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Abstract This paper addresses the problem of reg-

istering a known structured 3D scene, typically a 3D

scan, and its metric Structure-from-Motion (SfM) coun-

terpart. The proposed registration method relies on a

prior plane segmentation of the 3D scan. Alignment is

carried out by solving either the point-to-plane assign-

ment problem, should the SfM reconstruction be sparse,

or the plane-to-plane one in case of dense SfM. A poly-

nomial Sum-of-Squares optimization theory framework

is employed for identifying point-to-plane and plane-to-

plane mismatches, i.e. outliers, with certainty. An inlier

set maximization approach within a Branch-and-Bound

search scheme is adopted to iteratively build potential

inlier sets and converge to the solution satisfied by the

largest number of assignments. Plane visibility condi-

tions and vague camera locations may be incorporated
for better efficiency without sacrificing optimality. The

registration problem is solved in two cases: (i) putative

correspondences (with possibly overwhelmingly many

outliers) are provided as input and (ii) no initial cor-

respondences are available. Our approach yields out-

standing results in terms of robustness and optimality.
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1 Introduction

The emergence of affordable 3D sensors and high qual-

ity 2D cameras has triggered a growing interest in com-

bining both imaging modalities. 3D sensors provide faith-

ful 3D scene models in the form of dense 3D point clouds

while images are used to extract texture information.

High quality 3D models with mapped texture can be ob-

tained so long as the 2D and 3D sensors are registered in

a common reference frame. The two modalities are gen-

erally registered off-line and the 2D and 3D sensors kept

rigidly attached during acquisition. Doing so, however,

may prove impractical considering that suitable acqui-

sition conditions for one sensor may not be adequate

for the other (e.g. lighting conditions for cameras, sur-

face orientation for 3D sensor, etc.). Some application-

specific requirements (e.g. camera on a drone and a 3D

scanner on a vehicle) may altogether prohibit the sen-

sors to be rigidly attached. When the 2D and 3D sen-

sors are free, reliable methods for registering the two

modalities, i.e. establishing inter-modality correspon-

dences and estimating the rigid transformation aligning

their reference frames, are highly desirable.

Structure-from-Motion (SfM) techniques compute

3D point coordinates from pixel correspondences across

images. It is thus tempting to regard the problem of reg-

istering 3D and 2D sensors as that of aligning two 3D

point sets: one set induced by the images and the other

obtained from scanner measurements. Registering 3D

point clouds is a well-studied problem. Most methods

use the Iterative-Closest-Point (ICP) algorithm (or its

variants) [33, 13, 27]. While ICP is a local method, re-

cent work by Yang et. al [36] (Go-ICP) provides the

very first globally optimal solution to same-scale point

set registration. However, because SfM reconstructions
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suffer from a scale ambiguity, methods devised for reg-

istering same-scale data cannot be employed.

Most methods handling the scale ambiguity rely on

establishing correspondences either between the 3D mea-

surements obtained by both modalities or directly be-

tween scanned data and images [19, 7, 10]. The sought

transformation parameters are then obtained by either

minimizing the registration loss function or maximizing

the consensus set of inliers. Note that Random Sam-

ple Consensus (RANSAC) [12] is the most widely used

method for finding the set of maximum inliers. Meth-

ods based on loss function minimization are more prone

to outliers than their inlier-set-maximization counter-

parts [1]. Some approaches exploit scene knowledge or

the Manhattan World assumption. For instance, meth-

ods have been devised based on line segment match-

ing [19], target segmentation [32], repeated patterns de-

tection [28], mutual information maximization [20], and

extended Chamfer matching [38]. Registration methods

relying on establishing correspondences may be under-

mined by unreliable visual feature descriptors. Alterna-

tive methods, not establishing initial correspondences,

have also been proposed [23, 9, 8, 24]. The methods

in [23, 9] use variants of the ICP algorithm and hence

remain susceptible to partial scene overlap, scene occlu-

sion, and high levels of outliers. The one in [8] employs

a RANSAC-based inlier set maximization in which the

scale problem is handled by an extension of the 4-point

congruent sets algorithm. A recent approach presented

in [24] computes the average gradient magnitude over

all lighting directions under Lambertian shading. These

gradients are then matched with the image gradient to

obtain a coarse 2D-3D registration.

As far as maximizing the set of inliers is concerned,

RANSAC is non-deterministic and provides no guar-

antee with respect to the optimality of its solution.

Globally optimal inlier set maximization methods [18,

1] have recently been proposed for problems formu-

lated through linear equations. Extensions to problems

with nonlinear equations [37] is problem-specific, diffi-

cult and may result in much more complicated (pos-

sibly numerically intractable) mathematical formula-

tions. Note that a variety of methods for solving sys-

tems of nonlinear polynomial equations exist. Some are

based on Gröbner bases or homotopy continuation [34,

14]. Others use polynomial Sum-of-Squares (SoS) opti-

mization [29, 17, 22, 21, 4, 5]. However, such methods

are dedicated to solving outlier-free systems and deal-

ing with outliers is carried out through RANSAC.

