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Abstract8

The latest stages of planetary accretion involved large impacts between differen-9

tiated bodies, hence large scale melting events. Consequently, the iron brought10

by the impactors sank within a deep magma ocean, before reaching the proto-11

core. Yet the fluid dynamics of this process remains poorly known. Here, we12

report numerical simulations of the sinking dynamics of an initially spherical13

liquid iron drop within a molten silicate phase, up to its possible fragmentation.14

We consider a 2D cylindrical axisymmetric geometry. We vary the viscosity of15

the molten silicates in the range of 0.05 Pa.s to 100 Pa.s and the initial radius of16

the iron drop in the range of 1mm to 350 mm. Hence, we investigate Reynolds17

number in the range of [0.027 - 85600] and Weber number in the range of [0.073 -18

7480]. Our numerical model constrains the morphology, dynamics and stability19

of the iron drop as a function of the dimensionless Weber and Reynolds numbers20

as well as of the viscosity ratio between the molten silicates and the liquid iron21

drop. In particular, we show that the maximal stable drop radius and the crit-22

ical Weber number are monotonically increasing functions of the magma ocean23

viscosity. The momentum boundary layer thickness depends mainly on the drop24

radius and slightly on the magma ocean viscosity. Increasing the viscosity of25

the silicate phase prevents oscillations of the iron phase and limits the exchange26

surface. Oppositely, increasing the initial radius of the iron drop enhances its27
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deformation and increases its relative exchange surface. Above the critical We-28

ber number, we confirm that the fragmentation of the liquid iron occurs within29

a falling distance equal to 3.5-8 times the drop initial radius in the explored30

range of moderate Weber number, and we describe a variety of fragmentation31

regimes. Consequences for Earth’s formation models are briefly assessed.32

Keywords: Core formation, fluid dynamics, numerical modeling, metal drop,33

magma ocean.34

1. Introduction35

The Earth core formation is a complex process which remains actively de-36

bated theoretically, experimentally, and numerically (e.g. Stevenson, 1990; Tonks37

and Melosh, 1992; Chambers, 2004; O’Brien et al., 2006; Wood et al., 2006;38

Morbidelli et al., 2012; Deguen et al., 2014; Wacheul et al., 2014; Bouhifd et al.,39

2017). The core formation is highly dependent on accretion as both processes40

are contemporaneous (Kleine et al., 2002; Touboul et al., 2007). In the latest41

stages of planetary accretion, giant impacts have occurred [Fig. 1 ], leading for42

instance to the formation of the Moon following the collision between a large43

differentiated body of Mars size and the proto-Earth (Hartmann and Davis,44

1975). The enormous amount of kinetic energy brought in by these collisions45

(Tonks and Melosh, 1992; Monteux et al., 2007; Samuel, 2012), the decay of46

short-lived radio-elements (26Al and 60Fe) causing radioactive heating (Walter47

and Tronnes, 2004), and the heat dissipation from the conversion of potential48

energy (Monteux et al., 2009; Samuel, 2012) probably led to the formation of49

deep magma oceans (Tonks and Melosh, 1992). Following the impact, the liquid50

iron from the impactor core spread and then sank into this less dense magma51

ocean as an immiscible fluid, leading to thermo-chemical exchanges between the52

two phases, before merging with the proto-core. This dynamical process may53

involve deformation of the initial drops coming from the primary breakup at54
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impact, and possibly their breakup into even smaller droplets [Fig. 1 ] (Samuel,55

2012).56

Three scenarios have been proposed to characterise the motion of liquid iron57

within the magma ocean and the thermo-chemical equilibration between the two58

phases. In the first scenario, i.e. the so-called iron rain model (Stevenson, 1990;59

Karato and Murthy, 1997; Rubie et al., 2003), it is suggested that an impactor’s60

core with a diameter of [10−100] km immediately fragments into small droplets61

with a single characteristic diameter of the order of 1cm, corresponding to the62

capillary size. All droplets descend independently towards the bottom of the63

magma ocean at the same velocity and without any further change in shape,64

leading to an efficient chemical equilibration at a distance of less than 200m65

within the magma ocean. In contrast, Dahl and Stevenson (2010) proposed a66

theoretical model where the large liquid iron impactor’s core does not break67

up into the magma ocean if its initial size is large enough; it is only eroded68

by Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Such a core formation69

episode would be far from thermo-chemical equilibrium between the impactor’s70

core and the magma ocean. More recently, Deguen et al. (2011, 2014) used71

fluid dynamics experiments to show that a large core always breaks and forms72

a cloud of droplets with different sizes. But before doing so, it first evolves from73

its initial state as a turbulent thermal with strong entrainment and mixing,74

leading to rapid equilibration even before fragmentation.75

In these previous studies, the influence of the viscosity ratio between the76

molten silicates and the liquid iron is neglected. Wacheul et al. (2014) developed77

analog experiments using gallium to mimic the liquid iron and a mixture of78

water and glycerol to mimic molten silicates. They found that the value of the79

viscosity ratio is very important and changes significantly the flow morphology.80

Later on, Wacheul and Le Bars (2018) validated the turbulent thermal model81
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proposed by Deguen et al. (2014) using global temperature measurements of82

the liquid metal equilibration. However, numerous questions remain regarding83

the local dynamics at the scale of one drop, including: What is the maximum84

stable size of a drop as a function of the viscosity ratio? How is the exchange85

surface between iron drops and molten silicates influenced by the viscosity ratio?86

What is the size of the dynamical boundary layer across which the thermal and87

chemical exchanges occur? Answering those questions is fundamental for a88

better estimate of the equilibration length in planets, hence for relevant models89

of planet initial thermochemical state.90

Several works have already investigated the dynamics of a buoyant bubble91

or drop in a viscous environment. For instance, a seminal experimental study92

of rising bubbles of hydrogen in aqueous sugar solutions is reported by Bhaga93

and Weber (1981) to determine the shape of the bubble, its terminal velocity,94

the geometry of its wake, and the flow streamline around it. Several experimen-95

tal investigations of drop breakup in gas-liquid and liquid-liquid systems are96

reviewed by Pilch and Erdman (1987). An axisymmetric numerical model of a97

secondary breakup of a spherical liquid drop falling from rest due to gravity in98

another immiscible liquid is presented in Han and Tryggvason (1999) for dif-99

ferent density and viscosity ratios, showing large drop deformation and various100

breakup modes. Another axisymmetric numerical investigation of the evolution101

of a large bubble rising by buoyancy in the presence of both capillary and vis-102

cous effects was carried out by Bonometti and Magnaudet (2006), in particular103

to determine the transition from a spherical cap to a toroidal shape. The influ-104

ence of viscosity and density ratios is investigated systematically by Ohta et al.105

(2009, 2010, 2014); Ohta and Sussman (2012). Finally, the first systematics on106

the asymmetric motion and the fragmentation modes of a bubble of gas rising in107

a liquid using three-dimensional numerical simulations are reported in Tripathi108
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et al. (2015). However, previous works on the effects of viscosity contrast were109

motivated by industrial applications mainly, apart from 2 cases in Ichikawa110

et al. (2010) exploring the relative dynamical changes for viscosity ratios 0.1111

and 10 between iron and a magma ocean. In the context of the core formation,112

the viscosity of the magma ocean strongly depends on its evolving temperature113

and pressure (Karki and Stixrude, 2010). Hence, the viscosity contrast between114

the metallic and silicate phases can differ by several orders of magnitude. We115

thus propose here to constrain the influence of the viscosity contrast between116

the metallic phase and the magma ocean focusing on the sinking of an unique117

iron droplet. We also investigate the influence of the droplet radius and derive118

scaling laws to characterise this fluid dynamics.119

The study is organised as follows. Section 2 introduces the physical and nu-120

merical model, including the governing equations, the relevant non-dimensional121

parameters, the numerical model description, and our computational domain122

and mesh. Section 3 then presents our main numerical results including sys-123

tematic studies of the drag coefficient, fragmentation modes, characteristic time124

and distance before breakup, and maximum stable radius before breakup. In125

Section 4, we discuss possible planetary applications, focusing on the poten-126

tial efficiency of thermo-chemical exchanges around the drop which depends on127

the boundary layer thickness and the exchange surface between iron drop and128

molten silicates. Conclusions and future works are detailed in the final Section129

