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Abstract

A mechanical science of materials, based on data science, is formulated to predict process-structure-property-
performance relationships. Sampling techniques are used to build a training database, which is then com-
pressed using unsupervised learning methods, and finally used to generate predictions by means of supervised
learning methods or mechanistic equations.
The method presented in this paper relies on an a priori deterministic sampling of the solution space, a
K-means clustering method, and a mechanistic Lippmann-Schwinger equation solved using a self-consistent
scheme. This method is formulated in a finite strain setting in order to model the large plastic strains that
develop during metal forming processes. An efficient implementation of an inclusion fragmentation model is
introduced in order to model this micromechanism in a clustered discretization.
With the addition of a fatigue strength prediction method also based on data science, process-structure-
property-performance relationships can be predicted in the case of cold-drawn NiTi tubes.

1 Introduction

Increasing research efforts in fine scale experiments and numerical modeling in recent decades have progres-
sively led to a change in modeling approaches in mechanics and materials science. Empirical and phenomeno-
logical material laws that were previously used to model the nonlinear mechanical response of structures and
materials are being replaced by microstructure-based mechanistic material laws.
Under arbitrary loading conditions the number of microstructure observations and conditions to be modeled
make the effort required for such an endeavor untenable for practical applications. The appeal of data science
and in particular machine learning is a drastic reduction in the number of microstructure observations and
simulations required to generate predictive material laws. There is hence a great interest in a data science
theory for mechanical science of materials that could generate predictive material laws from a predefined
database of experimental and numerical results.
Multiple approaches have been proposed in the literature to reach this goal, generally summarized by these
three steps:

1. Collect data using high-fidelity experiments and simulations to build a training database.

2. Compress the training database using unsupervised learning methods for dimension reduction.

∗Corresponding author: w-liu@northwestern.edu

1



3. Generate predictions using supervised learning methods or mechanistic equations on the compressed
training database and optionally cross-validating those predictions using a testing database with new
high-fidelity experiments and simulations.

The training database can be generated using, e.g., random sampling [Goury et al., 2016], Gaussian
processes [Goury et al., 2016], or Sobol sequences [Bessa et al., 2017]. Because those sampling methods may
require a lot of data points to cover the solution space sufficiently for accurate predictions, deterministic sam-
pling methods have been considered by some authors [Yvonnet & He, 2007, Liu et al., 2016]. For instance,
instead of considering a large number of arbitrary, random loading conditions for the training database, only
6 orthogonal loading conditions of small amplitude were proved to be sufficient for small strain elastoplastic
analysis in [Liu et al., 2016].
Compression of the training database can be achieved using various unsupervised learning methods for di-
mension reduction, such as Proper Orthogonal Decomposition (POD) [Ryckelynck, 2005, Lieu et al., 2006,
Yvonnet & He, 2007, Kerfriden et al., 2011, Goury et al., 2016], K-means clustering [Liu et al., 2016, Liu et al., 2018a,
Liu et al., 2018b, Kafka et al., 2018] and self-organizing maps [Tang et al., 2018]. The choice of compression
method has a significant importance as it defines the discretization of mechanistic equations that will be
solved in the prediction stage. POD leads to shape functions of global support, while clustering methods
ensure a cluster-wise discretization.
As a result of data compression, the complexity of high-fidelity experiments and simulations that were used
to build the training database is encapsulated in a few degrees of freedom. In order to solve for those degrees
of freedom and predict mechanical response at arbitrary loading conditions, mechanistic equations have to
be reformulated in terms of the reduced degrees of freedom. This new formulation of mechanistic equations
is usually called a reduced order model, although this denomination encompasses approaches such as proper
generalized decomposition [Ladevèze et al., 2010, Chinesta et al., 2013] which do not rely on data science.
Additionally, some approaches couple the data compression and mechanistic prediction steps to improve
the reduced order model during the simulation [Ryckelynck, 2005, Kerfriden et al., 2011]. Some super-
vised learning methods have been applied directly to the training database with a built-in compression
stage. This is the case for instance for artificial neural networks, which have been applied in the liter-
ature to predict mechanical properties of materials as a function of their microstructural characteristics
[Zhang & Friedrich, 2003, Hambli et al., 2011, Le et al., 2015].