In this paper, we address the problem of register-

ing the 3D scan and a set of images of a structured

scene captured by calibrated cameras. Our assumption

is that the scene is structured in the sense that it can

be segmented into and represented by planes (or pla-

nar patches). Such representation is compact [2] and

can also be useful for scene knowledge-based refinement

methods [31]. The plane-based assumption is particu-

larly valid when dealing with man-made environments,

including (but not limited to) Manhattan World, ur-

ban and indoor scenes that are abundant with planes.

In our approach, we seek the metric transformation re-

lating the scene’s planes and the SfM-induced 3D struc-

ture. The SfM structure may either be represented by a

sparse set of 3D points, obtained from sparse matching

across images, or by planes should a sufficiently dense

matching between images be obtained and the resulting

point cloud segmented. When the SfM 3D structure is a

sparse set of points, registration is carried out by estab-

lishing point-to-plane correspondences. Point-to-plane

registration methods are known to perform better than

their point-to-point counterparts [30]. When the SfM-

induced 3D structure consists of planes, registration is

carried out by seeking plane-to-plane correspondences.

We rely on the fact that, under metric ambiguity,

both point-to-plane and plane-to-plane assignments can

be expressed as a second degree polynomial in scaled-

quaternion and translation parameters. Our approach

aims at maximizing the set of inlier assignments with

guaranteed optimality of the consensus set. The consen-

sus set maximization methods [18, 1] discussed above

are not applicable because of the nonlinearity of the

problem at hand. In our approach, we use the Branch-

and-Bound (BnB) algorithmic paradigm to explore the

scaled-quaternion and translation parameter space. As

in [18, 1], we rely on establishing optimistic and pes-

simistic sets of inlier assignments for pruning branches

whose most optimistic sets are worse than the best pes-

simistic one. Our contribution is threefold:

(i) We propose a novel modeling of the point-to-plane

(possibly point-to-patch) and plane-to-plane corre-

spondence problems. Our modeling is based on a rig-

orous Sum-of-Squares polynomial optimization the-

ory and is used to derive new conditions to identify,

with certainty, mismatched correspondences within

parameters’ bounds. Our registration approach re-

lies upon such conditions to build optimistic inlier

assignment sets for given parameters’ bounds.

(ii) We introduce SfM-specific constraints in our model-

ing, namely, a plane visibility criterion and optional

vague constraints on the positions of the camera.

(iii) Based on our modeling and constraints, we propose

a globally optimal registration algorithm that maxi-

mizes the inlier set of either point-to-plane or plane-

to-plane assignments in presence of putative corre-

spondences along with its non-combinatorial coun-

terpart in the absence of such correspondences.
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Our paper is organized as follows: Section 2 pro-

vides the main results from polynomial SoS optimiza-

tion theory that we exploit in our registration approach.

In Section 3, we present our working hypotheses along

with the assignment polynomials arising in the point-to-

plane and plane-to-plane alignment problems. In Sec-

tion 4, we derive polynomial SoS conditions for iden-

tifying mismatches within given registration parame-

ters’ bounds. In section 5, we present our modeling

of additional geometric constraints to handle the scale

ambiguity, to exploit vague knowledge on camera loca-

tions, and to perform point-to-patch rather than point-

to-plane registration. Plane visibility, vague camera lo-

cations, and (to a lesser extent) scaling are rather SfM-

specific constraints. These, and the point-to-patch con-

straints, may be used to boost the search for mismatches.

This leads us to the statement of our main result that

we give in Section 6 along with the description of our

BnB registration algorithm for point-to-plane (or point-

to-patch) and plane-to-plane registration. The results of

our experiments are summarized and discussed in Sec-

tion ??. Section 7 concludes our work.

2 Polynomial Sum-of-Squares theory

In this section, we present an overview of some impor-

tant results in Polynomial Sum-of-Squares optimization

theory. These results account for the main ingredients

of our registration approach.

Definition 1 (SoS and PSD) Let R[x] be the ring

of polynomials in n variables, x = (x1, x2, . . . , xn), with

real-valued coefficients. A polynomial f(x) ∈ R[x] is
- Positive Semi-Definite (PSD) (or nonnegative) if f(x) ≥
0 for all x ∈ Rn;

- Sum-of-Squares (SoS) if there exist polynomials fi(x) ∈
R[x] such that f(x) =

∑
i fi(x)

2.

A SoS is obviously always PSD and the converse is gen-

erally untrue. However, Hilbert [16] proved that, for

some classes of polynomials including quadratic ones,

a polynomial is PSD if and only if it is SoS. Check-

ing whether a polynomial is PSD is NP-hard (though

decidable) while checking whether a polynomial is SoS

is computationally tractable using Semi-definite Pro-

gramming (SDP) and employing the so-called Gram

matrix of the polynomial.

