
HAL Id: hal-02114092
https://hal.science/hal-02114092

Submitted on 16 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System-Level Modeling and Simulation of MPSoC
Run-Time Management using Execution Traces Analysis

Simei Yang, Sébastien Le Nours, Maria Mendez Real, Sébastien Pillement

To cite this version:
Simei Yang, Sébastien Le Nours, Maria Mendez Real, Sébastien Pillement. System-Level Modeling
and Simulation of MPSoC Run-Time Management using Execution Traces Analysis. International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIX), Jul 2019, Samos, Greece. paper #49. �hal-02114092�

https://hal.science/hal-02114092
https://hal.archives-ouvertes.fr

System-Level Modeling and Simulation of
MPSoC Run-Time Management using Execution

Traces Analysis

S. Yang[0000−0002−0130−8176], S. Le Nours[0000−0002−1562−7282], M.
Méndez Real[0000−0002−7071−7192] and S. Pillement[0000−0002−9160−2896]

University of Nantes, CNRS, IETR UMR 6164, F-44000 Nantes, France
{simei.yang, sebastien.le-nours, maria.mendez,

sebastien.pillement}@univ-nantes.fr

Abstract. Dynamic management of modern Multi-Processors System
on Chip (MPSoC) become mandatory for optimization purpose. Eval-
uation of these run-time resource management strategies in MPSoCs is
essential early in the design process to guarantee a reduced design cycle.
However, most of the existing system-level simulation-based evaluation
frameworks consider static application mapping and do not allow run-
time management effects to be evaluated. In this paper, we present a
modeling and simulation approach that allows integration of run-time
management strategies in multicore system simulation. We have inte-
grated the proposed approach in an industrial modeling and simulation
framework. A case-study with seven applications (85 running tasks in
total) on a heterogeneous multicore platform is considered and different
management strategies are evaluated according to latency and power
consumption criteria.

Keywords: System-level simulation, execution trace, run-time manage-
ment strategies, heterogeneous multicore systems

1 Introduction

Modern multicore platforms contain an increasing number of heterogeneous re-
sources, i.e., processing elements, memories, and communication resources. Such
platforms allow more and more functionalities to be supported while satisfying
still multiple non-functional requirements such as real-time and power consump-
tion. Due to dynamism between and within applications, the behavior of appli-
cation workloads can dramatically vary over time. Hybrid application mapping
methods [11] have emerged as convenient approaches to cope with applications
dynamism and favor the achievement of non-functional requirements such as
timing and power constraints in multicore platforms.

Hybrid application mapping methods combine design-time analysis and run-
time management of platform resources. In such approaches, the design-time
stage performs design space exploration to prepare a set of mappings of the
supported applications. The run-time management has then the purpose of dy-
namically mapping the running applications on platform resources in such a
way that real-time and energy consumption objectives are optimized. In this

2 S. Yang, S. Le Nours, M. Méndez Real and S. Pillement

context, extensive evaluation of the run-time management strategies is essential
to guarantee that the non-functional requirements will be respected.

System-level modeling and simulation approaches favor early detection of po-
tential issues and prevent costly design cycles. In existing system-level simulation-
based approaches such as ones presented in [5], a system model is formed by a
combination of an application model and a platform model. The captured mod-
els are generated as executable descriptions. Then these models can be simulated
under different situations to estimate system performance and optimize system
design. However, in most of the existing frameworks, the allocation of applica-
tions on platform resources is statically defined and it cannot be modified during
system simulation. Extending system-level simulation-based approaches is thus
mandatory to allow early evaluation of run-time management strategies.

In this paper, we present a system-level modeling and simulation approach of
run-time management in multicore platforms. The proposed model allows modifi-
cation of applications allocation and scheduling on platform resources during the
system simulation. It uses dynamic computation of instants when platform re-
sources are used according to running applications. Using dynamically computed
simulation instants, the simulation model of the run-time manager controls the
order of task execution and the advancement of simulation time. The dynamic
computation is based on the design-time prepared application mappings. We
implemented and validated the proposed approach using Intel Cofluent Studio
modeling framework [2] and SystemC simulation language [6]. In this paper, the
benefits of this approach are demonstrated through a case-study that considers
seven applications (85 tasks in total) running on a heterogeneous multicore plat-
form. Different management strategies are evaluated and compared according to
application latency and power consumption criteria.

