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Abstract 

Both continuous and discontinuous precipitation is known to occur in CuAg alloys. The 

precipitation of Ag-rich phase has been experimentally investigated by atom probe tomography 

and transmission electron microscopy after ageing treatment of Cu-5%wtAg at 440°C during 30’. 

Both continuously and discontinuously formed precipitates have been observed. The precipitates 

located inside the grains exhibit two different faceted shapes: tetrahedral and platelet-shaped 

precipitates. Dislocations accommodating the high misfit at the interface between the two phases 

have also been evidenced. Based on these experimental observations, we examine the 

thermodynamic effect of these dislocations on the nucleation barrier and show that the peculiar 

shapes are due to the interfacial anisotropy. The appropriate number of misfit dislocations relaxes 

the elastic stress and lead to energetically favorable precipitates. However, due to the large misfit 

between the parent and precipitate phases, discontinuous precipitation that is often reported for 

CuAg alloys can be a lower energetic path to transform the supersaturated solid solution. We 

suggest that the presence of vacancy clusters may assist intragranular nucleation and decrease 
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the continuous nucleation barrier. We eventually propose qualitative thermodynamic and kinetic 

justifications accounting for the relative importance of homogeneous and discontinuous 

precipitation modes as a function of temperature.  
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1. Introduction 

The Cu-Ag binary system is of great technological and practical interest for the design of alloys dedicated 

to electrical industry. Depending on the Ag content, the thermal and mechanical treatments, different 

microstructures are generated. Ultra-low levels of silver (less than 0.1wt.%) are commonly used to control 

the grain size or to improve the thermal stability of drawn wires [1]. The low solubility of Ag in the fcc 

copper (less than 0.15wt.% at room temperature[2,3]) and the relatively large atomic size mismatch (about 

12% [4]), lead indeed to a strong interaction with crystalline defects and especially boundaries. Besides, 

Cu-Ag alloys with silver contents ranging from 5 to 10 wt.% are also used when a combination of high 

strength (up to 1 GPa) and good electrical conductivity (up to 80% IACS) is required [5–7]. At such silver 

concentrations, a homogeneous solid solution can be obtained by annealing near 800°C [8] followed by 

rapid quenching. Precipitation treatment is then carried out at lower temperature (typically 400 to 500°C). 

The decomposition of metastable Cu-Ag solid solutions may proceed whether by continuous precipitation 

or discontinuous precipitation (also called cellular precipitation) [9,10]. During discontinuous precipitation 

(DP), nucleation of equilibrium phase starts at grain boundaries and then a transformation front 

progressively moves inward the grain forming a typical lamellar structure with specific orientation 

relationships between the fcc Cu and the fcc Ag phases [11]. Even if this lamellar structure can be refined 

by drawing to increase the mechanical strength of the alloy [5–7,12], continuous precipitation may also 

directly provide a significant strengthening if a fine distribution of nanoscaled Ag particles is achieved. It 

was shown that electrical and mechanical properties may be tailored by controlling the volume fraction, 

number density and size distribution of continuous precipitates [7]. It is then of major interest to handle 

these microstructure features and to identify precisely the precipitation mode according to the chemical 

composition and precipitation treatment to minimize DP or even suppress this precipitation mode.  

DP in Cu-Ag alloys is favored by the large misfit between Cu and Ag phases (lattice mismatch is about 12%). 

The high elastic stress leads to a large barrier for homogeneous nucleation of coherent Ag nuclei in the 

FCC Cu-rich parent phase. It has been shown however that alloying with Zr or annealing in a well-defined 

temperature range promote the homogeneous precipitation of Ag [6,7,13,14]. The observed alignment of 

the precipitates along {111} habit planes was suggested to be related to the growth of stacking fault [15] 

or to the minimization of the elastic energy [14]. However, the exact underlying mechanisms are not 

clarified yet and to the knowledge of the authors no combination of Atom Probe Tomography (APT) and 

high resolution Scanning Transmission Electron Microscopy (STEM) have been reported in the literature 

to investigate homogeneous precipitates. The growth mechanism by atomic ledge migration, has also been 
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reported [14]. However no information on the thermodynamic stability of such peculiar shape was given. 

