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A version of the Krull Intersection Theorem states that for Noetherian integral domains the Krull intersection ki(I) of every proper ideal I is trivial; that is

We investigate the validity of this result for various function algebras R, present ideals I of R for which ki(I) = {0}, and give conditions on I so that ki(I) = {0}.

Introduction

The aim of this note is to investigate the validity of the Krull Intersection Theorem in various function algebras. We begin by recalling the following version of the Krull Intersection Theorem [START_REF] Eisenbud | Commutative Algebra with a view Toward Algebraic Geometry[END_REF]Corollary 5.4,p.152]. See also [START_REF] Perdry | An elementary proof of Krull's intersection theorem[END_REF] for a simple proof. As usual, given an ideal I, I n is the ideal of all elements of the form We note that neither of the assumptions on R can be dropped. Here are some examples.

Example 1.2 (Not Noetherian, and not an integral domain). This is based on [5, p.153]. Let R = C ∞ (R), the ring of all infinitely differentiable realvalued functions on R. Then R is not Noetherian (since

I n := {f ∈ C ∞ (R) : f (x) = 0 for x > n}, n ∈ N := {1, 2, 3, • • • },
form an ascending chain of ideals) and is not an integral domain. Let I be the ideal x generated by x → x. Let f (x) := e -1/x if x > 0, 0 otherwise.

Then f ∈ C ∞ (R). For n ∈ N, set

f n (x) = f (x)/x n if x > 0, 0 otherwise.
Then f n ∈ C ∞ (R) too, and so f = f n x n ∈ I n . So we have 0 = f ∈ ki(I). If z 0 ∈ Z(f ), let ord(z 0 , f ) be the order of z 0 as a zero of f . Define

I := {0} ∪ f ∈ H(C) ∃N ∈ N, ∀n ∈ N : if n > N, then f (n) = 0 and lim n→∞ ord(n, f ) = ∞ .
Then it can be seen that I is an ideal. We will show that I 2 = I. To this end, let 0 = f ∈ I. Let f 1 ∈ H(C) be an entire function with Z(f 1 ) = Z(f ) ∩ N, but such that for each n ∈ Z(f 1 ), ord(n, f 1 ) := max 1, ord(n, f ) 2 .

Here for x ∈ R, the notation x stands for the largest integer ≤ x. Then 

f 1 ∈ I. Set f 2 = f /f 1 . Then f 2 ∈ I as well. Finally, f = f 1 • f 2 ∈ I • I = I 2 .
2 := (a n ) n∈Z n∈Z |a n | 2 < ∞ , ∞ := (a n ) n∈Z sup n∈Z |a n | < ∞ , s (Z) := (a n ) n∈Z ∃M > 0, ∃m > 0, ∀n ∈ Z : |a n | ≤ M (1 + |n|) m ,
endowed with termwise addition, termwise scalar multiplication, and termwise (Hadamard) multiplication. Then for any of the above algebras R, I := c 00 , the set of all sequences with compact support, is a proper ideal in R.

If a := (a 1 , • • • , a N , 0, • • • ) ∈ c 00 , then with b n any complex number such that b 2 n = a n , n = 1, • • • , N , and with b := (b 1 , • • • , b N , 0, • • • ) ∈ c 00 = I, we have that I a = b • b ∈ I 2
. So I 2 = I, and hence ki(I) = I = {0}. We remark that 2 (Z) with the termwise operations is isomorphic to L 2 (T) with convolution, where T := {z ∈ C : |z| = 1}, and s (Z) with termwise operations is isomorphic to the algebra of periodic distributions D (T) with convolution.

Here is an example of a non-Noetherian ring for which ∞ n=1 I n = {0} for every proper ideal I. (This example is included in [1, Theorem 4], but we offer an elementary direct proof below.)

Example 1.6 (Non-Noetherian, but ∞ n=1 I n = {0} for all ideals I R). Let I be a proper ideal in R := C[z 1 , z 2 , z 3 , • • • ].
Then I is contained in some maximal ideal M of R. But then ki(I) ⊆ ki(M ). We will show that the maximal ideals M of R are just of the form z n -ζ n : n ∈ N for some sequence of complex numbers ζ 1 , ζ 2 , ζ 3 , • • • . Then we will use this structure to show ki(M ) = {0}, and hence we can conclude that also ki(I) = {0} for every proper ideal I in R.

Claim: M is a maximal ideal in C[z 1 , z 2 , z 3 , • • • ] if and only if there exists a sequence ζ 1 , ζ 2 , ζ 3 , • • • of complex numbers such that M = z n -ζ n : n ∈ N .
(This result is known; see [START_REF] Lang | Hilbert's Nullstellensatz in infinite-dimensional space[END_REF]. Nevertheless, we include an elementary selfcontained proof, fashioned along the same lines as the proof of Hilbert's Nullstellensatz; see [START_REF] Verma | Basic Ring Theory. Notes for the lectures given in the Advanced Training in Mathematics School for Lecturers in Algebra and Linear Algebra at IIT Bombay[END_REF].) 