The remainder of this paper is as follows. In Section 2, we present relevant
related work. The application and platform models are presented in Section 3.
The principles of the proposed modeling and simulation approach are explained
in Section 4. We present the implementation of the approach and its application
through a case-study in Section 5. Finally, we conclude this paper in Section 6.

2 Background and Related Work

As presented in [11], many run-time management strategies have been proposed
to optimize applications running on multicore platforms under real-time and en-
ergy consumption constraints. The evaluation of run-time management strategies
aims at estimating the achieved resource usage and time properties such as sys-
tem latency. As illustrated in [12–14], early evaluation of run-time management
strategies are mostly done using analytical formal approaches. Analytical formal
approaches are well adapted to predict system properties under worst-case sit-
uations but it can lead to pessimistic predictions. To the best of our knowledge
only two related works support dynamism in the simulation framework.

In [10], an extension of the Sesame system-level modeling and simulation
framework [9] is presented. Especially, a Run-time Resource Scheduler (RRS) is
introduced to control mapping of applications for each simulated use-case. Based
on trace-driven simulation approach [8], each application model records its action
by a set of event traces (i.e. computation and communication events). RRS

System-Level Modeling and Simulation 3

dispatches the event traces to an architecture model during system simulation.
Our proposed approach differs in the way system simulation is performed. In
our case, at the beginning of each use-case, the design-time prepared database is
processed to compute the instants when platform resources are used. With the
knowledge of the computed instants, our proposed run-time manager controls
when application tasks are run on platform resources during system simulation.

Compared to the related works, the novelty of the proposed approach con-
cerns the use of run-time combined execution traces to control the simulation
of dynamic behaviors of applications. This approach can be adapted to different
run-time management strategies and to different environments.

3 System Models

3.1 Application and Use-case Models

In this work, we consider periodic applications. An application, as illustrated in
Fig.1, is characterized by a directed task graph GAppi

= (TAppi
, EAppi

), where
TAppi

is the set of tasks of the application and EAppi
is the set of directed

edges representing dependencies among the tasks. Tasks and edges in Appi are
respectively denoted by ti,j and ei,h, where j is the number of the task and h the
number of the edge. A task represents an atomic, non-preemptive, code which
execution time can vary over time according to processed data. In this paper,
we restrict to periodically executed applications and each application Appi shall
be executed within its period time PeriodAppi .

In the scope of this work, applications follow the synchronous data flow (SDF)
semantics that was proposed in [7]. In Fig. 1 input tokens define the number of
tokens that are read from the edge before executing a task and the output token
defines the number of tokens that are written through the edge after executing
the task.

The set of simultaneously active applications defines a use-case uci = {App1,
App2 · · · , Appn}. Let UC = {uc1, uc2, . . . , ucl} be the set of all possible use-
cases. As we consider a dynamic execution scenario, different use-cases are active
over time. This information is defined in the Use-case Definition in Fig.1.

Use-case
Definition

Platform Model

Application Model

Cluster1 Clusterh

System Memory

Core1 Coreg

Local Memory

…
…

t1,2
3

3

1 1

1

1
1

1
t1,1

t1,4

t1,3

e1,1 e1,2

e1,3

App1
Appn

…

Run-Time
Mapping Control

Run-Time Manager

Mapping Run-Time
Execution Traces Processing

Communication Bus

A combined execution trace

Design-Time Database

...

Prepared
execution traces

Management Components

Use-case
Detection

input token

output tokens

(1)

(2)

(3)

Active
applications

initial token

Fig. 1. System models with application, platform and management components de-
scriptions.

4 S. Yang, S. Le Nours, M. Méndez Real and S. Pillement

3.2 Platform Model

This work targets heterogeneous cluster-based platforms, where each cluster con-
sists of a set of homogeneous processing elements associated with a shared mem-
ory (see Fig.1). The cores within a cluster have the same voltage/frequency
(v/f), and each cluster supports its own ranges of discrete v/f levels. One ex-
ample of such platforms is the Samsung Exynos 5422 [1] with an ARM big.Little
multicore architecture.