It is interesting to note that in some cases, the homogeneous nucleation barrier may be reduced 

significantly if the solute content in the precipitates is smaller than the equilibrium concentration [16] 

since this reduces both the interfacial and the elastic energies. Elastic or interfacial energy anisotropies 

are also known to affect the morphology of “continuous” precipitates in metallic alloys that affects the 

mechanical properties as well. The continuous nucleation barrier can be decreased when nucleation starts 

at crystal defects such as dislocations or vacancy clusters that promote heterogeneous precipitation.  

In this work we have investigated homogeneously nucleated precipitates in a Cu-5%wtAg alloy. Thanks to 

a combination of APT and high resolution STEM a special emphasis has been given on their composition 

and morphology to understand the potential thermodynamic stability of homogeneous nuclei and the 

mechanisms of growth of Ag in Cu. Both tetrahedral and plate-like precipitates were evidenced. Based on 

these observations and on thermodynamic aspects, the accommodation of the lattice at the interface 

between the matrix and the precipitates as well as the anisotropy of the interfacial energy are investigated, 

and the peculiar shape explained with a new thermodynamic model.  

  



5 
 

2. Experimental 

The binary alloy investigated was delivered by Goodfellow with a nominal composition of Cu-5wt.%Ag. A 

homogenization treatment was carried out at 800°C during 2h followed by water quenching. Then, the 

precipitation treatment was conducted at 440°C during 30min to achieve phase separation through the 

nucleation and growth of fcc Ag precipitates in the CuAg parent phase. Microstructures were characterized 

by STEM using a JEOL-ARM 200F probe corrected microscope operated at 200kV. Images were recorded 

with a probe size of 0.1nm in both Bright Field (BF) and High Angle Annular Dark Field (HAADF). STEM 

samples were prepared by electropolishing (30% HNO3 + 70%Methanol at -30°C and 12V) followed by short 

time ion milling (5 keV, ± 3°, 5min). Silver particles were also analyzed by APT with a LEAP 4000-HR 

(CAMECA). Samples were field evaporated at 50K using electric pulses (20% pulse fraction, repletion rate 

of 200kHz). Three dimensional reconstructions were computed using IVAS® software and further data 

processing was carried out with the GPM 3dsoftware. APT samples were prepared by conventional 

electropolishing methods. 

 

3. Results 

After aging at 440°C during 30min, only a relatively small amount of grains transformed by the DP 

mechanism was observed. One small grain transformed by this mechanism clearly appears on the HAADF 

image of Fig. 1 (a). It distinctly exhibits some typical lamella shaped Ag particles elongated along the 

growth direction (brightly imaged since the atomic number of Ag is significantly higher than that of Cu). 

The HAADF line profile computed across the transformation front (direction arrowed on Fig. 1 (a)) confirms 

that the Ag content is lower in the fcc Cu (far left of the profile) than in the untransformed fcc 

supersaturated solid solution (far right of the profile). Besides, it is interesting to note that there is a 

significant Ag enrichment at the transformation front (maximum of the profile) confirming that this 

boundary play a key role in the growth mechanism by promoting the fast redistribution of atoms between 

the fcc Cu rich and the fcc Ag rich phases. The DP process always starts at GBs but not along every GBs. 

However, as shown on Fig. 2 (a), these crystal defects are favorable nucleation sites for Ag particles and 

most of them are covered with particles that have grown up to a mean diameter in a range of 10 to 25nm 

during aging at 440°C. Dislocations are other typical crystalline defects. They are darkly imaged in the 

STEM-BF image of Fig. 2 (b) thanks to diffraction contrast. A high density of nanoscaled dark particles is 

also clearly exhibited. It is thought that these are Ag particles that have homogeneously nucleated in the 



6 
 

supersaturated solid solution. However, many particles appear along the dislocation lines, indicating that 

like GBs, dislocations promote the heterogeneous nucleation of the high misfit fcc Ag phase.  