In this paper, we will revisit Self-consistent Clustering Analysis (SCA), a data-driven mechanistic material
modeling theory that has been recently developed for small strain elastoplastic materials [Liu et al., 2016].
SCA relies on data compression through clustering and mechanistic prediction through micromechanics and
homogenization theory.
Convergence of SCA was proved theoretically recently in [Tang et al., 2018]. Other contributions have re-
cently shown the capability of SCA to account for complex behavior of the microstructure’s constituents by
embedding crystal plasticity (CP) material laws [Liu et al., 2018b, Kafka et al., 2018] or continuum damage
models [Liu et al., 2018a].
The method is herein revisited as a data science mechanistic approach and extended to ductile materials.
To reach such an end, the mechanistic equations that SCA relies on to make predictions are reformulated
for finite strain elastoplastic materials in Sec. 2. Numerical convergence of this new method is verified in
Sec. 3. This new formulation of SCA enables the prediction of the nucleation of voids in ductile materials
by debonding and fragmentation of inclusions at the scale of their microstructure, which is shown in Fig. 1.
This prediction is achieved with a complexity reduced by several orders. This advantage is exploited in Sec.
4 to predict process-structure-property relations for cold drawn Nickel-Titanium (NiTi) tubes.
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(a) (b)

Figure 1: Ductile materials’ microstructures discretized using voxel meshes with matrix shown in blue and
inclusions in red: (a) two-dimensional microstructure, (b) inside view of a three-dimensional microstructure
with a fragmented inclusion surrounded by a debonding void shown in light gray.

2 Data science formulation

Microstructure-based material modeling requires the definition of an idealistic or statistically representative
microstructure realization, called Representative Volume Element (RVE). Homogenized material laws can
be computed by analytically or numerically solving a boundary value problem for the response of that RVE.
For arbitrary microstructure geometries and complex behavior of microstructure constituents (plasticity,
fracture), numerical methods such as the Finite Element (FE) method or Fast Fourier Transform (FFT)-
based numerical methods [Moulinec & Suquet, 1998] are required.

The microstructures that will be studied in the present paper correspond to ductile materials and fea-
ture one or multiple inclusions and voids embedded in a matrix, as shown in Fig. 1. The complexity of
the microstructure’s constituents’ behavior arises due to the hyperelastoplastic response of the matrix, the
hyperelastic-brittle behavior of the inclusions, and debonding micromechanisms at the matrix/inclusions
interface.

The FE method can be used with any structured or unstructured FE mesh of the undeformed RVE
domain Ωm0 (the superscript m means microscopic), while FFT-based methods require structured voxel
meshes such as that shown in Fig. 1. In the FE method discrete equations are written for the displacement
field um, which is approximated at mesh nodes as

um(X) ≈
Nnodes∑
n=1

um,nNn(X),X ∈ Ωm0 , (1)

where Nnodes is the number of nodes in the FE mesh, um,n is the displacement vector at node n, and Nn is
the FE shape function at node n. In FFT-based numerical methods, discrete equations are written for the
deformation gradient tensor field Fm = I +∇Xu

m, which is approximated voxel-wise as

Fm(X) ≈
Nvoxels∑
n=1

Fm,nχn(X),X ∈ Ωm0 , (2)

where Nvoxels is the number of voxels, Fm,n is the deformation gradient tensor in voxel n, and χn(X) is the
characteristic function which is equal to 1 if X is inside voxel n and zero otherwise.
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For a given microstructure, the displacement field um and the deformation gradient field Fm depend on
boundary conditions applied to the RVE. In the present work, um will be decomposed over the RVE domain
Ωm0 into a linear part and a periodic part. As a result, Fm will be decomposed into a constant part FM

(the superscript M means Macroscopic) and a periodic part with zero average over Ωm0 . These assumptions
correspond to first order homogenization theory [Moulinec & Suquet, 1998, Geers et al., 2010].
Data science is used in the mechanical science of materials to predict either um or Fm as a function of FM . As
stated in the introduction, the first step is to generate data through simulations. Following [Liu et al., 2016],
this will be done using a priori sampling of loading conditions in Secs. 3 and 4.
Simulation results in the training database will have large dimensions due to dependence of approximations
in Eqs. (1) and (2) on either the number of nodes or the number of voxels. Data compression is necessary
to obtain new approximations with reduced dimensions.

2.1 Data compression

Dimension reduction can be achieved using various methods among which POD and clustering are presented
and compared in the following.
The general formulation of data science approaches that is developed herein is only relevant if the complexity
of simulations that are to be conducted in the prediction stage is at least one order superior to the com-
plexity of simulations required in the training and data compression stage. The relevance of data science
approaches also depends on the amount of work that can be transferred out of the prediction stage. This will
be evidenced in the following in the case of POD and clustering based data science approaches for mechanical
science of materials.

Data compression in the case of POD consists in replacing the large number of local FE shape functions
(Nn)n=1...Nnodes

by K � Nnodes global functions
(
W k

i

)
k=1...K,i=1...3

, called principal components or modes.