According to the platform model, we can define CommTimeei,h as the com-
munication time between dependent tasks via the edge ei,h. Similarly, the com-
putation time of a task ti,j executed on a specific cluster C at a given v/f
level is defined as CompTimeti,j (C, v/f). Additional power model can also be
integrated in this approach (see the approach evaluation in Section 5).

3.3 Management Components

Application mapping defines the binding of application tasks to the architecture
resources. As illustrated in Fig. 1, we consider run-time management in three
steps: (1) a design-time preparation, (2) run-time mapping processing and (3)
run-time mapping control.

In the design-time preparation step, one or several mappings for each appli-
cation are prepared and stored in a database. Run-time mapping processing is
performed when a new use-case is detected (Use-case Detection). In this step,
a run-time mapping is established based on a particular algorithm (under eval-
uation) and, as defined in [11], on the analysis of design-time execution traces
of every active application in the detected use-case. Afterwards, the third step
introduces a new simulation approach to control the execution of active tasks
during system simulation based on the mapping established in the previous step.

4 Run-Time Mapping Modeling and Simulation Method

In this section, the proposed three steps: design-time preparation, run-time map-
ping processing and a new simulation approach control for run-time mappings
are detailed.

4.1 Design-Time Database preparation

The first step of most of dynamic resource managers is the design-time prepa-
ration. This step consists in storing into a database a set of prepared mappings,
one or several for each application. The prepared mappings can be obtained by
any design-time mapping algorithm.

In our approach, a mapping is characterized by its execution trace, i.e a set
of instants defining the start (xs) and end time (xe) of each task when executed
within one possible set of platform configurations (processing element, v/f , · · ·).
Only the instants within a period are prepared for a design-time mapping.

To describe the execution trace of the design-time prepared mappings, lets
consider that only one mapping is prepared for each application in A = {App1, App2}.
According to the mapping strategy presented in [13], each task is mapped into

System-Level Modeling and Simulation 5

one distinct core. The prepared mappings of App1 and App2 are illustrated in
Fig.21.

PeriodApp1

core1

core2

core3

core4

time

e1,1

e1,2 e1,2e1,2

e1,3 e1,3e1,3

LatencyApp1 LatencyApp2

t1,1(1)

core1

core2

time

PeriodApp2

Tasks of App1 Tasks of App2Instants of App1 Instants of App2

(a) (b)

t1,2(2)

t1,3(1)

t1,4(1)

t1,2(3)t1,2(1)

t1,3(3)t1,3(2) t2,1(1)

t2,2(1)

e2,1

e1,1 e1,1

Fig. 2. A design-time prepared execution trace for the mapping of App1 (a) and App2
(b) on homogeneous cores, according to [13].

Let XAppi
= {xs ti,j (1), xe ti,j (1), · · ·xs ti,j (k), xe ti,j (k)}, j ∈ N+, k ∈ N+ be

the execution trace of Appi where k refers to the kth instance of a task. As an
example, execution traces for applications App1 and App2 in Fig.2 are respec-
tively defined by XApp1

= {xs t1,1(1), xe t1,1(1), · · · , xs t1,4(1), xe t1,4(1)}, and
XApp2 = {xs t2,1(1), xe t2,1(1), xs t2,2(1), xe t2,2(1)}.

Start and end instants xs and xe are expressed according to dependencies
between tasks. In the example given by Fig.2, dependencies of task t2,1 for in-
stance, are expressed as follows: xs t1,2(1) = xe t1,1(1) + CommTimee1,1(1) and
xe t1,2(1) = xs t1,2(1) + CompTimet1,2(1). For sake of clarity, communication
time of edges are not illustrated in next figures. Finally, LatencyApp1 refers to
the time duration for the execution of App1 from the input to the last instant
within one period. It has to be noticed that the instants here are relative as
CompTimeti,j (k) and CommTimeei,j (k) will depend on the real mapping de-
termined at run-time in the next step.