If ζ = (ζ n ) n∈N
ϕ k : C[z k ] -→ C[z 1 , z 2 , z 3 , • • • ]/M =: F p -→ [p] := p + M. If ϕ k (pq) = 0, then since F is a field, either ϕ k (p) = 0 or ϕ k (q) = 0. Hence ker ϕ k is a prime ideal of C[x k ].
We will show first that ker ϕ k = {0}.

Suppose that ker ϕ k = {0}. Then ϕ k : C[z k ] → F is an injective map. Thus there exists an extension of

ϕ k to Φ k : C(z k ) → F, namely Φ k p q = ϕ k (p) ϕ k (q) , p q ∈ C(z k ), p ∈ C[z k ], q ∈ C[z k ] \ {0}.
It 

: indeed, if r ∈ C(z k ), then Φ k (r) ∈ Φ k (C(z k )) and so there exist α 1 , • • • , α m ∈ C such that Φ k (r) = α 1 v 1 + • • • + α m v m = Φ k (α 1 r 1 + • • • + α m r m ), and so r = α 1 r 1 + • • • + α m r m ,
thanks to the injectivity of Φ k . So the C-vector space C(z k ) is also spanned by a countable number of vectors. However, it is easy to see that

z k → 1 z k -ζ : ζ ∈ C ,
is an uncountable linear independent set in C(z k ), a contradiction. Hence ker ϕ k = {0}. The kernel of ϕ k is proper, because ϕ k (1) = [START_REF] Anderson | The Krull intersection theorem[END_REF] (note that due to ϕ k (1) = ϕ k (1 2 ), the only other possibility would be ϕ k (1) = [0], giving 1 + M = [0]; a contradiction). Since ker ϕ k is a nonzero proper prime ideal in C[x k ], it follows that there is a

ζ k ∈ C such that z k -ζ k ∈ ker ϕ k . Hence z k -ζ k ∈ M .
As the choice of k ∈ N was arbitrary, we get a sequence

ζ 1 , ζ 2 , ζ 3 , • • • of complex numbers such that z n -ζ n ∈ M, and so z n -ζ n : n ∈ N ⊆ M . But z n -ζ n : n ∈ N is maximal. Thus M = z n -ζ n : n ∈ N . This completes the proof of the claim. Let M = z n -ζ n : n ∈ N . Suppose that 0 = f ∈ ki(M ), and let k be such that f ∈ C[z 1 , • • • , z k ]. Let Π k : C[z 1 , z 2 , z 3 , • • • ] → C[z 1 , • • • , z k ] be the evaluation homomorphism that sends z n to ζ n for n > k, and z n to z n itself if n ≤ k. Then f ∈ ∞ n=1 Π k (M ) n . Since Π k (M ) is just the maximal ideal z n -ζ n : 0 ≤ n ≤ k in the ring C[z 1 , • • • , z k ],
we conclude from the Krull Intersection Theorem (Proposition 1.1) applied to the Noetherian integral domain

C[z 1 , • • • , z k ], that f = 0. Consequently, ki(M ) = {0}.
In the rest of this article, we will investigate ki(I) for (mainly maximal) ideals I in algebras of (mainly holomorphic) functions. The organization of the subsequent sections is as follows:

(1) In Section 2, we will determine ki(I) for certain ideals in the algebra H(D) of holomorphic functions in a domain D ⊆ C. (2) In Section 3, we will determine ki(I) for certain ideals in uniform algebras. (3) In Section 4, we will determine ki(I) for certain ideals in the algebra H ∞ (D) of bounded holomorphic functions in the unit disk D.

ki(I) for ideals I in H(D)

Example 1.3 above can be generalized to the following. 

f n (z) := h(z) (z -ζ 1 ) • • • (z -ζ n ) , z ∈ D.
Let g ∈ R \ {0} be a Weierstrass product which vanishes at every ζ n with ord(g, ζ n ) = n. We claim that g ∈ I m for m ∈ N. In fact, h m := g/f m m has only removable singularities for all m. Hence g = h m f m m ∈ I m . Since n ∈ N was arbitrary, g ∈ ki(I).

On the other hand, we have the following result saying that for non-free/fixed ideals I of H(D), ki(I) = {0}.

Definition 2.2 (Free ideals in H(D)). Let D ⊆ C be a domain. For an element f ∈ H(D), let Z D (f ) denote the set of zeros of f . An ideal I in H(D) is called free if the zero set of I, Z D (I) := f ∈I Z D (f ),
is the empty set ∅, and fixed/non-free otherwise. Then m ≥ 1 and each function g ∈ I n has ζ as a zero of order at least mn. But any holomorphic function belonging to I n for all n ∈ N must therefore be identically zero since D is a domain.

For maximal ideals of H(D), one can say more, and we have the following results given in Theorem 2.5. But first we prove a helpful lemma (see [START_REF] Henriksen | On the ideal structure of the ring of entire functions[END_REF] and [START_REF] Henriksen | On the prime ideals of the ring of entire functions[END_REF]) which will be used in the proof of Theorem 2.5 (and also in the subsequent result).

