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Spatial navigation is emerging as a critical factor in identifying
preclinical Alzheimer’s disease (AD). However, the impact of interindi-
vidual navigation ability and demographic risk factors (e.g., APOE,
age, and sex) on spatial navigationmake it difficult to identify persons
“at high risk” of AD in the preclinical stages. In the current study, we
use spatial navigation big data (n = 27,108) from the Sea Hero Quest
(SHQ) game to overcome these challenges by investigating whether
big data can be used to benchmark a highly phenotyped healthy
aging laboratory cohort into high- vs. low-risk persons based on their
genetic (APOE) and demographic (sex, age, and educational attain-
ment) risk factors. Our results replicate previous findings in APOE
e4 carriers, indicative of grid cell coding errors in the entorhinal cortex,
the initial brain region affected by AD pathophysiology.We also show
that although baseline navigation ability differs between men and
women, sex does not interact with the APOE genotype to influence
themanifestation of AD-related spatial disturbance.Most importantly,
we demonstrate that such high-risk preclinical cases can be reliably
distinguished from low-risk participants using big-data spatial naviga-
tion benchmarks. By contrast, participants were undistinguishable on
neuropsychological episodic memory tests. Taken together, we pre-
sent evidence to suggest that, in the future, SHQ normative bench-
mark data can be used to more accurately classify spatial impairments
in at-high-risk of AD healthy participants at a more individual level,
therefore providing the steppingstone for individualized diagnostics
and outcome measures of cognitive symptoms in preclinical AD.

Alzheimer’s disease | spatial navigation | personalized health care |
APOE genotype | preclinical diagnosis

Spatial navigation is a promising cognitive fingerprint for un-
derlying Alzheimer’s disease (AD) pathophysiology (1–8)

and has been adopted by many high-profile clinical trials (such as
the European Prevention of Alzheimer’s Dementia Consortium)
to improve the sensitivity of neurocognitive testing and assess the
efficacy of potentially disease-modifying treatments. In fact, brain
areas affected by AD pathophysiology in the preclinical stage
(including the entorhinal cortex, posterior cingulate cortex, and
precuneus) form the key nodes in the spatial navigation network
(6, 9–13). Recent evidence suggests that abnormal spatial navi-
gation patterns may be present before episodic memory deficits,
which are the current gold standard for AD diagnosis (6, 14, 15).
A major challenge at this stage, however, is to understand how

interindividual and demographic factors affect spatial navigation
to identify earliest pathological spatial navigation changes in AD
(16–19). Understanding diversifying factors that influence variability
in spatial ability in the healthy population and individuals at risk to
develop AD will advance the diagnostic power of the spatial tests
and support more personalized diagnostic and treatment ap-
proaches (17, 20–23). Among factors underlying navigation, age is a
well-documented predictor of declining spatial abilities, as older
adults show a strong bias toward egocentric rather than allocentric
strategies (24, 25) leading to suboptimal navigation performance
(26). Age-related decline in allocentric process are due to changes

in coding patterns of place, grid, border, and head direction cells
that underpin our ability to form cognitive maps of the envi-
ronment and intergrate environmental and self-motion cues to
optimize navigational performance (27–29). However, decline in
other cognitive domains such as general planning and cognitive
control abilities (30) also contribute to spatial deficits in old age,
suggesting that, like most diagnostic tests, age-range normative
cutoff scores are required (30, 31).
Similarly, sex differences in navigation behavior and underlying

neuroanatomy have generated arguments for sex-specific clinico-
pathological AD phenotypes (17, 21, 32–35). Rodent models of the
Morris water maze have shown that male rats consistently outper-
form females (36), and human studies display similar sex differences
favoring males (37–40) across 57 countries in both map-dependent
allocentric and map-independent egocentric navigational strategies
(41). Therefore, although spatial navigation tools must retain sen-
sitivity and specificity to preclinical AD pathophysiology, it will be
critical to develop diagnostic tools that can adjust for underlying sex
differences.
Finally, one of the biggest challenges in preclinical AD studies is

to identify those who are at high risk to develop symptomatic AD in
the future. Genetic variation in the apolipoprotein E 4 allele car-
riers is currently the strongest known genetic risk factor for sporadic
AD (7, 42–44). Compared with the e3e3 carriers, those with the
e3e4 show a threefold to fourfold increased risk for AD (44, 45).
Phenotypic characteristics of apoE e4 allele show that the cognitive
profile of e4 carriers changes over the life span, with some cognitive
advantage seen in young adulthood (39) and cognitive disturbances
in mnemonic and spatial process in mid-adulthood (46–48). Recent
findings also show that temporal grid cell-like representation in the
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entorhinal cortex of apoE4 carriers are functionally unstable, leading
to a boundary-driven error correction during wayfinding (49).
Taken together, there is increasing evidence that spatial deficits,

