τJ ≤ 1, one has

√
nhpnF (yn|x)


(
ψ̂
(1)
n (yn,j |x)

ψ(1)(yn,j |x)
− 1

)
1≤j≤J

,

(
ψ̂
(0)
n (bn|x)

ψ(0)(bn|x)
− 1

) d−→ N
(

0J+1,
‖K‖22
g(x)

V (x)

)
where V (x) is the symmetric matrix with entries

Vj,l(x) =
1− γ(x)

γ(x)
τ−1l

[
1

1− 2γ(x)

(
τj
τl

)−γ(x)
− 1

]
, j, l ∈ {1, . . . , J}2, j ≤ l,

Vj,J+1(x) =
γ(x)θ1/γ(x)

(
θ ∨ τ−γ(x)j

)1−1/γ(x)
+ (1− γ(x))

(
θ ∨ τ−γ(x)j − τ−γ(x)j

)
γ(x)τ

1−γ(x)
j

, j ∈ {1, . . . , J},

VJ+1,J+1(x) = θ1/γ(x).
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Proof. Let β = (β1, . . . , βJ , βJ+1) ∈ RJ+1. One has:√
nhpnF (yn|x)

J∑
j=1

βj

(
ψ̂
(1)
n (yn,j |x)

ψ(1)(yn,j |x)
− 1

)
+ βJ+1

(
ψ̂
(0)
n (bn|x)

ψ(0)(bn|x)
− 1

)

=

√
nhpnF (yn|x)


J∑
j=1

βj

 ψ̂(1)
n (yn,j |x)− E

[
ψ̂
(1)
n (yn,j |x)

]
ψ(1)(yn,j |x)

+ βJ+1

 ψ̂(0)
n (bn|x)− E

[
ψ̂
(0)
n (bn|x)

]
ψ(0)(bn|x)


+

√
nhpnF (yn|x)


J∑
j=1

βj

E
[
ψ̂
(1)
n (yn,j |x)

]
ψ(1)(yn,j |x)

− 1

+ βJ+1

E
[
ψ̂
(0)
n (bn|x)

]
ψ(0)(bn|x)

− 1

 .

According to Lemma 5, E
[
ψ̂
(0)
n (bn|x)

]
= ψ(0)(bn|x)(1 +O(ωhn(bn|x) log(bn)) +O(hn)),

E
[
ψ̂
(1)
n (yn,j |x)

]
= ψ(1)(yn,j |x)(1 +O(ωhn(yn,j |x) log(yn,j)) +O(hn)).

Noticing that for n large enough, yn,j > yn(1 − δ), we obtain ωhn(yn,j |x) ≤ ωhn((1 − δ)yn|x), ∀j ∈
{1, . . . , J}. Similarly bn > θyn(1− δ) and thus ωhn(bn|x) ≤ ωhn((1− δ)θyn|x). Moreover, log(yn,j) =
O(log(yn)) for any j ∈ {1, . . . , J} and log(bn) = O(log(yn)). Therefore

√
nhpnF (yn|x)


J∑
j=1

βj

E
[
ψ̂
(1)
n (yn,j |x)

]
ψ(1)(yn,j |x)

− 1

+ βJ+1

E
[
ψ̂
(0)
n (bn|x)

]
ψ(0)(bn|x)

− 1

 = o(1).

We now focus on the asymptotic distribution of

Zn =

√
nhpnF (yn|x)


J∑
j=1

βj

 ψ̂(1)
n (yn,j |x)− E

[
ψ̂
(1)
n (yn,j |x)

]
ψ(1)(yn,j |x)

+ βJ+1

 ψ̂(0)
n (bn|x)− E

[
ψ̂
(0)
n (bn|x)

]
ψ(0)(bn|x)

 .

We clearly have E[Zn] = 0. In addition, Var[Zn] = F (yn|x)β>B(n)β, where B(n) is the symmetric
matrix-valued sequence having entries

B
(n)
j,l =

cov
(

(Y − yn,j)K
(
x−X
hn

)
1{Y >yn,j}, (Y − yn,l)K

(
x−X
hn

)
1{Y >yn,l}

)
hpnψ(1)(yn,j |x)ψ(1)(yn,l|x)

, j, l ∈ {1, . . . , J}, j ≤ l,

B
(n)
j,J+1 =

cov
(

(Y − yn,j)K
(
x−X
hn

)
1{Y >yn,j},K

(
x−X
hn

)
1{Y >bn}

)
hpnψ(1)(yn,j |x)ψ(0)(bn|x)

, j ∈ {1, . . . , J},

B
(n)
J+1,J+1 =

Var
[
K
(
x−X
hn

)
1{Y >bn}

]
hpn[ψ(0)(bn|x)]2

.

