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This paper considers the evaluation step in a decision-making process that follows
decision-making goals setting, feasible alternatives and attributes or criteria that char-
acterize them determination steps. Evaluation step must establish a model or algorithm
to evaluate alternatives taking into account their performances with regard to criteria
as well as decision makers or stakeholders preferences. Though this problem is rather a
classic one, researches related to evaluation model construction continue to be active to
find models that cope with more realities or that fit well how human beings behave in
group and proceed when facing the problem of choosing, ranking or sorting alternatives
or options. The purpose of this paper is to construct an evaluation model that integrate
the performances of alternatives with regard to attributes or criteria and decision makers
or agents opinions with regard to the importance to assign to each criterion in order to
obtain a value function. As any decision problem is almost always a matter of trade-
off, among attributes characterizing alternatives there will be those acting toward the
achievement of decision makers goal (benefit) and those that decision makers would like
to reduce as much as possible (cost); we will designate the first ones as positive attributes
and the later ones as negative attributes. The process of dividing attributes into positive
attributes and negative attributes is beyond the scope of this paper and this partition
will be considered as a part of the problem specification. The model is constructed in
two steps: firstly, satisfiability (selectability and rejectability) measures or functions are
obtained for each alternative using attributes values (positive attributes will contribute
to selectability measure whereas negative ones are used in the derivation of rejectability
measure) and agents opinions in the framework of satisficing game theory and secondly
a value function is built on that measures. Agents opinions with regard to attributes
will be expressed locally by weighting them by category (positive/negative).

Keywords: Evaluation model; multiattributes–multiagents decision making; satisficing
game theory; value function.

1. Introduction and Statement of the Problem

Decision making is a daily activity of humans, individually or collectively, that can 
be more or less complex. Decision making is, in general, a process with many steps



such as formulating the decision goal or objective, identifying attributes through 
which to measure the performance of potential alternatives that can respond to the 
decision goal and making recommendation regarding the alternatives to be imple-
mented so that the results will be closed as much as possible to the decision goal. 
The final recommendation scheme of a decision process can be reduced to three main 
processes: choosing (this is a relative evaluation that finds a subset of alternatives 
that satisfy the decision goal), ranking (relative evaluation that ranks alternatives 
from the best to the worst with regard to the decision goal) or sorting (an absolute 
evaluation that assigns alternatives to some predefined categories according to a 
prescribed norm regarding the decision goal). The construction of an evaluation 
model is then an important step in the decision process that is often carried by an 
expert known in the literature as the analyst (see Ref. 4); this step is the main pur-
pose of this paper: we suppose that the upstream processes have been considered and 
we are in possession of the set of alternatives, the set of attributes and their values 
for each alternative as well as the decision goal; our duty is to construct an 
evaluation model for the final recommendation purpose. The remainder aspect of the 
problem is that the decision process involves most of the time many decision makers 
or agents (stakeholders) with possible conflicting points of view that must be taken 
into account by the analyst who is in charge of constructing the evaluation model. 
The context in which an evaluation model must be constructed in this paper is given 
by the following definition.

Definition 1.1. The multiattributes multiagents decision-making problem con-
sidered here consists in:

• a discrete set U of n alternatives (actions or decisions),

U = {u1, u2, . . . , un}; (1)

• a discrete set A of m attributes or criteria that characterize each alternative,

A = {a1, a2, . . . , am}; (2)

• a performance function (or matrix), ρ : U × A → D where D = ×ai∈ADi and
Di is the domain of attribute ai (the set of possible values that attribute ai is
allowed to take), ρ(u, ai) ∈ Di, ∀ u ∈ U, ai ∈ A;

• a set of d decision makers or agents that will express their preferences;
• the purpose of the evaluation model is to be used to choose the best (in some

sense) alternatives, to rank the set of alternatives from the best to the worst or
to sort them according to the decision goal.

Remark 1.1. ρ(u, a) can be a numerical value or an ordinal evaluation (qualita-
tive value) such as good, bad, medium, etc. Here we consider only numerical value;
ordinal values (if they exist) are translated to numerical values by some consistent
procedure and the domain of the attribute i is defined by Di = [ρi

min, ρ
i
max] where

lower and upper values ρi
min and ρi

max are supplied by decision maker(s). If decision



makers are not able to supply these values, we consider that ρi
min = minu∈Uρ(u, ai)

and ρi
max = maxu∈Uρ(u, ai).

Such a decision-making problem can represent practical situations in many
domains such as management, engineering, economics, social, etc., see for instance
Refs. 4, 10, 12, 15, 20 and references therein. In the rapidly expanding domain of
e-commerce, researchers are designing negotiation algorithms using agent technol-
ogy that allow consumers to negotiate over multiple attributes of a product besides
the price (see for instance Ref. 8). The different approaches that deal with eval-
uation process modeling for decision problems as specified by the previous defini-
tion in the literature can be regrouped into two main categories briefly recalled
below.