in particular related to wayfinding, are present in preclinical AD
long before episodic memory symptoms emerge. However, at this
stage, it is very difficult to employ such knowledge on a clinical level,
due to unknown interindividual variability in navigation behavior
across persons, which is vital for sensitive and specific diagnostics on
an individual level. In the current study, we address this issue by
using big data (n = 27,108) for navigation behavior from the Sea
Hero Quest (SHQ) app (41, 50) (i) to determine whether we can
replicate previous wayfinding affects in APOE e3e4 carriers com-
pared with the big data; (ii) to further disentangle interindividual
effects of genetic risk for AD from the effects of sex, age, and
baseline cognition on spatial discrepancies; and (iii) to explore
whether AD-specific spatial navigation changes can be detected on
an individual level, when using big data as a benchmark comparison.
We predicted that (i) we would replicate previous APOE spatial
navigation findings (7); (ii) sex differences would make a significant
impact on navigation behavior; and (iii) AD-specific navigation
changes can be detected on an individual level when using the
normative benchmark big data of SHQ.

Results
Background Characteristics and Neuropsychology. In the laboratory-
based cohort, the e3e3 and e3e4 groups did not differ in terms of
their demographic characteristics (SI Appendix, Table S1) or
their neuropsychological examination (Table 1). We examined
the relationship between the three SHQ outcome variables (Fig. 1):
Wayfinding distance traveled and wayfinding duration corre-
late (Pearson r = 0.61, P < 0.001); duration and flare accuracy
correlate (r = −0.309, P < 0.001); but wayfinding distance trav-
eled and flare accuracy are not correlated (r = 0.04, P = 0.795),
suggesting dissociable neural correlates that underlie perfor-
mance, corroborating current notions that wayfinding distance
relies more on grid cell-based navigational processes (51) and
flare accuracy relies more on retrosplenial-mediated processes
(15). We consider wayfinding distance as the primary outcome
measure (and the other outcomes are secondary) as early AD is
characterized by abnormal changes in the grid cell code of the
entorhinal cortex.

Genotype Effects on Wayfinding. There was a main effect of ge-
notype (b = 0.22; P = 0.004; Fig. 2A) on wayfinding distance,
with e3e3 carriers [mean (M) = 3.79, SD = 0.63] traveling a
shorter distance during wayfinding relative to e3e4 carriers (M =
4.45, SD = 0.94) after controlling for age and sex. The mixed
model for wayfinding duration (i.e., time taken to complete

wayfinding levels) showed no main effect of genotype between
e3e3 (M = 4.66, SD = 2.65) and e3e4 carriers (M = 4.97, SD =
1.36; Fig. 2B). See Table 2 for group mean values and Table 3 for
the effects of genotype on wayfinding distance and duration.
Please refer to SI Appendix for results including a small high-risk
e4/e4 carrier group, which showed an even larger effect for dis-
tance traveled (SI Appendix, Fig. S1).
To further examine the different routes taken by the two genetic

groups, we plotted the exact trajectory of each participant on
wayfinding levels 6, 8, and 11 using (x, y) coordinates generated
during game play and found that «3«4 carriers show a lower av-
erage distance to border than their «3«3 counterparts (Fig. 2 D–
F). On levels 6 and 8, «3«4 carriers deviate from the shortest
distance between the checkpoints and travel toward the border of
the environment compared with the «3«3 carriers, who tend to
navigate along the center of the virtual environment. To check
whether the increase in wayfinding distance in «3«4 carriers
compared with the «3«3 group was driven by any specific level,
fixed-effects linear models were fitted for levels 6, 8, and 11 to test
whether the properties in one specific level captured this effect, or
whether this effect was an accumulative error over the three
wayfinding levels. Using the same explanatory variables as in the
final base model, the e4 allele was found to increase wayfinding
distance on level 6 [F(60) = 5.48, P = 0.023] and level 8 [F(60) =
4.08, P = 0.04], but not on level 11 (SI Appendix, Fig. S2; also see
SI Appendix, Fig. S5 for diagnostic plots underlying key assump-
tions of the linear mixed models).