4.2 Run-Time Execution Traces Processing

The second step concerns the processing of run-time execution traces. This step
is performed each time a new use-case uci is detected. The objective is to obtain
at run-time a combined execution trace of the n active applications in the use-
case uci defined by X ′Apps(uci).

To obtain X ′Apps(uci), the design-time prepared execution traces of each ac-

tive application (XAppi
) are combined according to a given algorithm (different

mapping combination strategies can be used). In the following, we denote the
process of combining execution traces by /processing. Fig.3 gives an example of
one possible combined execution trace of applications on homogeneous cores of
use-case uc1 = {App1, App2}. In this example the LASP (Longest Available Slot
Packing) strategy presented in [13] has been used. According to this example,
X ′Apps(uc1) = /processing{XApp1 , XApp2}, and it includes all the execution in-
stants, from xs of the first task, to xe of the last task in a least common multiple
LCM of periods, for the active applications in uc1.

1 As can be seen in Fig. 2, t1,2 and t1,3 are executed three times for each iteration of
App1. App2 is a 2-task application

6 S. Yang, S. Le Nours, M. Méndez Real and S. Pillement

core1

core2

core3

time

PeriodApp2

PeriodApp1 or LCM
PeriodApp2

Tasks of App1

Tasks of App2

Instants of App1

Instants of App2

t1,1(1)

t1,2(2)

t1,3(1)

t1,4(1)

t1,2(3)t1,2(1)

t1,3(3)t1,3(2)

t2,1(1)

t2,2(1)

t2,1(2)

t2,2(2)

LatencyApp2 LatencyApp2

Fig. 3. A run-time combined execution trace X ′
Apps(uc1) using strategy in [13].

In LASP, the instances of a task are always mapped into the same core
through periods (task’s instances t2,1(1) and t2,1(2), allocated on core2, are an
example). Due to this, once the execution traces are combined, the start time of
t2,1(2) (i.e. xs t2,1(2)) is adjusted and delayed in order to start after the previous
task allocated into core2 (i.e., starting instant dependency on xe t1,2(3)). The
adjusted instants increase the LatencyApp2

of the second period. In X ′Apps(uc1)
the instants are now absolute and computed according to the active mapping.

4.3 Run-Time Mapping Control

In our approach, the run-time mapping simulation, handled by the Run-Time
Manager (RTM), aims to control the execution of tasks according to the informa-
tion provided by the run-time execution traces processing (see in Subsection 4.2).
The proposed simulation approach is depicted in Fig.4 through the previously
used example of uc1 = {App1, App2}.

The RTM is activated each time a new use-case is detected. As illustrated
in Fig.4, when uc1 is detected, the /processing step is performed to determine
the run-time mapping and dependencies of each task instance (X ′Apps(uc1)). The

execution of the /processing action is done in zero simulation time with no call
to the simulation kernel. The simulated effort of the RTM to perform this step
depends on the used mapping strategy. The RTM then controls the states of
each task according to the processed results.

/wait(wt)

t1,1

t1,2

t1,3

t1,4

t2,1

t2,2

...

...

...

...

...

RTM

Simulation time

Start Instant

Stop Instant

...

Results of /processing()
in uc1

...

: t1,1 start time

...
...... ...

...

......

...

...

...

...

...

...

: t2,1 start time

: t1,1 end time

: t2,1 end time

: t2,1 start time

/processing /processing... ...

Results of /processing()
in uc2

...
/wait(wt) /wait(wt)

Fig. 4. System-level approach for the simulation of run-time mapping strategies
through the dynamic control of the execution of tasks for different use-cases.