• Evaluation models based on value function(s): roughly speaking, these techniques
consider a numerical function π defined on the set U such that

π(u) ≥ π(v) ⇔ u � v, (3)

where “u � v” stands for “u is at least as good, with regard to decision goal,
as v” leading to a weak order. The evaluation modeling process then consists in
building such a function based on the performance function and decision makers
preference (obtained in general by answering some particular questions of the
analyst); there are many techniques employed in the literature for constructing
such a value function where a number of them suppose a particular form for
π such as expected utility or additive value function (see Refs. 4, 10, 20 and
references therein).

• Evaluation models allowing incomparability and/or intransitivity known in the
literature as outranking methods such as the family of ELECTRE procedures
and PROMETHEE techniques (see Refs. 4, 10, 20).

The majority of techniques to construct an evaluation model previously evoked do
not make difference between attributes that act in the sense of decision goal achieve-
ment (positive attributes) and those that act against the goal achievement (negative
attributes); we argue that this situation is common in a decision-making problem
(decision-making is a matter of tradeoff). We do think that humans, to judge a com-
plex situation or an alternative, will first balance its positive attributes vs its negative
attributes in order to see if this situation or alternative is feasible before possibly com-
paring it to other situations or alternatives; the approach considered in this paper
falls in this way of thinking. In this paper, we consider a point of view similar to
evaluation models based on value function defined previously where the value func-
tion will be constructed using a pair of measures known as satisfiability measures or
functions derived, for each alternative, from its performance function and decision
makers preferences expressed over the attributes instead of alternatives in the frame-
work of satisficing game theory. Notice that concepts from classical game theory have
been also considered to solve multiattributes multiagents decision-making problems



in domains like e-commerce (see for instance Refs. 3, 5, 21). The remainder of this 
paper is organized as follows: in Sec. 2, the satisficing game theory is briefly pre-
sented (only the elements that are relevant to our objective will be presented); 
Sec. 3 is the core of this paper and is concerned by formulating a multiattributes 
multiagents decision-making problem as a satisficing game. Finally in Sec. 4, we 
consider an example to show potential applicability of this approach.

2. Satisficing Game Theory

This section is devoted to the presentation of the basis of satisficing game the-
ory; the materials (satisficing set, equilibrium set, etc.) presented in this section 
are adapted or come from Ref. 16. The underlying philosophy of most of the tech-
niques used in the literature to construct the evaluation model is the superlative 
rationality, looking for the best or optimizing; all the alternatives must be compared 
against each other. But the superlative rationality paradigm is not necessarily the 
way humans evaluate alternatives (and maybe not the best one). Most of the time 
humans content themselves with alternatives that are just “good enough or satisfic-
ing.” The concept of satisficing, instead of the idea behind the H. Simon’s bounded 
rationality (see Ref. 14) where the acceptation of a suboptimal solution is only 
due to the limited cognitive capabilities of decision makers and the imperfection of 
information (if one can optimize it will), is considered here as a decision-making 
paradigm. This concept of being good enough allows to have always a nonempty 
solutions set because one can adjust its aspiration level to obtain at least an alter-
native that is satisficing. On the other hand, decision makers more probably tend 
to classify alternatives as good enough or not good enough in terms of their positive 
attributes (benefit) and their negative attributes (cost) with regard to the decision 
goal instead of ranking them with regard to each other. For instance, to evaluate a 
number of cars from which we wish to select one (decision objective), we often make 
a list of positive attributes (driving comfort, speed, robustness, etc.) and a list of 
negative attributes (price, gas consumption per kilometer, maintainability, etc.) of 
each car and then make a list of cars for which positive attributes “exceed” negative 
attributes in some sense. This way of evaluation falls into the framework of prax-
eology or the study of theory of practical activity (the science of efficient action). 
Here decision maker(s), instead of looking for the best options or alternatives, look 
for the satisficing alternatives. Satisficing is a term that refers to a decision-making 
strategy where options, units, or alternatives are selected which are “good enough” 
instead of being the best.16 Let us consider a universe U of alternatives; then for 
each alternative u ∈ U, a selectability measure or function pS(u) and  a rejectability 
measure function pR(u) are defined to measure the degree to which u works towards 
success in achieving the decision maker goal and costs associated with this alterna-
tive, respectively. This pair of measures called satisfiability functions must have the 
mathematical structure of probability16: they are nonnegative and sum to one on 
U. In fact, the probability structure requirement for satisfiability functions in this



paper is not rigorously necessary as we do not consider that decision makers influ-
ence each other (see later). When decision makers can interact, this requirement
become necessary in order to compute easily the joint satisfiability functions using
praxeic networks (see Refs. 1, 2), a graphical tool that works exactly as Bayesian
networks.7,9 The following definition then gives the set of alternatives arguable to
be “good enough” because for these alternatives, the “benefit” expressed by the
function pS exceeds the cost expressed by the function pR with regard to an index
of caution q.