Genotype and Sex Effect on Wayfinding. No effects of sex were
found on wayfinding distance as men (M = 4.06, SD = 0.87) and
women (M = 4.22, SD = 0.91; b = 0.02, P = 0.12) took similarly
efficient paths, but sex did affect duration taken to complete
wayfinding levels, with men (M = 4.33, SD = 1.09) requiring less
time to complete levels than women (M = 5.26, SD = 2.17; b =
0.39, P = 0.02; SI Appendix, Fig. S3A). Importantly, no interactive
effects of genotype and sex on wayfinding distance or wayfinding
duration were uncovered.

Genotype and Sex Effects on Path Integration. We then tested the
effects of genotype and sex levels on flare accuracy, a measure of
path integration. No main effect of genotype (b = 0.04, P = 0.14;
Fig. 2C) and no genotype by sex interactions were found. How-
ever, sex had a significant main effect on flare accuracy, with
men (M = 5.11, SD = 1.3) scoring higher than women (M = 4.31,
SD = 1.4; b = −0.36, P = 0.04; SI Appendix, Fig. S3B).

Memory and Spatial Navigation as Predictors of APOE Genotype. The
sensitivity and specificity of a traditional memory task to predict
APOE genotype compared with spatial navigation on SHQ was
done using logistic regression and receiver operating character-
istic (ROC) curves. This was motivated by the prediction that
memory deficits would not be detectable on current gold stan-
dard episodic memory tasks. Covarying for sex, nonverbal epi-
sodic memory (3-min total recall score for the ROCF) and
wayfinding distance in SHQ were used as separate predictors in two
logistic regression analyses. The regression model for wayfinding

Table 1. Neuropsychology background for laboratory-cohort
genetic groups

Measure Genotype Mean SD P value

ACE (n = 60) «3«3 94.9 3.44 P > 0.05
«3«4 92.7 3.77

ACE memory (n = 60) «3«3 24.9 1.86 P > 0.05
«3«4 23.9 1.69

ACE visuospatial ability (n = 60) «3«4 15.0 1.36 P > 0.05
«3«4 14.7 1.48

RCFT immediate recall (n = 59) «3«3 33.1 2.83 P > 0.05
«3«4 32.3 2.58

RCTF 3-min delay recall (n = 59) «3«3 20.8 6.59 P = 0.10
«3«4 18.5 5.39

ACE, Addenbrooke’s Cognitive Examination (used as a measure of general
cognitive ability); RCFT, Rey Complex Figure Task. Recall task was administered
3 min following RCFT copy task.

Table 2. Mean SHQ performance for each sample group

Performance
variable «3«3 carriers «3«4 carriers

Benchmark
players

n 29 31 27,108
Mean wayfinding distance 3.791 (0.638) 4.455 (0.946) 3.918 (1.536)
Mean wayfinding duration 4.661 (2.652) 4.973 (1.361) 4.744 (2.147)
Mean flare accuracy 4.723 (1.162) 4.612 (1.542) 4.932 (1.011)

Data are mean (SD).
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distance x2 (2) = 9.1, P = 0.03, was statistically significant and
correctly classified 71.3% of the APOE genotyped cohort (75%,
«3«3; 63.3%, «3«4). As predicted, the model for ROCF delayed
recall was not significant: x2 (2) = 9.1, P = 0.393. An ROC curve was
then computed showing both navigation and delayed recall as
predictors of APOE genotype (Fig. 3). Consistent with the above,
area under the curve (AUC) values indicated that wayfinding dis-
tance (AUC, 0.714; SE, 0.068; 95% CI, 0.555–0.822; pink curve),
but not delayed recall (AUC, 0.541; SE, 0.074; 95% CI, 0.286–
0.578; gold curve), has a significant level of diagnostic accuracy.
Having determined the diagnostic utility of SHQ for APOE

genotype compared with standard memory test, we wanted to ex-
amine the utility of the population-level benchmark dataset as a
normative control sample that could be used by clinicians in di-
agnostic settings. We took advantage of the fact that the bench-
mark SHQ dataset—as a representative of the population—
predominantly includes «3«3 carriers (75%) and performed a ROC
curve with the «3«4 and the benchmark data as a representative of
nonrisk controls. AUC values indicated a very similar significant
level of diagnostic accuracy as was demonstrated with the
laboratory-only cohort (AUC, 0.701; SE, 0.031; 95% CI, 0.639–
0.759; Fig. 3, dark pink curve). Finally, to further represent the
diagnostic utility of the benchmark population, we plotted each
«3«4 carrier’s score over their age-, sex-, and education-matched
subpopulation from the normal distribution of the UK population
(Fig. 4).