In Fig. 4, at the simulated instant xs t1,1(1), t1,1(1) and t1,2(1) are started.
The RTM inserts some simulation delays through action /wait(wt) to wait
for the next instant. Simulation time SimTime moves forward SimTime =

System-Level Modeling and Simulation 7

SimTime + wt. As the next instant is xe t1,1(1), the waiting duration wt is ex-
pressed as wt = xe t1,1(1)− xs t1,1(1). After this time, t1,1(1) is stopped. As for
task instances , xs t1,2(1), xs t1,2(2) and xs t1,2(3), the RTM detects when several
instances of the same task execute successively on the same processing core. In
this case, only the first instance (xs t1,2(1)) is started and last instance xs t1,2(3)
is stopped. This further reduces the activity of the simulation effort. This pro-
cess is repeated for all the task instances in every LCM period. When a new
use-case is detected, the RTM performs the dynamic control for the tasks in the
new use-case (e.g. X ′Apps(uc2)).

It is worth noting that this approach allows as well the evaluation and sim-
ulation of run-time mapping strategies in a heterogeneous platform (different
processing cores, different v/f levels, · · ·). In this case, the waiting time wt is
dynamically adapted to the varying values of the computation and the commu-
nication time (CompTimet and CommTimee), according to the heterogeneous
resources configuration. An evaluation of the proposed run-time mapping control
within a heterogeneous platform is presented in Section 5.

5 Evaluation of the modeling and simulation approach

5.1 Simulation Environment

We use the industrial modeling and simulation framework Intel CoFluent Stu-
dio [2] to validate the proposed approach. Once again, our proposal does not
need any modification in the used framework and thus can be used in other
environments.

In the CoFluent framework, each application is modeled graphically with sev-
eral functions (i.e., tasks) and communications (i.e., edges). For each function
and communication, the computation/communication time and power consump-
tion can be set by considering the influence of the platform. The built system
model is then generated as a SystemC description for further execution analysis.

In our implementation, the run-time manager model is captured graphically
and can be considered as a specific function of the system. The implementation of
the action processing corresponds to the call to a C++ code that is developed
to manipulate the previously defined data structures XAppi

and X ′Apps.
During the simulation, the run-time manager controls the states of each func-

tion and the advancement of simulation time according to the combined execu-
tion trace. Elementary procedures available in the used framework (start, stop,
resume, wait) are used by the run-time manager to control the state of the func-
tions. In the following, we evaluate the influence of this run-time manager model
on the effort required for the system simulation.

5.2 Simulation Setup

In the case study, we aim to illustrate how the proposed modeling and simulation
approach is applied to a heterogeneous architecture. The organization of the
evaluated system is presented in Fig.5.

8 S. Yang, S. Le Nours, M. Méndez Real and S. Pillement

Little Cluster (multiple cores) Big Cluster (multiple cores)

Local Manager Local Manager

Global Manager

Heterogeneous Cluster-based Multicore Platform

Application-to-cluster assignments, cluster frequency settings

Task-to-core allocation and scheduling

Active AppsUse-case

A3

A1A2

A1A2A3

A1A2A3A4

A1

A1A2A3A4A5

Active AppsUse-case

A7

A6A7

A5A6A7

A4A5A6A7

A3A4A5A6A7

A2A3A4

A1A2A3

A5A6A7

A4A5A6A7

Applications

A1: H263-decoder.S

A2: JPEG-decoder.S

A3: H263-decoder.L
A4: JPEG-decoder.L
A5: H263-encoder

Nb of
tasks

Nb of token
for each task

4

5

4

6

6

{1,11,11,1}

{1,66,66,1}

{1,6,6,6,6,1}

{1,12,12,12,12,1}
{1,5,5,1,1}

Period
(µs)

60

180

540

270

180

Nb of
edges

4

Latency2 of

A6:
A7:

20
40

19
39

5x{1,11,11,1}
10x{1,11,11,1}

270
540

XAi (µs)

5xA1

10xA1

44

118
77

164

451
220
441

3

3

5

5

Task-to-core allocation and scheduling

Fig. 5. Evaluated hierarchical run-time management of multiple applications executed
on a heterogeneous cluster-based platform.