Definition 2 (Gram matrix [25]) Consider a poly-

nomial f(x) ∈ R[x] of degree 2d. Let Zd(x) be the vector

of monomials of f(x) up to monomials of degree d. The

matrix G such that f(x) = Zd(x)
ᵀGZd(x) is a Gram

matrix of f(x).

Theorem 1 ([6, 25]) A polynomial f(x) ∈ R[x] of de-

gree 2d is SoS if and only if there exists a real symmetric

positive semi-definite Gram matrix of f(x).

Note that since odd-degree polynomials cannot be SoS,

only even-degree polynomials are concerned by such

test. Checking for the existence of a positive semi-definite

Gram matrix G boils down to solving a Linear Ma-

trix Inequality (LMI) feasibility problem. LMI feasibil-

ity can be efficiently solved using the interior-point al-

gorithm [3]. Theorem 1 allows us to check whether a

polynomial f(x) is nonnegative for every x ∈ Rn. One

is often interested in checking whether f(x) is nonneg-

ative in a semi-algebraic set K defined by polynomials

gi(x) ∈ R[x] such that

K = {x ∈ Rn : gi(x) ≥ 0, i = 1 . . .m}. (1)

This can be answered via the so-called Positivstellensatz

(Psatz) [22]. The Psatz states that f(x) is nonnegative

on K if there exist SoS polynomials σv(x) such that

f(x) =
∑

v∈{0,1}m
σv(x)g1(x)v1g2(x)v2 . . . gm(x)vm . (2)

Exploiting Psatz is difficult and may turn numerically

intractable in practice because (2) requires 2m SoS σv
polynomials. Putinar [26] provides a much simpler Psatz

under Archimedean conditions on the so-called qua-

dratic module.

Definition 3 (Quadratic module [35]) The quadratic

module M(g) = M(g1, . . . , gm) ⊂ R[x] of polynomials

g1(x), g2(x), . . . , gm(x) is the set

M(g) = {σ0(x) +

m∑
i=1

σi(x)gi(x) : each σi is SoS}. (3)

Definition 4 (Archimedean [35]) The quadratic mod-

ule M(g) of polynomials g1(x), g2(x), . . . , gm(x) is Ar-

chimedean if N −
∑n
k=1 x

2
k ∈M(g) for some N ∈ N.

Theorem 2 (Putinar’s Positivstellensatz [26]) As-

sume the quadratic module M(g) is Archimedean. If

f(x) > 0 on K (defined by (1)), then f(x) ∈M(g).

3 Assignment polynomials

In this paper, we consider a set of two or more cali-

brated cameras observing a scene consisting of a set P
of at least four distinct planes in general positions. The

scene has been scanned by a 3D sensor and segmented

into these planes. A plane Π ∈ P is given by its normal

3-vector π and signed distance to the origin d. We also

consider the set Y of seven or more points (lying on at
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least four distinct scene planes) whose projections are

matched across two or more cameras. We distinguish

two working hypotheses depending on whether image

correspondences are sparse or dense:

– when the set Y is sparse, the SfM-induced [15] 3D

points are likewise sparse. Each reconstructed point

is then represented by a y ∈ R3 of cartesian coordi-

nates;

– should Y be sufficiently dense, the SfM-induced point

cloud may further be segmented into a set of planes

Pr. Each such plane is represented by its normal

3-vector πr and distance to the origin dr.

The coordinates of the SfM-reconstructed points and/or

planes and those of the scanned scene planes are rep-

resented in two distinct reference frames. The two rep-

resentations of the scene also differ by a generally un-

known scale factor. Consequently, the transformation

aligning the SfM-reconstructed scene (whether repre-

sented by points or by planes) and the scanned scene is

represented by a 3 × 3 scaled-rotation matrix Q and a

translation 3-vector t. A quaternion representation with

no enforcement of unit quaternion q = ( z u v w )ᵀ is

used to represent the scaled-rotation matrix Q:

Q=

z2 + u2 − v2 − w2 2uv − 2wz 2uw + 2vz

2uv + 2wz z2 − u2 + v2 − w2 2vw − 2uz

2uw − 2vz 2vw + 2uz z2 − u2 − v2 + w2

 .
Aligning the SfM and scanned representations consists

in finding Q and t that together map the 3D SfM-

reconstructed points, or alternatively the SfM-induced

planes, to their corresponding planes in the scanned

scene. The problem of finding the correct matches be-

tween the 3D SfM-reconstructed points and scanned
planes is referred to as the “point-to-plane” assignment

problem. That of finding the correct match between the

SfM and scanned planes is referred to as the plane-to-

plane assignment problem. In both cases, the assign-

ments are described by polynomials in the unknown

entries of Q and t and which we denote by a vector

x ∈ R7 such that x = (qᵀ, tᵀ)ᵀ.