The latter can be computed using various decomposition techniques such as principal component analysis
or singular value decomposition [Liang et al., 2002]. The resulting approximation replacing Eq. (1) is

umi (X) ≈
K∑
k=1

um,ki W k
i (X),X ∈ Ω0, (3)

where the modes are discretized at mesh nodes as

W k
i (X) =

Nnodes∑
n=1

W k,n
i Nn(X),X ∈ Ω0. (4)

Simulations in the prediction stage can then be conducted using a standard FE weak form but replacing
approximation (1) by (3). It is interesting to see that once the modes are computed in the data compression
stage, Eq. (4) can be precomputed at integration points of the FE mesh in the same way that FE shape func-
tions are usually precomputed in FE codes [Ryckelynck, 2005, Yvonnet & He, 2007, Kerfriden et al., 2011].
However, if the material is heterogeneous, or if it has a nonlinear behavior that leads to heterogeneous defor-
mations, material integration still has to be solved at each integration point [Ryckelynck & Missoum Benziane, 2010].
Consequently, in the POD method, the complexity of material integration is not reduced. Additionally, the
stiffness matrix associated to the FE weak form is dense because of the form of Eq. (4), and hence its
solution using direct or iterative solvers has a cubic worst-case complexity instead of quadratic. However,
this complexity depends on K instead of Nnodes, with K � Nnodes, and is therefore drastically reduced by
POD.

Data compression in the case of SCA follows a different approach, where the initial numerical method
is FFT-based. The large number of voxels is to be replaced by K � Nvoxels mutually-exclusive groups of
voxels that are called clusters and that span the entire RVE domain. Clusters can be constructed using var-
ious clustering techniques such as K-means clustering [Liu et al., 2016, Liu et al., 2018a, Liu et al., 2018b,
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Kafka et al., 2018], or self-organizing maps [Tang et al., 2018]. Examples of data that can be used for clus-
tering are given in Sec. 3. The resulting approximation replacing Eq. (2) is

Fm(X) ≈
K∑
k=1

Fm,kχk(X),X ∈ Ωm0 , (5)

where Fm,k is the cluster-wise constant deformation gradient tensor in cluster k, and χk(X) is the charac-
teristic function which is equal to 1 if X is inside any voxel of cluster k, and zero otherwise. Because in
the FFT-based numerical method the degrees of freedom are directly the voxel-wise constant deformation
gradients [Moulinec & Suquet, 1998], interpolation and integration are carried out at the same points. Thus,
clustering degrees of freedom directly leads to a reduction of the number of degrees of freedom and of material
integration complexity. In fact, in SCA, the complexity of all operations conducted in the prediction stage
only depends on the number of clusters K, with the most expensive operation being, similarly to POD, the
solution of a dense linear system. The latter results from the reformulation and discretization of the Cauchy
equation into the discrete Lippmann-Schwinger equation. These steps are described in the following in the
finite strain case following recent work on finite strain FFT-based numerical methods [Kabel et al., 2014]
and then integrating it into SCA [Liu et al., 2016].

2.2 Continuous Lippmann-Schwinger equation

As mentioned previously, first order homogenization consists in defining the deformation gradient tensor field
in the RVE Fm as the addition of the macroscopic (homogeneous) deformation gradient FM and a microscopic
(heterogeneous) fluctuation. Hill’s lemma can be used to define the macroscopic first Piola-Kirchhoff stress

tensor PM as the average of the microscopic one PM =
1

|Ωm0 |

∫
Ωm

0

Pm(X)dX [Geers et al., 2010].

Hill’s lemma requires (Fm − FM ) to verify compatibility, i.e., to derive from a periodic displacement
field, and Fm to verify equilibrium, i.e. to be the solution of the Cauchy equation

∇X .P
m(Fm(X)) = 0,X ∈ Ωm0 . (6)

It can be shown [Kabel et al., 2014] that Eq. (6) is equivalent to the Lippmann-Schwinger equation

Fm(X) = −
∫

Ωm
0

G0(X,X ′) :
(
Pm(Fm(X ′))− C0 : Fm(X ′)

)
dX ′ + F0,X ∈ Ωm0 . (7)

The fourth rank tensor C0 is the stiffness tensor associated to an isotropic linear elastic reference material.
It will be determined in Subsec. 2.3, as well as the far field deformation gradient tensor F0 and the periodic
Green’s operator G0. The latter maps any tensor field τm to a compatible one:

∃u ∈ (H1(Ωm0 ))3,u periodic on Ωm0 ,−G0 ∗ τm = ∇Xu, (8)

where H1(Ωm0 ) is the Sobolev space of square-integrable functions whose weak derivatives are also square-
integrable.
The combination of Eqs. (7) and (8) yields a microscopic deformation gradient tensor Fm that verifies
compatibility and a first Piola-Kirchhoff stress tensor Pm that verifies equilibrium.

2.3 Discrete Lippmann-Schwinger equation

SCA consists of solving Eq. (7) cluster-wise instead of voxel-wise. This choice is inspired from micromechanics
and in particular Transformation Field Analysis [Dvorak, 1992]. Fig. 2 shows an example of clustering
performed on the microstructures in Fig. 1.
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(a) (b) (c)

Figure 2: Ductile materials’ microstructures: (a) two-dimensional microstructure discretized using 8 clusters,
(b) same two-dimensional microstructure discretized using 65 clusters, (c) three-dimensional microstructure
discretized using 217 clusters showing two clusters in the matrix phase (two shades of blue), one cluster in
the inclusion phase (red), and one cluster in the void phase (light gray).