Definition 2.1. (See Ref. 16). The satisficing set Sq ⊆ U is the set of alternatives
defined by the following equation

Sq = {u ∈ U : ps(u) ≥ qpr(u)}. (4)

The caution index q can be used to adjust the aspiration level: small values of this
index will lead to lot of alternatives being declared satisficing whereas large values
of q will reduce the number of satisficing alternatives. A sensitivity analysis can be
carried up to determine the value qmin below which all the alternatives of U will be
declared satisficing and a value qmax above which no alternative will be satisficing.
For all alternatives of U to be declared satisficing the following inequality (5)

ps(u) ≥ qpr(u) ∀ u ∈ U ⇔ q ≤ qmin = min
u∈U

(
ps(u)
pr(u)

)
, (5)

must be verified so that for such an indices of caution q we have Eq. (6)

Σq = U . (6)

On the contrary, there is no satisficing alternative, that is

Σq = ∅, (7)

if and only if the following inequality (8)

ps(u) < qpr(u) ∀ u ∈ U ⇔ q > qmax = max
u∈U

(
ps(u)
pr(u)

)
, (8)

is verified. Finally, if the index of caution verifies q ∈ [qmin, qmax] then we have
Eq. (9)

Σq ⊆ U. (9)

But for a satisficing alternative, there can exist other satisficing alternatives
that are better (having more selectability and at most the same rejectability or
having less rejectability and at least the same selectability) than the previous one;
it is obvious that in this case any rational decision maker will prefer the later
alternatives. So the interesting set is that containing satisficing alternatives for
which there are no better alternatives: this is the satisficing equilibrium set ES

q .
To define this set, let us define first, for any alternative u ∈ U , the set B(u) of
alternatives that are strictly better than u16

B(u) = BS(u) ∪ BR(u), (10)



where Bs(u) and BR(u) are defined by Eqs. (11) 

Bs(u) = {v EU: PR(v) < PR(u) and Ps(v) ~ Ps(u)}, 

BR(u) = {v EU: PR(v) :S PR(u) and Ps(v) > Ps(u)}. 
(11) 

The equilibrium set E (alternatives for which there a re no strictly better alterna
tives) is then defined by Eq. (12) 

E = {u EU: B(u) = 0}, 

and the satisficing equilibrium set, Ef is finally given by Eq. (13) 

E; = En Sq. 

(12) 

(13) 

Figure 1 shows the satisficing set I:q (Fig. l (a)) and for a given alternative u 
the space where lay the set B(u) of alternatives that dominate it (Fig. l(b)) in the 
plane (pR , Ps) . 

R emark 2.1. Notice that the equilibrium set E cannot be empty otherwise there 
would be at least an alternative laying in the colored space of Fig. l(b) for any 
alternative u and this is impossible; as the satisficing set I:q can always be rendered 
nonempty by managing the index of caution q, one can always find satificing equi
libria for any problem respecting then the spirit of satisficing game theory that is 
any problem can have a solution as soon as decision makers are disposed to revise 
their aspiration level. 

In Sec. 3, we will establish a method that puts the problem of mult iattributes
multiagents decision-making as defined in the introduction section into the satis
ficing game theory framework by setting up a systematic method to compute 
satisfiability functions ps(u) and PR(u) for each alternative u from its attributes 
performance and decision makers preferences. 

Ps 

B(u) 

ps(u) ------------•--: u 

' 

(a) (b) 

Fig. 1. Satisficing set Eq and dominating alternatives set B(u) for alternative u in the plan 
(FR , PS) , 



3. Satisficing Evaluation Model

To establish the model of evaluation of a multiattributes–multiagents decision-
making problem in the framework of satisficing game theory, let us make a parallel
with the evaluation of production units. A production unit is a system that uses
inputs (or resources) to produce outputs (goods or services). Defining an evaluation
model of production units problem as a satisficing game is straightforward because
the rejectability function will be related to inputs or resource consumption (negative
attributes) and the selectability function will be a function of output performances
(positive attributes); this approach has been used by the author in Refs. 17 and 18
to establish a performance evaluation procedure of a group of homogeneous produc-
tion units. The negative attributes (resources) can be interpreted as the price to pay
to obtain the positive attributes (goods or deliveries); we do think that this inter-
pretation hold for a multicriteria decision problem because there will be always
some attributes that work toward the achievement of the decision goal (positive
attributes) and those that work against this achievement (negative attributes). We
can then interpret each alternative as a production system that consume negative
attributes to produce positive ones. The distinction between negative attributes
and positive attributes will probably depend on the psychology of decision makers
instead of a formal procedure. This consideration is beyond the scope of this paper;
we suppose that this distinction has been done before tackling the construction of
the evaluation model. The approach of decision-making that distinguishes positive
and negative attributes is widely used in decision-making literature; for instance,
in Ref. 11 the benefits, opportunities, costs and risks approach clearly lay in posi-
tive/negative attributes approach where benefits and opportunities are related with
positive attributes and costs and risks to negative ones. We suppose then that the
attributes set A is partitioned as A = Ap ∪An and Ap ∩An = ∅ where Ap contains
the positive attributes and An is the subset of negative attributes. The following
definition gives a formal characterization of this distinction.