We considered H263 decoder, JPEG decoder and H263 encoder multimedia
applications and two synthetic applications. Each application Ai, has been cap-
tured as an SDF model, based on the descriptions provided in SDF3 [3]. A1

and A3 (respectively A2 and A4) are set to consume different tokens sizes for
processing at different data exchanging speed. The first five applications are
representatives and require different computation time and power. To evaluate
the scalability of the proposed simulation approach, A6 and A7 are arbitrarily
created to significantly increase the number of tasks. They were created by du-
plicating A1 5 and 10 times respectively, while the iterations execute successively
in one period. Each application is constrained by a predefined period. For further
evaluation, in the following, 13 possible use-cases are defined by different active
applications (seen on top right part of Fig.5). The duration of each use-case is
not depicted in the figure for the sake of clarity.

We choose the Samsung Exynos 5422 [1] platform as hardware target. As
summarized in [4], the computation time of a task presents a ratio of 1 : 0.5 when
executed on the little (Cortex-A7) or the big (Cortex-A15) cluster. Besides, the
ratio of power consumption of a task executed on the little cluster and the big
cluster is set to 1 : 4. This platform allows frequency scaling of each cluster,
while the operating voltage is adapted to the frequency setting. The supported
frequencies range from 0.2GHz to 1.4GHz for the little cluster, and from 0.2GHz
to 2.0GHz for the big cluster. The frequency step is 0.1GHz. We use the models
of Exynos 5422 in [15] to model how computation time and dynamic power
consumption of tasks change with frequency.

The hierarchical managers are built to implement run-time management
strategies of the system. The two local managers are individually used for each
cluster to optimize task-to-core allocation and scheduling. In order to coordi-
nate the local managers, the global manager determines application-to-cluster
allocations and sets cluster frequencies. The management strategies are based
on design-time prepared execution traces. We establish XAi

for each application
by using the strategy in [13]. For each XAi

, information provided in SDF3 [3] is
used to compute the values of instants and the application latency (see Fig.5).

2 The latency of XAi is assumed to be obtained in the little cluster at 1.4GHz.

System-Level Modeling and Simulation 9

5.3 Validation of the Simulation Approach on Latency Criteria

In this part, the proposed simulation approach is applied to a homogeneous
architecture, where a local manager determines the task-to-core mapping inside
a cluster. LASP [13] is applied to get a combined mapping of active applications
in a use-case and then the latency of each application can be obtained.

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
40

50

60

La
te

n
cy

 (
µ

s)

Simulation time (µs)

/processing /processing /processing /processing

PeriodA1
LatencyA1 of XA1

Fig. 6. Evolution of simulated A1 latency, captured for four different use-cases. Results
are given for the LASP strategy [13].

Fig.6 shows the latency evolution of A1 in four different simulated use-cases.
The simulations are performed in the little cluster at a fixed 1.4GHz cluster
frequency. In this figure, the green arrows indicate the instants when a new
combined execution trace is computed by /processing. For a clear illustration,
the latency of A1 is captured nine iterations for each use-case. In uc1 where
only A1 is active, LatencyA1 equals to the latency of its design-time prepared
mapping. However, LatencyA1

can be larger in uc3, uc4 and uc5. In particu-
lar, the maximum LatencyA1

in uc3 and uc4 even violate the timing constraint
PeriodA1

. As discussed in Section 4.2, the increase of latency comes from the
possible delay of tasks re-allocation using the LASP combination strategy.

The latency of A1 observed in the simulation is consistent with the latency
obtained from the combined execution trace, while the combined execution trace
is obtained by a run-time mapping strategy. Therefore, we can see that our
simulation approach is able to correctly capture the behavior of an application
under a dynamic management.

5.4 Validation of the Simulation Approach on Power Criteria

We then applied the proposed simulation approach to a heterogeneous architec-
ture. In the simulated model, the global manager determines the application-to-
cluster allocation and set the cluster frequencies. Different platform configura-
tions lead to different computation time and different dynamic power consump-
tion of a task.