Lemma 2.4. Let D be a domain in C, and M be a maximal ideal in the ring

H(D). If f ∈ M , and h ∈ H(D) is such that Z D (f ) ⊆ Z D (h) (disregarding multiplicities), then h ∈ M too.
Proof. Suppose that h is not in M . Then the ideal h + M , which strictly contains M , must be H(D), thanks to the maximality of M . Thus there exists m ∈ M and g ∈ H(D) such that 1 = gh + m. Hence we have that

Z D (h) ∩ Z D (m) = ∅. Thus Z D (f ) ∩ Z D (m) = ∅.
By the Nullstellensatz for H(D), it follows that there exist u, v ∈ H(D) such that 1 = uf + vm ∈ M . This is absurd, because m, f ∈ M and M is proper.

Theorem 2.5. Let D be a domain in C, and M be a free maximal ideal of H(D). Then

(1) {0} ∪ f ∈ M : f = 0 and lim ζ∈Z D (f ) ord(f, ζ) = ∞ ⊂ ki(M ). (2) ki(M ) ⊆ {0} ∪ f ∈ M : f = 0 and sup ζ∈Z D (f ) ord(f, ζ) = ∞ . Hence, given a maximal ideal M in H(D), ki( M ) = {0} if and only if there exists ζ ∈ D such that M = z -ζ .
Here, by assumption that lim

ζ∈Z D (f ) ord(f, ζ) = ∞,
we mean that given any n > 0, there exists a finite set

K ⊂ Z D (f ) such that ord(f, ζ) > n for all ζ ∈ Z D (f ) \ K.
Proof. (1) First we observe that M contains no polynomial. (Otherwise, if a polynomial p ∈ M , it follows, by using the fact that M is in particular prime, that M contains a linear factor z -w of p. But then we have that M ⊆ M w := {f ∈ H(D) : f (w) = 0}. Since the later ideal is proper, and M is maximal, M = M w would be a fixed ideal.)

Let

f ∈ M \ {0} with lim ζ∈Z D (f ) ord(f, ζ) = ∞.
Suppose that n ∈ N. Then it is possible to factorize f as f = f n p, where p is a polynomial and the orders of all zeros of f n are at least n. By the primeness of (the maximal!) ideal M , and the fact that M contains no polynomials, it follows that f n ∈ M too. But now we can write f n = g 1 • • • g n , where each of the functions g k have the same zero set (disregarding multiplicities). Again the primeness of M , and Lemma 2.4, allow us to conclude that all the g k belong to M . Hence f ∈ M n . As the choice of n ∈ N was arbitrary, we obtain that f ∈ ki(M ).

(2) Assume that f ∈ ki(M ) and let n ∈ N. Then f can be decomposed into a finite sum of the form

f = N (n) k=1 f 1,k • • • f n,k ,
with each f j,k ∈ M . All these functions f j,k ∈ M must have a common zero, since otherwise (by the Nullstellensatz for H(D)), we can generate 1 in M , a contradiction to the fact that M is proper. But then the order of this common zero of f must be at least n. As the choice of n ∈ N was arbitrary, it follows that sup

ζ∈Z D (f ) ord(f, ζ) = ∞.
We remark that a somewhat different characterization of ki(M ) was provided in [11, Theorem 3,p.714] for the algebra H(C) of entire functions. We extend Henriksen's result to domains, and then compare our result above with his result below. Since Henriksen's proof was, in our viewpoint, very condensed, we provide all details in the more general case. Since prime ideals appear very naturally in the description of ki(M ), we include a nice property shared by this class of ideals. Also that result is known; [START_REF] Henriksen | On the prime ideals of the ring of entire functions[END_REF]Theorem 1].

Given f ∈ H(D), let o(f ) := sup ζ∈Z D (f ) ord(f, ζ).
If q ≡ 0, we set o(q) := ∞.

Lemma 2.6. Let P be a prime ideal in H(D), where D is a domain in C.

Then P is non-maximal if and only if o(f ) = ∞ for every f ∈ P .

Proof. If o(f ) = ∞ for every f ∈ P then, by Lemma 2.4, P is not maximal. So suppose that P is prime and contains an element f with

N := o(f ) < ∞.
Let M be a maximal ideal with P ⊆ M . We show that P = M . Write f = f 1 . . . f N , where each zero of any f j is simple. Since P is prime, at least one of the N factors belongs to P . Say it is f 1 . Fix g ∈ M and let d = gcd(f 1 , g). Then, by Wedderburn's Theorem [20, p.119

], d ∈ f 1 , g ⊆ M . Now f 1 = dh for some h ∈ H(D). Since the zeros of f 1 are simple, Z(d) ∩ Z(h) = ∅.
Hence, h cannot belong to P ⊆ M , because otherwise H(D) = d, h ⊆ M , a contradiction. Thus d ∈ P and so g ∈ P . Consequently, M = P .