5.130

2. Physical and numerical model131

2.1. Governing equations132

We consider the sinking dynamics of an initially spherical iron drop, falling133

in a less dense and more viscous fluid under the action of gravity. We assume134
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that both the liquid iron drop and the surrounding molten silicates behave as135

Newtonian, incompressible, and immiscible fluids with uniform surface tension,136

and constant density and viscosity within each fluid. We note here that we do137

not consider the thermo-chemical exchanges that may occur between the two138

phases. This point will be the subject of a separated study. Hence, the fluid139

dynamics is governed by the Navier-Stokes equations to characterize:140

1. the conservation of mass141

∇.u = 0, (1)

2. the conservation of momentum142

ρ(
∂u

∂t
+ u.∇u) = ∇.[−PI + µ(∇u + (∇u)T )] + ρg + Fst (2)

with u the fluid velocity vector (m/s), ρ the fluid density (kg/m3), µ143

the fluid viscosity (Pa.s), t the time (s), P the fluid pressure (Pa), g the144

gravitational acceleration (m/s2), Fst the surface tension force (N/m3)145

and I the identity matrix.146

We monitor the interface between the liquid iron drop and the molten sili-147

cates using the Level Set method, an Eulerian and implicit method frequently148

used in multiphase flow problems (e.g. Luo et al., 2006). It consists in defining149

a level set function φ, equal to 1 in iron and 0 in the surrounding silicates, and150

rapidly changing through the interface, whose position is determined by the151

isocontour φ = 0.5. The equation governing the transport and reinitialization152

of φ is :153

∂φ

∂t
+ u.∇φ = γ∇.[ε∇φ− φ(1− φ)

∇φ
| ∇φ |

] (3)

with γ (m/s) and ε (m) the reinitialization parameters. ε determines the thick-154
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ness of the layer around the interface, and is typically chosen equal to half the155

size of the characteristic mesh in the region explored by the interface. γ de-156

termines the amount of reinitialization: a suitable value for γ is the maximum157

velocity magnitude experienced in the model.158

The density and dynamical viscosity are evaluated using the level set func-159

tion:160

ρ = ρs + (ρd − ρs)φ (4)

161

µ = µs + (µd − µs)φ (5)

where subscripts “s” and “d” stand for the molten silicates and the liquid iron162

drop respectively.163

The surface tension force is determined by :164

Fst = ∇.T = ∇.(σ[I + (−nnT )]δ) (6)

with σ (N/m) the surface tension coefficient, I the identity matrix, n the in-165

terface normal unit vector, and δ the Dirac delta function, nonzero only at the166

fluid interface. The interface normal unit vector is calculated as167

n =
∇φ
| ∇φ |

. (7)

The level set parameter φ is also used to approximate the delta function by168

a smooth function (Hu et al., 2014) defined by169

δ = 6 | φ(1− φ) || ∇φ | . (8)
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2.2. Physical and non-dimensional parameters170

According to the Buckingham Π theorem, in our study, there are 6 dimen-171

sionless numbers based on the control parameters (see Figures 1 and 2). One172

could for instance choose the two aspect ratios related to the drop vs. the com-173

putational domain sizes, the density ratio, the viscosity ratio, and then define a174

priori Weber and Reynolds numbers based on the Newton theoretical velocity175

(see e.g. Wacheul et al., 2014). A complete dynamical study would then necessi-176

tate to explore the influence of those 4 later parameters in a computational box177

sufficiently large such that boundary conditions do not influence the dynamics.178

Here, we are interested in determining the dynamics of metal drops sinking into179

a magma ocean: we thus vary only the drop radius and the magma ocean viscos-180

ity, which are the main variables in the geophysical situation of interest, while181

we keep all the other dimensioned parameters fixed at their expected geophysical182

values (see Table 1).183

In each simulation, starting from rest, the drop accelerates until reaching184

a constant terminal velocity, possibly with small oscillations around it. We185

monitor this mean terminal velocity V for each case. We end up our simulations186

when either the drop reaches a stable regime before the bottom of the domain187

or the drop fragments. In the later case the axisymmetric approximation is188

not relevant anymore. Each run is thus characterised by the 4 dimensionless189

numbers:190

• the Reynolds number compares inertia and viscous effects : Re = ρsV D
µs

,191

with D = 2R the drop initial diameter (R is the initial radius). The192

Reynolds number determines the falling drop dynamical regime : Re < 1193

implies a Stokes regime where the viscous effects dominate; Re = 1− 500194

implies an intermediate regime where both viscous effects and inertial195

forces are important; and Re > 500 implies a Newtonian regime where196
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the inertial forces are dominant (see Samuel, 2012).197

• the Weber number measures the relative importance of inertia over sur-198

face tension: We = ρsV
2D
σ . It controls and governs the deformation and199

breakup of the drop (Pilch and Erdman, 1987). Indeed inertia forces aim200

at deforming and fragmenting the iron drop, while the surface tension force201

prevents it from deformation and disruption. When We � 1, the inertia202

forces dominate leading to strong deformation and rapid fragmentation203

(e.g. Wacheul et al., 2014).204

• the viscosity ratio is defined as the ratio of the silicates viscosity over the205

iron drop viscosity: Rµ = µs
µd

. The viscosity of liquid iron weakly depends206

on pressure and ∼ 5 × 10−3 Pa.s at both inner core boundary pressure207

conditions (Poirier, 1988) and at the Earth surface (Assael et al., 2006).208

Oppositely, the magma ocean viscosity varies between 10−4 and 100 Pa.s209

depending on the thermal and dynamic conditions (Karki and Stixrude,210

2010; Rubie et al., 2003; Samuel, 2012). In our model, we fix the viscosity211

of the metallic phase and the viscosity contrast ranges between 10 and212

20000.213

• the density ratio compares the iron drop density over the silicates density:214

Rρ = ρd
ρs

. The densities of liquid iron and molten silicates depend on the215

temperature and pressure conditions (Assael et al., 2006; de Wijs et al.,216

1998; Samuel, 2012). In our models, for simplicity, we fix ρd = 7500217

kg.m−3 and ρs = 3500 kg.m−3. As a consequence, in this study, the218

density ratio is constant and equals to 2.14.219

After a large collision involving two differentiated protoplanets, the core220

of the impactor is first fragmented in large scale iron structures (Kendall and221

Melosh, 2016). In the magma ocean, these structures overcome a second frag-222
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mentation resulting in the formation of a cloud of droplets with typical size223

ranging between a few millimetres to several centimetres (Deguen et al., 2014;224

Wacheul et al., 2014). In our study, we characterize the dynamics of a droplet225

in the iron cloud and determine the influence of the viscosity contrast on this226

droplet. For that, we vary the initial radius of the drop from 1 to 350 mm,227

exploring a large range of expected sizes in the iron rain cloud.228

All the parameters used in this paper are listed in Table 1.229

Table 1: Symbol definitions and values of the physical and non-dimensional parameters used in
this study. Reynolds and Weber numbers are defined a posteriori using the relevant terminal
velocity, measured in each run.