Let us first focus, for j ≤ l, on the term B
(n)
j,l = A

(n)
j,l /[ψ

(1)(yn,j |x)ψ(1)(yn,l|x)]. Since yn,j > yn,l for n
large enough, we find:

A
(n)
j,l =

1

hpn
E
[
(Y − yn,j)(Y − yn,l)K2

(
x−X
hn

)
1{Y >yn,j}

]
− 1

hpn
E
[
(Y − yn,j)K

(
x−X
hn

)
1{Y >yn,j}

]
E
[
(Y − yn,l)K

(
x−X
hn

)
1{Y >yn,l}

]
.

According to Lemma 5, the second term is equal to hpnψ(1)(yn,j |x)ψ(1)(yn,l|x)(1+o(1)). It thus remains

to focus on the first term of A
(n)
j,l which we rewrite as

1

hpn
E
[
(Y − yn,j)2K2

(
x−X
hn

)
1{Y >yn,j}

]
+ (yn,j − yn,l)

1

hpn
E
[
(Y − yn,j)K2

(
x−X
hn

)
1{Y >yn,j}

]
.
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Using Lemma 5, we get

1

hpn
E
[
(Y − yn,j)2K2

(
x−X
hn

)
1{Y >yn,j}

]
= ψ(2)(yn,j |x)‖K‖22(1 + o(1))

and

(yn,j − yn,l)
hpn

E
[
(Y − yn,j)K2

(
x−X
hn

)
1{Y >yn,j}

]
=
(
τ
−γ(x)
j − τ−γ(x)l

)
‖K‖22ψ(1)(yn,j |x)yn(1 + o(1)).

Besides, Lemma 2 and Corollary 3 i) provide, for any j,
ψ(1)(yn,j |x) =

γ(x)

1− γ(x)
g(x)τ

−γ(x)
j ynτjF (yn|x)(1 + o(1)),

ψ(2)(yn,j |x) =
2γ(x)2

(1− 2γ(x))(1− γ(x))
g(x)τ

−2γ(x)
j y2nτjF (yn|x)(1 + o(1)).

Straightforward calculations then yield:

B
(n)
j,l =

‖K‖22
g(x)

1− γ(x)

γ(x)
τ−1l

[
1

1− 2γ(x)

τ
−γ(x)
j

τ
−γ(x)
l

− 1

]
1

F (yn|x)
(1 + o(1)).

We now deal with B
(n)
j,J+1 for j ∈ {1, . . . , J}, which can be rewritten as

E
[
(Y − yn,j)K2

(
x−X
hn

)
1{Y >yn,j∨bn}

]
− E

[
(Y − yn,j)K

(
x−X
hn

)
1{Y >yn,j}

]
E
[
K
(
x−X
hn

)
1{Y >bn}

]
hpnψ(1)(yn,j |x)ψ(0)(bn|x)

.

Using Lemma 5, the second term in the numerator equals h2pn ψ(1)(yn,j |x)ψ(0)(bn|x)(1 + o(1)) and the
first term can be rewritten

E
[
(Y − yn,j)K2

(
x−X
hn

)
1{Y >yn,j∨bn}

]
= hpn‖K‖22

[
ψ(1)(yn,j ∨ bn|x) + (yn,j ∨ bn − yn,j)ψ(0)(bn|x)

]
(1 + o(1)).

Combining Lemma 2 with Corollary 3 i) and the asymptotic equivalent F (yn,j ∨ bn|x)/F (yn|x) =

(θ ∨ τ−γ(x)j )−1/γ(x)(1 + o(1)), we get

B
(n)
j,J+1

=
ψ(1)(yn,j ∨ bn|x) + (yn,j ∨ bn − yn,j)ψ(0)(bn|x)

ψ(1)(yn,j |x)ψ(0)(bn|x)
‖K‖22(1 + o(1))

=
‖K‖22
g(x)

γ(x)
(
θ ∨ τ−γ(x)j

)1−1/γ(x)
+ (1− γ(x))

(
θ ∨ τ−γ(x)j − τ−γ(x)j

)
θ−1/γ(x)

γ(x)τ
1−γ(x)
j θ−1/γ(x)

1

F (yn|x)
(1 + o(1)).