Proposition 2.7 (Henriksen). Let D ⊆ C be a domain, and let M be a free, maximal ideal of H(D). Then

ki(M ) = f ∈ M whenever d ∈ H(D) \ M is a divisor of f, say f = q • d, we have o(q) = ∞ .
Moreover ki(M ) is the largest nonmaximal prime ideal contained in M .

Proof. Since every finitely generated ideal of H(D) is principal, ki(M ) is easily seen to be the set of all f ∈ H(D) such that for all n ∈ N, we have a factorization f = h n d n n with h n ∈ H(D) and d n ∈ M .

Let

K := f ∈ M whenever d ∈ H(D) \ M is a divisor of f, say f = q • d, we have o(q) = ∞ .
We first prove that ki(M ) ⊆ K. Let f ∈ ki(M ) and suppose that d is a divisor of f which does not belong to M . Say f = dq. We need to show that o(q) = ∞. If not, then let n := o(q) and k = 2n. Since f ∈ ki(M ), there exists an

h k ∈ H(D) and a g k ∈ M such that dq = f = h k g k k .
But then every zero of g k must be a zero of d (disregarding multiplicities) (because each zero of q appears at most n times; on the other hand every zero of g k appears at least 2n times). Thus Z D (g k ) ⊆ Z D (d). Since g k ∈ M , we have d ∈ M by our Lemma 2.4, a contradiction.

Next we will show that K ⊆ ki(M ). Given f ∈ K ⊆ M , and n ∈ N, we may factor

f ∈ M as f = f 1 f 2 , where Z(f 2 ) = {ζ ∈ Z(f ) : ord(f, ζ) ≥ n+1} and Z(f 1 ) = {ζ ∈ Z(f ) : ord(f, ζ) ≤ n}.
If one of these sets is empty, we just let the associated function equal to be 1.

If

f 2 ∈ M , then we end up with f 1 ∈ M . But the definition of K now implies that ∞ = o(f 1 ) ≤ n. Thus in our factorization M f = f 1 f 2 , we have f 2 ∈ M . Take a function h n such that we have Z D (h n ) = Z D (f 2 )
, and such that h n has only simple zeros. Then by Lemma 2.4, h n ∈ M because f 2 ∈ M . By construction, h n n divides f 2 , and so

f 2 = gh n n . Summarizing, f = f 1 f 2 = f 1 gh n n ∈ M n .
Since n ∈ N was arbitrary, it follows that f ∈ ki(M ). This completes the proof that ki(M ) = K.

Next we show that ki(M

) is prime. Assume that f = f 1 •f 2 ∈ ki(M ) ⊆ M .
Since M is prime, we have one of three possible cases:

1 • f 1 ∈ M and f 2 ∈ M , 2 • f 1 ∈ M and f 2 ∈ M , 3 • f 1 ∈ M and f 2 ∈ M . Case 1 • : Let d ∈ H(D)\M be a divisor of f 1 . Say f 1 = gd. Then f = g(df 2 ), where df 2 / ∈ M . Since f ∈ ki(M ) = K, we deduce that o(g) = ∞. So f 1 ∈ ki(M ). Case 2 •
works in the same way. Now the only case left is when both f 1 , f 2 are in M . Assuming that neither f 1 nor f 2 belongs to ki(M ), we proceed as follows. In this case, there exist

d i dividing f i , with d i ∈ H(D) \ M , q i := f i /d i ∈ M , and o(q i ) < ∞, i = 1, 2. Since M is maximal, and in particular prime, d 1 d 2 ∈ H(D) \ M , and o(q 1 q 2 ) ≤ o(q 1 ) + o(q 2 ) < ∞. So f 1 f 2 ∈ ki(M ).
Consequently, ki(M ) is prime. Finally, we will show the following:

Claim: ki(M ) is the largest nonmaximal prime ideal contained in M . First we show that ki(M ) is not maximal. Take any nonzero f ∈ M , and let h ∈ H(D) be such that

Z(h) = Z(f ), but ord(h, ζ) = 1 for all ζ ∈ Z D (h).
Then by Lemma 2.4, h ∈ M too. We claim that h / ∈ ki(M ). In fact, with d := 1 ∈ H(D) \ M , and q := h, we have qd = h ∈ M , but o(q) = 1 < ∞. Hence h ∈ ki(M ). Thus ki(M ) M , and so ki(M ) is nonmaximal. Definition 3.2 (Approximate identity). Let R be a commutative unital Banach algebra, and M be a maximal ideal of R. In accordance with Browder's terminology, [2, p. 72], we say that M has an approximate identity if there exists a constant K such that for every > 0, and every f 1 , • • • , f n ∈ M , there exists an e ∈ M , e ≤ K, such that ef i -f i < for all i = 1, • • • , n. (In other words, there exists a bounded net (e α ) in M such that e α f → f for every f ∈ M .) Proposition 3.3. Let R be a uniform algebra on X, and let x ∈ X. Then the following are equivalent:

(1) (Existence of an approximate identity.) The maximal ideal

M := {f ∈ R : f (x) = 0}
has an approximate identity.

