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New methodology for improving the inspection policies for degradation model selection according to prognostic measures

I. INTRODUCTION

Nowadays, the implementation of Prognostic and Health Management (PHM) solutions leads to improve the competitiveness of companies by increasing production availability, avoiding contract penalties and reducing maintenance costs. Indeed, PHM is concerned with estimating component health and predicting Remaining Useful Life (RUL) of a given system. Prognostic methods can be classified into three main approaches: model-based prognostics, data-driven prognostics and hybrid. Data-driven approaches uses very often machine learning algorithms to transform monitoring data before failure into compatible models [START_REF] Liu | A novel dynamic-weighted probabilistic support vector regression-based ensemble for prognostics of time series data[END_REF], [START_REF] Torabi | A Survey on Artificial Intelligence-Based Modeling Techniques for High Speed Milling Processes[END_REF]. However, it is difficult to acquire such large amount of training data to built suitable machine learning algorithms. Model-based approaches allow us to overcome this drawback by taking into account the physical degradation phenomenon of the system and deriving appropriate mathematical models [START_REF] Daigle | Model-Based Prognostics With Concurrent Damage Progression Processes[END_REF], [START_REF] Wang | An additive wiener process-based prognostic model for hybrid deteriorating systems[END_REF], [START_REF] Zheng | A nonlinear prognostic model for degrading systems with three-source variability[END_REF]. Furthermore, prior knowledge on the degradation phenomenon helps us to limit the list of candidate models. It can improve PHM procedure. A hybrid approach allows benefiting from the strengths of both categories [5], [START_REF] Cheng | A fusion prognostics method for remaining useful life prediction of electronic products[END_REF]. It can be based on a study of physical degradation phenomena to propose a list of models and an estimation of their parameters based on the acquired data. In this framework, one important issues is to select in the competing candidate list the model which is the best to describe the underlying degradation phenomenon in the presence of deteriorating data [START_REF] Ye | Stochastic modelling and analysis of degradation for highly reliable products[END_REF], [START_REF] Zhou | Degradation modeling applied to residual lifetime prediction using functional data analysis[END_REF].

For model selection, numerous papers in literature propose decision criteria that depend mainly on the specific purpose for which the model can be used, see for instance [START_REF] Bousquet | Bayesian gamma processes for optimizing conditionbased maintenance under uncertainty[END_REF], [START_REF] Freitas | Reliability assessment using degradation models: bayesian and classical approaches[END_REF], [START_REF] Zhou | Degradation modeling applied to residual lifetime prediction using functional data analysis[END_REF]. Authors in [START_REF] Saxena | Metrics for Offline Evaluation of Prognostic Performance[END_REF] introduce a set of metrics to assess the prognostic ability of a given model when degradation data and true failure times are known. [START_REF] Baussaron | Reliability assessment based on degradation measurements: How to compare some models?[END_REF] proposes a method to compare degradation models based on the quality of reliability assessment method. [START_REF] Hu | Online performance assessment method for a model-based prognostic approach[END_REF] develops an approach for online assessing the performance of a prognostic method in situations of very poor knowledge on the degradation process. To our knowledge, no existing research address the issue of the relevant number of monitoring data for model selection. Continuous monitoring data provide a large amount of information and therefore can help improving the model selection accuracy. However, continuous monitoring can be very costly and is sometimes impossible to implement in practice. Limits due to the monitoring technology or to human resources can lead to some constraints on the time between two successive inspections. Among different inspection policies, the policy with more frequent inspections can capture more information on the degradation evolution. Nevertheless, it is also very costly. This paper aims to address the gap in the literature by investigating how to find a balance between the monitoring cost and the necessary information level for degradation modeling. The competing models are assumed to follow the Wiener and Gamma processes that have been largely addressed in the framework of degradation modeling [START_REF] Gorjian | A review on degradation models in reliability analysis[END_REF], [START_REF] Tamura | Reliability analysis based on a jump diffusion model with two wiener processes for cloud computing with big data[END_REF], [START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF]. In fact, the Wiener process is very popular in engineering and deterioration modeling when the health indicator evolves non-monotonically. The statistical properties of the failure time of a Wiener process are studied in [START_REF] Chhikara | The inverse Gaussian distribution as a lifetime model[END_REF], [START_REF] Cox | Analysis of survival data[END_REF]. Since the 1970s, this process has been widely studied in reliability and lifetime analysis. Authors in [START_REF] Doksum | Models for variable-stress accelerated life testing experiments based on wiener processes and the inverse gaussian distribution[END_REF] used the Wiener process with drift to model accelerated life testing data. In [START_REF] Whitmore | Estimation degradation by a wiener diffusion process subject to measurement error[END_REF], [START_REF] Whitmore | Modelling accelerated degradation data using wiener diffusion with a time scale transormation[END_REF] the impact of measurement errors on the degradation of self-regulating heating cables is analyzed. Authors in [START_REF] Padgett | Inference from accelerated degradation and failure data based on gaussian process models[END_REF], [START_REF] Park | Stochastic degradation models with several accelerating variables[END_REF], [START_REF] Whitmore | Recurrent first hitting times in wiener diffusion under several observation schemes[END_REF] also focused on the stopping time (failure time) of Wiener process and expanded the existing theoretical results in this domain. Recently, the Brownian motion with non-linear drift has attracted more attention in engineering problems and residual lifetime estimation, see for example [START_REF] Si | Remaining useful life estimationa review on the statistical data driven approaches[END_REF], [START_REF] Wang | A model for residual life prediction based on brownian motion with an adaptive drift[END_REF], [START_REF] Wang | Wiener processes with random effects for degradation data[END_REF]. When the degradation path is monotonically increasing, the Gamma process which a is a positive stochastic process with independent increments is a suitable candidate to model the degradation. Hence very often the Gamma process is used to describe the model a deterioration caused by the accumulation of wear [START_REF] Avramidis | Efficient simulation of gamma and variance-gamma processes[END_REF]. This process is a jump process which can be roughly considered as a succession of the frequent arrival of tiny increments. This rough description makes it relevant to model gradual deterioration such as corrosion, erosion, wear of structural components, concrete creep, crack growth [START_REF] Bažant | Stochastic process for extrapolating concrete creep[END_REF]. Moreover, the Gamma process has a probability distribution function which permits feasible mathematical developments. This process has been widely used in deterioration modeling for condition-based maintenance (see [START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF]).