Finally, using Lemmas 2, 5 and Corollary 3 i), the variance term B
(n)
J+1,J+1 is clearly

E
[
K2
(
x−X
hn

)
1{Y >bn}

]
−
{
E
[
K
(
x−X
hn

)
1{Y >bn}

]}2

hpn[ψ(0)(bn|x)]2
=
‖K‖22
g(x)

θ1/γ(x)
1

F (yn|x)
(1 + o(1)).

Therefore, Var[Zn] → ‖K‖22β>V (x)β/g(x), where V (x) is given in the statement of the lemma. It
only remains to prove the asymptotic normality of Zn. We thus write Zn =

∑n
i=1 Zi,n, where

Zi,n =

√
nhpnF (yn|x)

nhpn

J∑
j=1

βj
(Yi − yn,j)K

(
x−Xi
hn

)
1{Yi>yn,j} − E

[
(Yi − yn,j)K

(
x−Xi
hn

)
1{Yi>yn,j}

]
ψ(1)(yn,j |x)

+

√
nhpnF (yn|x)

nhpn
βJ+1

K
(
x−Xi
hn

)
1{Yi>bn} − E

[
K
(
x−Xi
hn

)
1{Yi>bn}

]
ψ(0)(bn|x)

.
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We prove that there is δ > 0 such that nE|Z1,n|2+δ → 0 as n → ∞; the result then follows by the
Lyapunov central limit theorem (see Theorem 27.3 p.362 of Billingsley, 1995). For that purpose, note
that, if T1, . . . , Tq have finite (2 + δ)−moments,E

∣∣∣∣∣
q∑
i=1

[Ti − E(Ti)]

∣∣∣∣∣
2+δ


1/(2+δ)

≤
q∑
i=1

{E|Ti|2+δ}1/(2+δ) + E|Ti| ≤ 2q max
1≤i≤q

{E|Ti|2+δ}1/(2+δ)

by the triangle inequality for the standard norm in the space of random variables with finite (2 +
δ)−moment. Therefore,

E|Z1,n|2+δ = O

(F (yn|x)

nhpn

)1+δ/2

 max
1≤j≤J

E

∣∣∣∣∣∣
(Y − yn,j)K

(
x−X
hn

)
1{Y >yn,j}

ψ(1)(yn,j |x)

∣∣∣∣∣∣
2+δ

+ E

∣∣∣∣∣∣
K
(
x−X
hn

)
1{Y >bn}

ψ(0)(bn|x)

∣∣∣∣∣∣
2+δ

 .

Combine now, for δ small enough, Lemmas 2 and 5 with the asymptotic equivalents F (bn|x) =
θ−1/γ(x)F (yn|x)(1 + o(1)) and F (yn,j |x) = τjF (yn|x)(1 + o(1)) to get

nE|Z1,n|2+δ = O
([
nhpnF (yn|x)

]−δ/2)
,

which clearly tends to 0 as n→∞. The result is proved.

Lemma 7. Under the conditions of Lemma 6 and with V (x) given in Lemma 6,

√
nhpnF (yn|x)


(
Ên(yn,j |x)

E(yn,j |x)
− 1

)
1≤j≤J

,

(
F̂n(bn|x)

F (bn|x)
− 1

) d−→ N
(

0J+1,
‖K‖22
g(x)

V (x)

)
.

Proof. Set

Rn,j :=

ĝn(x)− g(x)− m̂
(1)
n (x)ĝn(x)−m(1)(x)g(x)

yn,j
+ 2

ψ̂
(1)
n (yn,j |x)− ψ(1)(yn,j |x)

yn,j

g(x)− m(1)(x)g(x)

yn,j
+

2ψ(1)(yn,j |x)

yn,j

.

We may write

√
nhpnF (yn|x)

J∑
j=1

βj

(
Ên(yn,j |x)

E(yn,j |x)
− 1

)
+

√
nhpnF (yn|x)βJ+1

(
F̂n(bn|x)

F (bn|x)
− 1

)

=

√
nhpnF (yn|x)

J∑
j=1

βj

(
ψ̂
(1)
n (yn,j |x)

ψ(1)(yn,j |x)
− 1

)
(1 +Rn,j)

−1 +

√
nhpnF (yn|x)βJ+1

(
ψ̂
(0)
n (bn|x)

ψ(0)(bn|x)
− 1

)
g(x)

ĝn(x)

+

√
nhpnF (yn|x)

J∑
j=1

βj
(
(1 +Rn,j)

−1 − 1
)

+

√
nhpnF (yn|x)βJ+1

(
g(x)

ĝn(x)
− 1

)
.