A closer observation at high magnification of homogeneously nucleated Ag particles reveals that they 

exhibit a cube on cube orientation relationship with the fcc matrix (Fig. 3 (a)). Some moiré fringes appear 

on the image with a periodicity along the <111> direction of 1.9±0.1 nm, corresponding respectively to 

nine (111)Cu planes (d(111)Cu = 0.209) and eight (111)Ag planes (d(111)Ag = 0.236). Thus, these moirés are 

simply the result of the expected 12% lattice parameter mismatch between the fcc silver and copper 

phases. Besides, the filtered image displayed on Fig. 3(b) clearly reveals a series of (111) edge dislocations 

that relax the misfit and elastic energy at the interface between both phases (Fig. 3 (b)). When imaged 

along a (112) zone axis (Fig. 3 (a)) Ag particles often exhibit a peculiar triangle shape with a mean edge 

length ranging from 10 to 20 nm. Such a morphology corresponds to the projection of a tetrahedron with 

(111) facets. The three dimensional morphology of such particles can be better visualized in volumes 

collected by APT analyses as shown in Fig. 4 (a). It is well known that three-dimensional reconstructions 

may be affected by local magnification effects resulting from the different evaporation fields of 

precipitates and matrix [17]. The profile showing the evolution of the relative density across the particles 

(Fig. 4 (b)) indicates indeed that the evaporation field of copper is lower than that of silver but with a 

relatively small difference (Ag gives rise to a higher local magnification and hence to a lower relative 

density in the particle image). This certainly affects in some extent the size and the composition gradient 

across interfaces but its importance is small (small difference in density, Fig. 4 (b)). So the general 

morphology of the tetrahedron is thought to be preserved. The concentration profile (Fig. 4  (b)) indicates 

that the silver concentration inside precipitates lies in a range of 95 to 100at.%. This value is in good 

agreement with predictions computed using the Thermocalc® software [18] (98.2 at.% Ag). Consequently 

one may conclude that precipitates have reached their equilibrium concentration. 

Next to tetrahedron precipitates, few plate shaped precipitates were also observed (Fig. 5 (a) (labelled P)). 

Such a particle has also been successfully analyzed within the matrix by APT (Fig. 5 (b)). To reveal 

completely the three dimensional morphology, the data have been filtered with a silver threshold of 

20at.% and the volume rotated in two positions tilted by 90° on Fig. 5 (c). Besides, one should note that 

the local concentration, as measured thanks to concentration profiles, was very similar to that of 

tetrahedral precipitates (data not shown here). 

APT analyses also provided the matrix composition in areas where homogeneous precipitation occurred 

(i.e. in most of the alloy excepted the few untransformed regions or the small grains transformed by DP 
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such as on Fig. 1 (a)): for all analyses it stands in the range of 2.1 to 2.4 at.% Ag. This is significantly larger 

than the equilibrium solubility (about 1at.% at 440°C [2,8]) but also significantly lower than the 

concentration measured by APT after quenching and prior to aging (2.8±0.1 at.%) showing that the Ag 

supersaturation has decreased as a consequence of precipitation. The volume fraction of Ag precipitates, 

close to the molar fraction, after aging as derived from the measured phase composition and the so-called 

lever rule was thus estimated in range of 0.3 to 0.8% whereas the equilibrium volume fraction given by 

ThermoCalc and the TCCU2 database [18,19] is close to 4%.  

This uncommon zoology of precipitates observed raises several open questions related to nucleation 

mechanisms. In particular, the faceted shapes underline the importance of elastic or/and interfacial 

anisotropies.  

 

4. Discussion 

Both TEM and APT investigations (Fig. 3-4) revealed that most of homogeneously nucleated precipitates 

displayed a tetrahedral shape with (111) orientated interfaces, (referred as (111) tetrahedron in the 

following). Some platelet (111)-shaped precipitates were also observed (Fig. 5). In the following, 

thermodynamic arguments are considered to understand these peculiar shapes. More particularly, the 

effect of dislocations accommodating the lattice mismatch, called thereafter misfit dislocations, on the 

homogeneous nucleation barrier is considered. One should note however that no particular emphasis is 

given on the competition between continuous and discontinuous precipitation since it does not imply only 

thermodynamic arguments, but also the complex interaction with kinetic effects, grain boundary 

structures and composition [20].  