Definition 3.1. Let us define by µu(a) a numerical function that measures the
degree to which the attribute a works toward the realization of the decision goal
by the alternative u; then for positive attributes a and b we have

ρ(u, a) ≥ ρ(u, b) ⇒ µu(a) ≥ µu(b), ∀ u, (14)

and for negative attributes a and b the following inequality

ρ(u, a) ≥ ρ(u, b) ⇒ µu(a) ≤ µu(b), ∀ u, (15)

holds.

For instance if the decision goal is to buy a car, we will pay a price (the cost
of the car) and the gas consumption to obtain driving comfort, speed, acceleration,
etc.; so that, for us price and gas consumption per kilometer will constitute the
negative attributes whereas the acceleration, the driving comfort and the speed
will represent positive attributes; another decision maker may consider another



distinction. In the following paragraphs, we will establish a systematic procedure to 
compute satisfiability functions using attributes performances and decision makers 
or agents preferences expressed by weighting attributes.

3.1. Evaluation model

3.1.1. Agents preferences

The fundamental characteristic of multiagents decision-making is the possible con-
flicting interests among agents in terms of importance to assign to each negative
attribute as well as to each positive attribute (we suppose that decision makers
agree on the partition of the attributes set into positive/negative attributes). Our
purpose in this paper is to derive a method that integrates different point of view
of the agents expressed through weights assigned to attributes. We assume that d

agents express their preferences (concerns) with regard to negative attributes and
positive attributes through following weights (αkj and βkj) defined on the same
scale for each class of attributes; but the scale does not need to be the same for the
negative attributes and positive attributes:

• αkj (k = 1, 2, . . . , d; aj ∈ Ap) is the weight assigned by the agent k to the positive
attribute aj ∈ Ap; the more, the attribute aj works toward achieving the decision
goal (selectability), in the view of the agent k, the more important is the weight
αkj ;

• βkj (k = 1, 2, . . . , d; aj ∈ An) is the weight assigned by the agent k to the negative
attribute aj ∈ An; the more, the attribute aj works against the achievement of
the decision goal (rejectability), in the view of the agent k, the more important
is the weight βkj .

We do think that it is easier to ask the agents to compare attributes in order
to express their preferences rather than to pair-wise compare alternatives as it is
often done in multicriteria decision literature. These weights are then aggregated to
define the selectability weight ωS

j and the rejectability weight ωR
j for each attribute

aj ∈ A by taking the mean value over agents’ preference as given by Eq. (16)

ωS
j =

∑d
k=1 αkj∑

uj∈Ap

∑d
k=1 αkj

and ωR
j =

∑d
k=1 βkj∑

uj∈An

∑d
k=1 βkj

. (16)

The weights ωS
j and ωR

j measure the aggregate strength that agents attach to the
positive attribute aj ∈ Ap and the negative attribute aj ∈ An, respectively, with
regard to other items of the same category; let us denote by ωS and ωR the following
row vectors (see Eq. (17))

ωS = [ωS
1 , ωS

2 , . . . , ωS
|Ap|],

ωR = [ωR
1 , ωR

2 , . . . , ωR
|An|],

(17)

where |M | is the cardinal, the number of elements, of the set M .



Derivation of weights αkj and βkj by decision makers may be not easy in practice
mainly for those decision makers that are not familiar with decision analysis sub-
jects. To overcome such possible difficulty, the analyst may set up a procedure based,
for instance, on analytic hierarchy process (AHP) approach (see Ref. 11) where
each decision maker will be asked to choose, for each category (positive/negative)
of attributes, a pivot attribute and compare other attributes to it using AHP scale
and then the analyst will deduce the concerned weight using this comparison (see
Refs. 18 and 19 for detail formulation of this idea). Furthermore, by using web tech-
nology, this way of doing permit to possibly have decision makers be remotely and
geographically distributed; a decision maker that is connected to gives his/her opin-
ion will be presented only with attributes and their description without knowing
neither their values nor the alternatives.

