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ABSTRACT

Cytokinesis is the process by which a mother cell is physically cleaved into two daughter
cells. In animal cells, cytokinesis begins with the contraction of a plasma membrane-
associated actomyosin ring that is responsible for the ingression of a cleavage furrow.
However, the post-furrowing steps of cytokinesis are less understood. Here, we highlight key
recent findings that reveal a profound remodeling of several classes of cytoskeletal elements
and cytoplasmic filaments (septins, microtubules, actin and ESCRT) in the late steps of
cytokinesis. We review how this remodeling is required first for the stabilization of the
intercellular bridge connecting the daughter cells and then for the steps leading up to
abscission. New players regulating the abscission (NoCut) checkpoint, which delays
abscission via cytoskeleton and ESCRT remodeling in response to various cytokinetic
stresses, will also be emphasized. Altogether, the latest discoveries reveal a crucial role for
posttranslational modifications of the cytoskeleton (actin oxidation, septin SUMOylation)

and an unexpected requirement of ESCRT-III polymer dynamics for successful abscission.



Actin polymerization and turnover are essential for furrow ingression in animal cells [1,2].
After furrow ingression, a microtubule (MT)-filled intercellular bridge connects the daughter
cells for several hours before the final cut [3]. Ten years ago, a breakthrough in the field was
the finding of a role for the Endosomal Sorting Complex Required for Transport (ESCRT) in
cytokinetic abscission, which at that time was known for intraluminal vesicle scission in late
endosomes/multivesicular bodies (MVBs) and for retroviral budding [4-6]. Although the
detailed mechanism is under debate [7], the current literature indicates that the ESCRT
machinery is sufficient for outward membrane budding and fission [8], an event that is
topologically equivalent to cytokinesis. In this review, we will focus on 1) how the septin
cytoskeleton is regulated to maintain bridge stability, 2) how ESCRT polymers are turned-
over to promote abscission and 3) the recent findings regarding MT and F-actin clearance

within the bridge prior to abscission to allow for correct ESCRT filament assembly.

Septin filament dynamics and intercellular bridge stability

The stability of the cytokinetic bridge becomes independent of actin filaments soon after
furrow ingression but relies on septins [9-11]. Septins are GTP-binding proteins that
assemble into non-polar, rod-shaped oligomeric complexes and higher-order structures such
as filaments and bundles [12]. Septins localize to the intercellular bridge and their
inactivation usually leads to binucleated cells due to either an unstable, and sometimes
displaced, cleavage furrow or intercellular bridge relaxation in several animal models [13-
16], but not in C. elegans [17]. In Drosophila S2 cells, the septin Peanut (Septin 7) acts in
complex with anillin to maintain connections between the midbody and the plasma
membrane, thus maintaining furrow/bridge stability. In addition, septins are required for
trimming away excess anillin-positive membranes from the early bridge, which promotes its
maturation, both in Drosophila [11] and human [16] cells. Among human septins, SEPT9
plays a distinct and later role in cytokinesis, since its inactivation essentially delays abscission
but does not generate binucleated cells [14,16,18]. Altogether, recent evidence indicates a
role for septins in bridge maturation, a step preceding and required for ESCRT-III recruitment
to the abscission site [16,17], but the exact mechanistic roles of septins in this process are

not yet fully understood.



In yeast, septins were the first substrates reported to be post-translationally modified by
SUMOylation (a moiety resembling Ubiquitin), but this modification is not critical for
cytokinesis [19,20]. In contrast, findings in human cells revealed this year that septins are
SUMOylated and that this modification is important for cytokinesis [21]. Indeed, non-
SUMOylable mutant septins assemble in abnormally long and thick bundles that do not
turnover. These bundles likely constitute a physical block within the intercellular bridge,
which explains bridge relaxation and observed binucleated cells [21]. Whether SUMO
directly controls filament assembly into higher-order structures or whether SUMOylation of
septins regulates the interaction of proteins that inhibit the formation of large bundles
remains to be investigated. In any case, this highlights a new role for SUMOylation both in

cytoskeletal dynamics and cytokinesis (Figure 1A).

