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Brief synopsis: Rab35 is a small GTPase that was recently reported to possess oncogenic activating mutations 
in human tumors. Conversely, Rab35 depletion inverts apico-basal cell polarity and promotes cell migration. In 
the present review we describe how Rab35’s known functions in membrane trafficking, signaling, cell division 
and cell migration could explain its role in tumorigenesis. 
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Abstract 
Rab35 is a small GTPase that is involved in many cellular 
processes, including membrane trafficking, cell polarity, lipid 
homeostasis, immunity, phagocytosis and cytokinesis. Recent 
studies showed that activating mutations confer Rab35 with 
oncogenic properties. Conversely downregulation of Rab35 
inverts apico-basal cell polarity and promotes cell migration. 
Here we review Rab35’s known functions in membrane 
trafficking and signaling, cell division, and cell migration in 
cancer cells and discuss the importance of Rab35-dependent 
membrane trafficking in cancer progression.  
 
Introduction 

Intracellular membrane trafficking regulates uptake of 
nutrients and signaling from extracellular molecules by 
controlling the plasma membrane localization of transporters 
and receptors, and thus plays a key role in cell differentiation 
and proliferation. In addition, cells rely on membrane trafficking 
to maintain cell architecture, cell shape and cell polarity, as 
well as organ structure and function1,2. Cancer cells often have 
altered membrane trafficking that can lead to the upregulation 
of growth factor receptors at the cell surface (e.g. epidermal 
growth factor receptor; EGFR) and abnormal levels of 
adhesion molecules (e.g. β1-integrin, cadherins), which can 
promote epithelial-mesenchymal transition (EMT) and an 
invasive phenotype during cancer progression3-5. 

Rab proteins are evolutionarily-conserved GTP-binding 
proteins that regulate intracellular membrane trafficking in all 
eukaryotic cells6-8. They act as molecular switches between an 
inactive GDP and active GTP form, where the latter form 
interacts with specific intracellular membranes and controls 
local recruitment of downstream effectors. Guanine nucleotide 
exchange factors (GEFs) and GTPase-activating proteins 
(GAPs) regulate Rab activation and deactivation, respectively6-

9. Importantly, Rab proteins control the endocytosis, recycling 
and lysosomal degradation of growth factor receptors including 
those overexpressed in many cancers4, such as the EGFR10, 
platelet derived growth factor receptor (PDGFR)11, vascular 
endothelial growth factor receptor (VEGFR)12, c-Met13 and 
integrins14,15. Manipulating the endocytic trafficking and 
recycling of these receptors has emerged as an attractive 
method to counteract cancer cell proliferation and survival. For 
example, pharmacologically-induced accumulation of ligand-
activated EGFR in endosomes activates apoptosis selectively 
in cancer cells16,17. Taken together, this suggests the potential 
for targeting endocytic trafficking to counteract cancer cell 
proliferation. 

There is increasing evidence to implicate a select few Rab 
proteins in cancer progression (reviewed in ref.7). Here we will 
focus on Rab35, a GTPase19 first described as being important 
for endocytic recycling and cytokinesis18. Rab35 is unique in 
that it contains an evolutionarily-conserved polybasic C-
terminal tail and localizes both at the plasma membrane and 
on endosomes18,20. Its polybasic tail facilitates its interaction 
with PtdIns(4,5)P2 and PtdIns(3,4,5)P3 at the plasma 
membrane20. Rab35 has attracted a lot of attention in the past 
ten years in the endocytic community and beyond, as reviewed 
recently in ref.21. Rab35 has many functions in various cellular 
processes including membrane trafficking (see below), 
autophagy22, cell polarity23,24, cytokinesis25,26, membrane lipid 
homeostasis25,27, neurite outgrowth28-31, axonal elongation32, 
immunity33-36, phagocytosis37,38, pathogen infection39,40, 
myoblast fusion41, exosome secretion42 and Weibel-Palade 
bodies secretion43. Moreover, the mechanisms controlling 
Rab35 activation in endocytosis is well understood with the 
identification of Rab35 GEFs (DENND1A-C/Connecdenn1-
327,44-47) and GAPs (TBC1D10A-C/EPI64A-C33,36,48, 
TBC1D1349, TBC1D2450), and reviewed in detail in 21 and 51. 

A recent study described Rab35 oncogenic somatic 
mutations in human tumors, which activate Rab35 and have 
transforming capabilities in mouse fibroblasts in vitro11 (see 
Rab35 tumor somatic mutations in Table 1). In this context, 
Rab35 regulates PDGFR trafficking leading to cell 
transformation through a PI3K/AKT-dependent mechanism11. 
Rab35 was initially linked to cancer by its interaction with the 
oncogenic nucleophosmin-anaplastic lymphoma fusion kinase 
(NPM-ALK)52 and the p53-related protein kinase (PRPK), 
where it negatively regulates PRPK-mediated p53 
transcriptional activity32,53. However, the relevance of Rab35 
function in lymphoma or p53-dependent transformation 
remains to be established.  