 

4.1. Morphologies of the precipitates 

Since the Cu-Ag system exhibits a large misfit (12%) one expects a huge effect of the elastic contribution 

on the shape of precipitates. The dominance of the elastic contribution over the interfacial energy can be 

evaluated by calculating their ratio. The interfacial (
intE ) and elastic (

elasE ) energies of a tetrahedral 

incompressible precipitate of edge length L , surface S, volume V  and interfacial energy   are respectively: 

2

int 3E S L = =  Eq.  1 
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( )( )2 3. 6 2 1elas elasE G V E L =  = −  Eq.  2 

with E  the elasticity modulus,   the misfit and   the Poisson ratio. Besides, the temperature dependence 

of the elasticity modulus writes as [21]: 

)/5.01)(0()( mTTKETE −=  Eq.  3 

where 
mT  is the melting temperature of Cu.  

It is worth mentioning that Eq.  2 was initially derived by Eshelby [22] for a spherical particle. However the 

prefactor elasG  represents an energy density and when the elastic energy is considered isotropic, it could 

be apply to any volume. In our case the volume of a tetrahedron.  

Using the parameters listed in Tab. 1, the ratio
elas intE E  was found equal to 1 for L = 1.44 nm indicating 

that elastic effects dominate for L > 1.44 nm.  

The faceted shape of the precipitates may be accounted by the anisotropy of elastic constants 
11C , 

12C and 

44C  . Cahn [23] introduced a factor   so as to predict the “soft elastic” direction as a function of elastic 

constants:  

44

441211 2

C

CCC −−
=  

with 
11C = 166.1 GPa and 

12C = 119.9 GPa for Cu [24]. 

This factor being negative for Cu and Ag, it indicates that the “soft elastic” direction is <100>. Elastic 

anisotropies cannot therefore explain the tetrahedral (111) shapes observed.  

Interfacial energies estimated by Monte Carlo simulations [11] (
111 =230 mJ/m2, 

110 =550 mJ/m2 and 
100

=530 mJ/m2) indicate that they are strongly anisotropic and that the (111) interface has the lowest 

interfacial energy. It is important to note that a combination of (111) facets may precisely give rise to the 

tetrahedrons that have been experimentally observed in the present study. This suggests that the elastic 

contribution is relaxed in some way so that precipitate shape is mainly governed by the interfacial 

contribution. As discussed later and already shown experimentally, this relaxation is promoted by misfit 

dislocations (Fig. 3 (b)). 

Let us consider the nucleation of a tetrahedral precipitate at constant pressure and temperature. The work 

of formation of a nucleus of edge length L is given by: 
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( ) ( ) 326 23 LLGGSVGGG elaschelasch ++=++=   Eq.  4 

where 
chG  is the driving force for nucleation.  

This work of formation is plotted on Fig. 6 (in black) as a function of the nucleus size L at T=440°C.  The 

interfacial contribution (grey dotted line), the elastic contribution (grey dashed line) and the chemical 

driving force (grey dashed-dotted line) are also represented. Parameters used are listed in table 1. The 

driving force for nucleation was calculated with the ThermoCalc software and the TCCU2 database [18,24]. 

Fig. 6 shows that the elastic term when not relaxed by dislocations is larger than the interfacial 

contribution. Besides, the work of formation is observed to constantly increase with the precipitate size 

and it never reaches a maximum. This indicates that homogeneous nucleation and growth are in principle 

impossible since the nucleation barrier is infinite. Therefore the precipitates observed experimentally have 

to nucleate through a mechanism for which the elastic stress is relaxed by dislocations.  