As a result of the training stage, the RVE domain Ωm0 is discretized into K subsets
(

Ωm,k0

)
k=1...K

. The

degrees of freedom in the FFT-based numerical method [Moulinec & Suquet, 1998] are associated with the
microscopic deformation gradient Fm. In SCA [Liu et al., 2016], Fm is discretized by a cluster-wise constant
approximation

(
Fm,k

)
k=1...K

. As a consequence, the microscopic first Piola-Kirchhoff stress tensor is also

approximated cluster-wise
(
Pm,k

)
k=1...K

, and Eq. (7) can be discretized as

Fm,k = −
∑

k′=1...K

D0,k,k′ :
(
Pm,k

′
− C0 : Fm,k

′
)

+ F0, k = 1 . . .K (9)

where D0 is the interaction tensor defined by

D0,k,k′ =
1

|Ωm,k0 |

∫
Ωm

0

χk(X)

∫
Ωm

0

χk
′
(X ′)G0(X,X ′)dX ′dX

=
1

|Ωm,k0 |

∫
Ωm,k

0

(
χk
′
∗G0

)
(X)dX.

(10)

The characteristic functions χk and χk
′

are equal to 1 in, respectively, clusters k and k′, and 0 elsewhere.
In the FFT-based numerical method [Moulinec & Suquet, 1998], the periodic Green’s operator G0 depends
on C0, and is known in closed form in Fourier space. Because C0 is related to an isotropic linear elastic
reference material, G0 can be expressed in Fourier space as a function of the reference Lamé parameters λ0

and µ0. It is then obtained in real space by using the inverse FFT. In particular, Eq. (10) can be written in
the form

D0,k,k′ = f1(λ0, µ0)D1,k,k′ + f2(λ0, µ0)D2,k,k′ ,

Di,k,k
′

=
1

|Ωm,k0 |

∫
Ωm,k

0

FFT−1
{

FFT{χk
′
}Ĝi

}
(X)dX, i = 1, 2.

(11)

The detailed expressions of f1, f2, Ĝ1 and Ĝ2 can be found in [Moulinec & Suquet, 1998, Kabel et al., 2014,
Liu et al., 2016] among others. Drastic computational cost reduction is enabled by SCA thanks to a reduced
number of degrees of freedom by clustering, and by the fact that D1 and D2 can be precomputed in the
training stage. Therefore, neither FFTs nor inverse FFTs are computed in the prediction stage, even if the
reference material is changing.

In the present work, mixed boundary conditions are coupled to Eq. (9). Some components Fmi,j of the

average of the microscopic deformation gradient are set equal to their macroscopic counterparts from FMi,j ,
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and some other components Pmi,j of the average of the microscopic first Piola-Kirchhoff stress tensor are set
to zero. This can be done by adding the following conditions to Eq. (9):

∑
k=1...k

|Ωm,k0 |Fm,ki,j = |Ωm0 |FMi,j , (i, j) ∈ F∑
k=1...k

|Ωm,k0 |Pm,ki,j = 0, (i, j) ∈ {1, 2, 3}2\F
(12)

where F ⊂ {1, 2, 3}2 is the set of components for which kinematic conditions are imposed.

As noted in [Liu et al., 2016], solutions of Eq. (9) depend on the choice of reference material. An
optimal choice can be computed in the prediction stage by making the reference material consistent with the
homogenized material. This means that the far field deformation gradient tensor F0 is an additional unknown
that must be solved for in SCA [Liu et al., 2016], as opposed to the FFT-based numerical method where
F0 ≡ FM [Kabel et al., 2014]. The self-consistent method consists in using a fixed-point iterative method
where, at each step, the reference Lamé parameters λ0 and µ0 are changed so that ||PM − C0 :

(
F0 − I

)
||2

is minimized. This is presented in algorithm form in the Appendix.

2.4 Summary

To summarize, SCA is based on a voxel-wise discretization of the RVE domain, which is inherited from FFT-
based numerical methods. The originality of SCA comes from the use of a K-means clustering algorithm
in the training stage to cluster voxels based on a mechanistic a priori clustering criterion computed using
a simple sampling of the loading space. This training stage also includes computing all voxel-wise and
computationally expensive operations such as FFTs and inverse FFTs.

In the prediction stage, a self-consistent iterative algorithm is used to search for the optimal choice
of reference Lamé parameters. At each iteration of this self-consistent loop, matrix assembly operations
are accelerated because all voxel-wise operations have been precomputed in the training stage and already
reduced to cluster-wise contributions. A Newton-Raphson iterative algorithm must be embedded within each
self-consistent iteration as we are considering nonlinear materials, thus the discrete Lippmann-Schwinger
equation is linearized.