Discussion
Our results show that (i) we can replicate previous wayfinding
changes in APOE4 gene carriers; (ii) sex differences significantly
impact on wayfinding behavior, but the effect of sex is negligible
compared with APOE genetic risk; (iii) healthy “at-genetic-risk”
of AD with no memory deficits can be distinguished on wayfinding
measures on an individual level.
In more detail, using navigation benchmark big data and

smaller APOE genotyped cohorts, we show that adults at-genetic-
risk of AD with no clinically detectable cognitive deficits, not only

navigate further during wayfinding, but show a bias in navigating
toward the border of the virtual SHQ environment in large open
areas. This supports the hypothesis that suboptimal navigation
performance is present in preclinical AD and that this is detect-
able on levels of the SHQ game, even when a closely matched
demographic sample is provided by the global SHQ dataset. We
also show that while sex accounts for variation in navigation per-
formance, sex does not reduce the sensitivity of SHQ to discrim-
inate healthy aging from genetically at-risk individuals of AD.
Although adults at genetic risk of AD deviate from the shortest

route (often the Euclidean between the checkpoints) toward the
environmental border of the SHQ environment, they successfully
completed the wayfinding levels albeit suboptimally. Thus, we hy-
pothesize that the navigational deficits detected here reflect an
error corrective strategy (49) for which environmental boundaries
hold valuable navigational cues that aid the navigators’ ability to
self-localize and find their way through the environment when
navigational uncertainty ensues. The neural substrates that give rise
to the navigational uncertainty in the genetically at-risk group is
most likely induced by errors in the grid cell system within the
entorhinal cortex (see SI Appendix for further discussion). The
entorhinal cortex is not only one of the first sites of AD pathology
in the brain (13) but is also crucial for facilitating shortcut way-
finding behaviors and optimal navigation behavior (51). Given that
grid cells compute large-scale information (30, 31) and encode
representations of self-location by measuring distance traveled by
the navigator (32, 33), it is not surprising grid cell dysfunction re-
sults in navigational discrepancies in at-risk individuals of AD.
Given that phenotypic heterogeneity currently reduces the

diagnostic and prognostic power of neurocognitive evaluations
for early AD, we also sought to investigate whether demographic
and neuropsychology diversity impact navigation. The effect of
the genotype that was most prominent when the environmental
space was large and open (level 6 and 8). In terms of sex, we did
find strong evidence of better performance in males on baseline
navigation ability but no evidence to suggest that males at genetic
risk were less vulnerable (in the preclinical stage at least) to the

Fig. 1. SHQ goal-oriented wayfinding levels 6 (A), 8 (B), and 11 (C). Players initially see a map featuring a start location and several checkpoints (in red) to
find in a set order. Checkpoints are buoys with flags marking the checkpoint number. Participants study a map of the level for a recorded number of seconds.
When participants exit the map view, they are asked to immediately find the checkpoints (or goals) in the order indicated on the map under timed conditions.
As participants navigate the boat through the level, they must keep track of their location using self-motion and environmental landscape cues such as water–
land separation. The initiation time is zero as the boat accelerates immediately after the map disappears. If the participant takes more than a set time, an
arrow appears pointing in the direction along the Euclidean line to the goal to aid navigation. (D) In flare accuracy levels (here, levels 9 and 14), participants
are not provided with an allocentric map. Instead, they immediately navigated along a river to find a flare gun. Once they find the flare gun at the end of the
river, the boat rotates by 180°, and participants are asked to choose one of three possible directions (right, front, and left) that they believe points to the
starting point. This level requires participants to (i) form an accurate representation of the starting point relative to their position and (ii) integrate this
representation with a representation of the direction they are facing after the rotation. Depending on their accuracy, players receive one, two, or three stars.
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effect of the APOE e4 genotype than women at genetic risk. In
our opinion, this is a critical finding as it suggests that sex differ-
ence may not act on the phenotypic presentation of navigation
deficits in the early asymptomatic stage of the disease. A recent
metaanalysis (52) reports that women are particularly vulnerable
to early underlying pathology between the ages of 55 and 70. Thus,
whether sex and genotype interact to predict navigational ability
on SHQ in later preclinical or prodromal stages of AD remains to
be investigated. In the interest of diagnostic sensitivity, the time at
which an increased female susceptibility to underlying pathology
manifests behaviorally is a high priority. Although we found a sex-
independent navigational deficit in adults at genetic risk of AD,
evidence for strong spatial disparities on navigation performance
across the sexes globally (41) suggest that it is indeed appropriate
to consider the need to stratify risk assessment by sex. For ex-
ample, when genotype status is unknown, considering sex differ-
ence may hold prognostic value as many high-profile previous
studies already suggest (17, 21, 35).
Based on data presented here on a population level and