The multiagents decision-making approach considered in this paper differs from
the multiagent component of the original theory of satisficing game.16 Indeed in
this paper, the agents or decision makers are implicitly supposed to be indepen-
dent and the model just aggregate their opinions whereas in the original theory
dependence is widely considered to express some social behavior of agents such
altruism or aggressiveness, see for instance Refs. 1, 2 and 16. In this case, the deci-
sion problem are formulated in terms of praxeic networks that work like Bayesian
networks to compute the joint satisfiability functions; this explain in part the need
for satisfiability mass functions to satisfy a mathematical structure of probabil-
ity. Rigorously speaking, for our approach here, there is no need for satisfiability
functions to satisfy probabilistic structure but as this approach can be thought as
a particular case of that of dependence, we maintain this constraint that do not
influence the result. As a Bayesian Network is a direct acyclic graph that repre-
sents some probabilistic dependence (correlation, causality, . . . ) between variables
of a given knowledge domain, a praxeic network is a direct acyclic graph that rep-
resents influence between personas of a group of decision makers. Each decision
makers has two persona: selectability that works towards achieving goals with-
out caring about resources consumption and rejectability that tends to preserve
resources without caring about goals achievement. But the persona of a given deci-
sion maker may depend on the behavior of other decision makers and this interaction
can be represented by a direct acyclic graph (a praxeic network), see for instance
Refs. 1, 2 and 16, with a joint interdependence function pSR; the joint selectability
and rejectability measures are then obtained by marginalization of the interdepen-
dence function. Concerning our evaluation problem here, one can imagine possible
dependency; in this case, we can simplify the situation by constructing two praxeic
networks to derive separately the selectability measure pS(u) and the rejectabil-
ity measure pR(u) given the particular features of this problem (negative/positive
attributes distinction). This can be done in the framework of Bayesian networks
by specifying a conditional selectability table and a conditional rejectability table
to measure the strength of interaction represented by praxeic networks, as well as
the satisfiability measures for decision makers that are not influenced; this later



process can be carried up by the approach presented in this paper; then using infer-
ence algorithms of Bayesian networks, see for instance Ref. 7, ultimate satisfiability 
measures pS(u) and  pR(u) will be determined.

3.1.2. Normalized performance function

The normalization of the original performance function is necessary before weight-
ing because attributes performances are not, in general, expressed in the same units 
(money, memory capacity, human resources, surface, machines, qualitative, etc.). 
Let us then define the normalized column vectors (utilities) ρp

S(u) of length  |Ap|
of the performance function corresponding to the positive attributes and ρn

R(u) of  
length |An| corresponding to the negative attributes as shown by Eq. (18)

ρS
n(u) = [ρS

n(u, a1), ρS
n(u, a2), . . . , ρS

n(u, a|Ap|)]
T,

ρR
n (u) = [ρR

n (u, a1), ρR
n (u, a2), . . . , ρR

n (u, a|An|)]T,
(18)

where xT stands for the transpose of the vector x. There is not a unique way to
define ρ×n (u, ai), × = S or R; but as the utilities are unique only up to a positive
affine transformation (see for instance Ref. 13), to ensure comparability of utilities,
both the scale and the zero point need to be chosen, so we consider the following
normalization scheme, Eq. (19)

ρ×n (u, ai) =
ρ(u, ai) − ρi

min

ρi
max − ρi

min

. (19)

The next paragraph gives necessary materials that define the evaluation model of
a multiattributes multiagents decision-making problem as a satisficing game.

3.1.3. Satisfiability functions

The following definition gives the data that define a multiattributes–multiagents
decision-making problem as a satisficing game and by which evaluation of alterna-
tives as well as sensitivity analysis can be considered.

Definition 3.2. The satisfiability functions pS and pR are defined by

pS(u) =
ωSρS

n(u)∑
x∈U ωSρS

n(x)

pR(u) =
ωRρR

n (u)∑
x∈U ωRρR

n (x)
, ∀ u ∈ U ;

(20)

the set of satisficing alternatives Sq at the caution index q is defined by

Sq = {u ∈ U : pS(u) ≥ qpR(u)}, (21)

and the satisficing equilibrium alternatives set ES
q is defined by

ES
q = Sq ∩ E with E = {u ∈ U : B(u) = ∅}, (22)

where B(u) is defined by Eq. (10).



It is worth noticing that pS and pR have probability structure on U and thus
fall into satisficing game theoretic framework. One may wonder if this approach is
consistent: that is, if there is an alternative which negative attributes performances
are more important and which positive attributes performances are less important
than the corresponding performances for another alternative, is there a chance that
the former alternative be declared as a satisficing equilibrium one? Let us consider
the following definition that formalizes this idea.

Definition 3.3. An alternative u ∈ U dominates (is preferred to or is better
than) an alternative v ∈ U , noted u � v, if and only if the following inequalities

ρ(u, ai) ≥ ρ(v, ai), ∀ ai ∈ Ap and

ρ(u, aj) ≤ ρ(v, aj), ∀ aj ∈ An,
(23)

hold with at least one strict inequality.

The following theorem establishes the consistency of the approach established in
this paper: a dominated alternative cannot be declared as a satisficing equilibrium
alternative.

Theorem 3.1. Let u and v belong to U. Then u � v ⇒ u ∈ B(v) and so v /∈ E.

Proof. u � v ⇒ ρS
n(u, ai) ≥ ρS

n(v, ai) ≥ 0, ∀ai ∈ Ap and 0 ≤ ρR
n (u, aj) ≤

ρR
n (v, aj), ∀aj ∈ An with at least one strict inequality and as ωS

l ≥ 0, ωR
l ≥ 0,

∀l we have ωSρS
n(u) ≥ ωSρS

n(v) and ωRρR
n (u) ≤ ωRρR

n (v) and finally pS(u) ≥ pS(v)
and pR(u) ≤ pR(v) with at least one strict inequality so u ∈ B(v) that is B(v) = ∅

and v is not an equilibrium.

