Joseph Cima 
email: cima@email.unc.edu
  
Raymond Mortini 
email: raymond.mortini@univ-lorraine.fr
  
ONE-COMPONENT INNER FUNCTIONS

Keywords: 1991 Mathematics Subject Classification. Primary 30J10, Secondary 30J05, . inner functions, interpolating Blaschke products, connected components, level sets

We explicitely unveil several classes of inner functions u in H ∞ with the property that there is η ∈]0, 1[ such that the level set Ω u (η) := {z ∈ D : |u(z)| < η} is connected. These so-called one-component inner functions play an important role in operator theory.

Introduction

Definition 0.1. An inner function u in H ∞ is said to be a one-component inner function if there is η ∈]0, 1[ such that the level set (also called sublevel set or filled level set) Ω u (η) := {z ∈ D : |u(z)| < η} is connected.

One-component inner functions, the collection of which we denote by I c , were first studied by B. Cohn [START_REF] Cohn | Carleson measures for functions orthogonal to invariant subspaces[END_REF] in connection with embedding theorems and Carlesonmeasures. It was shown in [10, p. 355] for instance that arclength on {z ∈ D : |u(z)| = ε} is such a measure whenever Ω u (η) = {z ∈ D : |u(z)| < η} is connected and η < ε < 1.

A thorough study of the class I c was given by A.B. Aleksandrov [START_REF] Aleksandrov | On embedding theorems for coinvariant subspaces of the shift operator. II[END_REF] who showed the interesting result that u ∈ I c if and only if there is a constant C = C(u) such that for all a ∈ D

sup z∈D 1 -u(a)u(z) 1 -az ≤ C 1 -|u(a)| 2 1 -|a| 2 .
Many operator-theoretic applications are given in [START_REF] Aleksandrov | On embedding theorems for coinvariant subspaces of the shift operator. II[END_REF][START_REF] Aleman | Trace ideal criteria for embeddings and composition operators on model spaces[END_REF]7,3]. In our paper here we are interested in explicit examples, which are somewhat lacking in literature. For example, if S is the atomic inner function, which is given by

S(z) = exp - 1 + z 1 -z ,
then all level sets Ω S (η), 0 < η < 1 are connected, because these sets coincide with the disks (0.1)

D η := z ∈ D : z - L L + 1 < 1 L + 1 , L := log 1 η ,
which are tangential to the unit circle at p = 1. The scheme of our note here is as follows: in section 1 we prove a general result on level sets which will be the key for our approach to the problem of unveiling classes of one-component inner functions. Then in section 2 we first present with elementary geometric/function theoretic methods several examples and then we use Aleksandrov's criterion to achieve this goal. For instance, we prove that BS, B •S and S •B are in I c whenever B is a finite Blaschke product. Considered are also interpolating Blaschke products. It will further be shown that, under the supremum norm, I c is an open subset of the set of all inner functions and multiplicatively closed. In the final section we give counterexamples.

Level sets

We first begin with a topological property of the class of general level sets. Although statement (1) is "well-known" (the earliest appearance seems to be in [26, Theorem VIII, 31]), we could nowhere locate a proof. The argument that the result is a simple and direct consequence of the maximum principle is, in our viewpoint, not tenable.

Lemma 1.1. Given a non-constant inner function u in H ∞ and η ∈ ]0, 1[, let Ω := Ω u (η) = {z ∈ D : |u(z)| < η} be a level set. Suppose that Ω 0 is a component (=maximal connected subset) of Ω. Then (1) Ω 0 is a simply connected domain; that is, C \ Ω 0 has no bounded compo- nents 1 . (2) inf Ω 0 |u| = 0.
Proof. We show that (1) holds for every holomorphic function In fact, given z 0 ∈ ∂H, let U be a disk centered at z 0 . Then U ∩ Ω 0 = ∅, since otherwise U ∪ H would be a connected set strictly bigger than H and contained in the complement of Ω 0 ; a contradiction to the maximality of H. On the other hand,