Symbol Value or range
Silicates density ρs 3500 kg/m3

Iron drop density ρd 7500 kg/m3

Density ratio Rρ 2.14
Iron drop viscosity µd 0.005 Pa.s
Magma ocean viscosity µs 0.05 - 100 Pa.s
Viscosity ratio Rµ 10 - 20000
Initial drop radius R 1 - 350 mm
Surface tension coefficient σ 1 N/m
Reynolds number Re 0.027 - 85600
Weber number We 0.073 - 7480

2.3. Numerical method230

In this work, we solve equations (1 - 3) using the COMSOL Multiphysics231

software, based on the finite element method. We study a 2D axisymmetric232

geometry with no-slip boundary conditions at the lateral boundary and open233

boundary conditions at the top and bottom boundaries. To avoid the wall ef-234

fects, the computational domain must be large enough. For instance, Bonometti235

and Magnaudet (2006) considered a computational domain of 5.5D × 12.6D to236

avoid contamination of the results. Their computations are stopped before the237

bubble arrives too close to the domain boundary. Ohta et al. (2010) used a238
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computational domain of 4D × 6D, and considered a levitating drop with an239

entering inflow at the top boundary equal to its terminal velocity. Samuel (2012)240

also considered a levitating drop but with a square computational domain of241

5D × 5D, and the inflow velocity is self-adjusting at the instantaneous velocity242

of the center of mass of the drop. Here, we have checked the convergence of243

our results as a function of the domain size, and we do not see any significant244

difference once the domain is larger than 4D and longer than 75D. As sketched245

in figures 1 and 2, our computational domain is an axisymmetric cylinder of size246

(r × z) = (6D × 100D).247

The drop dynamics requires a fine mesh to capture all its details while con-248

serving the overall mass of iron. Especially, the level set method has a ten-249

dancy to diffuse numerical artifacts on the interface and then gives incorrect250

results. Since our computational domain is very large, we need an adaptive251

mesh strongly refined in the drop vicinity, which we have implemented manu-252

ally. To do so, we divide our domain in several regions, as shown in figure 2.253

We mesh the region that the drop crosses over a given time interval with a very254

fine mesh of size hx = 0.025R, small enough to capture all the dynamics on255

the interface without any significant error or numerical diffusion. We mesh the256

region behind the drop with a thin mesh hx = 0.07R to correctly capture the257

physics of the wake, which also influences the dynamics. The mesh around the258

drop gradually widens in the radial direction until reaching hx = 0.2R, from259

where it remains fixed until the wall. Finally, our mesh in front of the drop in260

the vertical direction first increases in an intermediate region to hx = 0.07R, and261

then keeps increasing until reaching a very large value hx = 5000R. When the262

drop approaches the bottom of the finer mesh region, the simulation is stopped,263

the whole pattern is translated, and the simulation is restarted on this new264

grid. We have tested this procedure and found that the dynamics of the falling265
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drop doesn’t change significantly when using smaller hx (see Appendix). Also266

the overall iron mass during the course of each complete computation does not267

change by more than 0.7%, hence showing good numerical convergence. This268

method is relatively inexpensive in term of calculation time, and allows for a269

systematic study, with runs taking from 7 hours to one week on a bi-processor,270

3.2− 3.6 GHZ, computer.271
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Table 2: Non-dimensional parameters for all performed simulations used in this study. In all
our simulations, Rρ = 2.14.

Simulation Re We Rµ R(mm)
#1 19.7 0.139 10 1
#2 315 7.09 10 5
#3 372 8.22 10 6
#4 426 9.27 10 7
#5 553 10.9 10 10
#6 1610 37.0 10 25
#7 3280 95.8 10 40
#8 73.9 8.13 50 6
#9 93.0 9.64 50 8
#10 106 11.1 50 9
#11 108 10.4 50 10
#12 202 24.2 50 15
#13 322 37.0 50 25
#14 638 91.0 50 40
#15 1510 290 50 70
#16 14.3 1.82 100 6
#17 35.3 7.43 100 8
#18 44.2 8.74 100 10
#19 51.8 9.58 100 11
#20 66.0 13.5 100 11.5
#21 71.4 15.2 100 12
#22 92.4 20.3 100 15
#23 154 33.9 100 25
#24 314 87.8 100 40
#25 750 287 100 70
#26 11.9 3.35 200 6
#27 19.7 6.90 200 8
#28 25.1 9.02 200 10
#29 30.4 11.0 200 12
#30 36.4 14.6 200 13
#31 38.7 15.3 200 14
#32 42.5 17.2 200 15
#33 76.1 33.1 200 25
#34 146 75.7 200 40
#35 363 268 200 70
#36 637 580 200 100
#37 1.53 1.05 1000 8
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Simulation Re We Rµ R(mm)
#38 2.70 2.61 1000 10
#39 6.49 10.0 1000 15
#40 11.2 22.4 1000 20
#41 15.4 33.9 1000 25
#42 19.7 46.4 1000 30
#43 26.0 68.8 1000 35
#44 28.8 74.3 1000 40
#45 38.5 106 1000 50
#46 52.1 161 1000 60
#47 68.6 240 1000 70
#48 122 530 1000 100
#49 0.027 0.073 20000 15
#50 0.127 0.927 20000 25
#51 0.509 9.27 20000 40
#52 0.952 25.9 20000 50
#53 1.22 38.7 20000 55
#54 1.54 56.6 20000 60
#55 2.27 105 20000 70
#56 5.15 379 20000 100
#57 24.4 26.5 500 20
#58 7.56 42.5 2500 30
#59 8.42 49.5 2500 35
#60 9.82 61.2 2500 40
#61 12.3 84.7 2500 45
#62 2670 636 50 100
#63 24100 1380 10 150
#64 37100 2460 10 200
#65 67800 5480 10 300
#66 85600 7480 10 350
#67 4770 1350 50 150
#68 7360 2420 50 200
#69 13400 5380 50 300
#70 16960 7330 50 350
#71 2380 1350 100 150
#72 3660 2400 100 200
#73 6700 5340 100 300
#74 8430 7290 100 350
#75 1180 1330 200 150
#76 1820 2370 200 200
#77 3360 5360 200 300
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Simulation Re We Rµ R(mm)
#78 4221.35 7273.386 200 350
#79 231 1270.5 1000 150
#80 502.25 3603.643 1000 250
#81 667.8 5309.01 1000 300
#82 837.9 7164.045 1000 350
#83 28.35 17.22 300 15
#84 24.57 19.2 400 18

3. Systematic numerical study272

We performed 84 simulations, whose dimensionless parameters are given in273

Table 2. In the following sections, we discuss our obtained numerical results274

in terms of drag coefficient, fragmentation modes, time and distance before275

breakup, and maximum stable drop radius. A particular attention is paid to276

the influence of the viscosity contrast between the metallic and silicate phases.277

The influence of the initial drop shape is shortly addressed at the end of this278

section; everywhere else, we start from a spherical drop.279

3.1. Drag coefficient280

The drag coefficient is a dimensionless number that quantifies the drag or281

resistance of the sinking drop into the magma ocean. It strongly depends on282

the viscosity ratio, density ratio, and surface tension, all of which control the283

interface conditions. In our case where the driving force is buoyancy and the284

initial geometry is spherical, we classically define the drag coefficient as285

CD =
8

3

(ρd − ρs)gR
ρsV 2

, (9)

with V the measured terminal velocity. Below, we first rapidly review the286

different theroretical models for the drag coefficient, and then compare with our287

numerical measurements.288
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3.1.1. For small Reynolds numbers289

Several previous studies focused on the analytical determination of the drag290

coefficient for spherical fluid particles (e.g. Clift and Gauvin, 1970; Hadamard,291

1911; Mei et al., 1994) and for deformed fluid particles (e.g. Moore, 1965; Darton292

and Harrison, 1974; Clift et al., 1978; Loth, 2008). For spherical drops, the293

internal circulation is supposed to prevent forming any wake separation of the294

external flow. This in turn helps to prevent any change in shape and keeps the295

droplet spherical. Hadamard (1911) proposed an analytical relation at finite296

but low Reynolds Re � 1. An asymptotic solution was derived by Harper297

and Moore (1968) for intermediate Reynolds numbers but remains limited to298

Re < 100 at finite values of the viscosity ratio. To fill the gap between Harper299

and Moore (1968) and Hadamard (1911), an empirical mixed Stokes correction300

factor resulting from the internal circulation was proposed by Mei et al. (1994)301

in the limit Rµ → 0:302

CDRµ→0
=

16

Re
[1 + [

8

Re
+

1

2
(1 +

3.315√
Re

)]−1]. (10)