elsewhere, we now know that demographic diversity based on
age, sex, and nationality act on navigation proficiency, and men

perform better at digital and real-life spatial navigation tasks
(53). This finding, coupled with a plethora of preexisting evi-
dence for natural age-related decline in spatial navigation (26),
means that we must establish personalized normative measures
to accurately assess spatial disturbances that have not been well-
established as a underlying feature in preclinical AD pathology.
From a clinical standpoint, clinicians and researchers should be
advised to consider not only age but also the sex of their putative
patient before inferring pathological related spatial impairment.
From a research perspective, researchers should work toward
providing demographically corrected benchmarked scores for
standardized neuropsychological test. To date, obtaining nor-
mative data of this nature has been challenged by heterogeneity
in methodological approaches used to measure spatial naviga-
tion and uncertainty about population-level differences in cog-
nitive performance. Consistency across our nonrisk control
group and the benchmark scores is compelling evidence that
SHQ may provide unique benchmarking data, on a global scale,
by controlling for the demographical factors such as sex, advanced
age, and cultural background, factors that will alter how individ-
uals perform on SHQ (41). Although level of education was included

Fig. 2. Mixed-effects models, with subject-level random effects, adjusted for age, sex, and baseline cognitive ability show the following: (A) main effect of
genotype (b = 0.22; P = 0.004) on wayfinding distance; «3«4 carriers participants deviate from the more Euclidean trajectory leading to an overall greater
distance traveled to complete the wayfinding levels relative to the «3«3 carriers. (B) No main effect of genotype on wayfinding duration (i.e., time taken to
complete wayfinding levels); both groups used the same boat acceleration during wayfinding. (C) No main effect of genotype on flare accuracy, which
required participants to integrate newly acquired allocentric information with egocentric-viewpoint–based cues presented at the end of the level. The spatial
trajectory of each participant (colors red and green were used to differentiate the trajectories by the genetic groups) on wayfinding level 6 (D), level 8 (E), and
level 11 (F), using x and y coordinates generated during game play. The maps generated illustrated a drift-like navigation tendency in the «3«4 group that can
be characterized as navigational preference to deviate from the most Euclidean path and travel toward the border of the environment compared with the
«3«3 who demonstrated a preference to navigate more along the direct path to the checkpoint goal. A by-level analysis on wayfinding distance in the three
levels showed that the e4 allele increased wayfinding distance on level 6 (F = 5.48, P = 0.02) and level 8 (F = 4.08, P = 0.04).

4 of 8 | www.pnas.org/cgi/doi/10.1073/pnas.1901600116 Coughlan et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1901600116


to refine the population data, education did not have a compelling
effect on navigation performance in the global SHQ database.
Further research is required to determine what demographic factors
beyond age, sex, and nationality will increase the sensitivity and
specificity of navigation test for underlying preclinical AD.
Despite illustrating the clinical utility of epidemiological data

gathered on a global scale using the SHQ game, our study has
several limitations. First, we focus on preclinical rather than
symptomatic AD, seeking to evaluate the prognostic value of SHQ
rather than validate SHQ data as a potential diagnostic tool.
However, given that many excellent cognitive diagnostics mea-
sures exist for symptomatic AD, we question whether navigation
measures have true utility in this aspect. Instead, identification of
subtle cognitive preclinical changes will be of greater future im-
portance to complement other biomarkers as diagnostic and
treatment outcome measures. Second, only 47% of all e3/
e4 carriers develop symptomatic AD. This is consistent with about
50% of the e3/e4 individuals in this study being impaired relative
to the demographically corrected benchmark. Longitudinal studies
are needed to truly determine how predictive spatial navigation
combined with genotypic information is in the preclinical stages of
the disease however. Further replication of our findings with
preclinical cohorts defined by multiple cognitive, genetic, and
neurological markers is desirable, although it is promising that we
replicate previous boundary findings (7). Moreover, although ed-
ucation was considered in the individualized approach to diagnosis
of “at-risk” AD, ∼40% of the genotyped cohort has 15+ y of
education and 50% of the cohort working in “professional” fields
vs. skilled or low-skilled/manual, potentially leading to an over-
representation at the educated individuals in this genotyped
sample. Last, although best efforts were made to control for
gaming proficiency, we cannot completely rule out a potential
influence of previous gaming experience contributing to the ob-
served male advantage in the data. Still, considering that we are
investigating a 50- to 75-y-old cohort, gaming proficiency should
not play such a large role. More importantly, the difference of
male and females in the SHQ data across ages does not change,
suggesting that gaming proficiency plays only overall a minor role
in assessing spatial navigation via an online app.
In conclusion, our work supports the hypothesis that navigational