f in D; that is if Ω 0 is a component of the level set Ω f (η), η > 0, then it is a simply connected domain 2 . Note that each component Ω 0 of the open set Ω f (η) is an open subset of D. We may assume that η is chosen so that {z ∈ D : |f (z)| = η} = ∅. Suppose, to the contrary, that D is a bounded component of C \ Ω 0 . Note that D is closed in C. Then, necessarily, D is contained in D,
Since z 0 ∈ ∂H ⊆ H ⊆ C \ Ω 0 , we conclude that z 0 ∈ ∂Ω 0 . Now ∂H ⊆ ∂Ω 0 and Ω 0 ⊆ Ω f (η) imply that |f | ≤ η on ∂H,
(1.3) ∂D (1.1) ⊆ ∂Ω 0 ∩ D ⊆ {z ∈ D : |f (z)| = η}.
Note that the second inclusion follows from the fact that if |f (z 0 )| < η for z 0 ∈ ∂Ω 0 ∩D, then Ω 0 would no longer be a maximal connected subset of Ω f (η). Hence |f | = η on ∂D. This is a contradiction to (1.2). Thus Ω 0 is a simply connected domain.

(2) If Ω 0 ⊆ D, then, due to ∂Ω 0 ⊆ {z ∈ D : |u(z)| = η}, we obtain from the minimum principle that u must have a zero in Ω 0 . Now let E := Ω 0 ∩ ∂D = ∅. In view of achieving a contradiction, suppose that u is bounded away from zero in Ω 0 . Then 1/|u| is subharmonic and bounded in Ω 0 and lim sup

ξ→x x∈∂Ω 0 \E |u(ξ)| -1 = η -1 .
Since u is an inner function, E has linear measure zero (by [5, Theorem 4.2]). The maximum principle for subharmonic functions with few exceptional points (here on the set E; see [START_REF] Berman | Phragmén-Lindelöf theorems for subharmonic functions on the unit disk[END_REF] or [12]), now implies that |u| -1 ≤ η -1 on Ω 0 . But |u| < η on Ω is a contradiction. We conclude that inf Ω 0 |u| = 0. Lemma 1.2. [START_REF] Cohn | Carleson measures for functions orthogonal to invariant subspaces[END_REF] Let u be an inner function. Then the connectedness of Ω u (η) implies the one of Ω u (η ) for every η > η.

Proof. Because Ω u (η) is connected and Ω u (η) ⊆ Ω u (η ), Ω u (η) is contained in a unique component U 1 (η ) of Ω u (η ). Suppose that U 0 (η ) is a second component of Ω u (η ). Then |u| ≥ η on U 0 (η ), because U 0 (η ) is disjoint with U 1 (η ) and
hence with Ω u (η). By Lemma 1.1 though, inf U 0 (η ) |u| = 0; a contradiction. Thus Ω u (η ) is connected.

Explicit examples of one-component inner functions

Let ρ(z, w) = z -w 1 -zw be the pseudohyperbolic distance of z to w in D and

D ρ (z 0 , r) = {z ∈ D : ρ(z, z 0 ) < r} the associated disks, 0 < r < 1.
Here is a first class of examples of functions in I c . Although the next Proposition must be known (in view of A.B. Aleksandrov's criterion [START_REF] Aleksandrov | On embedding theorems for coinvariant subspaces of the shift operator. II[END_REF]), see 2.12 below), we include a simple geometric proof for the reader's convenience.

Proposition 2.1. Let B be a finite Blaschke product. Then B ∈ I c .

Proof. Denote by z 1 , . . . , z N the zeros of B, multiplicities included. Let η ∈ ]0, 1[ be chosen so close to 1 that

G := N n=1 D ρ (z n , η) is connected (for example by choosing η so that z j ∈ D ρ (z 1 , η) for all j). Now G ⊆ {z ∈ D : |B(z)| < η} = Ω B (η), because z ∈ G implies that for some n, |B(z)| = ρ(B(z), B(z n )) ≤ ρ(z, z n ) < σ. Since G is connected, there is a unique component Ω 1 of Ω containing G. In particular, Z(B) ⊆ G ⊆ Ω 1 .
If, in view of achieving a contradiction, we suppose that Ω := Ω B (η) is not connected, there is a component Ω 0 of Ω which is disjoint with Ω 1 , and so with G. In particular,

(2.1) ρ(z, Z(B)) ≥ σ for every z ∈ Ω 0 .
Since Ω 0 ⊆ Ω B (η) ⊆ D, and |B| = η on ∂Ω 0 , we deduce from the minimum principle that Ω 0 contains a zero of B; a contradiction.