The outputs from SCA are the microscopic variables’ cluster-wise approximations, including the micro-
scopic first Piola-Kirchhoff stress tensor. The latter can be used to predict void nucleation micromechanisms
through stress-based fracture criteria as will be described in Sec. 4.

The main advantage of SCA over POD techniques is that in the prediction stage all operations are
conducted cluster-wise in SCA instead of voxel-wise, including material integration and even fragmentation
modeling.

3 Numerical validation

Before considering a specific application as proposed in Sec. 4, general ductile materials microstructure
are modeled in this section both using a finite strain FFT-based numerical method and finite strain SCA.
The goal is to validate the numerical convergence of SCA towards the reference result, and its capabil-
ity to compute accurate predictions with a reduced complexity, as was shown for the small strain case in
[Liu et al., 2016].
In the present large strain case, hyperelastic behavior is modeled both in the matrix and in the inclusions.
A multiplicative von Mises plasticity model [Simo, 1992] with linear isotropic hardening is added to model
the nonlinear response of the matrix. Inclusions are assumed to be brittle, which is a common assumption
for hard phases in ductile materials. Their failure will be considered in Sec. 4. The model ductile material
microstructure is shown in Fig. 3(a), and material properties are given in Tab. 1 for the matrix and the
inclusions. The microstructure is discretized using 100 × 100 × 100 voxels, which is sufficient to accurately
predict the response with the FFT numerical method based on our preliminary calculations (not reported
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herein).

Table 1: Material parameters for the model ductile material

Parameter Matrix Inclusion Void Units
Young’s Modulus 70.0 400.0 70.0e-3 GPa
Poisson’s Ratio 0.33 0.2 0.0 —
Yield Strength 400 — — MPa
Hardening Modulus 1333 — — MPa

The reference result is computed on the voxel mesh using the finite strain FFT based numerical method
under unidirectional tension up to 25% applied logarithmic strain with strain increments of size 0.001.
The training database used for K-means clustering simply consists of the voxel-wise deformation gradient
tensor extracted from the first increment of this reference simulation, which corresponds to a linear elastic
analysis. In other words, the simulation used for training is identical in all aspects (mesh, geometry, material
properties) to the one conducted in the prediction stage, except for loading conditions because only one
strain increment is applied during training. This database can hence be constructed with a negligible
computational cost. The K-means algorithm requires a predefined number of clusters, which is varied from
k1 = 1, 4, 16, 64, 256 in the matrix phase, and k2 = 1, 1, 4, 13, 26 in the inclusion phase.
The comparison between the reference macroscopic stress/strain curve and those predicted by finite strain
SCA is presented in Fig. 3 (b and c). For 16 clusters in the matrix and more, a very accurate prediction is
obtained with finite strain SCA. This extends the validation conducted in [Liu et al., 2016] to large strains.
To show the influence of clustering on computational complexity, a comparison of computation times is
presented in Fig. 3(c). The computation time is shown to be reduced by four orders using SCA compared to
the FFT based numerical method. This shows that SCA drastically reduces the complexity of microstructure
calculations, based on a mechanistic clustering of voxels.
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Figure 3: (a) Ductile composite with particle volume fraction of 20%; (b) SCA converges fast to the FFT
reference for the overall mechanical response of the RVE under unidirectional tension along the x direction;
(c) a closer look at the dashed rectangle area in (b) shows accurate prediction of SCA with only 16 clusters;
(d) a CPU time saving of a factor of more than 103 is achieved with SCA for the relatively well-converged
number of clusters, compared with the FFT reference with a 100× 100× 100 voxel mesh.

This interesting advantage of SCA is demonstrated in a second set of simulations where the inclusions in
Fig. 3(a) are replaced by voids. Material properties for this porous ductile material are the same as those
in Tab. 1, except that the stiffness of the voids is assumed to be 1% of that of the matrix. Loading is set to
uniaxial tension to ensure that the stress state remains constant during the analysis.
The comparison between the reference macroscopic stress/strain curve and those predicted by finite strain
SCA is presented in Fig. 4 (a and b). It can be seen that convergence is much slower for this example with
voids, which features larger plastic strains than in the inclusions case. However, predictions are very close
to the reference result.
The main advantage of SCA in terms of computation time is preserved, as shown in Fig. 4(b). As all SCA
predictions are very close, one could use a very small number of clusters and obtain a good approximation
of the reference result, resulting once again in a drastic reduction of computational complexity.
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Figure 4: (a) SCA is fairly close to the FFT reference for the overall mechanical response of the porous
RVE under uniaxial tension along the x direction; (b) a closer look at dashed rectangle area in (a) shows
the relatively slow convergence; (c) a CPU time saving of a factor of more than 103 is achieved with SCA
for relatively well-converged numbers of clusters, compared with the FFT reference with a 100× 100× 100
voxel mesh.