(2) (Existence of a weak peak function.) For every neighbourhood U of x, there exists a function f ∈ R with f = 1 and f (x) = 1, such that |f (y)| < 1 for all y ∈ X \ U . In other words, {x} is an intersection of peak sets. (3) There exists a constant K, such that for every neighbourhood U of x, and every > 0, there exists an f ∈ R with f < K, f (x) = 1, and |f (y)| < for all y ∈ X \ U .

In (2), the point x is referred to as a weak peak point or strong boundary point. For the proof of this Proposition, we refer to [2, pp. 73, 99, 101] and [3, p. 448].

Proposition 3.4 (Cohen Factorization Theorem). Let R be a commutative unital Banach algebra, M a maximal ideal of R, and suppose that M has an approximate identity. Then for every f ∈ M , there exist

f 1 , f 2 ∈ M such that f = f 1 f 2 .
For a proof, see [2, p. 74]. An immediate consequence of these results is the following.

Corollary 3.5. Let R be a uniform algebra on X, and let x ∈ X. Suppose that x is a weak-peak point. Set

M := {f ∈ R : f (x) = 0}. Then ki(M ) = M.
Proof. Since M is maximal, by the Cohen Factorization Theorem, we have

M 2 = M .
Thus, for every uniform algebra R we have "many" ideals M with M 2 = M , namely any maximal ideal M of the form M x = {f ∈ R : f (x) = 0}, where x is a weak peak point. See [2, p. 101] and also [START_REF] Dales | Approximate identities in Banach function algebras[END_REF]. We emphasize that the set of weak peak points (sometimes called the Choquet boundary of R; see also [2, Definition on p.87 and Theorem 2. 

W + (D) := f = ∞ n=0 a n z n ∈ H(D) : f 1 := ∞ n=0 |a n | < ∞ , with pointwise operations. A(D) is endowed with the sup-norm • ∞ , while W + (D) is endowed with the • 1 -norm defined above. The maximal ideal M := {f ∈ A(D) : f (1) 
= 0} has an approximate identity given by the sequence (1 -p n ) n∈N , where p is the peak function given by

p := 1 + z 2 , z ∈ D,
(for details of the proof, we refer the reader to [START_REF] Sasane | Algebras of Holomorphic Functions and Control Theory[END_REF]Theorem 6.6].) Let (r n ) n∈N be any sequence such that r n 1, and

e n (z) := z -1 z -r n , n ∈ N.
Then (e n ) n∈N is a bounded approximate identity for

M := {f ∈ W + (D) : f (1) = 0}.
A rather lengthy proof of this result in the case when

r n = 1 + 1 n , n ∈ N,
can be found in [START_REF] Koua | Un exemple d'algèbre de Banach commutative radicale a unité approchée bornée sans multiplicateur non trivial[END_REF], while the result is also mentioned without proof in [START_REF] Faȋvyševskiȋ | The structure of the ideals of certain algebras of analytic functions[END_REF].

A short proof due to the first author of this article can be found in [START_REF] Mortini | On the pre-Bézout property of Wiener algebras on the disc and the half-plane[END_REF] or in [START_REF] Sasane | Algebras of Holomorphic Functions and Control Theory[END_REF]Theorem 6.10].

ki(I)

for ideals I in H ∞ (D)
Let H ∞ (D) denote the algebra of all bounded holomorphic functions in D.

We sometimes write H ∞ instead of H ∞ (D). The spectrum (or maximal ideal space), M (H ∞ ) of H ∞ is the set of nonzero multiplicative linear functionals on H ∞ . A description of the maximal ideals M in H ∞ with ki(M ) = {0} is already implicit in Kenneth Hoffman's work [START_REF] Hoffman | Bounded analytic functions and Gleason parts[END_REF]. 

Recall that f ∈ C(M (H ∞ ); C) denotes the Gelfand transform of f ∈ H ∞ m f -→ m(f ) =: f (m), m ∈ M (H ∞ ).
ρ(m, m) := sup | f ( m)| : f ∈ H ∞ , f ∞ ≤ 1, f (m) = 0 .
For m ∈ M (H ∞ ), let

P (m) := { m ∈ M (H ∞ ) : ρ(m, m) < 1} denote the Gleason part of M (H ∞ ) containing m.
By [START_REF] Hoffman | Bounded analytic functions and Gleason parts[END_REF], ord(f, m) = sup n ∈ N : f = f 1 . . . f n , f j (m) = 0 for all j = 1, . . . , n . Here Z(I)

:= Z M (H ∞ ) (I) := f ∈I m ∈ M (H ∞ ) : f (m) = 0 . Proof. Let f ∈ ki(I). Fix n ∈ N. Then f = K k=1 f k,1 . . . f k,n
for f k, ∈ I. In particular, f k, (m) = 0 for every m ∈ Z(I). Hence ord(f, m) ≥ n. Since n was arbitrary, we conclude that ord(f, m) = ∞.