3.1.2. For moderate and large Reynolds numbers303

For intermediate but increasing Reynolds numbers (0.1 < Re < 2000), the304

drop begins to distort, leading to changes in the wake from an attached laminar305

wake (spherical drop), to a separated laminar wake (deformable drop), to an306

unsteady transitional wake (breakup into droplets) and finally to a turbulent307

wake (catastrophic breakup) (Loth, 2008). The wake actually depends on the308

interplay between surface tension and hydrodynamic pressure stresses, hence on309

We. Davies and Taylor (1950) found a converged value CD = 8
3 for gas bubbles310

in a liquid at infinite Reynolds and Weber numbers. In order to encompass the311

influence of viscosity and a wide range of small to large Reynolds numbers, an312

empirical correlation was proposed by Darton and Harrison (1974) and Clift313
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et al. (1978) for infinitely large We:314

CDWe→∞ =
8

3
+

24

Re
(
2 + 3Rµ
3 + 3Rµ

). (11)

To capture the drag in the intermediate range of Re and We values (of inter-315

est here), Loth (2008) proposed the following expression by combining Eqs.10316

and 11 and adding a functional dependence (∆(CD)∗) on We, where ∆(CD)∗317

increases monotonically with Weber number:318

CD = CDWe→0
+ ∆(CD)∗[CDWe→∞ − CDWe→0

] (12)

∆(CD)∗ = tanh(0.021We1.6). (13)

Here CDWe→0
is given by Eq.10, the imposed spherical shape being related to319

an infinite surface tension, hence to We → 0. Experimentally, several investi-320

gations partly tackled the relevant limit of a metal drop in a more viscous en-321

vironment, including: the fragmentation of liquid mercury drops sinking within322

water reported by Patel (1978); Patel and Theofanous (1981), who found a drag323

coefficient equal to 2.5 − 3; the fragmentation of gallium drops in water by324

Kim et al. (1983), who found that the drag coefficient depends on the Reynolds325

number; and the analog model of Wacheul and Le Bars (2018), who reported a326

convergence value of the drag coefficient at large Reynolds equal to 3.7± 1.327

3.1.3. Results and discussion328

We have monitored the velocity V of the sinking metallic drop in our sim-329

ulations and obtained the corresponding values for CD from Eq.9. Figure 3330

presents our measured CD as a function of the Reynolds number for various331

viscosity ratios, and the comparison of our results with the analytical solutions332
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of Mei et al. (1994) (Eq. 10) and Loth (2008) (Eq. 12) . For We < 1 and333

low Reynolds numbers (up to Re = 20 depending on Rµ), the droplet remains334

spherical and our results agree with the analytical model proposed by Mei et al.335

(1994): CD is inversely proportional to Re and barely depends on the viscos-336

ity ratio. When flow separation occurs (i.e. when the Weber number exceeds337

unity), this expression is not valid anymore because the drop deforms: it takes338

the shape of an ellipsoid, a disc or a cup. This deformation increases the frontal339

area and leads to a transient increase of CD with Re, depending on Rµ. Qual-340

itative agreement between our simulations and Eq.12 is satisfactory, but small341

quantitative differences exist. This is not surprising, since the empirical formula342

Eq.12 was calibrated on gas bubbles rising in a liquid, which are more sensitive343

to deformation than the liquid drops studied here. But no equivalent to Eq.12344

is yet available for liquid-liquid systems, and one has thus to rely on numerical345

results. Finally, for large Re, CD converges towards a constant value 3.5± 0.5,346

independtly of Rµ. This value is above the analytical estimate of 8/3, but is347

compatible with the results of Wacheul and Le Bars (2018) who found a mean348

value of CD equal to 3.7± 1.349

3.2. Fragmentation modes350

The breakup mechanism is very sensitive to the Weber number, as well as to351

the viscosity ratio between the metal and the silicates. Two main fragmentation352

modes have been documented in previous experimental and numerical studies,353

namely the ”bag breakup” just above the critical Weber number, and the ”shear354

breakup” at large Weber number (see the limit cases in Fig. 4) (Krzeczkowski,355

1980; Pilch and Erdman, 1987; Dai and Faeth, 2001). Several authors have356

tackled the description of the different breakup mechanisms in the intermediate357

range of Weber number, leading to a complex situation. Examples include358

Krzeczkowski (1980), who developed series of experiments for liquid droplets of359
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water, methanol, ethanol, butanol and glycerine in an external air stream, and360

documented two breakup modes independent of the viscosity ratio: the ”bag-jet”361

and the ”transition” modes. Pilch and Erdman (1987) introduced two breakup362

modes for a single liquid drop within an external gas flow: the ”bag-stamen”363

mode and the ”sheet stripping” mode. Dai and Faeth (2001) used droplets of364

water and ethanol and defined a ”bag-plume” mode, close to the ”bag-jet” and365

”bag-stamen”, and a ”plume-shear” mode, close to the ”shear breakup”. Cao366

et al. (2007) pursued this experimental investigation and presented a new ”dual-367

bag” breakup mode for We = 28 − 41. Recently, 3D numerical simulations368

of liquid droplets levitating in a gas flow with a uniform velocity have been369

performed by Kékesi et al. (2014), changing the viscosity and density ratios for370

a fixed Weber number value (We = 20). They identified 5 breakup regimes, as371

shown in Fig. 4: ”thick rim shear” and ”thick rim bag” (both close to ”bag372

breakup”), ”rim shear”, ”jellyfish shear”, and ”shear” breakup respectively. In373

our study, we use their classification.374

For each mode of fragmentation, we describe below the temporal evolution of375

a typical spherical drop starting from rest at t = 0, until its breakup at t = tbk.376

• Thick rim shear (Fig. 5): the initial sphere rapidly deforms into a spherical377

cap (t = 0.13s), then the hydrodynamic pressure force concentrates on378

the middle of the drop leading to the formation of a small bag (t = 0.2s).379

Surface tension then prevents breakup and the drop returns to form a380

half-sphere (t = 0.355s), before a second oscillation starts. Then, as the381

inertial forces and associated pressure are reinforced, the vertical thickness382

decreases even more, and a thin film forms near the symmetry axis, with383

a thicker rim (t = 0.55s). The rim extends radially and drains out the384

liquid film (t = 0.6s), until a hole occurs at the symmetry axis (t = 0.62s).385

At this stage, the metal phase actually forms a ring that might persist386
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for a longer time before fragmentation of Rayleigh-Plateau type, to which387

we cannot have access with our axisymmetic simulation. Kékesi et al.388

(2014) showed in 3D simulations that this last stage is actually rapid, i.e.389

a few milliseconds. Note also that thick rim shear seems marginal in the390

parameter space explored here, and is replaced rapidly by thick rim bag,391

except for cases with the smaller viscosity ratio Rµ = 10 (see Fig. 4).392

• Thick rim bag (Fig. 6): this breakup process is similar to the thick rim393

shear, until fragmentation. Then, breakup appears almost simultaneously394

in the center of the drop (t = 0.675s) and at the connection between the395

film and the rim, forming satellite droplets (t = 0.68s).396

• Rim shear (Fig. 7): again the initiation of the breakup is similar to397

the two processes described above, with the formation of a spherical cap398

(t = 0.131s), followed by a bag (t = 0.2s), and back (t = 0.37s). Then,399

the drop extends in both radial and vertical directions, forming a sheet400

(t = 0.48s and 0.51s) under the action of the strong vorticity in the wake.401

Finally, surface tension drains the iron both into the center and into the402

rim (t = 0.57s), while the sheet connecting the two thins, and finally403

breaks (t = 0.59s).404

• Jellyfish shear (Fig. 8): in this mode, no rim forms. Instead, a thin skirt405

forms while iron is mostly localized along the symmetry axis (t = 0.4s and406

t = 0.45s). Oscillations develop in the thin membrane, whose ends fold in407

and out. The velocity is concentrated in the wake of the silicates which408

accelerates the drop center relative to its membranes, leading to a rapid409

fragmentation in the connecting region (t = 0.51s).410

• Shear breakup (Fig. 9): the drop shape deforms first into a spherical411

cap (t = 0.24s) and second into a skirt. Then, the rim does not thicken,412
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but folds inside and turns around itself through the action of vorticity,413