We now generalize this result to a class of interpolating Blaschke products. Recall that a Blaschke product b with zero set/sequence {z n : n ∈ N} is said to be an interpolating Blaschke product if δ(b) 

:= inf(1 -|z n | 2 )|b (z n )| > 0. If b is an interpolating Blaschke product then, for small ε, the pseudohyperbolic disks D ρ (z n , r) = {z ∈ D : ρ(z, z n ) < ε}
< δ < 1, 0 < η < (1 - √ 1 -δ 2 )/δ, (that is, 0 < η < ρ(δ, η)) and 0 < ε < η δ -η 1 -δη .
If B is any interpolating Blaschke product with zeros {z n : n ∈ N} such that

δ(B) = inf n∈N (1 -|z n | 2 )|B (z n )| ≥ δ, then 1) the pseudohyperbolic disks D ρ (a, η) for a ∈ Z(B) are pairwise disjoint. ( 2 
)
The following inclusions hold:

{z ∈ D : |B(z)| < ε} ⊆ {z ∈ D : ρ(z, Z(B)) < η} ⊆ {z ∈ D : |B(z)| < η}.
A large class of interpolating Blaschke products which are one-component inner functions now is given in the following result.

Theorem 2.3. Let b be an interpolating Blaschke product with zero set {z n : n ∈ N}. Suppose that for some σ ∈ ]0, 1[ the set

G := n D ρ (z n , σ) is connected. Then b is a one-component inner function. This holds in particular, if ρ(z n , z n+1 ) < σ < 1 for all n; for example if z n = 1 -2 -n . Proof. As in the proof of Proposition 2.1 G ⊆ {z ∈ D : |b(z)| < σ} =: Ω.
Since G is assumed to be connected, there is a unique component Ω 1 of Ω containing G. In particular, Z(b) ⊆ G ⊆ Ω 1 . Now, if we suppose that Ω is not connected, then there is a component Ω 0 of Ω which is disjoint with Ω 1 , and so with G. In particular,

(2.2) ρ(z, Z(b)) ≥ σ for every z ∈ Ω 0 . Let δ := δ(b), 0 < η < min{(1 - √ 1 -δ 2 )/δ, σ}, 0 < ε < η δ -η 1 -δη .
By Lemma 1.1, inf Ω 0 |b| = 0. Thus, there is z 0 ∈ Ω 0 be so that |b(z 0 )| < ε. We deduce from Hoffman's Lemma 2.2 that ρ(z 0 , Z(b)) < η < σ. This is a contradiction to (2.2). We conclude that Ω must be connected. It is clear that the condition ρ(z n , z n+1 ) < σ for every n implies that n D ρ (z n , σ) is connected. For the rest, just note that

ρ(1 -2 -n , 1 -2 -n-1 ) = 2 -n -2 -n-1 2 -n + 2 -n-1 + 2 -n 2 -n-1 = 1 3 + 2 -n .
Corollary 2.4. Let B be a Blaschke product with increasing real zeros x n satisfying

0 < η 1 ≤ ρ(x n , x n+1 ) ≤ η 2 < 1. Then b ∈ I c .
Proof. Just use Theorem 2.3 and the fact that by the Vinogradov-Hayman-Newman theorem, B is interpolating if and only if

sup n 1 -x n+1 1 -x n ≤ s < 1 or equivalently inf n ρ(x n , x n+1 ) ≥ r > 0.
Using a result of Kam-Fook Tse [START_REF] Tse | Nontangential interpolating sequences and interpolation by normal functions[END_REF], telling us that a sequence (z n ) of points contained in a Stolz angle (or cone) {z ∈ D : |1 -z| < C(1 -|z|)} is interpolating if and only if it is separated (meaning that inf n =m ρ(z n , z m ) > 0), we obtain: Corollary 2.5. Let B be a Blaschke product whose zeros (z n ) are contained in a Stolz angle and are separated. Suppose that ρ(z n , z n+1 ) ≤ η < 1. Then B ∈ I c .