Considering a list of model candidates including the Wiener and Gamma processes, the paper proposes a new methodology to investigate optimal inspection policies that are less expensive but ensure information quality for model selection. Therefore, it could help companies to improve their actual monitoring policy for reducing operation and maintenance costs.

The remainder of the paper is as follows. Section II describes the problem statement. Section III presents the proposed methodology to optimize inspection policies for model selection. In Section IV, a set of models under consideration is exposed. Section V is dedicated to illustration of the performance of our methodology through numerical examples. Finally, Section VI presents the conclusion and further research work.

II. PROBLEM STATEMENT

A regular inspection policy provides a large amount of information for degradation modeling and ensures the prognostic precision of system failure. However, it can be very costly and is sometimes impossible to implement in practice. Therefore, the question is how to find a balance between the inspection policy cost and the required information level for degradation modeling. This paper aims to address this issue. A methodology is proposed to improve the inspection policy, i.e to reduce the inspection cost while ensuring the information quality.

The system state is assumed to be observed through periodic or non-periodic inspections. Each inspection instantaneously reveals the system state. For periodic inspections, the length between two successive inspections ∆ Ti is a constant. For non-periodic inspections, ∆ Ti is a function of the degradation state observed at the previous inspection.

In practice, due to technological and logistic constraints, the inspection interval is always greater than ∆ min , which is the minimum achievable time between two successive inspections. Therefore the periodic inspection policy with inspection interval equal to ∆ min is the policy which can collect the maximum information about the system degradation evolution. This latter may also be the most costly. Hereafter, this inspection policy is called the Benchmark policy and is considered as a reference to compare the efficiency of the other policies.

It is necessary to optimize inspection policies to find a balance between the monitoring cost and the minimum information required for relevant degradation modeling. A "relevant" degradation model is obtained when the model selection results are as good as for the Benchmark policy. In detail, data is firstly acquired following different inspection policies, including the periodic or non-periodic inspections. Corresponding to every set of data, a degradation model selection procedure is then performed. The results of the model selection procedure are compared to the results obtained by the Benchmark policy. If the number of inspections of a given policy is small while the selection result based on this policy is consistent with the one based on the Benchmark policy, this policy is considered as better than the Benchmark policy. The optimal inspection policy is the one having a minimal number of observations and ensuring the best consistency with the Benchmark policy.

III. METHODOLOGY TO IMPROVE THE INSPECTION POLICY FOR DEGRADATION MODEL SELECTION

We firstly define an investigation set of different types of inspection policies, see subsection III-A. Afterward, corresponding to each inspection policy, the model selection procedure is performed, see subsection III-B. Finally, in subsection III-C we propose a criteria set to optimize the inspection policies such that the selection model results based on these policies are acceptable compared to the Benchmark policy.

A. Inspection policies for acquiring degradation information

An inspection policy is considered as relevant when the number of inspections is small, but the collected data is informative enough. For instance, for a new system, it is not necessary to often inspect the degradation state. On the opposite it is preferable to observe frequently the degradation state for an old system. Therefore, the function characterizing the length between two successive inspections (∆ Ti = T i -T i-1 ) is generally a decreasing function of the observed degradation state at time T i-1 denoted by X i-1 . Consider a fixed failure threshold L. The duration ∆ Ti before the next inspection time T i is assumed to be one of the functions described hereafter. 1) Case 1: a linear function,

∆ Ti = max b -b • X i-1 a • L , ∆ min ; if a > 0 = b; if a = 0 (1)
2) Case 2: a concave function, 3) Case 3 : a convex function,

∆ Ti = max b ln(aL) ln(aL -X i-1 ), ∆ min (2)
∆ Ti = max b -b X i-1 L a , ∆ min ; (3) 
Considering ∆ min is given, an inspection policy is characterized by 3 parameters (a, b, c) where:

• The parameter c characterizes the case number i.e. the shape of the decreasing function which can be linear (c = 1), concave (c = 2) or convex (c = 3). • The parameter b represents the first inspection time,

T 1 = ∆ T1 = b, ∆ min ≤ b ≤ L.
• The parameter a adjusts the decreasing rate of ∆ Ti , a ∈ [0, 1]. When the degradation state exceeds the threshold a • L, X i-1 ≥ a • L, the periodic inspection with ∆ Ti = ∆ min will be applied. Figure 1 illustrates different inspection functions. When c = 1, see Figure 1(a), ∆ Ti constantly decreases with system degradation state. When a = 0, a periodic inspection policy is considered and the period length is defined by b i.e. ∆ Ti = b. When c = 2, see Figure 1(b), ∆ Ti is slowly decreasing in early stage (when the degradation state is still insignificant) while it rapidly declines later. Contrarily, when c = 3, see Figure 1(c), ∆ Ti rapidly decreases in early stage while it slowly declines when system is more degraded.