A combination of Lemmas 4 and 6 directly entails

∀j ∈ {1, . . . , J}, Rn,j = OP

(
1√
nhpn

)
and

ĝn(x)

g(x)
− 1 = OP

(
1√
nhpn

)

and the result then follows by applying Lemma 6.
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Lemma 8. Let x ∈ Rp be such that g(x) > 0 and C2(γ(x), ρ(x), A(·|x)) holds. Suppose also that
γ(x) < 1, ρ(x) < 0 and E[Y− |X = x] < ∞. Let βn → 1, kn → ∞ be such that kn/n → 0 and
n(1− βn)/kn → 0. Then:(

kn
n(1− βn)

)γ(x) e(1− kn/n|x)

e(βn|x)
= 1 +B(1− kn/n|x) +O(|A(n/kn|x)|),

where B(τ |x) = γ(x)

(
γ(x)−1 − 1

)γ(x)
q(τ |x)

(m(1)(x) + o(1)) =
γ(x)

e(τ |x)
(m(1)(x) + o(1)) as τ → 1.

Proof. Write(
kn

n(1− βn)

)γ(x) e(1− kn/n|x)

e(βn|x)
=

(
kn

n(1− βn)

)γ(x) q(1− kn/n|x)

q(βn|x)
× e (1− kn/n|x)

q (1− kn/n|x)
× q (βn|x)

e (βn|x)
.

Following the proof of Theorem 4.3.8 in de Haan and Ferreira (2006), we get(
kn

n(1− βn)

)γ(x) q(1− kn/n|x)

q(βn|x)
= 1 +O(|A(n/kn|x)|).

Moreover, according to Proposition 1 in Daouia et al. (2019b),
q(βn|x)

e(βn|x)
=
(
γ(x)−1 − 1

)γ(x) (
1−B(βn|x) +O(|A((1− βn)−1|x)|)

)
,

e(1− kn/n|x)

q(1− kn/n|x)
=
(
γ(x)−1 − 1

)−γ(x)
(1 +B(1− kn/n|x) +O(|A(n/kn|x)|)) .

(6.1)

Since n(1− βn) = o(kn) and ρ(x) < 0, we find B(βn|x) = o(|B(1− kn/n|x)|) and A((1− βn)−1|x) =
o(|A(n/kn|x)|), hence the result.

Lemma 9. Let x ∈ Rp be such that g(x) > 0 and C2(γ(x), ρ(x), A(·|x)) holds. Suppose also that
γ(x) < 1 and E[Y− |X = x] <∞. If kn →∞ and kn/n→ 0, then:

e(1− kn/(4n)|x)− e(1− kn/(2n)|x)

e(1− kn/(2n)|x)− e(1− kn/n|x)
= 2γ(x) (1 + o(1/e(1− kn/n|x)) +O(|A(n/kn|x)|)) .

Proof. With the notation of Lemma 8, Proposition 1 in Daouia et al. (2019b), applied to the conditional
distribution of Y given X = x, provides:

(γ(x)−1 − 1)γ(x)
e(τ |x)

q(τ |x)
= 1 +B(τ |x) +O(|A((1− τ)−1|x)|).

The result follows by noticing/recalling that t 7→ |B(1− t−1|x)| ∝ 1/e(1− t−1|x) and t 7→ |A(t|x)| are
regularly varying with respective indices −γ(x) and ρ(x).