Theorem 4.4. Let M be a maximal ideal in H ∞ and m ∈ M (H ∞ ) with ker m = M . Then the following assertions are equivalent:

(1) ki(M ) = M .

(2) M does not contain an interpolating Blaschke product.

(3) The Gleason part P (m) containing m is the singleton {m}. In all cases, that is for all maximal ideals in H

∞ , ki(M ) = I P (m), H ∞ := f ∈ H ∞ : f ≡ 0 on P (m) ,
where E denotes the closure of the set E ⊆ M (H ∞ ). In particular, ki(M ) is a closed prime ideal, and

ki(M ) = {0} ⇐⇒ M = M z 0 := {f ∈ H ∞ : f (z 0 ) = 0} for some z 0 ∈ D.
Proof. By [START_REF] Hoffman | Bounded analytic functions and Gleason parts[END_REF] (see also [START_REF] Garnett | Bounded Analytic Functions[END_REF]), the statements (2) and (3) are equivalent. If (3) holds, then by [START_REF] Hoffman | Bounded analytic functions and Gleason parts[END_REF], M = M 2 (even in the strict sense: each f ∈ M can be written as f

= g • h, where g, h ∈ M ). So ki(M ) = M . If b is an interpolating Blaschke product contained in M , then b / ∈ M 2 , because otherwise b = K k=1 f k g k , with f k , g k ∈ M .
Hence ord(b, m) ≥ 2, a contradiction; see [START_REF] Hoffman | Bounded analytic functions and Gleason parts[END_REF]. This shows the equivalence of (1), ( 2) and (3).

To prove the rest, we note that

f ∈ H ∞ : f ≡ 0 on P (m) = {f ∈ H ∞ : ord(f, m) = ∞}.
Moreover, for every n ∈ N, any such f admits a factorization of the form

f = g 1 • • • g n with g k (m) = 0. Hence I P (m), H ∞ ⊆ ki(M ).
Conversely, if f ∈ ki(M ), then f is a sum of functions in M each having order at least n at m. Thus ord(f, m) = ∞ for every f ∈ ki(M ) and so f ≡ 0 on P (m); see [START_REF] Hoffman | Bounded analytic functions and Gleason parts[END_REF]. Thus 

Since Re

z + ξ z -ξ = |z| 2 -1 |z -ξ| 2 ≤ 0 and µ ≥ 0, we deduce that |1 -g(z)| ≤ T z + ξ z -ξ dµ(ξ) ≤ 1 + |z| 1 -|z| µ(T).
Proposition 4.8. If P is a prime ideal in H ∞ , then ki(P ) = {0} if and only if P is a maximal ideal of the form M z 0 for some z 0 ∈ D.

Proof. We have already seen that ki(M z 0 ) = {0}. If Z D (P ) ∩ D = ∅, then it easily follows that P ⊆ (z -z 0 )H ∞ for all z 0 ∈ Z D (P ) ∩ D. Due to primeness z -z 0 ∈ P (each f ∈ P factors as f = (z -z 0 ) n g, where n is the order of the zero z 0 , but then g ∈ P , so z -z 0 ∈ P ), and so P = M z 0 again. Now suppose that Z D (P ) = ∅; that is, P is a free prime ideal. We show that ki(P ) contains elements different from the zero function.

Case 1 • Suppose that P contains a Blaschke product B, with zero sequence (z n ) (multiplicities included). In particular,

∞ n=1 (1 -|z n | 2 ) < ∞.
For each k, choose a tail of the sequence so that

∞ n=N k (1 -|z n | 2 ) ≤ 1 2 k .
Let B k be the Blaschke product associated with these zero sequences. Since B k differs from B only by finitely many zeros, the freeness of P implies that B k ∈ P (otherwise we would have z -z 0 ∈ P , hence P = M z 0 again). Since

∞ k=1 ∞ j=N k (1 -|z j | 2 ) < ∞,
the collection of all zeros of all B k is a Blaschke sequence again. Hence, due to absolute convergence of the associated products, any reordering converges again, and so

B * := ∞ k=1 B k
is a Blaschke product again. Clearly, B * ∈ ki(P ).

Case 2 • Let Bg ∈ P , where g is a zero-free function, and we may assume that g ∞ ≤ 1. Either B ∈ P (and we are done by the first case) or g ∈ P .

Since g has roots of any order, we see that g 1/n ∈ P for every n. Hence

g = g 1/n • • • g 1/n
n-times ∈ P n .

We actually have the following stronger property: Choose n k going to infinity so fast that sup Remark 4.9. The proof above shows the following:

(1) If I is any free ideal in H ∞ containing a Blaschke product, then ki(I) = {0}. (2) If I is any free ideal in H ∞ containing a zero-free function g and all of its roots, then ki(I) = {0}.