Similarily, using a result by M. Weiss [START_REF] Weiss | Some H ∞ -interpolating sequences and the behavior of certain of their Blaschke products[END_REF]Theorem 3.6] and its refinement in [4, Theorem B], we also obtain the following assertion for sequences that may be tangential at 1 (see also Wortman [28]).

Corollary 2.6. Let B be a Blaschke product whose zeros z n = r n e iθn satisfy:

r n < r n+1 , θ n+1 < θ n , r n 1, θ n 0, (2.3) 0 < η 1 ≤ ρ(z n , z n+1 ) ≤ η 2 < 1.
Then B is an interpolating Blaschke product contained in I c . This holds in paticular if the zeros are located on a convex curve in D with endpoint 1 and satisfying (2.3).

Other classes of this type can be deduced from [14]. Here are two explicit examples of interpolating Blaschke products in I c whose zeros are given by iteration of the zero of a hyperbolic, respectively parabolic automorphism of D. These functions appear, for instance, in the context of isometries on the Hardy space

H p (see [8]). Example 2.7. • Let ϕ(z) = z -1/2 1 -(1/2)z
. Then ϕ is an hyperbolic automorphism with fixed points ±1. If

ϕ j := ϕ • • • • • ϕ j-times
, then ϕ j ∈ Aut(D) and vanishes exactly at the point

x j := 3 j -1 3 j + 1 = 1 - 2 3 j + 1 .
This can readily be seen by using that x j+1 = ϕ -1 (x j ) and

ϕ j+1 (z) = (ϕ j • ϕ)(z) = z - 1 2 +x j 1+ 1 2 x j 1 -z 1 2 +x j 1+ 1 2 x j . Since ρ(x j , x j+1 ) = 3 j+1 -3 j 3 j+1 + 3 j = 1 2 ,
we deduce from Corollary 2.4 that the Blaschke product

B(z) := ∞ j=1 x j -z 1 -x j z
associated with these zeros is in I c .

• Let σ ∈ Aut(D) and τ = σ•ϕ•σ -1 . Then τ is also a hyperbolic automorphism fixing the points σ(±1), and where ξ := σ(1) is the Denjoy-Wolff point with τ (ξ) < 1. The zeros of the n-th iterate τ n of τ are given by

z n = τ -1 n (0) = (σ • ϕ -1 n • σ -1 )(0)
. By the grand iteration theorem [23, p.78], since 1 is an attracting fixpoint with (ϕ -1 ) (1) = 1/3 < 1, the sequence (ϕ -1 n (σ -1 (0))) converges nontangentially to 1. Hence the points z n are located in a cone with cusp at ξ. Moreover, if n > k and a = σ -1 (0),

ρ(z n , z k ) = ρ (ϕ -1 n • σ -1 )(0), (ϕ -1 k • σ -1 )(0) = ρ ϕ -1
n-k (a), a Thus, ρ(z n , z n+1 ) = ρ(ϕ(a), a) for all n and inf n =k ρ(z n , z k ) > 0. Now (z n ) is a Blaschke sequence 3 ([23, Ex. 6, p. 85]); in fact, use d'Alembert's quotient criterion and observe that by the Denjoy-Wolff theorem,

1 -|z n+1 | 1 -|z n | = 1 -|τ -1 (z n )| 1 -|z n | → (τ -1 ) (ξ) < 1.
3 This also follows form the inequalities 1

-|σ(ξ n )| 2 = (1-|a| 2 )(1-|ξn| 2 ) |1-aξn| 2 ≤ 1+|a| 1-|a| (1 -|ξ n | 2 ) and 1 -|ψ n (a)| 2 ≤ 1+|a| 1-|a| (1 -|w n | 2 ), whenever (w n ) is a Blaschke sequence and ψ n (w n ) = σ(a) = 0.
Hence, by Corollary 2.5, (z n ) is an interpolating sequence (see also [11, p.80]) and the associated Blaschke product b = ∞ n=1 e iθn τ n belongs to I c (here θ n is chosen so that the n-th Blaschke factor is positive at the origin). 