These first simulations with the proposed finite strain SCA formulation are promising as predictions are
close to the reference results for a drastically reduced computational complexity. However, this comparison
is purely global: only averaged results are being assessed. At large plastic strain or for more complex loading
conditions, very heterogeneous and localized strain fields may develop and would require improvements to
the method. For instance, adaptive clustering techniques could be considered to update the clustering when
plastic localization phenomena occur within the RVE.

4 Application to Fatigue Strength Prediction of Cold Drawn NiTi
Tubes

In the continuation of Sec. 3, the objective of this section is to demonstrate the utility of a mechanical
science of materials based on data science to predict process-structure-property-performance relationships.
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The chosen application is the prediction of the fatigue strength of cold drawn NiTi tubes as a function of
drawing ratio and initial inclusion Aspect Ratio (AR).
NiTi tubes are formed using a series of hot and cold metal forming processes coupled to heat treatments
[Frick et al., 2004, Toro et al., 2009, Lei et al., 2011, Sczerzenie et al., 2012]. They are used in the making
of e.g. arterial stents and heart valve frames that undergo a large number of cyclic loads due to heart
beats [Duerig et al., 1999, Elahinia et al., 2012, Moore et al., 2016, Adler et al., 2018]. A critical measure of
a tube’s performance is hence the fatigue strength of its material, which is itself a function of the mate-
rial’s fatigue life under different applied cyclic strain amplitudes. This fatigue life can be predicted using
micromechanical simulations, which depend on the microstructural constitution of NiTi tubes. The latter
is a consequence of forming processes, and in particular of the cold drawing step, which is the focus of the
following study.
We propose simulating cold drawing at the microscale by applying biaxial compression to an initially
debonded inclusion embedded within a NiTi matrix. In order to predict the evolution of this microstruc-
ture during cold drawing, the finite strain SCA theory introduced in Sec. 2 is completed with a frag-
mentation model in Subsec. 4.1. The microstructure is extracted at different stages of this drawing
model and used as input to a data-driven fatigue life prediction model developed in previous studies
[Liu et al., 2018b, Kafka et al., 2018] and described briefly in Subsec. 4.2. The transfer of the microstructure
morphology from the drawing model to the fatigue life prediction model requires a displacement reconstruc-
tion and microstructure interpolation step that is described in Subsec. 4.3. Process-structure-property-
performance predictions obtained using this data science approach are presented in 4.4.

4.1 Cold drawing model

Using the self-consistent scheme presented in Subsec. 2.3, the discrete Lippmann-Schwinger equation (9) can
be solved with mixed boundary conditions (12) and appropriate constitutive models for the microstructure’s
constituents. Constitutive models and material parameters are kept identical to those used in Sec. 3 and
reported in Tab. 1, but they are completed by an inclusion fragmentation model. In addition, inclusions are
assumed to be initially debonded as a result of high shear stresses developing early at the inclusion/matrix
interface during cold drawing, similarly to the cold extrusion process [McVeigh & Liu, 2006].

Inclusions fragmentation is modeled using a Tresca yield criterion averaged inclusion-wise, following a
regularization technique used in a previous work [Shakoor et al., 2018] and coupled to a size-effect criterion.
The Tresca criterion defines the shear stress σTresca as

σTresca =
1

2
max |σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1| (13)

where σ1, σ2, σ3 are the cluster-wise constant principal stresses computed within each cluster of the inclusion
phase. The shear stress σTresca is then averaged inclusion-wise, or inclusion fragment-wise if the inclusion
has already broken-up, and that averaged value σTresca is compared to the inclusion shear strength σcTresca.
The equivalent radius of this inclusion or inclusion fragment r is also compared to a critical size parameter
rc. If the shear strength has been reached and r ≥ rc, the inclusion cluster containing the σTresca-weighted
barycenter of that inclusion or inclusion fragment is turned into void, as illustrated in Fig. 5. In practice,
this consists in reducing its Young modulus to a 1000th of its initial value over several load increments. This
procedure is carried out at the end of each load increment of the finite strain SCA simulation, once Eqs.
(9) and (12) have been solved using the self-consistent scheme. As revealed in Fig. 5, the orientation of the
fragmentation crack is predefined and is initially orthogonal to the drawing direction. The fracture criterion
parameters are given in Tab. 2.
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Table 2: Fracture criterion parameters for the cold drawing model

Parameter Value Units
Shear Strength 3000 MPa
Critical inclusion size 0.17 1/RVE size

(a) (b)

Figure 5: Clusters (shades of red) within the debonded inclusion: (a) before fragmentation, (b) after frag-
mentation with the missing cluster turned into void. Drawing direction is horizontal.