ESCRT-IIl filaments and cytokinetic abscission

As mentioned in the introduction, current models indicate that the ESCRT machinery is
responsible for the final abscission, which takes place on the midbody side (also called the
“secondary ingression site”) [10,16,22-24]. Consistently, depletion of several key ESCRT
components or associated proteins such as ALIX, TSG101 (ESCRT-l) and several CHMPs
(ESCRT-III) leads to cytokinetic delay, abscission failure and binucleated cells in human cells
[4,5,10]. Mechanistically, ESCRT-IIl can polymerize into filaments in vitro [7] and the
presence of 17 nm cortical intertwined filamentous helices have been observed at the
abscission site in human cells by electron and X-ray microscopy [10,25,26]. In cells depleted
for the ESCRT-lIll component CHMP2A, these helices are no longer present, and
concomitantly no cortical constriction is observed [10]. This indicates that either these
helices are made of ESCRT, or the ESCRT machinery is required for these filaments to
polymerize and constrict the intercellular bridge. This is a crucial point that has to be
resolved in our standard model of abscission, perhaps by combining super-resolution and
EM tomography. Interestingly, other filamentous structures made of anillin and septins are
also observed at the secondary ingression site before CHMP4B recruitment [16]. Thus, the
relationship between these different filamentous polymers and the helices observed by EM

has to be clarified in future studies. Furthermore, published micrographs show ESCRT-III-



dependent helices in bridges constricted to no less than 150-200 nm [10,26]. Thus, more
work is needed to observe helices in further constricted states in order to definitively prove
that ESCRT-IlI-dependent helices drive the final pinch. This might prove tedious if the final
constriction step is fast and thus difficult to catch. A provocative, alternative possibility
would be that after ESCRT-III constriction to 150-200 nm, there is an additional ESCRT-
independent step leading to the final scission of the intercellular bridge at 3-10 nm, perhaps

involving lipid modifications [27,28].

Recent findings clarified the mechanisms by which the ESCRT-IIl machinery is recruited to
the intercellular bridge. It was shown that Cep55 plays a pivotal role in directly recruiting
TSG101 and ALIX to the midbody in mammalian cells [5,29]. It is now shown that ALIX and
TSG101 act in parallel to fully recruit ESCRT-IIl components [30]: ALIX is activated by
phosphorylation [31] and directly interacts with CHMP4B, whereas the ESCRT-I components
TSG101 and VPS28 recruit ESCRT-II proteins which in turn recruit the ESCRT-IIl CHMP4B. Yet,
these two parallel pathways are not equivalent, as only ALIX appears to have a specific role
in the prevention of binucleation [5,30]. Similarly, CHMP4C, another ESCRT protein involved
in the abscission checkpoint (see below), is recruited via ALIX but not TSG101 [30]. A
guestion that remains poorly understood is how ESCRT-IIl components, initially found at the
midbody are later found at the abscission site. Does this involve a separate recruitment from
a cytosolic pool? Does ESCRT-III physically translocate from the midbody to the abscission
site? Is this related to relaxation of tension within the intercellular bridge [32,33]? Despite
these interrogations, it is known that the relocalization of CHMP4B from the midbody to the

abscission site depends on anillin/septins [16], as well as F-actin clearance (see below).

Regarding the issue of the spatial and temporal recruitment of the ESCRT machinery at the
midbody and the abscission site, important progress has been made this year. Near-
endogenous expression levels of tagged proteins combined with fluorescent microscopy
revealed that the AAA-ATPase VPS4, which is known to disassemble ESCRT filaments [7],
does not arrive to the midbody just before abscission as initially thought [22], but instead is
continuously present throughout ESCRT-IIl subunit recruitment [26]. The presence of VPS4 at
the midbody explains why ESCRT-III filaments are highly dynamic (their different subunits

display a high turnover, with residence time of 20 sec) [26]. At first counter intuitively, this



process leads to a net increase in the amount of CHMP4B during progress toward abscission.
Indeed, depletion of the AAA-ATPase VPS4 abolishes CHMP4B turnover at the midbody,
diminishes the recruitment of ESCRT-III, prevents the constriction of the intercellular bridge,
and results in a strong delay in abscission [26]. Remarkably, in vitro reconstitution assays
coupled with high-speed atomic force microscopy (AFM) revealed that ESCRT-III filaments
form spirals that undergo both rapid growth and shrinkage in the presence of VPS4 and ATP
[26]. Altogether, this suggests that continuous VPS4-dependent turnover of ESCRT-filaments
is crucial for filament growth and abscission in vivo, revisiting the mechanistic role of VPS4
and ATP hydrolysis in polymer constriction. Interestingly, the spiral helices could not fully
contract in vitro [26]. Thus, either an additional component is missing for full constriction, or,
as mentioned above, the ESCRT machinery is required for successful abscission but does not
drive it to completion. Importantly, turnover of ESCRT-IIl by Vps4 could be a general
principle in ESCRT-dependent mechanisms since a continuous and stochastic recruitment of
Vps4 throughout the process of intraluminal vesicle budding in yeast MVBs has now been
observed [34]. Understanding how polymer remodeling translates into fission is thus a major

challenge for the future.