B. Procedure of model selection

The model selection procedure has the following steps: 1) Data acquisition. The degradation data are recorded at the inspection times

T i , i = 1, 2, • • • n until it exceeds a given threshold τ • L, where τ ∈ [0, 1].
For the Benchmark inspection policy, the length between two inspections are constant an equal to ∆ Ti = ∆ min .

For other periodic or non-periodic policies, ∆ Ti is a function of the degradation state observed at the previous inspection time. The considered function ∆ Ti have been introduced in subsection III-A. 2) Parameter estimation. In reliability engineering, parameter estimation refers to the process of using sample data (degradation records at inspection times) to find the model parameters allowing the best data fitting. Among numerous parameter estimation methods, the Maximum Likelihood Estimation (MLE) is one of the most widely used in statistics [START_REF] Myung | Tutorial on maximum likelihood estimation[END_REF]. It proposes a general approach to determine the values of the model parameters through the maximization of the likelihood function. Suppose that n is the number of collected degradation records, x j is the degradation records at the jth observation time (1 ≤ j ≤ n). Let p(x j , t j |x (j-1) , t (j-1) ; θ) denote the transition probability density function of the degradation process from the state x (j-1) at time t (j-1) to the state x j at time t j knowing that θ is the vector of model parameters. The log-likelihood function for an uncensored sample dataset is given by:

L(θ) = n j=1
log(p(x j , t j |x (j-1) , t (j-1) ; θ))

The optimal parameter vector is given by θ * = arg max θ L(θ). In this paper, we propose to use Nelder-Mead (NM) method as a numerical method to maximize the likelihood or the log-likelihood function. The NM algorithm was firstly proposed by Nelder-Mead in 1965 to solve an unconstrained optimization problem. As it is only based on the evaluation of the objective function values, but no derivatives, this algorithm could be used for objective functions whose closed form derivatives are difficult to obtain. Although it generally lacks rigorous convergence properties it can reach satisfactory results after the first few iterations in practice [START_REF] Singer | Nelder-mead algorithm[END_REF]. The choice of this generic algorithm is to emphasize that the optimization problem can be solved numerically easily. 3) Evaluation of selection criteria. The candidate models are compared according to different criteria focusing on the prognostic measures. They are described hereafter:

• Prognostic accuracy criterion (P AC) is a measure that evaluates the precision of Residual Useful Lifetime (RUL) estimation corresponding to a given amount of observation data within a fixed observation period. Let L be the failure threshold of the system and t F the failure time i.e. the first time the degradation level crosses L. Let t τ be the first time the degradation level exceeds the threshold

L τ = τ • L with τ ∈ [0, 1].
The prognostic accuracy criterion (P AC) is defined in this paper as a prognostic measure for small values of . It evaluates the probability that the RUL of component calculated at time t τ and denoted by RU L tτ remains between the -bounds:

+ = (1 + )t F -t τ and -= (1 -)t F -t τ .
The P AC is defined as follows:

P AC = P[ -≤ RU L tτ ≤ + ] (5) 
The choice of , ζ, and τ depend on the operation requirements. The approach to evaluate the predicted RUL distribution is presented later in section IV. Among candidate models, the one having the maximal PAC will be selected. • Hybrid Criterion (HyC) is a measure that allows to take into account the goodness-of-fit information of observed data in the evaluation of the RUL estimation accuracy. The HyC is calculated as the sum between the logarithm of PAC indicator based on RU L tτ and the mean log-likelihood of the observed degradation increments without exceeding the threshold L τ :

HyC = -log(P[ -≤ RU L tτ ≤ + ) - 1 n log p(x 1 , t 1 |X 0 , 0; θ) + n|(xn≤τ •L) i=2 log p(x i , t i |x i-1 , t i-1 ; θ) ( 6 
)
where n is the number of observation points. For the HyC criterion, the model with the minimal value of HyC will be chosen 4) Normalization of selection criteria. According to each selection criterion, the best model will be chosen. For model selection, we are interested in the ranking of candidate models according to the identified selection criterion more than its measured values. Moreover, in order to be able to compare the consistency of ranking results of different selection criteria, normalized values need to be considered. The latter allows us to adjust values measured on different scales to a common scale, for example between 0 and 1. Let CR i be the measured values corresponding to the Hybrid Criterion of the ith model in a set of M considered models, CR i ∈ R + . The normalized values is given by:

CR i = min i∈M (CR i ) CR i (7) 
For the Prognostic Accuracy criteria, let CR i be the value of the P AC indicator for the ith model in a set of M candidates. The normalized value is defined as:

CR i = CR i max i∈M (CR i ) (8) 
After normalization, according to all criteria, the value of

CR i falls into [0, 1]. The model i with CR i = 1 is the best one.