4.2 Fatigue Life Prediction model

High-cycle fatigue life can be estimated based on local plastic deformation predicted under cyclic loading,
where these deformations are computed using the SCA outlined above. Since cyclic strain amplitudes are
low, typically below 1% reversed strain, a small strain formulation can be used. An appropriate micro-scale
material law – crystal plasticity (CP) – is solved cluster-wise to obtain the cyclic change in plastic shear
strain (∆γp) and stress normal (σn) to that strain in the matrix material. The peak value of these variables
reach cyclic steady-state rapidly, typically within 3 or 4 loading cycles. From these, a scalar value called
the Fatigue Indicating Parameter (FIP) can be defined, which quantifies the fatigue driving force at any
location. Here, we adopt the Fatemi-Socie FIP, defined by

FIP =
∆γp

2

(
1 + κ

σn
σy

)
(14)

Originally developed by Fatemi and Socie [Fatemi & Socie, 1988], this FIP is a critical plane approach based
upon the plane of maximum normal stress, σn, normalized by the material yield stress (σy) and a material
dependent parameter κ, which controls the influence of normal stress (here κ will be taken as 0.55). When
used with SCA and a CP law, the FIP in each cluster is computed cluster-wise from plastic strain and stress
across time increments using a simple search to maximize the plastic strain, and thus identify the critical
plane. The maximum, saturated FIP (NFIPmax) can be correlated to the number of fatigue incubation cycles
(Ninc) a microstructure can withstand using a Coffin-Manson parameterization. By computing Ninc for a
number of different strain amplitudes to generate a strain-life curve, the fatigue strength (strain amplitude
at which a given number of cycles can be reached) can be computed through interpolation or fitting.

The CP material law from [Moore et al., 2016], calibrated to capture the hardening response of the B2
phase of NiTi, is used. Post-yield hardening is computed with a backstress term that accounts for direct
and dynamic hardening. Consistent with the worst-case or nearly worst-case approximation for the material
phase, and the lack of crystallographic information from the cold drawing model, the matrix is assumed to
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be composed of a single grain oriented such that its Schmid factor is maximized. The hard inclusion phase
(representing oxides or carbides) is taken to be linear-elastic with an elastic modulus 10 times that of the
matrix material. This process follows the CPSCA formulation outlined in [Liu et al., 2018b], which integrates
the CP material law within SCA, and the fatigue prediction method shown for synthetic microstructures
in [Kafka et al., 2018]. Indeed, the same model parameters are used for CP, FIP and Coffin-Manson as are
shown in [Kafka et al., 2018].

4.3 Transfer of microstructure from cold drawing model to fatigue life predic-
tion model

The fatigue life prediction model relies on CPSCA and hence on an underlying voxel mesh. In order to use
this model, the deformed and fragmented microstructures from the drawing simulation results need to be
transferred to a new voxel mesh.
The first step is to reconstruct the microscopic displacement vector field, since both FFT-based numerical
methods and SCA only solve for the microscopic deformation gradient tensor. This is done using a simple
Taylor expansion, or forward finite difference formula, which computes the displacements at all nodes of
the voxel mesh from the microscopic deformation gradients inside voxels. This computation starts at some
arbitrary corner of the RVE domain where the displacement is fixed to zero, which is in agreement with
FE-based linear homogenization implementations [Geers et al., 2010].
Once the displacement vector field has been reconstructed, the mesh can be deformed by adding these
displacements to node coordinates, as shown in Fig. 6(a,b). Finally, the phase tags (matrix, inclusion, void)
are transferred from this deformed mesh to a new voxel mesh of the deformed RVE domain using a simple
voxel-wise constant interpolation. As a result, the new voxel mesh is compatible with FFT-based numerical
methods and SCA, but embeds phase tags that correspond to a cold drawn microstructure. Fatigue life
predictions can be computed on this new voxel mesh using the CPSCA method, as shown in Fig. 6(c).
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(a) (b)

(c)

Figure 6: Cold drawing and FIP computation results showing the particle fragments in red, the voids in light
gray, and: (a) the equivalent plastic strain in the matrix in undeformed configuration, (b) the equivalent
plastic strain in the matrix in deformed configuration after displacement reconstruction, (c) the FIP in the
matrix on a new voxel mesh of the deformed configuration after mesh transfer. Note that the three figures
are not in the same spatial scale, as section height in (b,c) is reduced by 45% compared to (a).

4.4 Fatigue strength predictions

Three different initial conditions for the drawing model were considered, representing possible variability
in the quality and degree of processing in the feed stock used for cold drawing. Each condition includes a
single, ellipsoidal, debonded inclusion centered in the matrix with a different AR in the load direction. The
cross-sectional area (i.e. the minor axis of the ellipsoid) of the initial configuration is kept constant, and the
length (in the drawing direction) changed. By doing this, we study the influence of AR (mean curvature)
on drawing, fragmentation and subsequent fatigue life. These three different cases are deformed to up to
60% section height reduction by applying biaxial compression with a stress-free third axis. For each case,
at every 5% height reduction the procedure outline in Subsec. 4.3 is performed and the fatigue strength
is computed. In order to compute the fatigue strength, fatigue lives at strain amplitudes ranging between
0.36% and 0.54% in increments of 0.06% were computed, and the strain amplitude required to reach 107