• Let ψ(z) = i z -1+i 2 1 -1-i 2 z
. Then ψ is a parabolic automorphism with attracting fixed point 1. The automorphism ψ is conjugated to the translation w → w + 2 on the upper half-plane (see figure 1) via the map M (z) = i(1 + z)/(1 -z) and

ψ n = M -1 • T n • M .
The zeros of the n-th iterate ψ n of ψ are given by

z n = n n -i ; just use that z n = (M -1 • T -1 n • M )(0). These zeros satisfy z n -1 2 = 1 2 and of course also the Blaschke condition ∞ n=1 1 -|z n | 2 < ∞. Moreover, ρ(z n , z n+1 ) = 1 √ 2 .
Thus, by, Corollary 2.6, the Blaschke product associated with these zeros is interpolating and belongs to I c .

Proposition 2.8. Let B be a finite Blaschke product or an interpolating Blaschke product with real zeros clustering at p = 1. Then f := BS ∈ I c .

Proof. i) Let B be a finite Blaschke product. Chose η ∈ ]0, 1[ so close to 1 that the disk D η in (0.1), which coincides with the level set Ω S (η), contains all zeros of B. Now D η = Ω S (η) ⊆ Ω f (η). Now Ω f (η) must be connected, since otherwise there would be a component Ω 0 of Ω f (η) disjoint from the component Ω 1 containing D η . But f is bounded away from zero outside D η ; hence f = BS is bounded away from zero on Ω 0 . This is a contradiction to Lemma 1.1 (2). ii) If B is an interpolating Blaschke product with zeros (z n ), then, by Hoffman's Lemma 2.2, B is bounded away from zero outside R := D ρ (z n , ε) for every ε ∈ ]0, 1[. Now, if the zeros of B are real, and bigger than -σ for some σ ∈]0, 1[, this set R is contained in a cone with cusp at 1 and aperture-angle strictly less than π (see for instance [21]). Hence R is contained in D η for all η close to 1. Thus, as above, we can deduce that Ω BS (η) is connected.

The previous result shows, in particular, that certain non one-component inner functions (for example a thin Blaschke product with positive zeros, see Corollary 3.1), can be multiplied by a one-component inner function into I c . In particular, uv ∈ I c does not imply that u and v belong to I c . The reciprocal, though, is true: that is I c itself is stable under multiplication, as we are going to show below. Proposition 2.9. Let u, v be two inner functions in I c . Then uv ∈ I c .

Proof. Let Ω u (η) and Ω v (η ) be two connected level sets. Due to monotonicity (Lemma 1.2), and the fact that λ∈[λ 0 ,1[ Ω f (λ) = D, we may assume that σ satisfies max{η, η } ≤ σ < 1 and is so close to 1 that 0

∈ Ω u (σ) ∩ Ω v (σ) = ∅. Hence U := Ω u (σ) ∪ Ω v (σ) is connected. Now Ω u (σ) ∪ Ω v (σ) ⊆ Ω uv (σ).
If we suppose that Ω uv (σ) is not connected, then there is a component Ω 0 of Ω uv (σ) which is disjoint from U . In particular, u and v are bounded away from zero on Ω 0 . This contradicts Lemma 1.1 [START_REF] Aleman | Trace ideal criteria for embeddings and composition operators on model spaces[END_REF]. Hence Ω uv (σ) is connected and so uv ∈ I c .

Theorem 2.10. The set of one-component inner functions is open inside the set of all inner functions (with respect to the uniform norm topoplogy).

Proof. Let u ∈ I c . Then, by Lemma 1.2, Ω u (η) is connected for all η ∈ [η 0 , 1[. Choose 0 < ε < min{η, 1 -η} and let Θ be an inner function with ||u -Θ|| < ε.

We claim that Θ ∈ I c , too. To this end we note that

Ω Θ (η -ε) ⊆ Ω u (η) ⊆ Ω Θ (η + ε),
where 0 < η -ε < η + ε < 1. As usual, if we suppose that Ω Θ (η + ε) is not connected, then there is a component Ω 0 of Ω Θ (η + ε) which is disjoint from the connected set Ω u (η), hence disjoint with Ω Θ (η-ε). In other words, |Θ| ≥ η-ε > 0 on Ω 0 . This contradicts Lemma 1.1 [START_REF] Aleman | Trace ideal criteria for embeddings and composition operators on model spaces[END_REF]. Hence Ω Θ (η + ε) is connected and so Θ ∈ I c .