C. Optimization criteria of inspection policies for model selection

For model selection, the optimal inspection policy is the one having a small number of observations but still offers sufficient information for the model selection procedure. In detail, considering Benchmark monitoring as a reference policy, an optimal inspection policy satisfies the following conditions:

1) It has the minimal ratio between its inspection numbers and the inspection numbers of the Benchmark policy. Let n j and n s be respectively the observation numbers of the jth inspection policy and the Benchmark monitoring policy, the first optimality criterion is defined by:

OC1 j = n j n s (9) 
For an identified degradation process, the number of observations for each inspection policy is always smaller that the one of the Benchmark policy. Therefore, the ratio between them falls into [0, 1]. Its value is the proportion of the sample size obtained from the jth inspection policy by comparison with the one of the Benchmark policy.

2) It has the minimal inconsistency score obtained from its resulting model selection when compared with the standard result based on information acquired from the Benchmark policy. The model selection result are characterized by the vector CR in space R M where M is the number of considered models. The M components of CR are evaluated by Eq.( 7) or ( 8). Let CR s and CR j be respectively the standard model-selection-result obtained from Benchmark policy and the model-selection-result based on jth inspection policy. The inconsistency score between them is given by:

OC2 j = 1 M CR s -CR j p (10) 
where . p is a given norm. Note that we have to divide the "distance" between CR s and CR j by M in order to avoid the impact of the size of model candidate set, M .

IV. PRESENTATION OF CANDIDATE MODELS

In the framework of this paper, the set of candidate models is based on Brownian and Gamma family, which has widely been considered for degradation modeling, [START_REF] Tamura | Reliability analysis based on a jump diffusion model with two wiener processes for cloud computing with big data[END_REF], [START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF].

A. Wiener process and its extensions

To consider a general degradation modeling framework and take into account the possible existing physical models, it is possible to introduce stochastic differential equations (SDE) based on a standard Brownian motions B t :

dX t = m(X t , t)dt + σ(X t , t)dB t ,
(m, σ) : R × R + → R are respectively the drift and the diffusion coefficient. These equations appear at the beginning of 20th century in statistical mechanics and have been thoroughly formulated by Itô [START_REF] Itô | Stochastic processes[END_REF], [START_REF] Tseng | Stochastic diffusion modeling of degradation data[END_REF]. Such equations can be considered as derived from existing physical models by adding Gaussian "white noises" on measurements. They permit a wide range of degradation modeling due to the flexibility of the structure and functional parameters.

In this section, some specific Generalized Wiener processes and extensions derived from SDE are presented. For each case, the differential equation, the related distribution functions, and some stochastic properties are exposed.

1) Diffusion processes:

A Diffusion process has the following properties. X t is solution of the SDE dX t = µ(t)dt + σdB t , where µ(t) is a function of t and B t is a standard Brownian motion. The transition probability to X t = x knowing that X s = y is given by:

p(x, t|y, s) = 1 4πσ(t -s) exp - (x + M (t, s) -y) 2 4σ 2 (t -s) , (11) 
where M (t, s), γ(t, s) are given by:

M (t, s) = - t s µ(u)du, γ(t, s) = t s σ 2 (u) 2 du (12) 
The mean and variance values of X t are given by:

E[X t ] = -M (t, 0), Var[X t ] = σ 2 t (13) 
a) M 1 : Wiener process with linear drift: This process is the special case of a Diffusion process when the drift and the variance are not time dependent (µ, σ are constant). This Wiener process (or drifted Brownian motion) which is also a Lévy process is suitable for fluctuating degradation records linearly increasing in time. It will be referred as M 1 in Section V.

The RUL cumulative distribution function (cdf) for a drifted Brownian motion given the observation value X t = x at the observation time t are given as follows [START_REF] Baussaron | Reliability assessment based on degradation measurements: How to compare some models?[END_REF]:

F RU L (x,t) (u) = Φ -L + µu + x σ √ u +e 2 µ σ 2 (L-x) Φ -L -µu + x σ √ u (14) 
where Φ(•) is the standard normal cumulative distribution function. b) M 2 : Wiener process with time-dependent drift: This process is the particular case of a diffusion process when the degradation process is exponentially increasing in time (µ(t) = at b ). It will be referred as M 2 in Section V. In this case, the ratio between its drift and diffusion is not a constant and also depends on the time. Therefore, it is difficult to derive the explicit expression of the RUL distribution. Its evaluation requires solving a non-singular Volterra Integral Equation. It can be done numerically, see e.g. [START_REF] Deng | Residual Useful Life Estimation Based on a Time-Dependent Ornstein-Uhlenbeck Process[END_REF].

2) Diffusion process with purely time-dependent drift and diffusion (M 3 ): This process is the particular case of a diffusion process when µ(t) and σ(t) are time dependent functions independent of X t ). This is suitable for a degradation process including random walks with time-dependent drift and diffusion terms. In this paper, we consider a special case of the purely time dependent drift and diffusion Brownian motion:

µ(t) = cat b and σ(t) = √ 2at b .
It will be denoted as M 3 in Section V. As the power-law drift is proportional with drift, according to [START_REF] Molini | First passage time statistics of Brownian motion with purely time dependent drift and diffusion[END_REF], the RUL CDF of the process at time t given a degradation level at time t, X t = x, is derived:

F RU L (x,t) (u) = Φ -L -cγ(u + t, t) + x 2γ(u + t, t) +e c(L-x) Φ -L -cγ(u + t, t) + x 2γ(u + t, t) (15) 
where γ(u + t, t) is given by Eq.( 12).