discrepancies are present in preclinical AD and can be captured by
SHQ. We show promising evidence that normative data generated
from the 3.7 million people who played SHQ worldwide may in the
future help us to create a prognostic test based on navigational

proficiency—to help us to understand how the very earliest symp-
toms of AD is in isolation of potentially confounding demographic
factors such as sex, advancing age, educational attainment, or cul-
tural background. This should reduce the problematic nature of
phenotype variation obscuring the assessment of spatial disorien-
tation as a first symptom of AD and offer the promise of in-
dividually tailored solutions in healthcare settings. Thus, spatial
navigation emerges as a promising cognitive fingerprint, which can
complement existing biomarkers for future AD diagnostics and
disease intervention outcome measures.

Materials and Methods
Participants.
APOE genotyped cohort. Between February 2017 and June 2017, 150 people
between 50 and 75 y of age were recruited to participate in a research study
at the University of East Anglia. All 150 participants were prescreened for a
history of psychiatric or neurological disease, history of substance de-
pendence disorder, or any significant relevant comorbidity. All participants
had normal or corrected-to-normal vision. Family history of AD and history of
antidepressant treatment with serotonin reuptake inhibitor drugs was ret-
rospectivity obtained. Saliva samples were collected from those who passed
this screening, and apoE genotype status was determined.

In total, 69 participants underwent cognitive testing. As just 23% of the
population carry APOE «3/«4, all participants in our sample who tested positive
for the «3/«4 allele completed cognitive testing. We selected a subset of the «3/
«3 carriers that form themajority of the population (75%) tomatch the «3/«4 risk
group for age and sex (see SI Appendix, Table S1, for group background char-
acteristics). We did not include a third genetic subgroup of homozygous APOE-
e4 carriers from the tested cohort, because they were too rare (n = 5), although
their scores are reported in SI Appendix. E2 carriers were also excluded.

During testing, three participants showed signs of distress, and their data
were excluded from subsequent analyses. One participant scored lower than
86 on the Addenbrooke’s Cognitive Examination and was classified as mildly
cognitively impaired and excluded from the study. The final group sizes
(postexclusion) were as follows: apoE «3/«3, n = 29, and apoE «3/«4, n = 31.
Written consent was obtained from all participants, and ethical approval was
obtained from Faculty of Medicine and Health Sciences Ethics Committee at
the University of East Anglia (reference FMH/2016/2017-11).
The benchmark population. A unique population-level benchmark dataset was
generated by extracting a subset of the global SHQ database (41) thatmatched

Table 3. Mixed effects of APOE genotype and demographic
factors on SHQ performance

Mixed linear
model outcome Fixed effect

b
coefficient SE F value P value

SHQ wayfinding APOE* 0.22 0.07 9.30 >0.005
distance Sex 0.02 0.084 0.44 0.12

Age 0.01 0.006 0.18 0.67
SHQ wayfinding APOE 0.04 0.15 0.07 0.77
duration Sex* 0.39 0.17 5.45 0.02

Age 0.01 0.01 0.11 0.74
SHQ flare APOE 0.04 0.01 2.19 0.14
accuracy Sex* −0.36 0.26 3.88 0.04

Age −0.02 0.39 1.08 0.30

Before the main analysis, competing mixed-effect models were tested to
examine the best model fit and model simplification based on standard Akaike
information criterion and Bayesian information criterion. The final model in
the table above (featuring subject-level random effects) was adopted since it
demonstrated the best model fit for the data and was retained for the main
analysis. Higher values on wayfinding distance and wayfinding duration indi-
cate poorer performance; conversely, higher values on flare accuracy indicate
better performance. *P < 0.05.

Fig. 3. ROC curves for SHQ distance [pink line (laboratory cohort); dark pink
line (laboratory–benchmark combined)] and nonverbal episodic memory
[gold line (laboratory cohort)] predicting APOE genotype. SHQ (laboratory
cohort): AUC, 0.714; SE, 0.068; 95% CI, 0.555–0.822 j SHQ distance (labora-
tory–benchmark combined): AUC, 0.701; SE, 0.031; 95% CI, 0.639–0.759 j
nonverbal episodic memory (laboratory cohort): AUC, 0.541; SE, 0.074; 95%
CI, 0.286–0.578.
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the demographic profile of our laboratory-based genotype cohort, namely
players from the United Kingdom aged 50–75 y old. Following extraction,
14,470 British men and 12,710 British women (n = 27,108) remained as a
representative normative sample of heathy navigation performance on the
basis that epidemiological studies have shown that the majority of the general
population (∼75%) are non-apoE4 carriers (36). Participants from the bench-
mark sample were given the option to opt in or opt out of the data collection
when they played the game on their personal mobile phone, iPad, or tablet. If
a participants’ response was to opt in, their SHQ data were anonymized and
stored securely by the T-Systems’ data center under the regulation of German
data security law. Ethical approval was previously granted by Ethics Research
Committee CPB/2013/015. For more information on the global SHQ database,
see www.seaheroquest.com/site.