3.2. Recommendation procedure and sensitivity analysis

As stated in the introduction section, we consider the recommendation process to
be reduced to choosing, ranking or sorting alternatives in order to achieve decision
makers goals.

3.2.1. Choosing and ranking

Choosing and ranking are relative evaluation operations4 over the alternatives set
U . Based on the previously derived materials, a value function π(u), ∀ u ∈ U can
be defined as a function of the satisfiability measures pS(u) and pr(u), see Eq. (24)

π(u) = π (pS(u), pR(u)) (24)

which can take particular form depending on the decision goal. Here is some of
these possible forms (see Ref. 16):

• maximally discriminant, π(u) = pS(u) − qpr(u), gives the priority to alterna-
tives with large difference between the selectability measure and the rejectability
measure given the index of caution;



• maximum caution index, π(u) = pS(u)
pr(u) , considers alternatives with the largest

index of caution to have priority;
• most selectable, π(u) = pS(u) or least rejectable, π(u) = 1

pr(u) , give priority to
alternatives with the largest selectability or lowest rejectability.

The selected subset Us that responds to the decision goal is then given by

Us =

{
u : u = arg max

v∈ES
q

{π(v)}
}

, (25)

and the ranking process is carried by the following relationship, Eq. (26)

u � v ⇔ π(u) ≥ π(v). (26)

3.2.2. Sorting

Sorting is an absolute operation4 that requires defining norms and categories; dif-
ferent norms can be derived by using the value function π(u) defined in the previous
paragraph by setting a threshold on it for instance and defining categories based
on these thresholds. For instance, in the case π(u) = ps(u) − qpr(u), two natural
partitions of U is given by

C1 = Sq = {u ∈ U : π(u) ≥ 0} and C2 = U − C1. (27)

Besides this possibility of sorting, the satisficing game approach leads to a nat-
ural categorization of the alternatives set U into four subsets, namely ES

q , E −ES
q ,

Sq−ES
q , and U−Sq∪E. In terms of preference, the subset ES

q is obviously preferred
to the rest; it contains alternatives arguable to be “good enough” (their selectability
exceeds their rejectability and there are no alternatives that are better than them)
and the subset U − Sq ∪ E contains completely irrelevant alternatives (they are
not satisficing alternatives nor equilibrium); there is no obvious conclusion for the
subsets E −ES

q and Sq −ES
q and a sensitivity analysis can be done for these alter-

natives. Notice that the set-theoretic breakdown considered here is different from
that considered by Ref. 16 in terms of gratification (alternatives for which pS > 1

n

and pR < 1
n ), ambivalence (alternatives for which pS > 1

n and pR > 1
n ), dubiety

(alternatives for which pS < 1
n and pR < 1

n ), and relief (alternatives for which
pS < 1

n and pR > 1
n ) that is related to the uniform distribution, ps(u) = pr(u) = 1

n

where n is the number of alternatives, of the satisfiability mass functions.

3.2.3. Sensitivity analysis

Before considering the sensitivity analysis, let us represent all the alternatives in a
plane (pR, pS) using their selectability and rejectability measures as their coordi-
nates as shown in Fig. 2; then the satisficing alternatives, that is the subset Sq, lay
above the line (OB) characterized by the equation pS−qpR = 0 and the equilibrium



Fig. 2. Different subsets obtained by satisficing evaluation model. 

set E constitutes a border of the universe U in the plane; indeed, if we joint all the 
points that represent the equilibrium alternatives in the plane (pR,Ps) to form a 
curve (ABC) where B is the intersection of the satisficing limit line (OB) and the 
equilibrium border, then all other alternatives will lay below that curve (see Fig. 2). 
The border E is fix, but the position of B can vary by varying the caution index 
q. The portion (AB) of the equilibrium curve contains the satisficing equilibrium 
set Er The alternatives laying in the region situated between (AB) and (OB) are 
satisficing, but not equilibrium (the subset Sq - Ef) and those of the portion (BC) 
are equilibrium, but not satisficing (the subset E - Ef). 

A sensitivity analysis for negotiation purpose for instance can be engaged for 
the alternatives of the subsets E - Ef and Sq - Ef. 