 

4.2. Misfit dislocations 

Dislocations were observed along the precipitate/matrix interfaces (see Fig. 3 (b)). We therefore 

considered edge dislocations located along the matrix/precipitates interfaces accommodating the misfit 

in our thermodynamic calculations. Their energy can be expressed as [25]: 

( )
( )



−
=

14

ln 0

2 rRLb
E dislo

dislo  
Eq.  5 

with   the shear modulus ( ( )( ) += 12E ), b the Burger’s vector ( ( ) 3111 adb
Cu

== , where a  is the 

lattice parameter ), 
disloL  the total dislocation length (sum on all the dislocation lines), R  the extension of 

the stress field (approximated by  the average half distance between dislocations and derived below), and 

0r  the core radius of the dislocation that we considered equal to the norm of the Burger’s vector. 
disloL  and 

R  that are key parameters in Eq. 5 that will be derived thereafter.  

We have made the assumption that the observed misfit dislocations are periodically distributed at the 

precipitate/matrix interface. In order to relax the lattice misfit for the four variants of (111) planes, four 

dislocations circuits are necessary. For the sake of clarity, only one variant of dislocation (Burgers’ vector 

1/3 <-1-11>) has been represented in Fig. 7. Each dislocation is a loop that runs all around the precipitate 

on three facets. Given the precipitate size shown in Fig. 7, three dislocations circuits are required to relax 

the misfit stress in this example.  So as to relax the misfit for the 4 variants of (111) planes, one needs four 
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variants of dislocation lines of Burgers vectors 1/3<111> 1/3<-111>, 1/3<-1-11>, 1/3<1-11> respectively. 

In Fig. 7, only one series of three 1/3 <-1-11> dislocations has been represented.  

Since the four dislocation circuits are equivalent, the total dislocation energy is simply four times that of 

one dislocation variant. We have therefore introduced the number of dislocations of given Burger’s vector 

type (N), i.e. one of the variant (in Fig. 7, N=3). 

These misfit dislocations change the elastic energy of nuclei. The free enthalpy of formation of nucleates 

now writes: 

( ) disloelasch ELLGGG +++= 326' 23   Eq.  6 

 

where the new elastic contribution 
elasG' can be expressed as a function of the residual misfit 

res : 

( ) −= 1' 2

reselas EG  Eq.  7 

 that can be expressed as a function of N  because we consider a periodic distribution of the dislocations: 

111N

N
res −=   

Eq.  8 

with 
111N the number of (111) planes per face. Eq.  8 reports the reduction of stored elastic energy when 

introducing N  dislocations to relax the lattice.  

The two key parameters are the number of dislocations ( N ) and their total length (
disloL ). Introducing 

dislocations may decrease the elastic energy. However, this also has an energy cost (Eq.  5). A balance has 

therefore to be found.  

The length of a dislocation line covering one facet can be expressed as a function of both the number of 

dislocations of the same Burger’s vector variant per facet ( N ) and the edge length ( L ) of the tetrahedron: 

L
N

i
Li

1+
=  

Eq.  9 

Since a similar number of dislocations per facet is considered, the total length of dislocations that is an 

input data in Eq. 5, i.e. the sum on all the dislocation lines, writes as: 

1

4 3 6
N

dislo i

i

L L NL
=

=   =  
Eq.  10 
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In Eq. 10, 4 represents the number of facets and 3 represents the number of dislocations with a different 

Burger’s vector variant. 

The extension of the stress field needed to calculate the dislocation energy (Eq. 5) is given by: 

2 6( 1)

dislod L
R

N
= =

+
 

Eq.  11 

with 
dislod  the distance between (111) dislocations on a facet.  

Combination of Eqs. 5, 10 and 11 allows to evaluate the dislocation energy for a specific precipitate size 

and number of dislocations per facet. Let us now calculate 111 111 2 /N h d L a= = , with h  the height of 

the tetrahedral-shaped precipitate, and replace it in Eq.  8. Then the residual strain writes: 

2
res

Na

L
 = −  

Eq.  12 

It is now possible to evaluate the free enthalpy of formation of nucleates accounting for the effect of misfit 

dislocations.  