Point-to-plane assignment polynomials: When re-

lying on point-to-plane assignments for registering the

image and scanner modalities, we considerA ⊂ Y×P as

a set of putative point-to-plane assignments (× refers

to the cartesian product) and a = (Y,Π) ∈ A is one

such assignment. The polynomial fa(x) in R[x] induced

by a is given by:

fa(x) := πᵀ(Qy + t)− d. (4)

If x is the true registration parameter vector, then for

every correct assignment a ∈ A, fa(x) = 0.

Plane-to-plane assignment polynomials: When car-

rying out plane-to-plane registration, the set of putative

assignments A represents a subset of Pr × P. The as-

signment a = (Πr, Π) ∈ A is described by a 4-vector of

polynomials

fa(x) := qᵀq

[
πr
−dr

]
+ δ

[
Qᵀ 0
tᵀ 1

] [
π

−d

]
. (5)

Should x be the true registration parameter vector, all

four polynomials in fa(x) simultaneously vanish for some

value of δ = ±1.

4 Polynomial SoS assignment conditions

Our goal is to simultaneously estimate the registration

parameters x and associated set of correct assignments.

The problem can be solved by considering either point-

to-plane or plane-to-plane assignments. Note, however,

that we voluntarily do not distinguish between the cases

in which the initial set A is a point-to-plane putative

assignments set from that in which it is a plane-to-plane

one. Unless stated otherwise, fa(x) is always considered

as a vector of polynomials of appropriate dimension: a

1-vector representing the single polynomial (4) induced

by a point-to-plane putative assignment or a 4-vector

of polynomials (5) induced by a plane-to-plane assign-

ment. fa(x) = 0 means that all polynomials in this vec-

tor simultaneously vanish. We may assume, for the sake

of clarity of the exposition, that, in the case of plane-to-

plane assignments, the value of δ = ±1 in (4) is known.

It will be made clear, further in this section (see Re-

sult 3), how the two cases are handled in our method.

Our registration approach is based on the BnB algo-

rithmic paradigm and branching is carried out on the

space of registration parameters x. At each iteration,

we are given parameter intervals, in the form of two

vectors x and x in R7 whose respective entries xk and

xk satisfy xk ≤ xk for k = 1 . . . 7. Although the full

approach is detailed further in the paper, the idea is

that such intervals are to be probed for potentially cor-

rect assignments by attempting to solve the following

problem:

Problem 1 For a given a ∈ A, is there a vector x ∈ R7

satisfying xk ≤ xk ≤ xk, k = 1 . . . 7 such that fa(x) =

0?

In other words, one would like to know whether all poly-

nomials in fa(x) cross zero for some x within the consid-

ered bounds. The assignment would then qualify as a

potential inlier, i.e. possible correct assignment, within

these bounds. This is however difficult to answer. Con-

sidering only one polynomial or attempting to establish
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whether the polynomials in fa(x) cross zero for possibly

different values of x within the bounds may seem less

demanding. While doing so wouldn’t make the problem

any easier, considering the following alternative does:

Problem 2 For a given a ∈ A, is there a vector λa of

scalars of appropriate dimension such that λᵀafa(x) > 0

for every x satisfying xk ≤ xk ≤ xk for k = 1 . . . 7?

If λᵀafa(x) > 0, then at least one of the polynomials

in fa(x) is guaranteed not to cross zero. As a result,

the assignment a is definitely an outlier, i.e. incorrect

assignment, within the bounds. Otherwise, it is a po-

tential inlier. Indeed, if the question of Problem 2 is

answered in the affirmative, the one of Problem 1 is

answered in the negative: i.e. there exist no x in the in-

terval with which fa(x) = 0. Furthermore, one can rely

on Putinar’s Theorem 2 to solve Problem 2. To do so,

assume we are given a set of polynomials gi(x) whose

quadratic module M(g) is Archimedean: if, for λa a

vector of scalars of appropriate dimension, λᵀafa(x) > 0

for all x ∈ K = {x ∈ R7 : gi(x) ≥ 0, i = 1 . . .m}, then

λᵀafa(x) ∈ M(g). Hence, there must exist SoS polyno-

mials σi such that:

λᵀafa(x)−
m∑
i=1

σi(x)gi(x) is SoS. (6)

Note that, in general, if (6) is satisfied, then λᵀafa(x)
may not be necessarily positive in K since K could pos-

sibly be empty. However, so long as K is not empty and

σi SoS polynomials can be found, one is guaranteed that

λᵀafa(x) > 0 everywhere in K since
∑m
i=1 σi(x)gi(x) > 0

in K.

There are two main pending issues before one is able

to use (6). First, one needs to find a set of polynomials

gi(x), representative of the parameter intervals, whose

quadratic module M(g) is Archimedean. Second, it is

so far unclear how the σi SoS polynomials can be found.

Let us explore now the first of these issues. Note that

the Archimedean property is a matter of representa-

tion and the quadratic module of the set constructed

from the linear interval constraints xk − xk ≥ 0 and

xk − xk ≥ 0 is not Archimedean. In the following,

we show that quadratic polynomial inequalities derived

from such bound constraints yield an Archimedean qua-

dratic module.