Microtubule and F-actin clearance at the abscission site

Microtubule bundles are locally severed at the secondary ingression site [10,16,22,23] and
this is presumably an important step for ESCRT filaments to be able to constrict to
completion. Remarkably, the MT-severing AAA-ATPase spastin directly interacts with the
ESCRT-Ill component CHMP1B, and is required for normal abscission [10, 33, 35,36]. This
suggests a molecular mechanism coordinating ESCRT recruitment and MT clearance at the
abscission site. The same coordination between ESCRT-III and spastin has also been recently
observed during nuclear envelope reformation at mitotic exit [37]. However, the importance
of spastin for severing MTs at the abscission site is discussed, since spastin-independent,

buckling-induced MT severing has also been proposed [38].

In addition to MTs, F-actin must be cleared from the intercellular bridge for successful

abscission [23,39,40]. However, whether this has to occur specifically at the secondary site



or all along the bridge has not yet been resolved. Two mechanisms for F-actin clearance
have been elucidated. The first mechanism relies on the Rab35 GTPase which recruits an
effector, the PtdIns(4,5)P, lipid phosphatase OCRL [41], to the intercellular bridge [39].
Ptdins(4,5)P, hydrolysis by OCRL limits F-actin oligomerization and is required for normal
abscission [28,39]. In addition, Rab11-FIP3-positive endosomes deliver the p50RhoGAP cargo
to the bridge to further limit Rho GTPase activation and thus F-actin polymerization in
bridges [23]. The second mechanism, also depending on Rab35, was revealed this year and
depends on another effector of this GTPase: the oxidoreductase MICAL1 [40] (Figure 1B).
MICAL1 is an enzyme that oxidizes methionine residues on F-actin and induces filament
depolymerization in vitro [40,42] (for a recent review regarding MICAL enzymes see [43]).
Rab35 binding to MICAL1 is sufficient to activate the enzymatic activity of MICAL1, which is
tightly regulated [40]. In addition, Rab35 recruits a pool of MICAL1 at or close to the
abscission site a few minutes before abscission [40]. Altogether, Rab35/MICAL1 actively
clear F-actin from bridges, which is a step required for normal abscission and recruitment of
ESCRT-1II to the abscission site [40]. Interestingly, other proteins that need to be discovered
also contribute to MICAL1 recruitment during cytokinesis, and may include other Rab
GTPases known to interact with MICAL1 [43]. In summary, two GTPases control parallel
pathways that cooperate in F-actin clearance and correct ESCRT-IlIl recruitment at the
abscission site. On the one hand, these pathways limit the amount of F-actin polymerization
via Rab35/0CRL1 and Rab11/MICAL1 and, on the other hand, actively depolymerize F-actin
at the bridge via Rab35/MICALL. It remains to be established how Rab35 is activated at the
midbody and the abscission site, and whether vesicular delivery is involved in enriching this
GTPase at specific locations within the intracellular bridge (for a recent review on membrane
traffic and cytokinesis, see [44]). Another interesting issue is to determine whether Rab11

and Rab35 act sequentially or in parallel during the process of F-actin clearance.

Conclusion and open questions

Several recent studies have helped to understand the multiple events of cytoskeletal

remodeling involved in the late steps of cytokinesis (Figure 2). A number of remaining

guestions regarding the remodeling of septins, MTs, actin and ESCRT filaments have been



detailed above and the main ones are summarized in the BOX. Besides answering these

questions, several areas are expected to yield exciting findings in future studies.