The Fig. 8 (a) shows both the interfacial contribution (black dotted line) and the elastic contribution (black 

dashed line) with no dislocations (as in Fig. 6). The elastic energy with N dislocations per facet, 

disloelas EVG + ' , (from black to grey when increasing N ) has also been plotted as a function of the 

precipitate size. The number of dislocations per facet ( N ) that provides an elastic contribution lower than 

the interfacial contribution is shown to depend on the precipitate size ( L ), see Table 2. The optimal 

number of dislocations minimizing the most the elastic contribution obviously increases with the 

precipitate size. Besides there is always a configuration providing an elastic contribution lower than the 

interfacial one. This theoretical approach fully explain the (111) tetrahedral shaped precipitates. If we 

extract the minimum value of the elastic energy as a function of size, we obtain the black dashed line in 

Fig. 8 (b). This curve is not smooth because the curvature jumps each time a new dislocation is introduced. 

The corresponding change in Gibbs energy G  is also represented in black in Fig. 8 (b). This energy is now 

becoming negative for a certain size and exhibits a maximum corresponding to the critical size ( =*L 1.7 

nm). By introducing an appropriate number of misfit dislocations, precipitate can nucleate and grow. 
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It is worth mentioning that the same calculations for a platelet-shaped precipitates lead to the same 

conclusions. In contrast, nucleation of cube shaped precipitate with (100) facets is not possible. If cuboidal 

precipitates with (100) facets would have nucleated, the above-mentioned soft directions in CuAg indicate 

that growth of those precipitates would have been controlled by the elastic stress. However, without 

introducing any dislocation, the work of formation of such precipitate is increasing with its size and never 

becomes negative (infinite barrier). Besides, when introducing dislocations, the interfacial contribution to 

the work of formation is too large to explain the presence of (100) facets. Therefore, cuboidal nuclei cannot 

nucleate. 

Considering thermodynamics we have explained the physical reasons for nucleating tetrahedron shaped 

precipitates in the binary Cu-Ag system. However two kinds of precipitation modes were observed 

experimentally after 30’ at 440°C: precipitation in the grains that may be either homogeneous or 

heterogeneous (on lattice defects) and discontinuous precipitation. Another ageing temperature (2h at 

400°C) and another ageing time at the same temperature (15’ at 440°C) have also been experimentally 

investigated. They exhibit both transformation modes of the supersaturated solid solutions as well. 

However the percentage of the analyzed material transformed by one mode or another is different in 

every case. It is then interesting to combine some thermodynamic and kinetics aspects to understand 

these observations.  

 

4.3. The occurrence of continuous precipitation 

After the different ageing times and treatments, both discontinuous and continuous transformations were 

observed. However the amount of discontinuous precipitates compared to inner-grains precipitates varies 

as well are their size and number density.  

For  shorter ageing times (15’ at 440°C, against 30’ described before), the number density of continuous 

precipitates was found higher and their size two to three times smaller. This indicates that, from a kinetic 

point of view, the coarsening stage has already been reached. Nevertheless, the APT chemical analysis 

revealed a concentration in the matrix and a precipitate volume fraction in grains continuously 

transformed still far from equilibrium. Besides, the amount of grains discontinuously transformed is higher 

after 30’ than after 15’ at 440°C. This indicates that the initially continuously transformed grains may be 

captured by the discontinuous front. It was actually observed [14] that the growth of continuous 

precipitates in Cu-Ag-Zr requires the formation and migration of ledges along the interface, a rate-limiting 
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mechanism which may reduce the growth rate. Consequently the transformation of the still 

supersaturated solid solution is easier with the discontinuous mode.  After 2h at 400°C the proportion of 

discontinuously transformed zones is much more important than after 15 or 30’ at 440°C. Thus the 

influence of the temperature on the occurrence of the continuous transformation needs to be clarified.  

The driving force for nucleation, either homogeneous or heterogeneous, and both the nucleation barrier 

and the critical size vary with the temperature.  