• The alternatives of the set E - Ef are equilibrium alternatives but not sat
isficing; for an alternative u of this subset, one can do a sensitivity analy
sis to determine the way to render it satisficing by computing the amount 
by which its positive attributes performances must be increased and/or the 
amount by which its negative attributes performances must be reduced in 
order to be satisficing if other alternatives attributes performances remain 
unchanged. To do so, one can compute sensitivity parameters J(u, ai) ~ 0, 
Vai E Ap, and -y(u,ai) ~ 0, \/ai E An, such that, if one replaces p~(u,ai) and 
p:(u, ai) by p~(u, ai) + 6(u, Oi) and p:(u, Oi) - -y(u, ai) , respectively, with condi
t ions (28) 

0 < p~(u, ai) + 6(u ,ai)::; 1, 

0 < p:(u, ai) - -y(u, ai) ::; 1, \/ai, 
(28) 



then one obtains condition (29)

pS(u) ≥ qpR(u). (29)

One can find these parameters by solving the following nonlinear program
(30)–(33):

min
δ(u), γ(u)

{0} (30)

0 < ρS
n(u, ai) + δ(u, ai) ≤ 1, ∀ai ∈ Ap (31)

0 < ρR
n (u, ai) − γ(u, ai) ≤ 1, ∀ai ∈ An (32)

CS(δ(u)) ≥ qCR(γ(u)), (33)

where

CS(δ(u)) =
ωS(ρS

n(u) + δ(u))
(
∑

v∈U,v �=uωSρS
n(v)) + ωS(ρS

n(u) + δ(u))
,

CR(γ(u)) =
ωR(ρR

n (u) − γ(u))
(
∑

v∈U,v �=uωRρR
n (v)) + ωR(ρR

n (u) − γ(u))
;

(34)

δ(u) and γ(u) are column vectors of dimensions |Ap| and |An| with entries equal
to δ(u, ai), ai ∈ Ap and γ(u, ai), ai ∈ An, respectively. Notice that, other con-
straints can be added to take into account practical requirements such as uniform
distribution of effort for a class of attributes for instance or on the contrary con-
centrating the effort on some particular attributes.

• The alternatives of the subset Sq − ES
q are satisficing but not equilibrium; that

is there exists alternatives that are better than them (∃ u∗ ∈ B(u)) and this
information can be used to identify weak points of u. A procedure similar to that
presented in the previous point can be used to look for how u can be rendered
as good as u∗, that is, to determine parameters δ(u, u∗) and γ(u, u∗) defined as
δ(u) and γ(u) of the previous point to have conditions of Eq. (35)

pS(u) = pS(u∗) and pR(u) = pR(u∗), (35)

that leads to linear constraints (36)

ωSδ(u, u∗) =
pS(u∗)(

∑
v∈U, v �=uωSρS

n(v)) − ωSρS
n(u)

1 − pS(u∗)
,

ωRγ(u, u∗) = −pR(u∗)(
∑

v∈U, v �=uωRρR
n (v)) − ωRρR

n (u)
1 − pR(u∗)

;

(36)

to be added to conditions similar to (28) in the linear programming problem to
be solved to obtain δ(u, u∗) and γ(u, u∗).



In Sec. 4, we will apply the approach established so fare to a real world problem
to aid selecting a car that must have some characteristics.

4. Example of Application

This application is taken from Ref. 4; the decision goal is to choose a car with
sportive characteristics that will be used in everyday life by somebody (a student)
who cannot afford buying an expensive car. A list of 14 possible cars with attributes
considered to be relevant to the decision goal by the decision maker has been estab-
lished (see the following Table 1); the attributes are: Cost (the price of the vehicle
measured in euros); Accel (the acceleration performance measured by the time in
seconds needed to cover a distance of 1 km starting from rest); Pick up (the sup-
pleness performance of the engine in urban traffic measured by the time in seconds
needed for covering 1 km when starting in fifth gear at 40 km/h); Brakes and Road-
h (road holding) are related to the safety and are measured by ordinal evaluations
defined as: serious deficiency (0), below average (1), average (2), above average (3),
exceptional (4); numbers in brackets are numerical conversion done by the decision
maker. The values of these attributes in Table 1 are obtained by taking a mean
from different sources.

To use the method established in this paper, we interpret the Cost as the neg-
ative attribute and other characteristics as positive attributes (we pay the price
to obtain acceleration, pick up and safety performances) so that the data used for
“Accel” and “Pick up” in the calculation of the selectability function pS are the
inverse of those given in Table 1. The following Table 2 shows the normalized per-
formance function and the satisfiability functions (the two last columns) where we
suppose that the decision maker considers all the positive attributes to have the
same importance.

Table 1. Performance function of 14 cars to be analyzed.

No. Cost Accel Pick up Brakes Road-h

01 18342 30.7 37.2 2.33 3
02 15335 30.2 41.6 2 2.5
03 16973 29 34.9 2.66 2.5
04 15460 30.4 35.8 1.66 1.5
05 15131 29.7 35.6 1.66 1.75

06 13841 30.8 36.5 1.33 2
07 18971 28 35.6 2.33 2
08 18319 28.9 35.3 1.66 2
09 19800 29.4 34.7 2 1.75
10 16966 30 37.7 2.33 3.25
11 17537 28.3 34.8 2.33 2.75
12 15980 29.6 35.3 2.33 2.75
13 17219 30.2 36.9 1.66 1.25
14 21334 28.9 36.7 2 2.25



Table 2. Normalized performance function and satisfiability functions.