Proposition 1 Consider the polynomials gk(x) = (xk−
xk)(xk − xk), k = 1 . . . 7. The quadratic module M(g)

of these polynomials is Archimedean.

Proof As per Definition 4, for M(g) to qualify as Archi-

medean, one ought to demonstrate that N−
∑n
k=1 x

2
k ∈

M(g) for some N ∈ N. Definition 3 indicates that, for

N −
∑n
k=1 x

2
k to be in M(g) with the gk(x) polynomials

of this proposition, there must exist SoS polynomials

σ0(x) and σk(x), k = 1 . . . 7, such that

N −
n∑
k=1

x2k = σ0(x) +

7∑
k=1

σk(x)(xk − xk)(xk − xk). (7)

In particular, because σ0(x) must be SoS, the proof boils

down to establishing the existence of SoS σk(x), k =

1 . . . 7 that can turn σ0(x), of the form

σ0(x) = N −
7∑
k=1

x2k −
7∑
k=1

σk(x)(xk − xk)(xk − xk), (8)

into a SoS polynomial. The polynomial σ0(x) can be

rewritten as

σ0(x) = N −
7∑
k=1

(
x2k + σk(x)(xk − xk)(xk − xk)

)
. (9)

Let us first show that a PSD, not necessarily SoS, σ0(x)
exists. To do so, we thus seek σk(x), k = 1 . . . 7, for

which there exists N satisfying

N≥maxx

(
7∑
k=1

(
x2k + σk(x)(xk − xk)(xk − xk)

))
. (10)

Such N exists if the polynomial argument of max(.) is

concave. Observe that using zero-degree SoS polynomi-

als σk that are independent from x, i.e. nonnegative real

scalars, this polynomial is quadratic. Its expansion into

7∑
k=1

(
(1− σk)x2k + σk(xk + xk)xk − σkxkxk

)
(11)

shows that its Hessian matrix, H = diag((1− σ1), (1−
σ2), . . . , (1− σ7)), is diagonal. This polynomial is then

concave if H is negative-definite which happens for σk >

1 for k = 1 . . . 7. This shows that N and nonnegative

scalars (SoS) σk, k = 1 . . . 7, do exist for σ0(x) to be

PSD. Furthermore, σk being scalars, σ0(x) is a qua-

dratic polynomial. As discussed in Section 2, Hilbert [16]

showed that, for quadratic polynomials, every PSD poly-

nomial is SoS. �

Let us now consider the problem of checking whether

or not (6) is SoS when considering the polynomials

gk(x), k = 1 . . . 7 of Proposition 1. If so the assign-

ment a is definitely an outlier within the bounds. If one

knows beforehand that λᵀafa(x) must be positive, a se-

quence of σk(x) of increasing degree can be used until a

positivity certificate is obtained. However, for the prob-

lem at hand, when a set of σk(x) of some degree fails

to deliver such certificate, it is either because λᵀafa(x)
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indeed crosses zero (inlier) or the required degree for

a positivity certificate has not been reached. The good

news here is that, within a BnB search, the considered

bound intervals [x, x] get smaller and we show in the

following that using nonnegative scalars σk rather than

SoS polynomials of higher degree suffices. To see this,

consider the following proposition:

Proposition 2 Let x̂ ∈ R7 with known entries. The

following statements are equivalent

(i) λᵀafa(x̂) > 0.

(ii) ∃ nonnegative scalars σk ∈ R, k = 1 . . . 7:

λᵀafa(x) +

7∑
k=1

(xk − x̂k)2σk > 0. (12)

Proof (ii) =⇒ (i) is straightforward.

For (i) =⇒ (ii), consider λᵀafa(x)’s Gram matrix Gf and

Gx that of
∑7
k=1(xk − x̂k)2. These matrices are defined

by: fa(x) = xᵀGfx and
∑7
k=1(xk − x̂k)2 = xᵀGxx. Note

that Gx is PSD and can be written as Gx = UᵀU with

Ux̂ = 0. The Gram matrix of the polynomial in (12) is

then written as Gf + Uᵀdiag(σ1, σ2, . . . , σ7)U. A direct

application of Finsler’s lemma [11] is that the latter ma-

trix is positive-definite if and only if x̂ᵀGf x̂ > 0. This,

not only shows (i) =⇒ (ii), but also proves the equiva-

lence of the two statements. �

We now state the following preliminary result:

Result 3 (Preliminary) Consider two vectors x and

x in R7 whose respective entries xk and xk satisfy xk ≤
xk for k = 1 . . . 7. Let Kb be the set

Kb = {x ∈ R7 : gk(x) := (xk − xk)(xk − xk) ≥ 0}, (13)

a ∈ A be either a point-to-plane or plane-to-plane pu-

tative assignment, and fa(x) the vector of polynomials

induced by this assignment (4) for point-to-plane and

(5) for plane-to-plane).