cycles was estimated using a power-law fit to that data. Triangle waveforms with loading rate 0.1/s were
used throughout to apply fully reversed tension-compression (strain ratio, R = −1) fatigue loading.
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The results from this parametric study are shown in Fig. 7. In the center of the figure, fatigue strength–
the maximum strain amplitude at which a specified number of cycles can be obtained–is plotted versus the
section reduction resulting from drawing. At each point in section reduction and for each AR the fatigue
strength at 107 cycles is computed using the procedure outlined above. Cross-sections of the volume are
given at six different points in order to visualize and analyze the process by which the fatigue strength
changes with reduction percent. The drawing model captures the overall trend of an increase in fatigue life
with increasing height reduction, particularly for the highest AR. A large increase in the fatigue life is noted
when the AR 3 particle fragments, between 40% and 45% reduction. The pre-fragmentation configuration
is shown in the upper right-hand subset to Fig. 7, and the post-fragmentation configuration was shown
previously in Fig. 6(c). The distribution of FIP changes noticeably between these two states, with the
field much more concentrated at the interfaces before fragmentation and more distributed throughout the
volume after fragmentation. Up to 60% height reduction neither AR 1 nor 2 fragment, and no substantial
decrease in life is noted. This is consistent with experimental experience, where relatively large reductions are
often required to achieve large gains in fatigue performance. Higher reduction percents or different material
properties would be required to fragment these cases.

Figure 7: Fatigue strength at 107 cycles as a function of cold drawing section reduction for 1:1:1, 2:1:1, and
3:1:1 initial AR (x:y:z). Fragmentation occurs between 40% and 45% reduction for AR 3, resulting in a jump
in fatigue strength

Conclusions

A general formulation of data science approaches for mechanical science of materials has been presented
in this paper. This general formulation consists in reducing the complexity of process-structure-property-
performance prediction methods using unsupervised learning methods on a training database of high-fidelity
simulations. This is evidenced in the case of a training database composed of RVE simulations results com-
puted under various loading conditions using the FE method or FFT-based numerical methods. Dimension
reduction leads to a compressed RVE model where nodes and voxels are replaced by either modes or clusters
depending on the supervised learning method used for data compression.
In the prediction stage, supervised learning methods or mechanistic equations are solved using the compressed
RVE. For instance, POD can be used to solve the Cauchy equation using a compressed FE discretization
where the complexity depends on the number of modes instead of the number of nodes. Similarly, K-means
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clustering can be used to solve the Lippmann-Schwinger equation with a complexity depending on the num-
ber of clusters instead of the number of voxels. The interesting advantage of this later approach over the
former is that it reduces both the complexity of mechanistic equations solution and material integration.
The solution of the Lippmann-Schwinger equation using a clustered discretization requires a self-consistent
scheme that has been extended to finite strain elastoplastic materials and coupled to micromechanical void
nucleation models in this paper. As a result, microstructure evolutions due to large plastic strains have
been captured during the cold drawing of NiTi tubes. These microstructure evolutions have been related
to the fatigue life and then the fatigue strength of NiTi tubes using a second data science based approach
developed in a previous work. Therefore, it has been demonstrated that the proposed data science formula-
tion for mechanical science of materials can predict process-structure-property-performance with a reduced
complexity.
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Appendix

The finite strain SCA algorithm is given in Alg. 1. The fracture criteria introduced in Sec. 4 are considered
only once a converged solution has been computed using this algorithm. The convergence criterion is a
tolerance on the variation on Fm between two self-consistent scheme iterations.
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Algorithm 1 Finite strain SCA algorithm

1: procedure SCA(Inputs: K, D1, D2,
(
|Ωm,k0 |

)
k=1...K

, |Ωm0 |, F , and FM )

2: Initialize (λ0, µ0)
3: repeat
4: D0,k,k′ ← f1(λ0, µ0)D1,k,k′ + f2(λ0, µ0)D2,k,k′ , k, k′ = 1 . . .K
5: Solve for Fm and F0 using a Newton-Raphson scheme:

Fm,k +
∑

k′=1...K

D0,k,k′ :
(
P(Fm,k

′
)− C0 : Fm,k

′
)
− F0 = 0, k = 1 . . .K∑

k=1...k

|Ωm,k0 |Fm,ki,j = |Ωm0 |FMi,j , (i, j) ∈ F∑
k=1...k

|Ωm,k0 |Pm,ki,j = 0, (i, j) ∈ {1, 2, 3}2\F

6: PM ← 1

|Ωm0 |
∑

k=1...k

|Ωm,k0 |Pm,k

7: (λ0, µ0)← arg min
(λ∗,µ∗)

||PM − C0(λ∗, µ∗) :
(
F0 − I

)
||2

8: until converged
9: end procedure
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