leading to its thinning (t = 0.4s). Rapidly, this thin sheet breaks into414

small droplets (t = 0.42s). No oscillations are observed here, and the415

rapid fragmentation is mainly due to the vorticity in the wake behind the416

drop that is two to three times larger than the vorticity in the drop.417

The deformation of the droplet depends on the viscosity of the external418

flow, the density ratio, the surface tension and the drop size. When Re and419

We are both small, the drop remains spherical without any deformation, due420

to the internal circulation within the drop that prevents forming any separated421

wake. When the hydrodynamic pressure force increases, a separated laminar422

wake and an external circulation behind the drop occur, leading to shape defor-423

mation. Increasing the Reynolds number, the drop first deforms to an ellipsoid,424

and possibly gives rise to oscillations from oblate to prolate shapes. For a vis-425

cosity ratio less than 100, the drop keeps oscillating until the end of the domain,426

while for a viscosity ratio greater than 100, the velocity of the drop exceeds the427

oscillation velocity, leading to rapid damping of the initially excited oscillation.428

Further increasing the Reynolds number, the drop takes the shape of a spheri-429

cal cap. And once hydrodynamic pressure overcomes surface tension (i.e. large430

enough Weber number), one of the five fragmentation modes occurs, depending431

also on the viscosity ratio. From our systematic study for different viscosity432

ratios, we built up a fragmentation regime diagram in terms of Reynolds and433

Weber numbers shown in Fig. 4. For a viscosity ratio Rµ = 1000, we observe434

only two modes, and drop oscillations are prevented by the high silicates vis-435

cosity. On the contrary for Rµ = 50, we observe the five different modes and436

strong drop oscillations. One should also notice that the critical Weber number437

depends on the viscosity ratio: for Rµ = 10, the breakup begins at We ≈ 9438

while for Rµ = 1000, it starts at We ≈ 34. Systematic estimate of the critical439
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Weber number is shown in Fig. 10. We consider in this figure that fragmen-440

tation occurs as soon as the first volume of iron separates from the main drop.441

The increase in the viscosity ratio leads to an increase in the critical Weber442

number following two empirical scaling laws depending on first-breakup regime.443

When the viscosity ratio is rather low (i.e. < 300 typically), the drop fragments444

quickly as a thick rim shear after only one or two oscillations along a short drop445

path. In this case, critical Weber is defined as a low power law of the viscosity446

ratio by the following scaling law447

Wec = 5.7R0.187
µ . (14)

On the other hand, at a viscosity ratio of ∼ 300, a Jellyfish behaviour takes448

place, and between Rµ = 300 andRµ = 500, the drop first breakup becomes slow449

and transitions from thick rim shear to Jellyfish. In this region and above, where450

shear breakup takes place, the critical Weber number depends more significantly451

on the viscosity ratio and is given by the following scalling law452

Wec = 1.137R0.483
µ , (15)

valid at least in the range Rµ = [300; 2500] explored here.453

From our simulation #41, we also report a new fragmentation mode illus-454

trated in Fig. 11. This mode is initially similar to the jellyfish shear breakup455

except that the membrane fold is so important that it finally closes at the back,456

encapsulating the silicates within a bubble of iron (Fig. 11, t = 3.7s). Then,457

the next oscillation of the membrane tears the glued back which breaks from458

the center, forming one central droplet and two satellites droplets. Note that459

Wacheul et al. (2014) observed in their experiments similar bubbles of metal en-460

closing the viscous ambiant fluid and exhibiting a lower velocity that pure iron461
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droplets. While being dynamically intriguing, this mode remains very marginal.462

3.3. Time and distance before breakup463

After an impact, large drops deform and fragment at a distance and time464

that depend on the sinking dynamics. We define these time and distance as465

the breakup time tbk and distance dbk. Deguen et al. (2014) predicted that for466

large Weber numbers, tbk and dbk reach an asymptotic regime. In this section467

we test this prediction. From our models, we determine tbk and dbk as the time468

and location where the first droplet or ligament of iron separates from the main469

drop. We then define the dimensionless breakup time t∗bk as Pilch and Erdman470

(1987):471

t∗bk =
tbkV

D

√
ρd
ρs

(16)

where the break up time is normalized by the characteristic time of drop breakup472

by Kelvin-Helmholtz instability. We define the dimensionless breakup distance473

as:474

d∗bk =
dbk
R
. (17)

Fig. 12 shows the variations of t∗bk as a function of the Weber number475

for various viscosity ratios. From Fig. 12, we see that t∗bk decreases with the476

increase of We. We note that, for large We, t∗bk converges towards a constant477

value ranging between 1 and 1.8. This result is consistent with the result of478

Pilch and Erdman (1987) who found t∗bk = 1.25 for We > 350. A dependence479

on the viscosity ratio is also present, especially at We ≤ 80, with a tendency480

for large Rµ to stabilise the drops.481

The non-dimensionalised breakup distance d∗bk is reported in Fig. 13. It482

also shows a dependence on the viscosity ratio, especially at low We, and a483
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possible convergence towards an asymptotic value ranging between 2 and 4 at484

large We. For comparison, Deguen et al. (2014) found a breakup distance equal485

to 6− 8 times the drop radius for We up to 3000 and Rµ = 0.5. Landeau et al.486

(2014) found a value equal to 3.5 − 7.5 times the radius for 25 < We < 1000487

and 0.45 < Rµ < 1.25. Hence our results are in correct agreement with those488

experimental observations. This is all the more noticeable that Landeau et al.489

(2014) observed 3D turbulence in lab experiments at We > 600, effects that490

are missing from our axisymmetric simulations. Note finally that Wacheul and491

Le Bars (2018) found a breakup distance (13 ± 2)R for 10 < We < 50 and492

0.4 < Rµ < 700, but their breakup criteria actually detected a “significant”493

and well-advanced breakup, thus implicitly leading to an overestimation of d∗bk494

compared to other results. Figure 13 illustrates the influence of the viscosity495

ratio on the breakup distance. For low We, d∗bk ranges between 10 and 80496

for the whole range of viscosity ratios used in our study. For large We, d∗bk497

ranges between 2 and 4.5. Increasing the viscosity ratio generically increases498

the breakup distance and as a consequence, the potential depth of equilibrium499

between iron drops and silicates.500

3.4. Maximum stable drop radius501

After an impact, the impactor’s iron core disrupts into large scale drops502

(Kendall and Melosh, 2016). After this first fragmentation, a second fragmen-503

tation occurs within the magma ocean resulting in the formation of a cloud of504

droplets (Deguen et al., 2014; Wacheul et al., 2014). At the end of this second505

fragmentation, iron droplets reach a maximum stable radius Rmax. Following506

Wacheul et al. (2014) and using the Newtonian velocity scale accounting for the507

drag coefficient (Eq.9), Rmax is simply related to the critical Weber number by508

Rmax =

√
Wec

3CD
16

σ

∆ρg
. (18)
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Numerical data from Fig. 14 show the last drop radius for which deformation509

may occur but without fragmentation. According to Fig. 14, the maximal stable510

drop radius increases with the magma ocean viscosity. From our numerical data,511

we propose a scaling law to determine the maximum stable radius as a power512

function of magma ocean viscosity, valid for magma viscosities larger than ∼ 0.1513

Pa.s up to 100 Pa.s :514

Rmax = 0.014µ0.32
s (m). (19)