If ∃ a vector λa of appropriate dimension and non-

negative scalars σk such that

λᵀafa(x)−
7∑
k=1

gk(x)σk (14)

is SoS, then λᵀafa(x) > 0 for every xk ≤ xk ≤ xk. In

this case, one of the polynomials in fa(x) never crosses

zero within the considered bounds of x. The assignment

a is then guaranteed to be an outlier (a point-to-plane

or plane-to-plane mismatch) within these bounds. Oth-

erwise, a is a potential inlier. Note that, in the case of

a plane-to-plane assignment a, the latter is deemed an

outlier only if (14) is found to be SoS for both values

±1 of δ in (5).

Furthermore, a consequence of Proposition 2 is that

when xk−xk tends towards zero, we are guaranteed that

any outlier within the bound is detected. Indeed, this can

be seen by noticing that when xk = xk = x̂k, polynomial

(14) turns into (12).

Whether (14) is SoS can be tested by converting it into

its corresponding Gram matrix LMI feasibility problem

for the λa and σk indeterminates. Although the guaran-

tee of identifying outliers using scalar σk multipliers is

demonstrated with a zero-gap bound, in practice, out-

liers are detected very early in the process. As demon-

strated in our experiments, the ability to detect outliers

is improved with every size reduction of the investigated

bounds. It may be tempting to use higher degree σk(x)
SoS polynomials to boost the process. However, this is

unnecessary and yields slower performances compared

to branching.

5 Semi-algebraic sets for geometric constraints

Recall that our goal is to register a SfM-induced re-

construction of points or planes and a plane-segmented

scanned scene. Unlike when dealing with 3D-3D reg-

istration, additional geometric constraints emanating

from the cameras can be exploited. Some may be im-

plicit, such as plane visibility, others, such as vague

camera locations, may be obtained from extra knowl-

edge. In addition, when dealing with segmented scanned

scenes, one is given planar patches rather than infinite

planes. These patches can be used for point-to-patch

in lieu of point-to-plane registration to restrict the lo-

cation of the SfM-induced points patches. In all cases,

these constraints are described by quadratic polynomial

inequalities that may augment the semi-algebraic set

Kb derived from the bound constraints. Indeed, adding

new polynomial inequalities to those in Kb has no effect

on the Archimedean property of its quadratic module

and Proposition 2 still holds. Note though that some of

the constraints presented herein, which we refer to as

“generic constraints”, may be exploited in both point-

to-plane and plane-to-plane registration. Others are ap-

plicable only to point-to-plane registration.

5.1 Generic constraints

Whether engaging in point-to-plane or plane-to-plane,

extra-knowledge about vague camera locations or scale

information can be used as additional registration con-

straints.

Camera bounds: A camera center C may lie within

a box delimited by six planes in the set Ψ = {Ψk}6k=1
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defined by their normal vectors ψk and signed distances

dk. Such information can be obtained from application-

specific knowledge (GPS, moving vehicle, etc.). This

knowledge can be used for further enforcing the search

for point-to-plane or plane-to-plane outliers and turns

very useful when no putative correspondences are ini-

tially known. Consider the cartesian coordinate vector

c of the camera center and let

Kc ={x ∈ R7 : hk(x) := (ψᵀ
k(Qc + t)− dk)δk ≥ 0,

k = 1 . . . 6} (15)

where δk is the known sign, with respect to Φk, of any

point within the considered box. If hk(x) are positive,

the camera center is within the box. One can now test

if λᵀafa(x) > 0 whenever the camera center is in the box

defined by Kc.

Quaternions and scale: In the absence of scale, quater-

nion parameters demand that qᵀq = 1. When deal-

ing with a scaled scene, the rotation is represented by

a scaled quaternion matrix and one can only enforce

that qᵀq > 0. It is understood that, in order to keep

the problem numerically tractable via the Archimedean

property, all registration parameters need to be bounded.

The scale of the scene is no exception. When a better

lower bound s > 0 on the scale s is available, it is ad-

vised to enforce that qᵀq ≥ s. This condition does not

appear in the set Kb and hence must be accounted for.

Assuming the entries xk, k = 1 . . . 4 of x correspond the

quaternion parameters, we consider the set

Kq = {x ∈ R7 : q(x) := −s+

4∑
k=1

x2k ≥ 0} (16)

Furthermore, since both q and −q yield the same rota-

tion matrix, the initial lower bound of one of the quater-

nion parameters may arbitrarily be chosen nonnegative.

The rest of the quaternion parameters may be initially

bounded between −
√
s and

√
s where s is the scale’s

upper bound.

5.2 Additional point-to-plane geometric constraints

In addition to camera bounds and scale constraints,

other constraints can be used when dealing specifically

with point-to-plane registration.