B. Gamma process

The increments of a gamma process (X t ), are independent and such that for s < t X t -X s ∼ Ga(α(t) -α(s), β) with the transition probability density function from X s = y to X t = x as follows:

p(x, t|y, s) = β α(t)-α(s) Γ(α(t) -α(s)) (x -y) α(t)-α(s)-1 e -(x-y)β
(16) where the shape function α(t) is an increasing function defined on R + . Γ is the Euler's Gamma function. and β the scale parameter. The mean and variance values of X t are given by:

E[X t ] = α(t) β , Var[X t ] = α(t) β 2 (17) 
The choice of α(.) and β allows to model various deterioration behaviors from almost deterministic to very chaotic. Note that, based on the form of α(t), the Gamma process can be:

• Homogeneous if α(t) is a linear function in t: α(t) = at. This process is denoted M 4 . • Non-homogeneous if α(t) is a non-linear function: for instance α(t) = at b , a > 0, b > 1 for the process referred as M 5 in the following. Given a degradation level X t = y at time t, the cumulative distribution of the remaining useful life of a gamma process is given by [START_REF] Paroissin | Failure Time of Non Homogeneous Gamma Process[END_REF]: These values are considered as the reference values and used to assess the efficiency of other inspection policies characterized by different decision variables (a, b, c). Note that, for P AC criterion, we assess the probability that the estimated failure time belongs to the interval [ -, + ] where = 0.01.

F RU L (y,t) (u) = Γ(α(u + t) -α(t), (L -y t )/β) Γ(α(u + t) -α(t)) ; Γ(•,
To eliminate the biased results induced by the random feature of degradation processes, we repeat the above model A. Discussion on the convergence for optimal results with respect to the number of simulation processes In order to ensure the robustness of our results, we study the convergence for optimal results (objective function) with respect to the number of simulated processes N . However, since our problem is a bi-objective optimization problem, the solution is not given by a single point but rather by a set of efficient solutions, called the Pareto set. Therefore, the issue is to measure the difference between the Pareto fronts or to assess its convergence when the simulation number, N , is increasing. The following approach is proposed to address this problem. In order to measure the distance between two sets having different size, we propose to use the Hausdorff distance d H which is well-known and commonly used in the field of evolutionary multi-objective optimization (EMO). It defines a metric in the mathematical sense on the set of compact subsets of the R n , therefore returns one value characterized information about the relation between two sets having different sizes, refer to [START_REF] Schutze | Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization[END_REF].

In this purpose, first let use define GD(A N ) and IGD(A N ) respectively the Generational Distance and the Inverted Generational Distance from the candidate set A N to the reference set P Nmax as follows:

GD(P Nmax ) = 1 n A N n A N i=1 d p i 1/p IGD(A N ) = 1 n Nmax   n Nmax j=1 dp j   1/p (19)
where d p i denotes the minimal p-norm distance from a i to P Nmax , i.e. d p i = min yj ∈P Nmax ||a i -y j || p-norm and dp j denotes the minimal p-norm distance from y j to A N , i.e. dp j = min ai∈A N ||a i -y j || p-norm . The Hausdorff distance is evaluated as follows:

d H (A N , P Nmax ) = max(GD(P Nmax ), IGD(A N )) (20)
After evaluating the Hausdorff distance (d H ) from a Pareto front A N corresponding to N numbers of simulations to the reference Pareto front P Nmax , we find that this Hausdorff distance could be considered as a convex decreasing function in N . In fact, it is slightly constant when N > 80, see Figure 2 for illustration. More over its standard deviation (σ) is also decreasing when simulation number N increases. For degradation data generated by different models M 1 , M 2 , ..., M 5 with coefficient of variation vc = 30%, Figure 2 illustrate the variation of d H with respect to N . Based on Figure 2 and other simulations carried out and not exposed in the paper, we consider that d H will converge when N is sufficiently large. Therefore, for numerical experiments, based on obtained results, N is set to 100 in order to ensure the robustness of our results. 10)) between selection result based on the Benchmark inspection policy and the one based on other inspection policies. The vertical axis represents the proportion between inspection numbers (Eq.( 9)) of such inspection policy when compared with the observation points of the Benchmark policy. The coordinate of every black point in subfigures characterizes the bi-dimensional objective function's value for every considered inspection policy. Each point is corresponding to an inspection policy characterized by the set of parameters (a, b, c). Note that all types of linear, concave, convex inspection policies are investigated at the same time. The Pareto front, characterized by red circles, represents the problem trade-offs of an objective function, that can not be improved in one dimension without being worsened in another. We find that the Pareto fronts of the optimal inspection policies have convex form, see Figure 3 for example. When the inconsistency score increases from 0 to 1, the proportion of observation numbers also decreases from 1 to 0. In other words, reducing the inconsistency score will require more inspection numbers.

B. Pareto front of optimization of the condition based inspection policies for model selection

For more details, we consider Figures 4 and5 which illustrate the optimal results for data generated by different models Mi, i E {1, • • • , } and different variance coefficients considering the two decision criterions.

For data generated by diffusion type degradation processes, we find that:

• According to PAC criterion, it is difficult to ensure an acceptable inconsistency score for the model selection results based on RUL estimation accuracy when reducing the number of observations. Considering Figure 4(a) for example, it requires at least 60% of observation points of the Benchmark policy to guarantee that the inconsistency score of the result when comparing with the Benchmark policy one is less than 0.2.