Outcome Measure. The SHQ app was developed in 2015 by our team and
funded by Deutsche Telekom. The programming of the gamewas conducted by
Glitchers Ltd. The SHQ benchmark analysis was funded by Alzheimer’s Research
UK. The app was created to be a reliable and valid measure of spatial navigation
performance both in monitored research settings and unmonitored at-home
settings (41, 53). It was made available for free on the App Store and Play
Store fromMay 2016, and since then over 4 million people have downloaded the
app worldwide. The game performance is divided into two main domains: goal-
oriented wayfinding and path integration.
Goal-oriented wayfinding. In wayfinding levels, players initially see a map fea-
turing a start location and several checkpoints to find in a set order, as illus-
trated in Fig. 1. Checkpoints are buoys with flags marking the checkpoint
number. Participants study a map of the level for a recorded number of sec-
onds. When participants exit the map view, they are asked to immediately find
the checkpoints (or goals) in the order indicated on the map under timed
conditions. As participants navigate the boat through the level, they must keep
track of their location using self-motion and environmental landscape cues such
as water–land separation. The initiation time is zero as the boat accelerates
immediately after the map disappears. If the participant takes more than a set
time, an arrow appears pointing in the direction along the Euclidean line to the
goal to aid navigation. To familiarize themselves with the virtual environment
and game controls, participants started with two easy learning levels 1 and 2.
Wayfinding levels generate two measures of interest as follows:

i) “Wayfinding distance” traveled to visit all required checkpoints is defined
as the wayfinding distance between all points recorded and is a proxy for
navigation efficiency. To navigate efficiently, individuals need to form and
retain a cognitive map of the environment (after viewing the map at the
start of the level) and then consistently update self-location in that cogni-
tive map based on the visual cues from the SHQ game.

ii) “Wayfinding duration” is defined as the time in seconds to complete a
wayfinding level. While inefficient navigation also results in longer time
to visit all checkpoints, increased duration is primarily due to the amount
of acceleration that the player used. By “swiping up,” one can increase the
speed of the boat temporarily, therefore reducing travel time but not
changing the distance traveled at all. Since speeding up requires confi-
dence in one’s sense of direction, we take the resulting wayfinding dura-
tion score as less representative of participants’ ability to navigate along
the shortest path and more representative of nonnavigational factors such
as confidence or the tendency to sample more cues before speeding up.

Flare accuracy. In path integration levels (in the game, this is measured by flare
accuracy on levels 9 and 14), participants are not provided with an allocentric
map. Instead, they immediately navigated alonga river to find a flaregun.Once
they find the flare gun at the end of the river, the boat rotates by 180°, and
participants are asked to choose one of three possible directions (right, front,
left) that they believe points to the starting point. This level requires partici-
pants to (i) form an accurate representation of the starting point relative to
their position and (ii) integrate this representation with a representation of
the direction they are facing after the rotation [see Tu et al. (15) for a similar
path integration-based experimental design]. In this case, gaming proficiency
was not advantageous because participants simply view navigate a single
passage and are then required to choose the A, B, C direction as a single re-
sponse. Depending on their accuracy, players receive one, two, or three stars.

Procedure.
Data collection. Spatial navigation data were collected for both the APOE
genotyped cohort and benchmark datasets using SHQ, a digital game that we
predesigned to measure human navigation ability. Decisions on level selection
was made by considering which levels had the most normative data and level
type/difficulty (wayfinding or path integration). Levels 1 and 2 were included
for learning and practice navigating the boat, as well as normalizing the data
for app interaction with player proficiency. Levels 3–5 were excluded as they