Let us also remark that there do exist free ideals with ki(I) = {0}, as demonstrated below. In particular, S n divides the inner factor ϕ of f for every n, say ϕ = u n S n for inner functions u n . This is impossible though, because S n goes to zero locally uniformly in D, and so due to the boundedness of u n , ϕ = 0. 

  i • • • a n,i , m ∈ N, a k,i ∈ I.Proposition 1.1 (Krull Intersection Theorem). If R is a Noetherian integral domain, and I a proper ideal of R, that is I R, then the Krull intersection ki(I) of I, defined by ki(I) := ∞ n=1 I n , is trivial, that is, ki(I) = {0}.

Example 1 . 3 (

 13 Not Noetherian, but an integral domain). LetR = H(C) = {f : C → C : f is entire}. Denote the zero-set of a function f ∈ H(C) by Z(f ) = {z ∈ C : f (z) = 0}.

Example 1 . 4 (Example 1 . 5 (

 1415 Noetherian, but not an integral domain). The ring C[z] is Noetherian, and so it follows that R := C[z]/ z 2 -z is Noetherian too. But R is not an integral domain because [z][z -1] = [0]. With I := [z] , the ideal generated by [z] in R, we see that I 2 = I, because [z] is an idempotent, and so I = [z] = [z] 2 ⊆ I 2 ⊆ I. Sequence spaces). Consider over C the sequence algebras

  is a sequence of complex numbers, then we first observe that the ideal M ζ := z n -ζ n : n ∈ N is maximal as follows. We can look at the evaluation homomorphismϕ ζ from R := C[z 1 , z 2 , z 3 , • • • ] to Csending for every n ∈ N the indeterminate z n to ζ n . Then ϕ ζ is surjective, and ker ϕ ζ = {p ∈ R : p(ζ) = 0}. But as p(ζ) = 0, it follows from the Taylor series centered at ζ for p that p belongs to M ζ . Hence by the isomorphism theorem R/M ζ is isomorphic to C, and thus M ζ is maximal. Now suppose that M is maximal. Let k ∈ N, and consider the ring homomorphism

Example 2 . 1 .

 21 Let D ⊆ C be a domain (that is, an open path-connected set). Let R = H(D), the algebra of holomorphic functions in D with pointwise operations. Then there exists a proper ideal I of R such that ki(I) = {0}. We construct such an ideal I as follows. Let (ζ n ) n∈N be any sequence in D that converges to a point in the boundary ∂D of D (or more generally, without accumulation points in D). Let h be any Weierstrass product with simple zeros at ζ n , n ∈ N. Consider the proper ideal I of R generated by the functions f n , n ∈ N, given by

Proposition 2 . 3 .

 23 For a proper fixed ideal I of H(D), ki(I) = {0}. Proof. Suppose that ζ ∈ Z D (I). Let m := min{ord(f, ζ) : f ∈ I}.

Example 3 . 6 (

 36 3.4]) is dense in the Šilov boundary of R (by [3, Corollary 4.3.7(i)]). We recall here that a closed subset F of X is called a closed boundary for R if sup x∈F |f (x)| = sup x∈X |f (x)|. The intersection of all the closed boundaries for R is called the Šilov boundary of R. Disk algebra and Wiener algebra). As illustrative examples, consider the disk algebra and the Wiener algebra. Let D := {z ∈ C : |z| < 1}, and set A(D) := {f ∈ H(D) : f has a continuous extension to D ∪ ∂D},

Observation 4 . 1 .

 41 Let I be an ideal in H ∞ . Suppose that I is a non-free ideal; that is,Z D (I) := f ∈I Z D (f ) = ∅.Then ki(I) = {0}.Proof. If Z D (I) = D, then I = (0) and so ki(I) = {0}. So suppose that there exists an isolated point z 0 ∈ Z D (I). Let f ∈ ki(I) and n ∈ N be given.Then ord(f, z 0 ) ≥ n. Hence f ≡ 0. Again ki(I) = {0}.

ForDefinition 4 . 2 (

 42 m ∈ M (H ∞ ), and f ∈ H ∞ , let us define ord(f, m) = ord( f • L m , 0), where L m : D → P (m) is the Hoffman map associated with m; that is L m (z) = lim z + z α 1 + z α z , where (z α ) is a net in D converging to m (all limits being taken in the weak- * /Gelfand topology of M (H ∞ )). Note that f • L m is holomorphic in D. In particular, ord(f, m) = ∞ if and only if f ≡ 0 on P (m), where P (m) denotes the Gleason part containing m. Recall the pertinent definitions below. Pseudohyperbolic distance and the Gleason part). The pseudohyperbolic distance between two points m, m ∈ M (H ∞ ) is defined by

Lemma 4 . 3 .