Our results are in agreement with the analytical Eq. 18, confirming the515

self-consistency of our numerical results. Fig. 14 also shows the comparison516

of our results with the model of Rubie et al. (2003) and the model of Samuel517

(2012). Differences come from different values of CD, where we use our effective518

numerical values rather than any theoretical estimation. It should also be noted519

that Rubie et al. (2003); Samuel (2012) do not consider the dynamical influence520

of the viscosity contrast between metal and silicates in their models.521

3.5. The influence of initial conditions522

After an impact, the impactor’s core is likely fragmented in metallic diapirs523

with a large range of shapes (spherical, oblate or prolate) (Kendall and Melosh,524

2016). This deformation process is likely to affect the post-impact sinking dy-525

namics of the metallic phase as we envision in our study by modifying our initial526

shape conditions. Bonometti and Magnaudet (2006) found that their final bub-527

ble topology and features vary with the initial shape of the bubble. Without528

trying to be exhaustive on this subject that would deserve a dedicated study on529

its own, we have thus investigated the behavior of a drop at the critical Weber530

number for two viscosity ratios (Rµ = 200 and Rµ = 1000), starting from a531

spherical, oblate or prolate form with an ellipticity ranging between 0.59 and532

0.82, maintaining the total volume of iron constant. Results for Rµ = 1000 are533
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shown in Fig. 15, reporting a significant sensitivity to initial conditions. For534

the initial oblate form, the drop does not fragment and converges to a skirt535

shape. On the contrary, the initial prolate shape disrupts more rapidly than the536

spherical case, the time and distance before breakup being respectively 27.4%537

and 28.3% smaller than the corresponding values for the spherical case. The538

shape is also different, with an increase of the surface in the prolate case of539

10.9% compared to the spherical case. For the other viscosity ratio Rµ = 200,540

we find that the fragmentation modes are identical for the three initial condi-541

tions, but differences on the order of 10% exist in the breakup time, distance542

before breakup, and surface. Among the three initial cases, the spherical initial543

condition always leads to a less rapid fragmentation and to a smaller surface.544

4. Implications for the metal/silicate exchanges545

In the present study, we focus on the dynamics of the two phase flow only,546

without considering neither the thermal evolution of the metallic droplet nor547

chemical exchanges that could occur between the metallic and silicate phases.548

Our results nevertheless enable to constrain two fundamental parameters for549

thermochemical equilibration, namely the thickness of the boundary layer at550

the iron / silicates interface, and the surface of the metallic droplet across which551

thermochemical exchanges are likely to occur. Those two points are addressed552

below. We then propose some first order estimates of the equilibration of an553

initially 10 km metallic core sinking and fragmenting within a magma ocean554

and compare our results with the classical iron-rain model (Rubie et al., 2003).555

4.1. Boundary layer thickness556

During the sinking of an iron drop, three boundary layers can form at the557

interface between the metalic and silicate phases: the dynamical, thermal and558

chemical boundary layers. The thickness of each boundary layer may have a559
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strong influence on the thermo-chemical exchanges. In this study, we focus on560

the dynamical boundary layer δ. We thus consider a velocity profile along the561

normal to the drop interface at the front of the drop, as shown in Fig. [16]: δ is562

defined as the distance from the drop interface to the point where the velocity563

is equal to 10% the drop terminal velocity. In the case of a rigid sinking sphere,564

the thickness of the boundary layer scales as Re−1/2 (Ulvrová et al., 2011). In565

our models, the metallic droplet is deformable and three parameters a priori566

control the flow, hence δ: Rµ, Re and We. Here, we seek a power law for the567

boundary layer thickness in terms of the two varied parameters in our study,568

namely the drop radius and the magma ocean viscosity.569

Our numerical results are shown in Fig. 17. A good fit is found with the570

empirical scaling law571

δ = 1.442R0.916µ0.062
s (m). (20)

Hence, the boundary layer thickness depends mainly on the drop radius and572

only slightly on the magma ocean viscosity. For a standard viscous boundary573

layer in the vicinity of a solid sphere, one would expect a scaling ∝ µ0.5
s . This574

surprisingly low dependence on the ambient viscosity is probably due to the drop575

deformation and to the associated internal circulations and wake. It presumably576

affects the equilibration. Note however that Eq. 20 is valid in the frontal section577

of the drop, but the boundary layer size is not constant along the drop surface.578

Also, the generated wake might encapsulate silicates that are entrained with579

the falling iron, as shown in Fig. 18 and observed numerically (Monteux and580

Arkani-Hamed (2014)) and experimentally (Fleck et al. (2018)), for an even581

more viscous surrounding fluid. This also influences equilibration. Clearly, the582

equilibration process is complex, global, and deserves a study on its own.583
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4.2. Time evolution of the droplet surface584

The exchange surface between two fluids qualifies the surface through which585

thermo-chemical transfers occur. As shown in the figures 5, 6, 7, 8, 9 and586

11, the spherical drop deforms and oscillates during its sinking. This leads to587

variations in the potential exchange surface between the liquid iron and the588

molten silicates.589

We monitored the surface S of each drop from its initial position until reach-590

ing a stationary regime or until breakup. We normalized S by the corresponding591

spherical surface (S∗ = S/(4πR2)). Fig. 19 shows the evolution of S∗ as a func-592

tion of time for an initial radius R = 10 mm. Fig. 19 illustrates the influence593

of the viscosity contrast Rµ. For Rµ = 1000, the drop remains spherical and594

its normalised surface is constant (S∗ = 1). When the magma ocean viscosity595

decreases, the deformation of the drop becomes significant and the oscillations596

of the drop lead to oscillations of its surface. For Rµ = 100, the drop deforms597

and oscillates several times, but the surface tension is large enough to prevent598

the drop from breaking up, and a steady state is reached after 1.5s. For Rµ = 10599

and Rµ = 50, the drop surface oscillations are followed by a fragmentation (at600

0.393s and 0.6s respectively). These large deformation processes significantly601

increase the droplet surface, which can increase by up to 200% before the frag-602

mentation. Our results show that the viscosity ratio between the liquid iron603

and silicate phases strongly influences the shape of the metallic drops. As a604

consequence, considering a purely spherical drop when calculating the transfers605

across the exchange surface provides only a lower bound estimate which might606

be significantly off, especially for Rµ < 100.607

4.3. Application to a 10 km metal diapir608

In the previous sections, we studied the dynamical properties of sinking609

droplets as a function of the viscosity ratio between the iron droplet and the610
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magma ocean. We showed that, within an iron cloud, each droplet is associated611

to a boundary layer thickness and an exchange surface that both depend on the612

droplet size and viscosity ratio. In our numerical models we do not solve the613

equations governing the thermo-chemical transfers between the metallic droplets614

and the magma ocean. However, we can estimate the efficiency of the potential615

thermo-chemical equilibration by determining the total potential exchange sur-616

face within a metallic cloud composed of small droplets and resulting from the617

fragmentation of a 10 km radius metallic diapir, which is the typical lengthscale618

of iron fragments dispersed after a large impact (Kendall and Melosh, 2016).619

We consider in these estimations that the 10km metallic diapir is fragmented in620

a population of small droplets that compose a larger scale metallic cloud sinking621

through the magma ocean (Deguen et al., 2014).622

To characterize the size of the droplets within the cloud, we used the analyt-623

ical law for the distribution of droplets sizes obtained from the fragmentation of624

a large analog diapir with a viscosity ratio Rµ = 50 derived experimentally by625