Next we look at right-compositions of S with finite Blaschke products. We first deal with the case where B(z) = z 2 .

Example 2.11. The function S(z 2 ) is a one-component inner function.

Proof. Let Ω S (η) be the η-level set of S. Then, as we have already seen, this is a disk tangent to the unit circle at the point 1. We may choose 0 < η < 1 so close to 1 that 0 belongs to Ω S (η). Let U = Ω S (η)\] -∞, 0]. Then U is a simply connected slitted disk on which exists a holomorphic square root q of z. The image of U under q is a simply connected domain V in the semi-disk {z : |z| < 1, Re z > 0}. Let V * be its reflection along the imginary axis. Then E := V * ∪ V is mapped by z 2 onto the closed disk Ω S (η). Then E \ ∂E coincides with Ω S(z 2 ) (η). [13, p. 80]). Theorem 2.12 (Aleksandrov). [1, Theorem 1.11 and Remark 2, p. 2915] Let Θ be an inner function. The following assertions are equivalent:

Cl(Θ, ζ) = {w ∈ C : ∃(z n ) ∈ D N , lim z n = ζ and lim Θ(z n ) = w} is the cluster set of Θ at ζ (see
(1) Θ ∈ I c .

(2) There is a constant C > 0 such that for every ζ ∈ T \ ρ(Θ) we have

i) |Θ (ζ)| ≤ C |Θ (ζ)| 2 , and ii) lim inf r→1 |Θ(rζ)| < 1 for all ζ ∈ ρ(Θ).
Note that, due to this theorem, Θ ∈ I c necessarily implies that ρ(Θ) has measure zero. Proposition 2.13. Let B be a finite Blaschke product. Then S • B ∈ I c .

Proof. Let us note first that ρ(S • B) = B -1 ({1}). Since the derivative of B on the boundary never vanishes (due to 

(2.4) z B (z) B(z) = N n=1 1 -|a n | 2 |a n -z| 2 , |z| = 1, B(a n ) = 0, ) B is
S (z) = -S(z) 2 (1 -z) 2 , S (z) = S(z) 4 (1 -z) 4 - 4 (1 -z) 3 , (S • B) = (S • B)B (S • B) = (S • B)B 2 + (S • B)B A := (S • B) [(S • B) ] 2 = S • B (S • B) 2 + (S • B) (S • B) 2 B B 2 (2.5) = S • B (S • B) 2 + 1 S • B B B 2 . Hence, for ζ ∈ T \ ρ(S • B), |B(ζ)| = 1 , but ξ := B(ζ) = 1,
and so, by (2.4),

|A(ζ)| ≤ sup ξ =1 |S (ξ)| |S (ξ)| 2 + 2 sup ξ =1 |1 -ξ| 2 |S(ξ)| C ≤ C sup ξ =1 |1 -ξ| 4 |1 -ξ| 4 + 8C < ∞.
Corollary 2.14. Let S µ be a singular inner function with finite spectrum ρ(S µ ).

Then S µ ∈ I c .

Proof. Since S is the universal covering map of D \ {0}, each singular inner function S µ writes as S µ = S • v for some inner function v. Since ρ(S µ ) is finite, v necessarily is a finite Blaschke product. (This can also be seen from [15, Proof of Theorem 2.2]). The assertion now follows from Proposition 2.13.

Note that this result also follows in an elementary way from Proposition 2.9 and the fact that every such S µ is a finite product of powers of the atomic inner function S. We now consider left-compositions with finite Blaschke products. 