• In the H yC criterion, taking into account the goodnessof-fit information of observation data in the evaluation of the RUL estimation accuracy allow us to guarantees the robustness of mode l selection results when reducing the number of observation, especially for a high coefficient variance. Indeed, considering Figure 4(b) for example when vc = 0.5 it requires less than 10% of observation points of the Benchmark policy to ensure that the inconsistency score of the result when comparing with the Benchmark policy one is less than 0.2. However, for data generated by Gamma degradation processes (see Figure 5), we find that the H yC do not allow us to guarantee the robustness of model selection results when reducing the number of observation, especially for a high coefficient variance. Indeed, it requires more observation numbers than the PAC criterion whe n vc is great. In detail, for data generated by Gamma homogeneous process (M 4) •,. . with high variance coefficient (vc = 0.5), it requires less than 40% of observation points according to the PAC criterion for the threshold of 0.2 for the inconsistency score. However, according to the H yC criterion, more than 60% of inspection numbers is necessary to satisfy this threshold

d •, • •• ~ . ..... ••• ••••••••~••••••••••••••••• • ' 0,
•, o d ' •. •, •••, Q. i : : : ..__• •_ • ._ : i- :: • .c.... • a... • • • a... • • ;c. • • =-c • • =-c • • =-c • • ;-c • • =-c •• ... 0.

C. Discussion on the optimal inspection policies

In the previous section, for each configuration, the optimal inspection policy with regards to number of inspections and closeness to the best choice is proposed. Nevertheless, the information on the type of this policy is not discussed. Indeed, it is not discussed that in each configuration, the proposed optimal policy corresponds to which percentage of optimal policies obtained in the overall N simulations. It is possible that the number of times that this policy is considered to be the best is very close to the number of times a second candidate is optimal. Moreover, it is possible that the second candidate can be implemented much easier than the first candidate without enormous loss of optimality. To explore these matters, in this section, the percentage of inspection policy types are given and analyzed.

In this section, we consider under every selection criteria, which inspection policies will be preferred for a given data set. In this purpose, numerous numerical examples are carried out: model selection is performed for data generated by 5 models M i , i ∈ {1, 2, ..., 5} with different values of vc = [0.1, 03, 0.5]. For this numerical example, we consider 50 couples of the inconsistency score threshold (IST ) and the proportion of observation points threshold (P OT ) where IST ∈ {0.1, 0.2, ..., 0.5} and P OT ∈ {0.1, 0.2, ..., 1}. Thus, we obtain 50 sets of inspection policies. Each policy in these sets ensures that the corresponding inconsistency score and proportion of observation points are inferior to the coupling threshold of IST and P OT .

To illustrate these conclusions, we illustrate in Figure 6 the number of chosen inspection policies and the proportion of their type (Periodic, Linear, Concave, Convex) corresponding to 50 cases of couples (IST, P OT ) when data is generated by M 1 with vc = 0.3. For the first 10 cases (Case 1 to Case 10), P OT is respectively increasing from 0.1 to 1 with IST = 0.1. Next, for Case 11 to Case 20, P OT is respectively increasing from 0.1 to 1 with IST = 0.2 and similar for next cases. We find that according to P AC, among chosen inspection policies, the linear and concave form are the two best types (see sub-figure 6.a) while according to HyC, the periodic inspections and concave form are preferred (see sub-figure 6.b). For other cases, the characteristics of the chosen policies are then summarized in Table I.

The results in Table I are summed up as follows.

• In general, according to each model selection criteria, each data set admits its optimal inspection policies. For example, according to P AC, the optimal non-periodic linear and concave inspection policies are approved for data generated by a Brownian process while the optimal periodic and non-periodic concave polices are preferred for the Gamma non-homogeneous model. On the other hand, according to HyC, the optimal concave and linear policies are favored for the Gamma model family while the periodic inspections are chosen for Wiener model family. Therefore, when we do not have the prior information about data type, periodic inspections are recommended.

• When IST and P OT are small, the criteria lead to totally different results:

according to the P AC criterion, non-periodic inspections are generally preferred for degradation 8.

• Un 

T 1 ↓ Periodic ↑ T 1 ↑↓ Periodic ↑ T 1 ↑↓ Periodic ↑ T 1 ↓ Periodic ↓↑ T 1 ↑ Periodic ↓↑
small, periodic inspections are generally preferred for degradation modeling of data generated by a Wiener process (see sub-figure 6.b for an example) while non-periodic inspections are favored for data generated by Gamma processes (see sub-figure 7.(b) for an example).

• When the variance coefficient vc is increasing, the first inspection time T 1 arrives very early for data generated by a homogeneous Gamma process or a Wiener process, while no distinguished features can be derived for T 1 for data generated by other processes. for Wiener or diffusion processes, periodic inspections are more often used according to HyC while non-periodic ones are more used according to P AC. according to both P AC, periodic inspections are more preferred for Gamma homogeneous process while for the non-homogeneous Gamma process the periodic inspections not always favored.

D. Discussion of quality-index-based-filter

In the previous section, we have discussed the features of the chosen optimal inspection policies according to a couple of the inconsistency score and the proportion of observation point threshold (IST, P OT ). However, there could exist cases where the prognostic metrics (before normalization) are not good enough but the inconsistency scores of the selection results are acceptable. To avoid these unusual cases and to ensure their elimination in decision making, we propose in this section a quality-index-based-filter. This quality index is also the ratio between the prognostic accuracy metrics given by an inspection policy when comparing with the Benchmark policy.