6.2 Proofs of main results

6.2.1 Proof of Theorem 1

Let us denote σn = 1/
√
nhpn(1− αn), z = (z1, . . . , zJ , t) and focus on the probability

Φn(z) = P

 J⋂
j=1

{
σ−1n

(
ên(αn,j |x)

e(αn,j |x)
− 1

)
≤ zj

}
∩
{
σ−1n

(
q̂n(an|x)

q(an|x)
− 1

)
≤ t
}

= P

 J⋂
j=1

{ên(αn,j |x) ≤ e(αn,j |x) (1 + zjσn)} ∩ {q̂n(an|x) ≤ q(an|x) (1 + tσn)}

 .
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By noticing that 1 − αn,j = E(e(αn,j |x)|x) and 1 − an = F (q(an|x)|x), and using that for all y, α,

ên(α|x) ≤ y ⇔ Ên(y|x) ≤ 1− α and q̂n(α|x) ≤ y ⇔ F̂n(y|x) ≤ 1− α, we find that Φn(z) is equal to

P

 J⋂
j=1

{
Ên(e(αn,j |x)(1 + zjσn)|x) ≤ E(e(αn,j |x)|x)

}
∩
{
F̂n(q(an|x)(1 + tσn)|x) ≤ F (q(an|x)|x)

} .

Letting yn = e(αn|x), yn,j = e(αn,j |x)(1 + zjσn) and bn = q(an|x)(1 + tσn), we have

Φn(z) = P

 J⋂
j=1

{√
nhpnF (yn|x)

(
Ên(yn,j |x)

E(yn,j |x)
− 1

)
≤
√
nhpnF (yn|x)

(
E(e(αn,j |x)|x)

E(yn,j |x)
− 1

)}

∩

{√
nhpnF (yn|x)

(
F̂n(bn|x)

F (bn|x)
− 1

)
≤
√
nhpnF (yn|x)

(
F (q(an|x)|x)

F (bn|x)
− 1

)})
.

By Corollary 3 iii), we may, for any j ∈ {1, . . . , J}, use a Taylor expansion to obtain that there exists
θn,j ∈ [0, 1] with:

E(yn,j |x) = 1− αn,j + zjσne(αn,j |x)E
′
(e(αn,j |x) + θn,jzjσne(αn,j |x)|x).

According to Corollary 3 ii),

E(yn,j |x) = 1− αn,j + zjσne(αn,j |x)E
′
(e(αn,j |x)|x)(1 + o(1)) = (1− αn,j)

(
1− zjσn

γ(x)
(1 + o(1))

)
.

Since
√
nhpnF (yn|x) = σ−1n

√
γ(x)−1 − 1(1 + o(1)) (see Corollary 3 i)), we have

∀j ∈ {1, . . . , J},
√
nhpnF (yn|x)

(
E(e(αn,j |x)|x)

E(yn,j |x)
− 1

)
=

zj
γ(x)

√
1− γ(x)

γ(x)
(1 + o(1)).

By using the same arguments, we also get

√
nhpnF (yn|x)

(
F (q(an|x)|x)

F (bn|x)
− 1

)
=

t

γ(x)

√
1− γ(x)

γ(x)
(1 + o(1)).

Finally, yn,j = e(αn,j |x)(1+zjσn) = τ
−γ(x)
j yn(1+o(1)) (see Corollary 3 i)) and bn = q(an|x)(1+tσn) =(

γ(x)−1 − 1
)γ(x)

τ−γ(x)yn(1 + o(1)) (by combining Corollary 3 ii) and Proposition 1 in Daouia et al.
(2019b)). Thus, for n large enough, ωhn(yn,j |x) ≤ ωhn((1 − δ)e(1 − kn/n|x)|x) and ωhn(bn|x) ≤
ωhn((1 − δ)q(an|x)|x). Moreover, log(yn,j) = O(log(yn)) and log(bn) = O(log(yn)). Noting that
log(yn) = O(| log(1 − αn)|) by the regular variation property of the tail expectile function t 7→ e(1 −
t−1|x), Lemma 7 can then be applied (with θ = τ−γ(x)

(
γ(x)−1 − 1

)γ(x)
) to conclude the proof. 2

6.2.2 Proof of Theorem 2

The key is to write

log

(
êWn,kn(βn|x)

e(βn|x)

)
= log

(
kn

n(1− βn)

)
(γ̂kn(x)− γ(x)) + log

(
ên(1− kn/n|x)

e(1− kn/n|x)

)

+ log

([
kn

n(1− βn)

]γ(x) e(1− kn/n|x)

e(βn|x)

)
.