Fig. 7 shows the dynamic power consumption of A1 (in uc1) under the control
of the global manager. The green arrows indicate the instants when an execution
trace is adapted according to different platform configurations. In the first con-
figuration (little cluster, 1.4GHz), index (1) corresponds to the active state of
t1,1. Index (2) indicates the activities of t1,2 and t1,3 that are active in parallel.
Index (3) shows the activity of task t1,4. Lets take t1,1 as an example for fur-
ther discussions. For this task, the power consumption with different platform
configurations are represented in indexes (1), (4), (5) and (6), while the task

10 S. Yang, S. Le Nours, M. Méndez Real and S. Pillement

0
5

10

15

20

25

30

0 50 100 150 200 250 300 350 400

D
yn

a
m

ic
 p

o
w

er
 (

m
w

)

Simulation time (µs)

1.4GHz 1.1GHz 1.4GHz 1.1GHz
Big Cluster

/processing /processing /processing /processing

(2)

(1)

(3)

(6)
(4)

(5)

Little Cluster

Fig. 7. Simulated dynamic power of A1 is captured with the advancement of simulation
time. Results are given for uc1 according to different platform configurations.

computation time is reflected by the length of the red dotted lines. From (1)
and (4), when the operating frequency decreases from 1.4GHz to 1.1GHz, the
dynamic power consumption of t1,1 decreases and the task computation time in-
creases. In the case of (1) and (5), t1,1 is executed at 1.4GHz on the little cluster
and big cluster respectively. The power consumption of the task observed on the
big cluster is higher, while the computation time is smaller.

From the observed results in Fig.7, we can see that our approach is able
to capture the behavior of an application with different platform configurations
(i.e. different allocations, various v/f settings).

5.5 Evaluation of the Simulation Approach

Comparison of run-time mapping strategies: The proposed simulation
approach allows the evaluation of different run-time management strategies. We
compare two Local Management Strategies (LMS). LASP [13] is the first local
strategy (LMS-1), which allows the task of different applications to be mapped
on the same core. The second strategy (LMS-2) is the strategy introduced in
[12], where only the tasks from one application can be mapped on the same
core. The simulations are performed in the little cluster at 1.4GHz. In Table
1, we summarize the estimated application latency for different use-cases. As
previously observed, LMS-1 leads to some increase in application latency in
some use-cases.

Three Global Management Strategies (GMS) are also compared. They differ
in how they allocate applications to the clusters. GMS-1 and GMS-2 denote the
strategies that allocate all the active applications to the little cluster and to the
big cluster respectively. GMS-3 refers to the strategy that assigns applications

Table 1. Evaluation of run-time management strategies based on latency and power

Compared Critera Strategy uc1 uc2 uc3 uc4 uc5 uc6

Latency3
LMS-1 1 1 1.43 1.39 1.18 1.64

LMS-2 1 1 1 1 1 1

System Power4
GMS-1 1.68 2 1.68 1.89 1.94 2.14

GMS-2 1 1 1 1.12 1.15 1.07

GMS-3 1 1 1 1 1 1

3 Depicts the latency of the application that has the highest variation in a
use-case. Each value is normalized by the latency obtained by LMS-2.

4 Represents the average dynamic power of the system. Each value is normal-
ized by the system power obtained by GMS-3.

System-Level Modeling and Simulation 11

to the two clusters by searching the best power efficiency. Once the application
allocation is done, cluster frequency is decreased as much as possible under the
timing constraints. Then LMS-2 is used in each local manager to determine
task-to-core mapping. From Table 1, we can observe the poor power efficiency
of using only one cluster.

Evaluation of simulation efficiency: We analyze the scalability of the pro-
posed simulation method by comparing it with the CoFluent default simulation
method. The proposed approach simulates the execution of applications under
the control of the Run-Time Manager model (RTM), and different mappings can
be provided for each application in different use-cases. On the other hand, with-
out the RTM model, the default simulation approach only provides one static
mapping of the applications in every use-case. Fig.8 shows the differences in the
simulation effort between the two approaches. Simulation effort is characterized
by the average time needed to complete one simulation run. The results include
the execution traces processing and mapping control overheads.

0
2
4
6
8
10
12

1

D
if

fe
re

n
ce

s
o

f
si

m
u

la
ti

o
n

 e
ff

o
rt

 (
%

)

Number of simulated use-cases

2 3 4 5 6 7

14

40

60 65

71 75 81
85

simulated tasks

Fig. 8. The differences of simulation effort between the proposed approach and the
default approach. Results are given for an increasing number of simulated use-cases
and running tasks.