Recall that given observation data acquired by the Benchmark policy, the CR s i is the selection criteria value before normalization for the ith candidate model. When considering Hybrid criterion (HyC), the kth model having the minimal value CR s i is the best candidate: k = arg min (i∈M ) (CR s i ). When considering Prognostic Accuracy criterion (P AC), the kth model having the maximal value of CR s i is chosen: k = arg max (i∈M ) (CR s i ). For model selection, the value of CR s k could be considered as a standard value. When we use an inspection policy (for example j-th policy), we hope that its value CR j k is close to the standard value, CR s k . Based on this concept, the quality index corresponding to jth inspection policy, QI j is defined by :

QI j = CR s k CR j k ; if using HyC criterion = CR j k CR s k ; if using P AC criterion ( 21 
)
QI j ∈ [0, 1]
, where 1 is the best value.

For a quality-index-based-filter, only inspection policies whose quality index is superior or equal than a threshold QIT are kept. Considering the inconsistency score threshold IST = 0.5, the minimal proportions of observation numbers according to different values of quality index threshold, QIT ∈ [0.05, 1], are represented in Figure 8 and9. We find that when QIT is increasing, the minimal required observation number is also increasing. • For data generated by Wiener or diffusion processes, taking into account the goodness-of-fit information of observation data (HyC) in the evaluation of the RUL estimation accuracy allows us to guarantee a high-quality index of prognostic metric even if the proportion of observation numbers is less than 0.2. Indeed, considering Figure 8(a) for example, when QIT = 0.8, according to P AC the minimal proportion of observation points when comparing with the Benchmark policy is more than 0.6 while it is less than 0.2 according to HyC. for both criterions P AC and HyC, the effect of high variance coefficient is not significant.

• For data generated by Gamma processes, according to both P AC and HyC, taking into account the goodness-of-fit information of observation data in the evaluation of the RUL estimation accuracy do not allow us to guarantee a highquality index of prognostic metric when reducing the inspection numbers. high variance coefficient strongly effects on the requirements of observation points to satisfy a quality index threshold. For example, see Figure 8(b), when QIT = 0.8, the proportion of observation points when comparing with the Benchmark policy is less than 0.4 at vc = 0.1 while it is equal to 1 at vc = 0.5. Next, we discuss the type of the chosen optimal inspection policies after using the quality-index-based filter. For numerical examples, QIT is chosen as : QIT = 0.8. Similar to Section V-C, we consider 50 couples of (IST, P OT ). The numerical results are given in Figures 10 and9. The results can be summed up as follows.

• For Wiener or diffusion processes, according to P AC, in order to satisfy at the same time the requirements of the quality index and the inconsistency score, it requires at least 50% of the observation numbers of the Benchmark policy. For example, consider Figure 10.a, no inspection policy and help the manager to reduce more than 50% of the observation numbers. according to HyC, when the requirement of proportion of observation points is small, P OT ≤ 0.5, the periodic inspection policies is often chosen. When P OT is high, for example in Figure 10.b when P OT ≥ 0.5, the non-periodic inspection with concave form is the best policy.
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• For Gamma process, when the variance coefficient is high, there is no inspection policy which satisties in the same time the requirements of the quality index, the inconsistency score and the proportion of observation points. Whereas, when the variance coefficient is small, according to P AC, when the requirement of observation number is low, periodic inspection policies and non-periodic inspections with concave form are favored, see Figure 9.(a) for example. according to HyC, non-periodic inspection policies (linear and concave function) is widely used, see Figure 9.(b). In order to have a better understanding of the chosen optimal policies, we consider the case study QIT = 0.8, IST = 0.2, P OT = 0.5. According to P AC criterion, there exists no inspection policy that satisfies at the same time (QIT = 0.8, IST = 0.2, P OT = 0.5). Table II represents the chosen optimal inspection policies for model selection according hybrid criterion. The values of decision variables a, b and c are respectively characterized Among the chosen optimal inspection policies, there exist:

• one periodic inspection policy (a = 0, c = 1) with the constant period length ∆ Ti = 2, • two non-periodic policies with linear inspection function.

For example, considering the policy characterized by a = 0. VI. CONCLUSION In this paper, we have presented a new methodology that allows decision-makers to improve an inspection policies for making it less expensive while ensuring the quality of information for model selection which can e.g. be used for failure prognostic. The selection procedure is based on the prognostic accuracy criterion (P AC) and the hybrid criterion (HyC) that takes into account the goodness-of-fit information of the observation data when evaluating the prognostic measure. Besides, we have investigated different types of inspection policies including periodic or non-periodic ones by considering multiples functions that are linear, concave or convex in the degradation state of the system. Among different competing policies, the optimal ones are chosen based on the multi-criteria optimization process that takes into account minimal requirements for the observation point ratio, and the inconsistency score with the quality index filter. The advantages and disadvantages of this methodology are discussed through numerous numerical examples for different types of degradation process, particularly diffusion and Gamma processes.

The paper also provides instructions to improve the selection of appropriate inspection policies according to the degradation process family as well as the evaluation criteria. In general, in case of total absence of prior information about the degradation process family (Wiener or Gamma for example), the periodic inspections could be encouraged to acquire data. We discussed, in addition, the impact of the data variance coefficient on the inspection policy optimization results. In details, high variance ratio significantly effects on the minimum requirements for observation number when considering Gamma family while its impacts are not important when examining Wiener models.