The conclusion now follows from our assumptions on γ̂kn(x), Theorem 1 and Lemma 8, together with
a straightforward application of the delta-method. 2

26



6.2.3 Proof of Theorem 3

We first briefly explain why q̂n(1 − kn/n|x) is still
√
knh

p
n−consistent under our assumptions which

are weaker than those of Theorem 1. Inspecting the proof of Theorem 1 reveals that

P
(√

knh
p
n

(
q̂n(1− kn/n|x)

q(1− kn/n|x)
− 1

)
≤ t
)

= P

(√
knh

p
n

(
F̂n(bn|x)

F (bn|x)
− 1

)
≤ t

γ(x)
(1 + o(1))

)

with bn = q(1− kn/n|x)(1 + t/
√
knh

p
n). Write then

√
knh

p
n

(
F̂n(bn|x)

F (bn|x)
− 1

)
=
√
knh

p
n

(
ψ̂
(0)
n (bn|x)

ψ(0)(bn|x)
− 1

)
g(x)

ĝn(x)
+
√
knh

p
n

(
g(x)

ĝn(x)
− 1

)
.

Inspecting the proof of Lemmas 6 and 7 shows that under our assumptions,

√
knh

p
n

(
ψ̂
(0)
n (bn|x)

ψ(0)(bn|x)
− 1

)
= OP(1) +O

(√
knh

p
n [hn + ωhn(bn|x) log(bn)]

)
= OP(1) +O

(√
knh

p
n [hn + | log(kn/n)| × ωhn((1− δ)q(1− kn/n|x)|x)]

)
= OP(1).

Thus, by Lemma 4,

√
knh

p
n

(
F̂n(bn|x)

F (bn|x)
− 1

)
= OP(1) and so

√
knh

p
n

(
q̂n(1− kn/n|x)

q(1− kn/n|x)
− 1

)
= OP(1).

The final key point is to write

log

(
ẽWn,kn(βn|x)

e(βn|x)

)
= log

(
kn

n(1− βn)

)
(γ̂kn(x)− γ(x)) + log

(
q̂n(1− kn/n|x)

q(1− kn/n|x)

)

+ log

(
(γ̂kn(x)−1 − 1)−γ̂kn (x)

(γ(x)−1 − 1)−γ(x)

)
+ log

([
kn

n(1− βn)

]γ(x) q(1− kn/n|x)

q(βn|x)

)

− log

(
(γ(x)−1 − 1)−γ(x)

q(βn|x)

e(βn|x)

)
.

The conclusion now follows from our assumptions on γ̂kn(x), the convergence of q̂n(1−kn/n|x), condi-
tion C2(γ(x), ρ(x), A(·|x)) and Proposition 1 in Daouia et al. (2019b), together with a straightforward
application of the delta-method. 2

6.2.4 Proof of Theorem 4

Asymptotic distribution of γ̂
(1)
kn

(x). We start by focusing on the asymptotic distribution of

√
knh

p
n

(
ên (1− kn/(4n)|x)− ên (1− kn/(2n)|x)

ên (1− kn/(2n)|x)− ên (1− kn/n|x)
− 2γ(x)

)
= An +Bn,

where

An =
√
knh

p
n

(
ên (1− kn/(4n)|x)− ên (1− kn/(2n)|x)

e (1− kn/(4n)|x)− e (1− kn/(2n)|x)
× e (1− kn/(2n)|x)− e (1− kn/n|x)

ên (1− kn/(2n)|x)− ên (1− kn/n|x)
− 1

)
× e (1− kn/(4n)|x)− e (1− kn/(2n)|x)

e (1− kn/(2n)|x)− e (1− kn/n|x)
,

Bn =
√
knh

p
n

(
e (1− kn/(4n)|x)− e (1− kn/(2n)|x)

e (1− kn/(2n)|x)− e (1− kn/n|x)
− 2γ(x)

)
.
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According to Lemma 9, Bn → 0. We then focus on An and we note that, by Theorem 1 and some
straightforward algebra,

e (1− kn/(2n)|x)− e (1− kn/n|x)

ên (1− kn/(2n)|x)− ên (1− kn/n|x)
= 1 +OP

(
1/
√
knh

p
n

)
.