Here, we review the recent data suggesting a direct role for 
Rab35-dependent membrane trafficking in multiple and 
intertwined aspects of cancer progression by controlling cell 
division, polarity and migration, as well as survival and 
proliferative intracellular signaling.  

 
Rab35 in membrane trafficking and cell division  

Cytokinesis (the last step of cell division leading to the 
physical separation of the daughter cells) and cell polarity are 
two key processes deregulated in cancer and Rab35 plays a 
role in both. An RNAi screen looking for Rabs involved in 
cytokinesis identified Rab35 and showed that depletion of this 
Rab generated binucleated cells and perturbed a fast recycling 
pathway18. The first isolated effector of Rab35 was the 
PtdIns(4,5)P2 phosphatase Oculo-Cerebro-Renal syndrome of 
Lowe (OCRL), which is necessary for successful cytokinetic 
abscission25. Of note, OCRL traffics in and out of the 
cytokinetic bridge on Rab35-positive vesicles25. Another Rab35 
effector, MICAL1, which belongs to an emerging class of 
oxidation-reduction enzymes that depolymerize F-actin through 
selective oxidation54,55, facilitates ESCRT-III recruitment at 
cytokinetic bridges and thus abscission26. Both OCRL and 
MICAL1 localize to cytokinetic bridges in a Rab35-dependent 
manner, and their depletion causes the accumulation of F-actin 
at this location25,26. This suggests a parallel, and perhaps 
synergistic, mechanism of F-actin removal from cytokinetic 
bridges, which appears to be essential for successful 
cytokinesis. Importantly, studies have established that 
cytokinetic failure leading to tetraploidy promotes 
tumorigenesis in vivo56, as shown experimentally in primary 
mouse mammary epithelial cells57.  

In addition to a mechanistic role for Rab35 and its effectors 
in cytokinesis by clearing F-actin, Rab35 plays a role in 
connecting cytokinesis with apical polarity initiation in MDCK 
cells grown in Matrigel to form cysts23. In this study Rab35 was 
found to tether vesicles containing important apical proteins, 
such as Cdc42, Crumbs3, aPKC, and the lumen promoting 
factor GP135/Podocalyxin (PODXL) at the cytokinetic 
abscission site to deliver them to the future apical membrane 
initiation site (AMIS). Consequently, Rab35 depletion or 
deactivation prevents AMIS and lumen formation, and leads to 
a complete inversion of apico-basal polarity23,24. As changes in 
apico-basal polarity are believed to favor cancer development, 
this suggests that loss of function mutations of Rab35 might 
promote tumorigenesis. Interestingly, Rab35 is downregulated 
in several tumors including grade IV gliomas, breast and renal 
carcinomas58,59. 

In summary, the function of Rab35 in the final step of cell 
division and in apico-basal polarity establishment might be 
important to explain a role for this GTPase in cancer initiation. 

 
Rab35 in membrane trafficking and cell signaling  

Rab35 plays a central role in intracellular trafficking by 
promoting endocytic recycling of various cargoes, including the 
transferrin receptor (TfR)18,40, yolk receptor60, Shiga toxin48, 
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major histocompatibility complex class-I (MHC-I) and MHC-
II33,34, T-cell receptor36, Ca2+-activated K+ channel KCa2.361, 
Megalin62, GLUT449, M- and N-Cadherin41,58 and β1-
integrin58,63. Moreover, Rab35 knockdown inhibits trafficking of 
CI-mannose-6-phosphate receptors from endosomes to the 
trans Golgi network (TGN)27. 

Recent studies showed that the tumor suppressor folliculin 
(FLCN) interacts with GDP-bound Rab35 in vitro and 
negatively regulates EGFR signaling after EGF stimulation64,65, 
possibly acting as a Rab35 GEF66. Moreover, FLCN-mediated 
EGFR degradation in HeLa cells requires Rab35 activation64. 
In these cells, depletion of Rab35 increases AKT activation 
after EGF stimulation and cell proliferation64, as previously 
observed in COS-7 cells58. Rab35 is downregulated in some 
cancers58,59, which could lead to increased EGFR receptor 
recycling and signaling, a common hallmark of many 
malignancies3. Surprisingly, a recent study reported that 
depletion of Rab35 in HeLa cells rather diminished AKT 
signaling, at least after 10% serum stimulation11. The authors 
attributed cell context and experimental conditions as a reason 
for this discrepancy (perhaps serum vs EGF stimulation64) but 
this needs to be clarified. Nevertheless, two Rab35 activating 
mutations (A151T and F161L) found in human cancers (lung, 
uterus and lymphoid tissues; see Table 1) lead to upregulation 
of the PI3K/AKT signaling pathway via mTORC2, as well as 
mouse fibroblast transformation and apoptosis evasion11. This 
associates with increased signaling and trafficking of the 
PDGFR-α into Lamp2-positive vesicles11. This study thus 
suggests a pivotal role for Rab35 activating mutations in 
endocytic deregulation and PDGFR-mediated oncogenic 
signaling in cancer progression.  