Patches: Consider a plane Π, from the scanned scene,

and three or more planes Φk, not necessarily from the

scene, orthogonal to it. The Φk planes must be cho-

sen such that their intersection with Π defines a con-

vex region on Π. The set of points on Π within this

convex region is a patch. In practice, four such planes

are adequate to represent meaningful patches in man-

made environments. Each Φk is described by its normal

vector φk and signed distance dk. Let us denote by Φ

the set {Φk}4k=1 and let δk = ±1 be the known sign,

with respect to Φk, of a scanned point lying within

the considered region. In the point-to-patch case, we

can then identify outliers by checking whether point-to-

plane fa(x) (4) is positive everywhere within x′s bounds

and in the set

KΦa ={x ∈ R7 : pk(x) := (φᵀk(Qy + t)− dk)δk ≥ 0,

k = 1 . . . 4} (17)

The polynomials in this set indicate the sign of the point

Y , with coordinates y, with respect to each Φk.

Plane visibility: Consider a point Y on a scene plane

Π. If this point is imaged by two cameras, then these

can only observe the same side of the plane: the one

on which the point lies. In order for the cameras to

observe the same side of the plane, their camera cen-

ters must lie on one side with respect to Π. Camera

centers can easily be obtained from the SfM-calculated

camera matrices: they are their right null space. Let Ck
be the camera centers of n ≥ 2 cameras with cartesian

coordinates ck. We define the set KδΠ such that

KδΠ ={x ∈ R7 : vk(x) := (πᵀ(Qck + t)− d)δ ≥ 0,

k = 1 . . . n} (18)

where δ = ±1. We denote K+
Π the set KδΠ obtained

using δ = +1 and K−Π otherwise. A given assignment a

is a definite outlier if fa(x) > 0 in K+
Π and in K−Π (in

addition to patch and bounds conditions). Furthermore,

planes for which v1(x) and v2(x) (for two cameras 1 and

2) always have opposite signs within x′s bounds cannot

be assigned any points visible in those cameras. This

would indicate that the plane always cuts the base-line

of the two camera and cannot contain points visible

in both cameras. Testing this can be carried out by

checking, for δ = ±1, whether{
∃σk : v1(x)−

∑7
k=1 gk(x)σk is SoS,

∃σk : −v2(x)−
∑7
k=1 gk(x)σk is SoS.

(19)

If for both values of δ, each polynomial in (19) is SoS,

planeΠ shall not be considered for assigning SfM points

emanating from those cameras.

6 Registration

The preliminary results in Result 3 apply to both point-

to-patch and plane-to-plane registration problems. Based

on these results and the semi-algebraic sets presented in
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Section 5, we are now ready to state additional results

for point-to-plane, or rather plane-to-patch, and plane-

to-plane registration. These results along with those in

Result 3 are used in our BnB registration algorithm

which is also presented in this Section.

Result 4 (Point-to-patch) Assume we are given a

putative point-to-plane assignment a = (Y,Π) ∈ A,

a patch on Π delimited by the planes in the set Φ =

{Φk}4k=1, lower x and upper x bounds on the registra-

tion parameter vector x, bounds s and s on the scale

of the scene, and (optionally) bounds defined by planes

Ψ = {Ψk}6k=1 on the location of the camera centers of

one (possibly more) camera. One would like to know

whether or not the SfM-reconstructed point Y may lie

on Π, while Π is visible by the cameras observing Y ,

within the patch Φ with registration parameters in the

bounds x and x. In order to establish whether such as-

signment is possible, we consider the set

K = {x ∈ R7 : x ∈ Kb ∩ KΦa ∩ KδΠ ∩ Kc ∩ Kq) (20)

resulting from the intersection of all the sets defined

by (13),(17),(18), (15) and (16). If there exist a scalar

λa and nonnegative scalars σk, σ′k, σ′′k , σ′′′k and σ such

that

λafa(x)−
∑7
k=1 gk(x)σk −

∑4
k=1 pk(x)σ′k

−
∑n
k=1 vk(x)σ′′k −

∑6
k=1 hk(x)σ′′′k − q(x)σ

(21)

is SOS, then λafa(x) > 0 in K and the assignment a is

a definite outlier. It is a potential inlier otherwise.

Note that a point-to-plane version of this results can

simply be obtained by not using KΦa to construct K.

Result 5 (Plane-to-plane) Assume we are given a

putative plane-to-plane assignment a = (Πr, Π) ∈ A,

lower x and upper x bounds on the registration param-

eter vector x, bounds s and s on the scale of the scene,

and (optionally) bounds defined by planes Ψ = {Ψk}6k=1

on the location of the camera centers of one (possibly

more) camera. One would like to know whether or not

the SfM-reconstructed plane Πr may be aligned with Π

for registration parameters in the bounds x and x. In

order to establish whether such assignment is possible,

we consider the set

K = {x ∈ R7 : x ∈ Kb ∩ Kc ∩ Kq) (22)

resulting from the intersection of all the sets defined

by (13), (15) and (16). If there exist a 4-vector λa of

scalars and nonnegative scalars σk, σ′k and σ such that

λᵀafa(x)−
7∑
k=1

gk(x)σk −
6∑
k=1

hk(x)σ′k − q(x)σ (23)

is SOS, then λᵀafa(x) > 0 in K and the assignment a is

a definite outlier. It is a potential inlier otherwise.