Applying Lemma 9 again, we get

An = 2γ(x)
√
knh

p
n

e (1− kn/(4n)|x)

e (1− kn/(4n)|x)− e (1− kn/(2n)|x)

(
ên (1− kn/(4n)|x)

e (1− kn/(4n)|x)
− 1

)
(1 + oP(1))

− 2γ(x)
√
knh

p
n

e (1− kn/(2n)|x)

e (1− kn/(4n)|x)− e (1− kn/(2n)|x)

(
ên (1− kn/(2n)|x)

e (1− kn/(2n)|x)
− 1

)
(1 + oP(1))

− 2γ(x)
√
knh

p
n

e (1− kn/(2n)|x)

e (1− kn/(2n)|x)− e (1− kn/n|x)

(
ên (1− kn/(2n)|x)

e (1− kn/(2n)|x)
− 1

)
(1 + oP(1))

+ 2γ(x)
√
knh

p
n

e (1− kn/n|x)

e (1− kn/(2n)|x)− e (1− kn/n|x)

(
ên (1− kn/n|x)

e (1− kn/n|x)
− 1

)
(1 + oP(1)).

By noticing that e (1− jλkn/n|x) / (e (1− λkn/n|x)− e (1− 2λkn/n|x)) → j−γ(x)(1 − 2−γ(x))−1 for
any λ > 0, j = 1, 2, we deduce that

An =
√
knh

p
n

(
2γ(x)

1− 2−γ(x)
,− 1 + 2γ(x)

1− 2−γ(x)
,

1

1− 2−γ(x)

)


ên (1− kn/(4n)|x)

e (1− kn/(4n)|x)
− 1

ên (1− kn/(2n)|x)

e (1− kn/(2n)|x)
− 1

ên (1− kn/n|x)

e (1− kn/n|x)
− 1


+ oP(1).

The conclusion now follows from a straightforward application of Theorem 1 and of the delta-method.

Asymptotic distribution of γ̂
(2)
kn

(x). The proof is entirely similar to the proof for γ̂
(1)
kn

(x) and is
therefore omitted.

Asymptotic distribution of γ̂
(3)
kn

(x). Let us denote for convenience αn = 1−kn/n, σn = 1/
√
knh

p
n,

θ = γ(x)−1 − 1, and focus on the probability

Φn(z) = P

(
σ−1n

(
F̂n (ên(αn|x)|x)

1− αn
− θ

)
≤ z

)
= P

(
F̂n (ên(αn|x)|x) ≤ (1− αn) (θ + zσn)

)
.

Equivalently Φn(z) = P (ên(αn|x) ≥ q̂n (βn|x)), where βn = 1− (1− αn) (θ + zσn) , and so

Φn(z) = P
(
σ−1n

(
ên(αn|x)

e(αn|x)
− 1

)
≥ σ−1n

(
q̂n(βn|x)

q(βn|x)
− 1

)
q(βn|x)

e(αn|x)
+ σ−1n

(
q(βn|x)

e(αn|x)
− 1

))
.

Since ρ(x) < 0 and according to Theorem 2.3.9 in de Haan and Ferreira (2006), Equation (3.6)
provides:

q(βn|x)

q(αn|x)
= (θ + zσn)−γ(x)

(
1 +O(|A((1− αn)−1|x)|)

)
.

Apply then Proposition 1 in Daouia et al. (2019b) to the conditional distribution of Y given X = x
to get

q(βn|x)

e(αn|x)
=
(

1− γ(x)
zσn
θ

(1 + o(1))
)(

1− γ(x)

e(αn|x)
(m(1)(x) + o(1)) +O(|A((1− αn)−1|x)|)

)
.

Recall that σn = 1/
√
knh

p
n and θ = γ(x)−1 − 1 to find

σ−1n

(
q(βn|x)

e(αn|x)
− 1

)
→ − γ2(x)

1− γ(x)
z − λγ(x)m(1)(x).
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We can therefore rewrite Φn(z) as the probability

P
(

1− γ(x)

γ2(x)

[
−σ−1n

(
ên(αn|x)

e(αn|x)
− 1

)
+ σ−1n

(
q̂n(βn|x)

q(βn|x)
− 1

)]
(1 + o(1))− λ1− γ(x)

γ(x)
m(1)(x) ≤ z

)
.

In other words, the asymptotic distribution of σ−1n

(
F̂n (ên(αn|x)|x)

1− αn
− θ, ên(αn|x)

e(αn|x)
− 1

)
is that of

−1− γ(x)

γ2(x)

1− γ(x)

γ2(x)

1 0

σ−1n


ên(αn|x)

e(αn|x)
− 1

q̂n(βn|x)

q(βn|x)
− 1

−
λ1− γ(x)

γ(x)
m(1)(x)

0

 .

The conclusion follows from an application of Theorem 1 with J = 1, τ1 = 1, τ = γ(x)−1 − 1 and a
use of the delta-method. 2
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