Wacheul et al. (2014). We assume here that this analytical law is valid for any626

system with the same viscosity ratio once it is normalised by the characteristic627

radius of the system, i.e. the maximal stable radius Rmax. The number of drops628

n(R) for a given radius R resulting from the breakup of a 10 km iron core is629

then associated to a gamma distribution:630

n(R) = NRk−1e−
R
θ (21)

where N is a multiplicative constant determined by volume conservation of631

iron, k is the shape of the gamma distribution, and θ is the scale of the gamma632

distribution normalised by Rmax. Wacheul et al. (2014) explicitly mentioned633

that the shape and scale might depend on the viscosity ratio. In the absence634

of any further data, we assume constant values with θ = 1.9 and k = 2.2 for635
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viscosity ratios ranging between 10 and 1000. Note that Rmax is nearly constant636

in the study of Wacheul et al. (2014) and Eq. 21 is obtained from a snapshot637

at a given time relatively shortly after the primary breakup, where transient638

large radius drops are still present. In our study, we have shown that Rmax639

is a function of the magma ocean viscosity (Fig. 14). Hence, for each magma640

ocean viscosity, we use Rmax from our numerical study (Fig. 14) and determine641

N by volume conservation from a initially 10 km iron diapir radius. We then642

compute the number of drops of each size, and their relative surface of exchange643

normalised by their corresponding spherical surface.644

We have shown in our numerical models that shape oscillations might in-645

fluence the surface of the drops (Fig. 19), especially for the largest radii and646

smallest viscosity ratio. We consider here three models of droplet population647

within the cloud:648

1. a non oscillating population of droplets with a constant radius for a fixed649

viscosity corresponding to the classical iron rain scenario (Rubie et al.,650

2003),651

2. a non oscillating droplet population derived from our models with variable652

radii where the droplets remain spherical,653

3. an oscillating population derived from our models with variable radii where654

the droplets deform.655

Fig. 20 shows the total dimensionless surface within the fragmenting cloud656

for the three different cases. In all cases, the exchange surface decreases when657

increasing the magma ocean viscosity because the maximum stable drop radius658

also increases when increasing the magma ocean viscosity (see Fig. 14). In the659

iron rain scenario, the population is composed of droplets smaller than in the660

two cases derived from our models (oscillating and non oscillating) where large661

drops are allowed in the distribution. Hence the potential exchange surface is662
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larger (up to 60%) in the iron rain scenario and the equilibration should be more663

efficient. For the population composed of oscillating droplets, the deformation664

leads to an increase of the surface of the sinking droplets especially for low665

magma ocean viscosities where Rmax is smaller than for large magma ocean666

viscosities. The total exchange surface in the oscillating case is larger than in667

the non-oscillating case (by 13 to 43 %) but remains smaller than in the iron rain668

scenario (by 7 to 37 %). For large magma ocean viscosity (i.e. large viscosity669

contrasts), the droplets do not oscillate and the exchange surface value is close670

for both oscillating and non oscillating populations. For low magma ocean671

viscosities (i.e. small viscosity contrasts), the deformations are so important in672

the oscillating population that the total surface is close to the surface obtained673

in the iron rain scenario.674

It is to be noted that large metallic drops (with R > Rmax) are allowed in675

the populations used to obtain Fig. 20. Such large drops are not stable but676

are likely to exist during the second phase of the fragmentation following an677

impact that occurs in the shallow magma ocean (Wacheul et al., 2014). Within678

a deep magma ocean, transient drops with radii R > Rmax will fragment in679

smaller droplets and disappear from the populations used in Fig. 20. We can680

thus redo our calculation by imposing a cut-off at Rmax using the values from681

our numerical models (Fig. 14). Fig. 21 illustrates the total potential exchange682

surface within a sinking cloud of metallic droplets as a function of the magma683

ocean viscosity considering the same initial volume as in Fig. 20. Imposing a684

cut-off at Rmax generates a population of smaller droplets than in Fig. 20. In685

the oscillating and non oscillating populations used in Fig. 21 many droplets686

are even smaller than the maximum stable drop radius of the iron rain model.687

Hence Fig. 21 shows that the total surface of the metallic droplets for both688

the oscillating and non oscillating populations is larger than the total surface689
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derived from the iron rain scenario. Still, the non oscillating model will be less690

efficient for thermo-chemical equilibrium than the oscillating model and large691

magma ocean viscosities (i.e. large viscosity contrasts) significantly reduce (by692

a factor 10) the potential exchange surface between the silicate and metallic693

phases.694

Results from Figs. 20 and 21 both underline the competition between (1) the695

deformation processes at the scale of the droplet that enhance the equilibration696

between the iron and silicate phases and (2) the viscosity contrast that limits697

the potential exchange surface by allowing large drops. In the shallow part698

of the magma ocean where large transient metallic drops are likely to exist,699

the thermo-chemical equilibration will be less efficient than in the deepest part700

of the magma ocean. However, this conclusion needs to be constrained by701

implementing thermo-chemical transfers in our dynamical models and using702

realistic partition coefficients and conductivities that should vary with pressure703

and temperature.704

5. Conclusions and future works705

During the late stages of planetary accretion, large impacts between differ-706

entiated protoplanets have strongly influenced the thermo-chemical state of the707

future terrestrial planets. Following the impact and the formation of a deep708

magma ocean, the metallic phase from the impactor has overcome strong de-709

formation and fragmentation processes before reaching the deepest part of the710

magma ocean. The dynamics of this fragmentation probably played a key role711

on the equilibration efficiency between the metallic phase from the impactor712

and the impacted proto-mantle.713

We have performed axisymmetric numerical simulations to model the sinking714

dynamics of an initially spherical liquid iron drop within a molten silicate phase.715
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We have explored a large range of relevant parameters, considering initial drop716

radii in the range of [1−350] mm resulting from the breakup of an initially larger717

metallic diapir, and magma ocean viscosities in the range [0.05−100] Pa.s. This718

large range of viscosity is meant to encompass all relevant geophysical situations,719

depending on pressure, depth, temperature, composition and impact history.720

For large Reynolds numbers, we have showed that the drag coefficient for721

all viscosity ratios converges towards an unique value on the order of 3.5± 0.5.722

We have found that the maximum stable drop radius increases as a function of723

the magma ocean viscosity following a power law that scales with µ0.32
s . The724

corresponding critical Weber number increases as a function of the viscosity725

ratio following two power laws depending on the breakup regime, that scale726

with R0.187
µ and R0.483

µ for the range of low and large magma ocean viscosity727

respectively. We have identified five breakup mechanisms depending on the We-728

ber and Reynolds numbers and on the viscosity ratio between silicates and iron729

phases. We have also shown that the initial shape of the metallic drop (spheri-730

cal, prolate or oblate) strongly influences its subsequent dynamics by modifying731

its final shape before breakup, its potential exchange surface, and the time and732

distance before breakup. We have emphasized the effect of the viscosity con-733

trast on the potential exchange surface between the iron phase and the molten734

surrounding silicates. Indeed, an increase of the viscosity ratio decreases the735

potential exchange surface between the iron drop and the molten silicates while736

it increases the time and distance before breakup. We have shown that the737

dynamical boundary layer thickness increases as a function of the drop radius738

and the magma ocean viscosity following power law that scales with R0.916
739

and µ0.062
s . Finally, we have implemented our numerical results in a first order740

model to characterise the ability of an initially 10km metallic diapir to exchange741

with its surrounding environment while fragmenting. Our dynamical model pre-742
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dicts that potential thermo-chemical equilibration within a fragmenting cloud743

depends on the depth at which the cloud is fragmenting: thermo-chemical equi-744

libration should be less efficient in the shallowest part of the magma ocean than745

in the deepest part.746

The next step is now to implement in our models the resolution of the747

equations governing the thermo-chemical exchanges between the metallic phase748

and the magma ocean. The chemical and thermal diffusion of a sinking un-749

deformable sphere has been extensively studied in the chemical/heat transfer750

literature (Levich, 1962; Clift et al., 1978). In their numerical models, Ul-751

vrová et al. (2011) evaluated time scales of chemical equilibration within an752

undeformable metallic droplet sinking through a deformable medium. If the753

exchange dynamics in the case of a sinking sphere is strongly constrained, the754

dynamics of thermo-chemical equilibration between a deformable droplet and its755

environment and the influence of the viscosity contrast between the two phases756

still deserve extensive studies.757

As shown in our study, the depth of the magma ocean could also influ-758

ence the fragmentation dynamics. As large transient droplets are more likely759

in the early fragmentation regime, full thermo-chemical equilibration could be760

achieved deeper in the magma ocean. The transfer parameters governing the761

equilibration rate are also pressure/temperature dependent. The viscosity of762

the molten silicates (Karki and Stixrude, 2010), the partition coefficient of763

lithophile/siredophile elements (Bouhifd and Jephcoat, 2003) and the thermal764

conductivity of iron (de Koker et al., 2012) are all affected by pressure changes765

with depth. An exhaustive study accounting for realistic parameters in the con-766

text of a deep magma ocean will surely help to constrain the thermo-chemical767

signature at the end of the core-mantle separation.768
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776