Fig. 4. Each «3«4 carrier score (red line) on SHQ distance plotted against the normal distribution of scores from an age/sex/education-matched subpopulation
of the benchmark dataset (green histogram). Wayfinding distance scores are on the x axis and frequency of the benchmark population on the y axis. Sex is
represented as male (M) and female (F). Age is illustrated under each distribution right of sex.
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did not challenge participants’ navigation skills and were intended to ease the
players into the game. Furthermore, starting with level 14, the sample size of
the benchmark population drops substantially. This then left us with three
wayfinding levels (6, 8, and 11) and two path integration levels (9 and 14).
Participants in the laboratory-based APOE cohorts provided their demographic
information during a screening call and were then invited to the University of
East Anglia to play SHQ. Participants from the benchmark population provided
information regarding their sex, age, location, and educational attainment
(high school, college, university) demographics in-app before playing SHQ.
APOE genotyping. DNA was collected using a Darcon tip buccal swab (LE11 5RG;
Fisher Scientific). Buccal swabs were refrigerated at 2–4 °C until DNA was
extracted using the QIAGEN QIAamp DNA Mini Kit (M15 6SH; QIAGEN). DNA
was quantified by analyzing 2-μL aliquots of each extraction on a QUBIT
3.0 fluorometer (LE11 5RG; Fisher Scientific). Successful DNA extractions were
confirmed by the presence of a DNA concentration of 1.5 μg or higher per 100
μg of AE buffer as indicated on the QUBIT reading. PCR amplification and plate
read analysis was performed using Applied Biosystems 7500 Fast Real-Time PCR
System (TN23 4FD; Thermo Fisher Scientific). TaqMan Genotyping Master Mix
was mixed with two single-nucleotide polymorphisms of APOE (rs429358 at
codon 112 and rs7412 at codon 158). These two single-nucleotide polymorphisms
determine the genotype of APOE2, E3, and E4 (2007; Applied Biosystems).

Statistical Analysis. The data were analyzed using SPSS (version 23), RStudio
(version 1.0.153), and MATLAB (R2017a). χ2 and simple two-tailed t tests were
used to test the significance of any demographic or neuropsychological dif-
ferences between the genetic groups in our laboratory cohort. When quan-
tifying the group differences, Cohen’s d was used as a measure of effect size.
To control for the influence of player proficiency on digital devices, the SHQ
data were preprocessed inMATLAB and participant performance on each level
within the game was divided by the sum of the two practice levels:

Level N  normalized= ln
�
 

level N
ðlevel    1+ level    2Þ

�
.

To assess the fixed effects of genotype and sex, we first compared competing
statistical models with the inclusion and exclusion of different demographic
factors using the nlme package in R (https://cran.r-project.org/web/packages/

nlme/index.html) that allows fitting fixed and random effects to evaluate
the most appropriate model for data. In each model, subject-level random
effects were included to vary the intercept for each subject and importantly
to account for interdependence between repeated measures from playing
multiple levels of the game. Three sets of linear models were fitted that
included the following outcome variables: (i) wayfinding distance and (ii)
wayfinding duration, using scores from SHQ levels 6, 8, and 11 completed by
each subject, and (iii) flare accuracy on each of the two path integration
levels (9, 14). Model selection was based on relative goodness of fit and
model simplicity (determined using gold standard Akaike information cri-
terion and Bayesian information criterion, respectively).

Age, sex, and genotype were retained as explanatory variables for the final
model for each of the outcome variables. ACE defined by total score on the
Addenbrooke’s Cognitive Examination III screening tool (54), education, oc-
cupation, time spent on viewing the wayfinding maps (see Fig. 1 for maps),
and nonverbal episodic memory [defined by 3-min delayed recall on Rey–
Osterrieth Complex Figure Test (ROCF) (55)], were tested in the final model but
did not exhibit a significant main effect and were excluded to retain the
maximum degrees of freedom. Once the best-fit model was identified, stan-
dardized residuals were extracted and plotted against fitted values to examine
underlining assumption of normal distribution and heteroscedasticity. We also
tested for an interaction between genotype and sex. All statistical tests are
two-tailed: P < 0.05.

To ensure that the benchmark population reflected the demographic
profile of our laboratory-based cohort, we could only use a subpopulation of
our global SHQ database. We developed a data extraction method using
MATLAB (code, data, associated protocols, and materials available from
authors on request) that allowed us to generate the population-level da-
tabase. These data were then preprocessed using the same normalization
procedure as detailed above. Linear mixed models examined the effects of
sex and age on a population-level benchmark. Finally, logistic regression was
used to quantify how well SHQ variables such as distance traveled could
classify APOE risk status using both the laboratory-based sample and the
benchmark population. ROC curves were used as measures of sensitivity and
specificity of SHQ as opposed to standard memory tasks such as the ROCF
test to detect preclinical AD.
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