τ (z) = 1 a + |a| 2 -1 a 1 1 -az ,
from which we easily deduce the first and second derivatives. By using the formulas 2.5, we obtain

A := (τ • Θ) [(τ • Θ) ] 2 ≤ C |1 -aΘ| 4 |1 -aΘ| 3 + C |1 -aΘ| 2 |Θ | |Θ | 2 .
Hence, the assumption Θ ∈ I c now yields (via Aleksandrov's criterion 2.12) that sup ζ∈ρ(τ This also follows from Corollary 2.6 by noticing that the a-points of S are located on a disk tangent at 1 and that the pseudohyperbolic distance between two consecutive ones is constant (see [20]). There it is also shown that the Frostman shift (S -a)/(1 -aS) is an interpolating Blaschke product.

•Θ) A(ζ) < ∞. Thus τ • Θ ∈ I c .
Corollary 2.17. Let B be a finite Blaschke product and Θ ∈ I c . Then B•Θ ∈ I c .

Proof. This is a combination of Propositions 2.15 and 2.9.

Inner functions not belonging to I c

Here we present a class of Blaschke products that are not one-component inner functions. Recall that a Blaschke product b with zero-sequence ( for every z with r ≤ |z| < 1. We show that the level set {|b| < ε 2 } is not connected. In fact, for some r ≤ |z| < 1 we have |b

z n ) is thin if lim n k =n ρ(z k , z n ) = lim n→1 (1 -|z n | 2 )|b (z n )| = 1.
(z)| < ε 2 , then |b N (z)| = |b(z)| |p(z)| < ε 2 ε = ε. Hence {z : r < |z| < 1, |b(z)| < ε 2 } ⊆ {|b N (z)| < ε} (3.1) ⊆ n>N D(z n , η).
Since the disks D ρ (z n , η) are pairwise disjoint if n > N , we are done.

Corollary 3.2. No finite product B of thin interpolating Blaschke products belongs to I c .

Proof. Let ε ∈ ]0, 1[ be arbitrary close to 1. By Corollary 3.1, if b j , (j = 1, 2), are two thin Blaschke products with zero-sequence (z

(j) n ) n , Ω b j (ε) ⊆ ∞ n=1 D ρ (z (j) n , η)
for suitable η, the disks D ρ (z

n , η), being pairwise disjoint for n large. Since lim n ρ(z

(j) n , z (j) n+1 ) = 1, we see that a disk D ρ (z (1) n , η) can meet at most one disk D ρ (z (2) m , η) for n large. Hence Ω b 1 b 2 (ε 2 ) ⊆ 2 j=1 ∞ n=1 D ρ (z (j) n , η),
where the set on the right hand side obviously is disonnected. The general case works via induction. In particular this condition is satisfied by finite products of thin Blaschke products (see [START_REF] Gorkin | Cluster sets of interpolating Blaschke products[END_REF]Proposition 2.2]) as well as by the class of uniform Frostman Blaschke products

sup ξ∈T ∞ n=1 1 -|z n | 2 |ξ -z n | < ∞.
Note that this Frostman condition implies that the associated Blaschke product has radial limits of modulus one everywhere [9, p. 33]. As a byproduct of Theorem 2.3 we therefore obtain Corollary 3.4. If b is a uniform Frostman Blaschke product with zeros (z n ) clustering at a single point, then lim sup ρ (z n , z n+1 ) = 1.

Questions 3.5. To conclude, we would like to ask two questions and present three problems: 

  because the unique unbounded complementary component of Ω 0 contains {z ∈ C : |z| ≥ 1}. Hence D is a compact subset of D. Let G := Ω * 0 be the simply-connected hull of Ω 0 ; that is the union of Ω 0 with all bounded complementary components of Ω 0 . Note that G is open because it coincides with the complement of the unique unbounded complementary component of Ω 0 . Then, by definition of the simply connected hull, D ⊆ G. Now if H is any bounded complementary component of Ω 0 then (as it was the case for D) H is a compact subset of D and so ∂H ⊆ D. Moreover, (1.1) ∂H ⊆ ∂Ω 0 .

  and so, by the maximum principle, |f | ≤ η on H. Consequently, |f | ≤ η on G. By the local maximum principle, |f | < η on G. Since ∂D ⊆ D ⊆ G, (1.2) |f | < η on ∂D.

  are pairwise disjoint. Moreover, by Hoffman's Lemma (see below and also [19]), for any η ∈]0, 1[, b is bounded away from zero on {z ∈ D : ρ(z, Z(b)) ≥ η}.