Recall that SoS problems (21) and (23) in these re-

sults can be solved as a LMI feasibility problem.

Our registration approach is based on Results 4 and 5.

In the following, we use the term point-to-plane to re-

fer to both point-to-plane and point-to-patch assign-

ments. The goal of the BnB algorithm is to estimate

the registration parameters yielding the largest num-

ber of inliers. Our algorithm is provided either a set

of putative point-to-plane or plane-to-plane correspon-

dences. In the absence of such correspondences, we con-

sider every SfM-induced point or plane to be putatively

assigned to all the planes (or patches) in the scanned

scene. A dynamically-built search tree, whose nodes are

registration parameters’ bounds, allows to explore the

space of parameters. Given an assignments and bounds

on the registration parameters, the algorithm (see Algo-

rithm 1) estimates the optimistic number of potential

inliers using appropriate semi-algebraic sets from Re-

sults 4 and 5. A local refinement method, explained be-

low, is used to obtain a pessimistic number of inliers for

each given node. We keep track of the highest number of

potential inliers (bestPessimistic in Algorithm 1) over

all bound intervals. Any node whose optimistic num-

ber of inliers is worse than bestPessimistic is rejected.

Otherwise, the node is qualified and branched along its

longest edge resulting in two new nodes to be processed.

The node corresponding to the bestPessimistic number

of inliers is processed first. The algorithm terminates

when no node has an optimistic number of inliers that

is better than bestPessimistic.

Algorithm 1 Node processing

Input: bestPessimistic, registration param. bounds

Output: bestPessimistic

1. Count Optimistic no. of inliers using Result 4/5.
2. If Optimistic < bestPessimistic, reject the bounds.
3. Count Pessimistic no. of inliers using local method.
4. If (bestPessimistic < Pessimistic),

then bestPessimistic ← Pessimistic.

To qualify a point as an inlier, we distinguish two

cases:

1. Putative point-to-plane (resp. plane-to-plane) cor-

respondences are provided: a point-to-plane (resp.

plane-to-plane) assignment qualifies as a potential

inlier if (21) (resp. 23) is not proven SoS.

2. No putative correspondences are provided: the point-

to-plane (resp. plane-to-plane) assignment is consid-

ered a potential inlier as soon as (21) (resp. 23) is

not proven SoS.
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Local refinement: To maximize the bestPessimistic

number of inliers, the local method iteratively refines

the registration parameters. The refinement process starts

from the mid-values of the registration parameters’ bounds.

In order to be representative of the node, it searches the

optimal solution within the investigated bounds. Given

the assignments, the algorithm iteratively updates the

registration parameters to:

argmin
x∈Kb

∑
a∈A
||fa(x)||2. (24)

At each iteration, only those assignments with |fa(x)| <
ξ are selected for some threshold ξ. In case of insuffi-

cient number of assignments, the refinement process is

terminated with the best obtained output so far.

Discussion: In general, our method converges while

the explored bounds are still quite large. The solu-

tion maximizing the inlier consensus set is the one re-

turned by the local method. When the bounds are large

enough, polynomials constructed from noisy data would

still cross zero within the bounds allowing inliers, al-

though affected by noise, to be accounted for. There-

fore, the robustness to noise is more influenced by the

local method than it is by the SoS tests. In our im-

plementation, no special care was taken to further deal

with noise when using SoS tests. However, in the case

of highly noisy data, the proposed SoS framework may

allow to deal more efficiently with noise by incorpo-

rating an extra bounded variable ε (bounded by the

allowed threshold), accounting for noise. For example,

if the point-to-plane assignment polynomial fa(x) does

not cross zero at the sought solution, fa(x) + ε (for

some value of ε) would. Furthermore, we have assumed

throughout that the camera information fed to our algo-

rithm is, to some extent, reliable. Should incorrect/noisy

information about a camera be used, it may cause, espe-

cially with small camera bounding boxes, the registra-

tion to fail. In such cases, the camera-to-box constraints

may be include in the set of putative assignments when

maximizing the consensus set.

7 Conclusion

We proposed a method for registering a 3D scan and a

set of images of a structured scene. The proposed ap-

proach is based on the theory of polynomial SoS opti-

mization. Our method uses SoS registration conditions

for point-to-plane as well as plane-to-plane registra-

tion. The method presented in this paper can incor-

porate various constraints emanating from scene and

camera knowledge (patch segmentation, camera loca-

tions, plane visibility, scaling, etc.). Using Branch-and-

Bound and SoS theory, we devised a robust and optimal

method for inlier set maximization of either point-to-

plane or plane-to-plane correspondences. Although the

problem is nonlinear and combinatorial, our method

has provided outstanding results in terms of robustness

and optimality. In particular, the employed optimiza-

tion framework has the potential to be efficiently ap-

plied to other nonlinear Computer Vision problems.
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