We define an increasing number of running use-cases within a fixed dura-
tion of simulation time, allowing each application to execute 100 to 240 periods.
When the number of simulated use-cases increases from 1 to 7, the number of
considered tasks increases from 40 to 85, while the difference of the simulation
effort increases only from 3.8% to 10.8%. Since the proposed approach dynami-
cally starts or stops the execution of tasks during simulation, it is reasonable to
use more time to finish a simulation. But this overhead is also due to the fact that
our approach takes into account the run-time manager in simulation while the
default approach considers a static mapping (requiring eventually more corner-
cases study). The improvement of the proposed simulation approach could be
considered to reduce the dynamic activity of the run-time manager model.

6 Conclusion

In this paper, we present an approach to allow system-level simulation of run-
time management strategies in multicore systems. This approach could be used
to consider different numbers of applications executed on heterogeneous archi-
tectures at varied v/f configurations. It has been observed that the influence of
the proposed approach on the simulation effort is reasonable (less than 10.8%

12 S. Yang, S. Le Nours, M. Méndez Real and S. Pillement

compared to the default Cofluent framework for 85 running tasks). In the future,
we plan to work on reducing the simulation effort of the proposed approach.

References

1. Exynos 5 octa (5422). Available:http://www.samsung.com/exynos.
2. Intel cofluent studio. Available:http://www.intel.com/.
3. Sdf3. Available:http://www.es.ele.tue.nl/sdf3.
4. A. Butko, F. Bruguier, D. Novo, A. Gamatié, and G. Sassatelli. Exploration of

performance and energy trade-offs for heterogeneous multicore architectures. arXiv
preprint arXiv:1902.02343, 2019.

5. Andreas Gerstlauer, Christian Haubelt, Andy D Pimentel, Todor P Stefanov,
Daniel D Gajski, and Jürgen Teich. Electronic system-level synthesis method-
ologies. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 28(10):1517–1530, 2009.

6. IEEE computer society. IEEE standard SystemC language reference manual. IEEE
Std. 1666–2011, 9 2011.

7. E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Transactions on Computers, C-36(1):24–
35, Jan 1987.

8. Paul Lieverse, Pieter Van Der Wolf, Kees Vissers, and Ed Deprettere. A methodol-
ogy for architecture exploration of heterogeneous signal processing systems. Jour-
nal of VLSI signal processing systems for signal, image and video technology,
29(3):197–207, 2001.

9. A. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring em-
bedded system architectures at multiple abstraction levels. IEEE Transactions on
Computers, 55(2):99–112, 2006.

10. W. Quan and A. Pimentel. A hybrid task mapping algorithm for heterogeneous
mpsocs. ACM Transactions on Embedded Computing Systems (TECS), 14(1):14,
2015.

11. A.K. Singh, P. Dziurzanski, H.R. Mendis, and L.S. Indrusiak. A survey and com-
parative study of hard and soft real-time dynamic resource allocation strategies
for multi-/many-core systems. ACM Computing Surveys (CSUR), 50(2):24, 2017.

12. Amit Kumar Singh, Akash Kumar, and Thambipillai Srikanthan. A hybrid strat-
egy for mapping multiple throughput-constrained applications on MPSoCs. In
Proceedings of the 14th international conference on Compilers, architectures and
synthesis for embedded systems, pages 175–184. ACM, 2011.

13. Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. Re-
source and throughput aware execution trace analysis for efficient run-time map-
ping on mpsocs. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 35(1):72–85, 2016.

14. Andreas Weichslgartner, Stefan Wildermann, Deepak Gangadharan, Michael Glaß,
and Jürgen Teich. A design-time/run-time application mapping methodology for
predictable execution time in mpsocs. ACM Transactions on Embedded Computing
Systems (TECS), 17(5):89, 2018.

15. H. Zahaf, A. Benyamina, R. Olejnik, and G. Lipari. Energy-efficient scheduling
for moldable real-time tasks on heterogeneous computing platforms. Journal of
Systems Architecture, 74:46–60, 2017.