In the scope of this paper, we utilized the grid search algorithm to solve the multi-objective optimization problem. It can lead to long implementation times when investigating large search spaces for real work problems. In further works, an efficient method will be developed to reduce the optimization time. Moreover, the set of models can also be extended, and some other models such as Inverse Gaussian, Variance-Gamma or jump diffusion models can be included to capture the various characteristic of the system degradation process in practice.
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 1 Fig. 1. Illustration of different forms of inspection policy based on the degradation state when b = 5

  •) is the upper incomplete Gamma function.[START_REF] Myung | Tutorial on maximum likelihood estimation[END_REF] V. NUMERICAL EXPERIMENTS For simulation of a model selection procedure presented in subsection III-B, we generate a stochastic degradation path by one of the five models presented in Section IV (M 1: drifted Brownian motion, M 2: time-dependent-drifted Brownian motion, M 3: time-and-diffusion-dependent drifted Brownian motion, M 4: homogeneous gamma process, M 5: non-homogeneous gamma process). Its parameters are chosen in order to have the mean degradation level 100 at time t = 100 : x = 100 with different values of coefficient of variation vc ∈ [10%, 30%, 50%] at time t = 100. The evolution of a degradation process from 0 to T m = 250 is generated with the time step ∆t = 0.1. Considering the failure threshold L = 80, the degradation data is observed until threshold L τ = τ • L where τ = 0.7. Based on data inspected by the Benchmark policy, we estimate parameters for every candidate models and then evaluate their corresponding measured values of the selection criterion (CR s ) and its normalized values, CR s .

Fig. 2 .

 2 Fig. 2. Illustration of convergence of the optimal results with respect to number of simulations N

•

  We firstly consider a large number N max as the maximal simulation numbers due to the limits of simulation time. Then, we use its corresponding Pareto set as a reference set, noted P Nmax = {y 1 , ..., y n Nmax } where n Nmax is the number of points on reference Pareto front P Nmax .• According to every different value of N < N max , we obtain a candidate Pareto set, noted A N = {a 1 , ..., a n A N } where n A N is the number of points on the Pareto front A N . • The distance between reference Pareto set P Nmax and candidate Pareto set A N is evaluated and used to measure the convergency of the optimization results.

Figure 3 presents

 3 Figure3presents Pareto fronts of inspection policy optimization. In every sub-figure, the horizontal axis represents the inconsistency score (Eq.[START_REF] Deng | Residual Useful Life Estimation Based on a Time-Dependent Ornstein-Uhlenbeck Process[END_REF]) between selection result based on the Benchmark inspection policy and the one based on other inspection policies. The vertical axis represents the proportion between inspection numbers (Eq.(9)) of such inspection policy when compared with the observation points of the Benchmark policy. The coordinate of every black point in subfigures characterizes the bi-dimensional objective function's value for every considered inspection policy. Each point is corresponding to an inspection policy characterized by the set of parameters (a, b, c). Note that all types of linear, concave, convex inspection policies are investigated at the same time.
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Fig. 6 .

 6 Fig. 6. Number of chosen inspection policies and their type proportions when data are generated by M 1-Brownian process with vc = 0.3: Periodic (Per), Linear (Lin), Concave, Convex.

Fig. 7 .

 7 Fig. 7. Number of chosen inspection policies and their type proportions when data are generated by M 4-Gamma process with vc = 0.3: Periodic (Per), Linear (Lin), Concave, Convex.

Fig. 8 .

 8 Fig. 8. Requirement for proportion of observation points according to quality index of model selection result for Wiener degradation data

Fig. 9 .

 9 Fig. 9. Requirement for proportion of observation points according to quality index of model selection result for Gamma degradation data

Fig. 10 .

 10 Fig. 10. According to QIT = 0.8, number of chosen inspection policies and their type proportions when data are generated by M 1-Brownian process with vc = 0.3: Periodic (Per), Linear (Lin), Concave, Convex.

Fig. 11 . 8 "•

 118 Fig. 11. According to QIT = 0.8, number of chosen inspection policies and their type proportions when data are generated by M 4-Gamma process with vc = 0.3: Periodic (Per), Linear (Lin), Concave, Convex.
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  2, b = 41, c = 1, the first inspection time is T 1 = 41. At the inspection time, if the observed state is higher than 0.2 • 41 = 8.2, the duration until the next inspection is ∆ min . If not, it is evaluated by a linear function defined by Eq. (1).• five non-periodic policies with concave inspection function. For example, considering the policy characterized by a = 0.5, b = 25, c = 2, the first inspection time is T 1 = 25. At the inspection time, if the observed state is higher than 0.5 • 25 = 12.5, the duration until the next inspection is ∆ min . If not, it is evaluated a concave function defined by Eq. (2).

  ......•...........•...

		PAC criterion		0 i :; l . § :; l		HyC criterion	
	2	0.4	0.6	0.8	i ::: ..	0 .2	0 .4	0 .6	0 .8
	(b) Data generated by M 2: Time-dependent-drifted-Brownian process
					i I : ;		HyC criterion	
							0 .4	0 .6	0.8
		1 neonslstet1cy score				1noon• tency score	

\

:.::::::,:,,

o d .\ .• . ' • . . i ~ . . . _ •_ • . _

. -: : -' -: : . ; ; . .; • . ; ; . .: : . . . . : :-=-• ' .:..; • •.:..; • •.;.. • •.:..; • . .,_ • .:..; • •.;.. • •.L:.LJ o.z

z Case