First, the study of cytokinesis in abnormal or pathological situations, such as during aging or
when a stress is present. An abscission checkpoint, also called the “abscission checkpoint”,
was discovered several years ago in seminal works in yeast (termed the “NoCut checkpoint”
in this organism) [45] and in mammalian cells [46]. This evolutionarily-conserved checkpoint
delays abscission when lagging chromatin abnormally stays in the intercellular bridge, but
also after a variety of other cytokinetic stresses such as defects in nuclear pore reformation
or high levels of intercellular tension [33,47-50]. Mechanistically, activated Aurora B
mediates the checkpoint by phosphorylating the ESCRT-III subunit CHMP4C, which acts as a
negative regulator of ESCRT-IIl filament assembly [51-53]. In addition, the ATPase VPS4
interacts with the checkpoint regulator ANCHR, which together with CHMPA4C retains VPS4
at the midbody and thus delays abscission [54]. The kinase ULK3 also phosphorylates and
inhibits IST1, which is an ESCRT-IIl component required for abscission and a key regulator of
Vps4 [55]. Furthermore, recent work identified the CDK-like kinases Clk1, Clk2 and Clk4 as
additional activators of Aurora B [56]. Altogether, there is clear evidence that the Aurora B-
dependent abscission checkpoint regulates the assembly and constriction of ESCRT-III
filaments in response to cytokinetic stresses. Interestingly, activation of the checkpoint is
associated with the appearance of F-actin patches at the bridge entrance that presumably
play an important role in bridge stability and prevention of tetraploidy while abscission is
halted [46]. Despite rapid advancements, many questions remain unanswered: which exact
chromatin defects activate the checkpoint [57]? How are diverse cytokinetic stresses
recognized and how do they activate checkpoint kinases? How is F-actin maintained at high
levels when the checkpoint is activated in mammalian cells? Are double strand breaks
observed when the checkpoint is defective, resulting from nuclear envelope rupture and
entry of cytoplasmic nucleases [45,55,58,59]? Answering some of these questions should
help to understand the multiple changes in F-actin and ESCRT-IIl remodeling that are

observed in response to checkpoint activation.

Second, there is an urgent need to confirm in vivo the pathways and mechanisms described

within this review in cultured cells. In the few in vivo studies, unexpected results have been



numerous. For instance, ESCRTs are required for abscission in female germ cells in
Drosophila, but not in somatic cells [60,61]. Similarly, SEPTIN7 is required for cytokinesis in
mouse fibroblasts but not in hematopoietic stem cells [62]. In addition, the septin Peanut is
required for cytokinesis in the first (planar) but not the second (orthogonal) division of
sensory precursor stem cells in Drosophila [63]. Thus, the filament components described
above can be essential or not depending on the context or the organism.

Finally, a recent report exemplified how partial our understanding of late cytokinetic events
is. Quite unexpectedly, during the first division of C. elegans embryos, no helices could be
observed at the abscission site by EM tomography [64]. Instead, ESCRT-llIl-dependent
filamentous helices are unambiguously detected at multiple buds emerging from the
midbody. Furthermore, ESCRTs are not essential for abscission in this first division (upon
depletion, a slight delay is observed, as opposed to a strong delay found in human cells) [64].
Nevertheless, in both models abscission eventually occurs in most of the cells upon ESCRT-III
inactivation. This might be due to residual ESCRT functions or ESCRT component redundancy
but might also suggest the existence of an ESCRT-independent mechanism of abscission,

which is new territory to be explored in the future.

BOX: Key unanswered questions regarding cytoskeletal remodeling during late cytokinesis

1- Are helices at the abscission site made of ESCRT components?

2- Do ESCRT-dependent helices constrict to completion and trigger abscission?

3- What are the relationships between anillin, septin and ESCRT-dependent helices?
4- How do septins promote ESCRT filament localization?

5- What determines the recruitment of the ESCRT-IIl pool at the abscission site?

6- How is Rab35 activated and localized to the abscission site?

7- How is F-actin stabilized when the abscission checkpoint is activated?

8- Which pathways are required for abscission in vivo?

9- What are the potential ESCRT-independent mechanisms involved in abscission?
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A. Septin SUMOylation

Direct effect of SUMOylation on filament-filament

interactions ?

Regulation of filament-filament interactions via
SUMO-dependent binding factors ?
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Figure 1: Two post-translational modifications of cytoskeletal elements recently involved
in cytokinesis. (A) SUMOylation of Septin 6, 7 and 11 on their C-terminal tails prevents
abnormal bundling of Septin filaments and destabilizes cytokinetic bridges in human cells.
SUMOylation could either directly affect filament-filament interactions or regulate filament
bundling through SUMO-dependent binding factors. (B) Actin oxidation of methionine
residues (Met44 and M47) into methionine sulfoxide induces fast F-actin depolymerization.
The reaction involves the enzyme MICAL1, O, and NADPH as a cofactor. MICAL1-dependent
actin oxidation is required for correct localization of ESCRT-IIl at the secondary ingression
site and for normal timing of abscission in human cells.
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Figure 2: Mechanisms controlling cytoskeletal remodeling in the post-furrowing steps of
cytokinesis. Septins, F-actin, microtubules and ESCRT-IIl filaments are indicated in blue,
green, grey and red, respectively. Note that ESCRT-IIl recruitment and constriction at the
abscission site require clearance of both microtubules and F-actin.
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