No. Cost Accel Pick up Brakes Road-h pS pR

01 0.6007 0.0326 0.5948 0.7519 0.8750 0.0741 0.0949
02 0.1994 0.1987 0.0000 0.5038 0.6250 0.0436 0.0315
03 0.4180 0.6207 0.9654 1.0000 0.6250 0.1056 0.0660
04 0.2161 0.1316 0.8148 0.2481 0.1250 0.0434 0.0341
05 0.1722 0.3704 0.8476 0.2481 0.2500 0.0564 0.0272
06 0.0000 0.0000 0.7027 0.0000 0.3750 0.0354 0.0000
07 0.6846 1.0000 0.8476 0.7519 0.3750 0.0978 0.1082
08 0.5976 0.6574 0.8975 0.2481 0.3750 0.0716 0.0944

09 0.7953 0.4762 1.0000 0.5038 0.2500 0.0733 0.1256
10 0.4171 0.2667 0.5202 0.7519 1.0000 0.0835 0.0659
11 0.4933 0.8834 0.9827 0.7519 0.7500 0.1107 0.0779
12 0.2855 0.4054 0.8975 0.7519 0.7500 0.0922 0.0451
13 0.4508 0.1987 0.6405 0.2481 0.0000 0.0357 0.0712
14 1.0000 0.6574 0.6714 0.5038 0.5000 0.0767 0.1580

If we set the index of caution to q = 1, we obtain the following results:

S1 = {02, 03, 04, 05, 06, 10, 11, 12},
E = {03, 05, 06, 11, 12},

ES
1 = E,

S1 − ES
1 = {02, 04, 10},

(37)
B(02) = {05},
B(04) = {02, 05},
B(10) = {12},

U − S1 ∪ E = {01, 07, 08, 09, 13, 14} .

Figure 3 shows the set breakdown considered in this paper compared to that of
Ref. 16 (gratification, dubiety, ambivalence, relief).

The final recommendation using previously defined value functions is given by
the following Table 3.

We notice that our satisficing equilibrium subset is almost equivalent (except
the alternative 03) to the subset qualified as “can be chosen” by UTA techniques
(see Ref. 6 for UTA techniques) in Ref. 4 that is conditioned to the fact that the
decision maker stated the following preferences in advance

11 � 03 � 13 � 09 � 14, (38)

based on a feeling; the alternative 12 (gratification alternative see Fig. 3) considered
as close contender to alternative 11 (ambivalence alternative) as good alternative
in Ref. 4 is recommended as selected by one of our value functions and alternatives
declared as clearly poor (except 04 that is dubiety according to Ref. 16), namely
{09, 13, 14} by the approach considered in Ref. 4 belong to the completely inefficient
subset U − S1 ∪ E in our study. The recommendation for selection of the alterna-
tive 06 (dubiety alternative) is due to its lower rejectability. We can say that our



Fig. 3. The representation of alternatives considered in the application in the plane (pR, pS).

Table 3. Recommendation results.

Value Function π(u) Selected Alternative(s)

π(u) = pS(u) − pr(u) {12}
π(u) = pS(u)

pr(u)
{06}

π(u) = pS(u) {11}
π(u) = 1

pr(u)
{06}

approach, without complicated hypotheses, complicated model parameters setting
and/or decision makers required to answer complicated questions, perform as well
as existing approaches.

5. Conclusions

The problem of modeling the evaluation step in a decision-making process has been
considered in this paper; this step is the stepping stone of the decision-making pro-
cess as it must establish a model that must reflect as faithfully as possible how
human beings proceed in practice like when there are many decision makers or
stakeholders with possible antagonist opinions with regard to the importance of
different attributes that characterize alternatives. Furthermore, it is worth noticing
that for any real world decision problem there are always attributes that contribute
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to achieving decision goals whereas other attributes will act against obtaining satis-
faction as resources consumption for instance. By utilizing this duality of attributes, 
this paper has formulated the evaluation model in the framework of satisficing game 
which principal data are selectability and rejectability measures for each alternative. 
Attributes that act as benefit, known as positive attributes, enter into the deriva-
tion of the selectability measure whereas those acting as resources consumption 
are used to obtain the rejectability measure along with decisions makers preference 
expressed by assigning weights to attributes in each category (positive/negative). 
These measures are then used to derive a value function on the set of alternatives 
that will be used to compare any pair of alternatives for final recommendation 
purpose. The contribution of this paper is the formulation of the evaluation model 
in the framework of satisficing games with an integration of stakeholders opinions 
expressed locally by judging attributes instead of comparing alternatives. Further-
more, a sensitivity analysis scheme has been established that allows a rapid analysis 
in any change of the performance of an attribute and this can be used to benchmark 
alternatives. This model is easy to understand and to apply with potentially many 
domains of applications; a possible drawback could be the fact that the satisfia-
bility measures do not represent a meaningful characterization of alternatives and 
the necessity to divide attributes into positive/negative attributes. The application 
considered shows that this method performs as well as existing approaches with all 
other advantages such as flexibility and simplicity.
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