 43 Let I be an ideal in H ∞ . Then ord(f, m) = ∞ for every f ∈ ki(I) and m ∈ Z(I).

  ki(M ) = I P (m), H ∞ . Since • P (m) is a proper subset of M (H ∞ ) if and only if m ∈ M (H ∞ ) \ D, and • P (z 0 ) = D for every z 0 ∈ D, Proof. First we note that for w ∈ C with Re w ≤ 0, |1 -e w | = [0,w] e ζ dζ ≤ |w|.

|z|≤1- 1

 1 /k |1 -g 1/n k (z)| < 1 2 k, which is possible by Lemma 4.7 above. Then the infinite producth = ∞ k=1 g 1/n kconverges locally uniformly to a function h ∈ H ∞ . Clearly, h ∈ ki(P ).

Observation 4 . 10 .

 410 ki(SH ∞ ) = {0}, where S is the atomic inner functionS(z) = exp -1 + z 1 -z , z ∈ D.Proof. If f ∈ ki(SH ∞ ), f ≡ 0, then, for every n, S) = h n S n .

Observation 4 . 11 .

 411 Let I be a countably generated free prime ideal in H ∞ . Then ki(I) = I.Proof. By[START_REF] Gorkin | Countably generated prime ideals in H ∞[END_REF][START_REF] Mortini | Factorization for bounded analytic functions in the unit disk and an application to prime ideals[END_REF], I is generated by {S α (z) 1/n : n ∈ N}, whereS α (z) = exp -α + z α -z for some α ∈ T . But I = {h S 1/n α : n ∈ N, h ∈ H ∞ }. Hence, given n ∈ N, every f = hS1/p α ∈ I can be factorized as f = h S 1/(pn) α . . . S 1/(pn) α n-times . So f ∈ I n .

  is straightforward to check that Φ k is an injective homomorphism. Now F is a C-vector space which is spanned by a countable number of elements:namely m + M , where m is any monomial in C[z 1 , z 2 , z 3 , • • • ]. Hence its subspace, namely Φ k (C(z k )) is also spanned by a countable sequence of vectors, say {v n : n ∈ N}. As these v n are in Φ k (C(z k )), there exist r n ∈ C(z k ) such that Φ k (r n ) = v n . But then C(z k ) will be spanned by the r n

Suppose now that P is a prime ideal such that ki(M ) P ⊆ M . Let f ∈ P \ ki(M ). Then there exists d ∈ H(D) \ M and q ∈ M such that f = q • d and o(q) < ∞. But as d ∈ M and hence not in P either, we have q ∈ P . By Lemma 2.6, P = M . This completes the proof of Proposition 2.7.

Example 2.8. The aim of this example is to contrast the results from Theorem 2.5 and Proposition 2.7. If we call

then in Theorem 2.5 we have shown that A ⊆ ki(M ) ⊆ B whenever M is a maximal free ideal in H(D). We will show that (1) there exists an element f ∈ B \ ki(M ), showing that B = ki(M );

(2) there exists an element g ∈ ki(M ) \ A, showing that A = ki(M ).

To this end, first note that A and B are not ideals. In fact, concerning A, just consider f ∈ A and multiply f by a function with simple zeros outside Z(f ). Concerning B, let f ∈ M have simple zeros (for the existence, see Lemma 2.4). Now let g 1 , g 2 be in

Hence we conclude that A ⊂ ki(M ) ⊂ B, the inclusions being strict.

Sufficient conditions for ki(I) = I in uniform algebras

We recall the definition of a uniform algebra.

R ⊆ C(X; C), the algebra of complex-valued continuous functions on X, and R separates the points of X, that is, for every x, y ∈ X with x = y, there exists f ∈ R such that f (x) = f (y), (3) the constant function 1 ∈ R, (4) R is a closed subalgebra of C(X; C), where the latter is endowed with the usual supremum norm • ∞ .

We also recall below the following two well-known results from the theory of uniform algebras; see [2, Lemma 1.6.3, p.72-73 and Theorem 1.6.5, p.74].

Both of these results involve the notion of an approximate identity, given below.

we conclude that ki(M ) = {0} if and only if M = M z 0 .

It is easily seen and well-known that I P (m), H ∞ is a closed prime ideal.

Using Izuchi's [START_REF] Izuchi | Factorization of Blaschke products[END_REF] extensions of Hoffman's factorization theorems, we also obtain the following result:

that is, E is the zero-set of the ideal

Suppose that E is a union of Gleason parts. Then

see [START_REF] Izuchi | Factorization of Blaschke products[END_REF]. This yields the assertion.

Corollary 4.6. Let I be a non-maximal closed prime ideal in H ∞ .Then ki(I) = I.

Proof. By [START_REF] Gorkin | Alling's conjecture on closed prime ideals in H ∞[END_REF], every non-maximal closed prime ideal in H ∞ has the form

, where E = Z(I) is a union of Gleason parts.

We will now collect a few technical results, which will be used in the proof of Proposition 4.8 below.

Let g ∈ H ∞ be zero-free. Suppose that g ∞ ≤ 1. Then there exists a positive measure µ on the unit circle T such that

If ξ = e it , this µ has the form

where µ s is singular with respect to Lebesgue measure on T.

The following result corresponds to assertion (1.1) in [16, p. 170], given there without proof.