It is not known, however, how exactly Rab35 controls 
EGFR and PDGFR trafficking in FLCN-depleted cells or in cells 
expressing activating mutations of Rab35. Given the number of 
cargoes whose trafficking is regulated by Rab35 (see above), it 
is likely that Rab35 plays a fundamental and general role in the 
endosomal pathway. As during cytokinesis, GTP-bound Rab35 
binds to the OCRL lipid phosphatase27, which promotes 
PtdIns(4,5)P2 hydrolysis on newborn endosomes/clathrin 
coated vesicles recently pinched from the plasma membrane67. 
This promotes the generation and maintenance of PtdIns4P on 
endosomes, an important step for normal cargo sorting and 
recycling towards the plasma membrane or targeting to the 
trans-Golgi network67. In addition to PtdIns4P vs. PtdIns(4,5)P2 
homeostasis, active Rab35 might regulate PtdIns(3,4,5)P3 
levels and thus AKT activation, since Rab35 co-
immunoprecipitates with PI3K11. Therefore, abnormal levels of 
GTP-bound Rab35 could affect the lipid composition of 
endosomes in cancer cells and dictate growth factor receptor 
fate.  

In parallel to phosphoinositide regulation, Rab35 controls 
recycling of cargoes from ARF6-positive endosomes back to 
the plasma membrane through the recruitment of two 
additional effectors: the ARF6-GAP ACAP2/CentaurinB228,29 
and MICAL-L168, a scaffolding protein that, contrary to MICAL1 
described above, has no redox activity54,55. For detailed 
reviews on ARF proteins and cancer, please refer to refs.69,70. 
Upon activation, Rab35 inactivates ARF6, which promotes 
endosomal recycling28,29,68,71. In addition, Rab35 recruits 
MICAL-L1, which facilitates tubular endosomal fission by 
directly interacting with the dynamin-like protein EHD128,29,72. 
Finally, MICAL-L1 recruits other small GTPases (Rab8, Rab13 
and Rab36) that also promote endosomal recycling73. Of note, 
the TP53 status of cancer cells could also influence recycling in 
this pathway since p53 regulates MICAL-L1 transcription and 
tubular endosome biogenesis74. 

Altogether, abnormal levels of Rab35 activation impair 
endosomal recycling and phosphoinositide homeostasis by 

several mechanisms, which could explain growth factor 
receptor and survival signaling observed in cancer situations 
with perturbed Rab35. 
 
Rab35 in cell migration 

Cell migration and dissemination play a critical role in tumor 
metastasis. Several lines of evidence indicate that Rab35 
regulates cell migration, however this depends on the cell type 
and the influence of external cues. In COS-7 cells, depletion of 
Rab35 induces a phenotype with hallmarks of EMT in vitro58, 
with increased cell migration and decreased cell-cell adhesion. 
This can be explained by the fact that Rab35-dependent 
recycling is required for maintaining cadherins at the cell 
surface in COS-7 cells58, as in myoblasts41. In addition, Rab35 
depletion increases β1-integrin levels at the cell surface and 
thus promotes cell migration, since Rab35 inhibits ARF6-
mediated β1-integrin recycling through the ARF6-GAP 
ACAP258 (see above). Rab35 depletion in HeLa and MDA-MB-
231 cells increases β1-integrin levels, however authors 
attributed this to impaired internalization rather than increased 
recycling63. In any case, overexpression of miRNA-720 (a 
marker for colorectal cancer75 and multiple myeloma76, and 
which targets Rab35) also resulted in increased cell migration 
in HeLa cells77.  

Conversely, Rab35 activation after prolonged EGF 
stimulation reduces the interaction between the G protein-
coupled receptor kinase interacting ARFGAP 2 (GIT2) and its 
binding partner RUSC2 and consequently reduces directional 
cell migration in non-small cell lung cancer (NSCLC)78. 
However, contrary to the studies mentioned above, Rab35 
activation downstream of Wnt5 signaling promotes cell 
migration in breast cancer MCF-7 cells via a Dvl2/Rab35/Rac1 
signaling pathway79, perhaps due to additional dominant 
effects downstream of Wnt5.  