6. Appendix: computational resolution and convergence777

In order to confirm that our mesh correctly captures the dynamics of the778

falling drop within the magma ocean and to determine the quality and limits779

of our numerical model, we performed systematics tests on two representative780

cases.781

In the first case, we focus on the dynamics of a strongly oscillating drop782

that does not converge to a single shape and remains in oscillation (simu-783

lation #18 in Table 2). This corresponds to a worst case scenario from a784

numerical point of view. Fig. (22 (left)) shows the normalised boundary785

layer thickness on the drop radius as a function of different grid sizes hx =786

R/15, R/25, R/33.4, R/40, R/50, R/66.7. We observe a reasonable convergence787

of the numerical results from hx = R/40, with changes limited to 1.4%. To quan-788

tify the dynamic difference between hx = R/40 and the finest mesh hx = R/66.7,789

we calculate the normalised exchange surface as a function of time in Fig. (22790

(Right)). We note that the first two drop oscillations have the same dynamics;791

then, differences occur. Yet the dynamical times remain close, and the evolution792

of the exchange surface is almost the same between the two mesh sizes, with a793

relative maximum error ' 3.5%.794
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In this paper, we are also interested in the fragmentation modes. To confirm795

that these fragmentation modes don’t depend on the mesh size and don’t come796

from any numerical artifact, we calculate an extremely distorted drop which797

breaks up after a few oscillations in a second test case (simulation #83 in Table798

2). Fig. (23) shows the final drop shape just after the breakup for the grid sizes799

hx = R/40 and hx = R/66.7. This figure confirms that from hx = R/40, the800

fragmentation mode and the final drop shape do not change significantly with801

the grid resolution.802

We finally compare the cost (CPU) for one second of simulation of the first803

test case with different mesh sizes in Table 3. The finest mesh is 4 times more804

expensive than hx = R/40. The purpose of this article being to perform a805

systematic study to capture the drop dynamics for a large range of radius and806

ambient viscosity, we have chosen the mesh size of hx = R/40, which is a good807

compromise between simulation costs and global dynamical results.808

Table 3: Comparison the cost of one simulation for three different grid sizes

Grid size (hx) CPU
R/40 51h15
R/50 121h5
R/66.7 205h
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Figure 1: Schematic of the metal/silicate separation during an impact between a differentiated
planetesimal and the early Earth with a schematic of our computational domain.

.964

965

44



Figure 2: Global view of our geometry with the initial drop at the top (left), and a zoom
illustrating our manual method for adaptive mesh (right).
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Figure 3: Drag coefficient as a function of the Reynolds number for various values of the
silicates viscosity. Filled symbols are the analytical results given by Eq.12, while empty
symbols show our numerical results from the first 62 simulations in table 2. Filled black
symbols show numerical results for an undeformable sphere Rµ = 0, and black stars are the
analytical results from Eq. 10.
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Figure 4: Regime diagram of the fragmentation modes as a function of Re and We numbers
for various viscosity ratios: Rµ = 10 (blue dotted line), Rµ = 50 (green dotted line), Rµ =
100 (black dotted line), Rµ = 200 (orange dotted line), Rµ = 1000 (red dotted line), and
Rµ = 2500 (turquoise dotted line). Our numerical results come from the first 62 simulations
in table 2.
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Figure 5: Deformation and thick rim shear breakup of an iron drop within a magma ocean.
In this model, Re = 36.4, We = 14.6, Rµ = 200 (simulation #30 in Table 2).
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Figure 6: Deformation and thick rim bag breakup of an iron drop within a magma ocean. In
this model, Re = 42.5, We = 17.2, Rµ = 200 (simulation #32 in Table 2).
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Figure 7: Deformation and rim shear breakup of an iron drop within a magma ocean. In this
model, Re = 92.4, We = 20.3, Rµ = 100 (simulation #22 in Table 2).
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Figure 8: Deformation and jellyfish shear breakup of an iron drop within a magma ocean. In
this model, Re = 76.1, We = 33.1, Rµ = 200 (simulation #33 in Table 2).
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Figure 9: Deformation and shear breakup of an iron drop within a magma ocean. In this
model, Re = 2670, We = 636, Rµ = 50 (simulation #62 in Table 2).
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Figure 10: Critical Weber number as a function of the viscosity ratio. The blue diamond is
the critical Weber number when the viscosity ratio equal to 1, as obtained by Villermaux and
Bossa (2009). The red and blue lines represent the scaling laws derived from our data.
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Figure 11: The path of a new fragmentation mode where the iron structure encloses the
silicates.
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Figure 12: Non-dimensional break-up time as a function of Weber number for viscosity ratios
Rµ ranging between 10 and 1000.
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Figure 13: Non-dimensional break-up distance d∗bk as a function of the Weber number for
viscosity ratios Rµ ranging between 10 and 1000.
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Figure 14: Stable drop radius as a function of plausible magma ocean viscosities. The green
diamonds present our numerical results, the red squares correspond to the results of Rubie
et al. (2003), the black circles display the results of Samuel (2012), the blue stars correspond
the analytical results of the Eq. 18 and the black dash line presents the scaling law proposed
by this study.
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Figure 15: The final shape of the iron droplets for different initial conditions. Spherical case
(left), prolate form (middle) and oblate form (right).
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Figure 16: Schematic representation of the geometry used for the determination of the bound-
ary layer thickness δ at the drop surface: spherical case (top) and deformed drop (bottom).
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Figure 17: Boundary layer thickness as a function of the varied parameters in this study (drop
radius and magma ocean viscosity) for viscosity ratios Rµ ranging between 10 and 1000. Our
numerical results come from the first 62 simulations in Table 2).
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Figure 18: The streamlines around a large drop. In this model, Re = 2670, We = 636,
Rµ = 50 (simulation #62 in Table 2). The black lines are the streamlines, the red region
represents the molten silicates and the blue region represents the deformable iron drop.
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Figure 19: Non-dimensional surface exchange as a function of time for viscosity ratios Rµ
ranging between 10 and 1000. Here, we consider a drop of initial radius R = 10 mm. For
viscosity ratio = 10 (black line), Re = 553 and We = 10.9. For viscosity ratio = 50 (red line),
Re = 108 and We = 10.4. For viscosity ratio = 100 (blue line), Re = 44.2 and We = 8.74.
For viscosity ratio = 200 (purple line), Re = 25.1 and We = 9.02. For viscosity ratio = 1000
(green line), Re = 2.70 and We = 2.61.
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Figure 20: Normalised exchange surface S∗ as a function of magma ocean viscosity after the
breakup of a 10 km metal diapir. In the sinking droplet population, no cut-off is considered
at R = Rmax.
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Figure 21: Normalised exchange surface S∗ as a function of magma ocean viscosity after the
breakup of a 10 km metal diapir. In the sinking droplet population, a cut-off is considered at
R = Rmax.
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Figure 22: Comparison of different mesh sizes of a strongly oscillating drop (simulation #18
in Table 2). Left: Normalised boundary layer thickness as a function of grid sizes. Right:
Normalised exchange surface as a function of time.
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Figure 23: Comparison of the final shape of the fragmented drop for two different mesh sizes.
(simulation #83 in Table 2).
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