Fig. 9 (a) and (b) displays, for two temperatures T=600°C and T=200°C  with dashed lines grey and black 

respectively, the elastic contribution as a function of size when introducing misfit dislocations and 

extracting the lowest elastic contribution. Indeed the latter varies with configuration and size. A procedure 

similar to that explained before for Fig. 8 has been applied. The interfacial contribution and the work of 

formation are represented with black dotted line and black solid line respectively. The elastic contribution 

to the Gibbs energy of the system is reduced when introducing dislocations. Furthermore the interfacial 

term becomes also greater than the elastic one and control the shape of precipitates. Again, the work of 

formation of a nucleus can be decreased and becomes favorable when introducing dislocations. 

Series of calculations were made for different temperatures between 200 and 600°C. Homogeneous 

nucleation was shown to be always possible when introducing dislocations. Both the nucleation barrier 

and the critical size decrease when the temperature decreases (Fig. 8 (b) and Fig. 9) as expected. However, 

this does not explain why less continuously transformed precipitates have been observed at 400°C. 

Furthermore the typical diffusion distance of Ag in Cu during 2h at 400°C is relatively close to that at 440°C 

during 30’. Indeed, an extrapolation of an Arrhenius law fitting experimental data [26] gives a bulk diffusion 

distance for Ag in fcc Cu of 70 and 60 nm respectively in both cases.  

Then the relative importance of precipitation modes, i.e. in the grain and discontinuous, should be 

considered. The thermodynamics of grain boundaries nucleation has to be addressed because it is the first 

step of discontinuous precipitation. The barrier for this process can be calculated using the model 

developed by Clemm and Fisher [27]. In their approach, they described the work of formation of a 

heterogeneous precipitate considering the balance between the former grain boundary interface α/α’ 

with an interfacial energy AA  and the new precipitate/matrix interface of a certain surface with another 

interfacial energy AB . No elastic contribution is taken into account because the interface is assumed to be 

fully incoherent. The barrier W* is then expressed by: 
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22

2)(

27

4
*

ch

AAAB

Gc

ab
W



−
=


 

Eq.  13 

with 
2(1 )a k= − , 4 (1 )b k= − , 22

(2 3 )
3

c k k


= − +  and 
AB

AAk




2
= . AA  is given by the value of 

Cu-Cu grain boundary energy (0.8 J.m-2[28]). 111AB =  given in Table 1.  

Both homogeneous and heterogeneous nucleation barriers are plotted as a function of temperature in Fig. 

10. The heterogeneous nucleation barrier is the smallest for the full temperature range. It is important to 

note that the influence of the interfacial energy has been checked (data not shown here) and that the 

trend is unchanged in the range of 0.5 <   < 1 J.m-2.  The ratio between the homogeneous nucleation 

barrier and the heterogeneous nucleation barrier is shown in Fig. 10 (b) as a function of temperature. The 

evolution as a function of the temperature is clearly not monotonous. This ratio is found to be the smallest 

near 450°C, close to the ageing temperature used in the present study where abundant homogeneous 

precipitation was observed in the grains. Contrariwise, at 400°C, this ratio is higher. From a physical point 

of view, it means that the misfit dislocations and their appropriate number at the critical size do not have 

the same weight for accommodating the lattice mismatch and preserving a thermodynamic stability 

depending on the temperature, i.e. depending on the available driving force for the transformation. A 

balance has to be found and it works better for some temperatures.  

 

The thermodynamics of the two precipitation modes suggests that the discontinuous mode is always 

favored. It is then important to understand why this mode is not exclusive at the two temperatures 

mentioned in this study. First, it is worth mentioning that the available nucleation sites for the 

discontinuous mechanism, i.e. grain boundaries, are in a much lower volume density than sites for 

homogeneous nucleation in the matrix. Therefore homogeneous nucleation may be present in the 

material although the barrier is larger, as experimentally observed in the present work (Fig. 3, Fig. 4 and 

Fig. 5). On top of that, if nucleation within grains takes place on defects, the nucleation barrier can be 

minimized. The situation can then be reversed and the inner-grain nucleation may become dominant.  

The defects potentially assisting the inner-grain nucleation may be vacancies or vacancy clusters [29]. Once 

nucleated, vacancy clusters grow during annealing and their number density remain constant. 