Finally, EGF-mediated Rab35 activation leads to the 
activation of the enzyme MICAL1, and this associates with 
reactive oxygen species (ROS) production, AKT 
phosphorylation, and cell invasion in a Matrigel Transwell 
assay in breast cancer cells80. Since GTP-Rab35 binding to 
MICAL1 releases an inhibitory intramolecular folding, activates 
the redox activity of MICAL1 and selectively depolymerizes F-
actin26, it would be interesting to characterize whether Rab35 
remodels cortical actin during invasion. 

These seemingly contradictory results suggest that 
depending on the migration assay (with or without extracellular 
matrix), the cell type and on the means by which Rab35 is 
activated or inhibited, Rab35 plays different roles in migration 
vs. invasion.  
 
Concluding remarks 

Abnormal activation of Rab35 modifies actin dynamics, cell 
division and polarity. In addition, Rab35 regulates the endocytic 
recycling of key cargoes involved in cell migration, such as β1-
integrin as well as growth factor receptor recycling and 
signaling through PDGFR-α, EGFR and AKT (Figure 1). Based 
on the in vitro studies reviewed above, modification of Rab35 
activation observed in several cancers might influence EMT 
and cancer cell migration/metastasis. However, additional work 
is needed to address experimentally the consequences of 
Rab35 upregulation or downregulation on tumorigenesis in 
vivo. 

Rab proteins have gained interest as targets for the 
development of treatments for diseases81,82. As Rab35 is 
known to play an important role in endocytic recycling, an 
interesting approach would be to target the Rab35-specific 
effectors responsible for this function instead of the Rab35 
molecule itself, which is involved beyond, and thus specifically 
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affecting the endocytic trafficking of cancer-involved growth 
factor receptors. Perhaps pharmacologically targeting the 
Rab35 effector OCRL could be an attractive possibility. 
Interestingly, a bistable switch between Rab35 and ARF6 has 
been postulated21, since GTP-Rab35 interacts with 
ACAP2/CentaurinB2 (an ARF6 GAP)28,29, while GTP-ARF6 
interacts with TBC1D10/EPI64 (a Rab35 GAP)33. Thus, 
activating ARF6 in the endocytic pathway may also prove 
interesting for inactivating Rab35-dependent trafficking of 
growth factor receptors. 

While both Rab35 activating mutations11 and Rab35 
downregulation58,59 are described in cancer, these phenomena 
could play complementary roles at different stages of cancer 
development through a process known as clonal evolution83. 
One can indeed speculate that during initial tumorigenic 
events, activating mutations described to upregulate PDGFR 
trafficking and AKT activation would lead to cell survival and 
transformation. In contrast, Rab35 downregulation leads to a 
migratory or invasive EMT phenotype and could be the 
consequence of gene silencing at a later stage, after cell 
transformation.  

Taken together, Rab35 emerges as a key player in cancer 
and future studies regarding Rab35 should shed light on how 
this GTPase contributes to oncogenesis, linking the importance 
of membrane trafficking to tumorigenesis. 
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Figure 1. Rab35 functions in intracellular signaling, apico-basal polarity, cytokinesis and cell migration. Rab35’s functions in these 
processes are described. Moreover, known and possible effectors involved in each process are indicated. 
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Table 1. Pathogenic Rab35 somatic mutations found in human tumor samples according to the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database. We indicated synonymous mutations as they can be sometimes pathogenic. 
 
 
Tissue Amino acid 

change 
Mutation 

Bone V187V Synonymous 
   
Brain V90I Missense 
   
Breast A29V 

F45L 
G18V 

Missense 
Missense 
Missense 

   
Cervix F45F Synonymous 
   
Colon A139V 

E94K 
F33F 
G80E 
G83R 
G140R 
R27C 
R71C 
R79Q 
R127Q 
R196Q 
S150S 
V188M 
- 

Missense 
Missense 
Synonymous 
Missense 
Missense 
Missense 
Missense 
Missense 
Missense 
Missense 
Missense 
Synonymous 
Missense 
Intronic substitution 

   
Endometrium A151T 

S22N 
Missense 
Missense 

   
Esophagus I14I 

V97V 
Synonymous 
Synonymous 

   
Hematopoietic and 
lymphoid 

A151T Missense 

   
Liver A65V Missense 
   
Lung A29V 

F70F 
F161L 
R101Q 

Missense 
Synonymous 
Missense 
Missense 

   
Pancreas G80R Missense 
   
Prostate N156S Missense 
   
Stomach R27H 

R196* 
Missense 
Nonsense 

   
Thyroid G18S Missense 
   
Upper aerodigestive 
tract 

E159Q 
T191M 

Missense 
Missense 

 