Theorem 2 . 2 (

 22 Hoffman's Lemma). ([18] p. 86, 106 and [13] p. 404, 310). Let δ, η and be real numbers, called Hoffman constants, satisfying 0

Figure 1 .

 1 Figure 1. The parabolic automorphism

Figure 2 .

 2 Figure 2. The level sets of S(z 2 )

schlicht in a neighborhood of 1 .

 1 The angle conservation law now implies that for ζ ∈ B -1 (1) the curve r → B(rζ) stays in a Stolz angle at 1 in the image space of B. Hence lim inf r→1 S(B(rζ)) = 0 for ζ ∈ ρ(S • B). Now let us calculate the derivatives:

Proposition 2 .

 2 15. Let Θ be a one-component inner function. Then each Frostman shift (a -Θ)/(1 -aΘ) ∈ I c , too. Here a ∈ D. Proof. Let τ (z) = (a -z)/(1 -az). Then ρ(τ • Θ) = ρ(Θ). As above, lim inf r→1 |τ • Θ(rζ)| < 1 for every ζ ∈ ρ(τ • Θ). Now

Corollary 2 . 16 .

 216 Given a ∈ D \ {0}, the interpolating Blaschke products (S -a)/(1 -aS) belong to I c .

It was shown by Tolokonnikov [ 24 ,

 24 Theorem 2.3] that b is thin if and only if lim |z|→1 (|b(z)| 2 + (1 -|z| 2 )|b (z)|) = 1. Corollary 3.1. Thin Blaschke products are never one-component inner functions. Proof. Let ε ∈ ]0, 1[ be arbitrary close to 1. Choose η > 0 and δ > 0 so close to 1 so that ε < η 2 and η < (1 -√ 1 -δ 2 )/δ. By deleting finitely many zeros, say z 1 , . . . , z N of b, we obtain a tail b N such that (1 -|z n | 2 )|b N (z n )| ≥ δ for every n > N . Hence, by Theorem 2.2, (3.1) {z ∈ D : |b N (z)| < ε} ⊆ {z ∈ D : ρ(z, Z(b N )) < η} and the disks D(z n , η) are pairwise disjoint. This implies that the level set {z ∈ D : |b N (z)| < ε} is not connected. Now choose r so close to 1 that p(z) := N n=1 ρ(z, z n ) ≥ ε

  n , Z(b) \ {z n }) < 1, or equivalently (3.3) D(z n , η) ∩ m =n D(z m , η) = ∅ for some η ∈]0, 1[, are not sufficient to guarantee that the interpolating Blaschke product b is a onecomponent inner function. Proof. Take z 2n = 1 -n -n and z 2n+1 = 1 -(n -n + n -n ). Then (z 2n ) and (z 2n+1 ) are (thin) interpolating sequences by [16, Corollary 2.4]. Using with a = n -n and b = 2a the identityρ(1 -a, 1 -b) = |a -b| a + b -ab , we conclude that ρ(z 2n , z 2n+1 ) = n -n 1 -z 2n z 2n+1 → 1/3,and so the union (z n ) is an interpolating sequence satisfying (3.3). By Corollary 3.2, the Blaschke product formed with the zero-sequence (z n ) is not in I c .Using the following theorem in [5], we can exclude a much larger class of Blaschke products from being one-component inner functions: Theorem 3.3 (Berman). Let u be an inner function. Then, for every ε ∈ ]0, 1[, all the components of the level sets {z ∈ C : |u(z)| < ε} have compact closures in D if and only if u is a Blaschke product and lim sup r→1 |u(rξ)| = 1 for every ξ ∈ T.

( 1 )

 1 Can every inner function u whose boundary spectrum ρ(u) has measure zero, be multiplied by a one-component inner function into I c ? (2) Let S µ be a singular inner function with countable spectrum. Give a characterization of those measures µ such that S µ ∈ I c . Do the same for singular continuous measures. (3) In terms of the zeros, give a characterization of those interpolating Blaschke products that belong to I c . (4) Does the Blaschke product B with zeros z n = 1 -n -2 belong to I c ? 4. Acknowledgement
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