Furthermore, it has been shown for example that in quenched and aged gold the vacancy precipitation led 

to the formation of stacking-fault tetrahedrons [29]. A similar phenomenon could also occur in Cu-5%Ag 
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because of the supersaturation of vacancies induced by quenching prior to the precipitation treatment. 

Once the vacancy clusters created, Ag solute atoms can diffuse towards these defects.  

Vacancy supersaturation may be evaluated at equilibrium [30]: 








 −
=

kT

E
KX VF

VV exp0  
Eq.  14 

where 0VK  is a constant related to entropy and VFE  is the formation energy of a vacancy. Diffusion 

coefficient expresses as: 








 −
=

kT

Q
DD VV exp0  

Eq.  15 

where Q  is the activation energy for the vacancy diffusion. 

Table 3 summarizes the values of parameters in Eq.  14 and Eq.  15 and compile values of VX  and VD  

for various temperatures.  

At 800°C, the initial vacancy concentration is about 5 x 10-6 while the precipitate number density was 

estimated to be in a range of 1021 to 1022 m-3 from our experimental data. Let us assume that all quenched 

vacancies (from 800°C) form vacancy tetrahedrons in the early stages of annealing. If the number density 

is taken equal to the observed precipitate number density, then the size of tetrahedral precipitates should 

be in a range of 1.5 to 3.5 nm. This is close to the critical size for nucleation estimated previously at 440°C. 

Heterogeneous nucleation on vacancy clusters may thus significantly promote nucleation. This nucleation 

mechanism may also explain the non-equilibrium value of the matrix concentration obtained by APT. 

Indeed the number of available nucleation sites is limited by the vacancy supersaturation. When they are 

all occupied, nucleation is difficult. On the early stages of growth of precipitates, the parent phase remains 

supersaturated. Thus the easiest way to reduce the supersaturation may be through the movement of the 

DP front.  

During isothermal ageing (2h), the vacancies are fast enough to diffuse within a grain in the temperature 

range [200°C-600°C]. However at higher temperatures, the difference between the equilibrium vacancy 

concentration at the ageing temperature and at the homogenization temperature is much smaller. The 

vacancy supersaturation is likely to be too small to promote the formation of vacancy clusters acting as 

nucleation sites.  
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Moreover, on a kinetic aspect, at low temperature, even if the nucleation barrier is lower, Ag diffusion is 

so slow that discontinuous precipitation dominates due to fast transport in the GB.  

 

All these considerations highlight the complexity of mechanisms involved during the transformation of the 

supersaturated solid solution. It is worth mentioning that to understand the competition between 

continuous and discontinuous precipitation, the study of the mobility of the grain boundaries, a key 

parameter in discontinuous transformations that depends on the misorientation, is needed. This was not 

taken into account in this work.  

 

 

5. Conclusions 

Continuously transformed precipitates in Cu-5%wtAg aged 30’ at 440°C have been investigated. The 

peculiar shape of inner-grains precipitates observed with both APT and STEM analysis is due to the 

anisotropy of the interfacial energy. The elastic energy is significantly decreased by misfit dislocations at 

the interface between the precipitate and the matrix that in turns decreases the nucleation barrier and 

makes the (111) oriented, tetrahedral and platelet-shaped precipitates thermodynamically favorable. Both 

thermodynamic and kinetic aspects have to be taken into account to understand the occurrence of this 

continuous transformation against the discontinuous that is thermodynamically more favorable.  

However, close to the ageing temperature of the study the ratio between the homogeneous nucleation 

barrier and the heterogeneous one is minimized as compared to other temperatures. In combination with 

a small number of DP nucleation sites (namely grain boundaries), it leads to a significant decomposition of 

the solid solution through homogeneous precipitation. This work was more especially dedicated to the 

study of homogeneous nucleation in Cu-Ag.  Nevertheless a complementary study on discontinuous 

precipitation is of a great importance to fully catch the temperature and composition dependence in the 

occurrence of the different precipitation mechanisms. 
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