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Introduction

Condition monitoring (CM) is an important part in a condition-based maintenance (CBM) program

as it can provide useful information about the system state for maintenance decision-making to improve the durability, reliability, and maintainability of industrial systems [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Wang | Condition-based Maintenance Modelling[END_REF]. This leads to a steady growth of CBM optimization models in the literature which are more advanced and better adapted to practical $ Corresponding author.
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• Regarding the first contribution, this work proposes a discretization formulation for a continuous degradation process with random observation noise, so that the POMDP decision framework can be deployed and implemented starting from the continuous deterioration characteristics of the considered system. This approach allows to relax the requirement that the conditional probability of the discrete observation given the system state is known and to connect more tightly the upper-level maintenance decision process with the physical deterioration of the maintained system. In addition, the imperfect inspection quality characterized and modeled by an additive observation noises is investigated and the resulting integrated imperfect inspection model, taking into account jointly the quality and the cost of an inspection, is also discussed. A comprehensive cost model including maintenance and inspection costs is then developed to evaluate the performance of the proposed joint CBM maintenance and monitoring policy.

• As for the second contribution, the behavior and the performance of the proposed joint policy are numerically assessed and analyzed, and compared to currently used inspection and maintenance policies. Sensitivity analyses regarding the performance of the proposed policy are also investigated and discussed. Finally, the use and the advantages of the proposed models are illustrated and highlighted.

The remainder of this paper is organized as follows. Section 2 describes the problem statement and its mathematical formulation. Section 3 presents the proposed dynamic inspection-maintenance policy. In addition, cost models and optimization processes are also discussed and formulated. Numerical experiments are presented in Section 4. The proposed inspection-maintenance policy is herein numerically analyzed.

Three variants of the proposed policy are also discussed to examine the performance of proposed general policy. Finally, conclusions and future research directions are summarized in Section 5.

Problem statement and mathematical formulation

System description and assumptions

Consider a single unit system subject to a stochastic continuous degradation process {X t } t≥0 , X t ∈ R + that evolves monotonically from the new state to the failed state in the absence of maintenance actions.

The system fails when its degradation level exceeds a fixed failure threshold L, X t ≥ L. The failure state is recognized without any inspection (i.e., self-announcing failure). Let denote respectively F Xt and f Xt the cdf and the pdf of the degradation process {X t } at time t.

The system degradation is often hidden, monitoring is then required to reveal the degradation level.

"Continuous" monitoring, i.e. performed at each time step (∆t), is usually very costly, and may be impossible to implement in some specific practical engineering applications [START_REF] Nguyen | Multi-level predictive maintenance for multi-component systems[END_REF]. Note that ∆t is nothing but the minimum time period at which the system can be accessed (and at which it could make sense to access it) for inspection. In practice, the value of ∆t depends on both the monitoring system characteristics and the time behavior of the monitored system. Depending on these, ∆t can range form seconds (for fast evolving systems) to e.g. years... (for slowly deteriorating systems). To make our modeling framework independent of this time scale, we take ∆t equal to 1 (in arbitrary time units). In this framework, it is more suitable to implement periodic inspection whose length between two successive inspections T is a multiple of ∆t [START_REF] Bouvard | Condition-based dynamic maintenance operations planning and grouping. application to comercial heavy vehicules[END_REF]. Then, at the beginning of each observation period, if the system has failed, it is immediately replaced by a new one. Otherwise, an inspection is carried-out to reveal the system state (degradation level) and then based on the obtained information, the preventive maintenance decision can be made. However, from a practical point of view, inspection operations may not reveal exactly the true system degradation state because of noise or poor measurements. Accordingly, it is assumed that at each inspection time T n , the observed state of the system, denoted Y Tn , can be described as

Y Tn = X Tn + q , (1) 
where,

• X Tn is the true degradation level of the system at time T n ;

• q is the measurement error and can be described by a random variable;

• q indicates the quality index of an inspection action.

It is assumed that the measurement errors are described by a Gaussian distribution N 0, σ 2 q with probability density function

G σq (x) = 1 σ q √ 2π e -1 2 x σq 2 . (2) 
The standard deviation σ q represents the inspection quality, i.e. an inspection with higher quality returns smaller variance of noise [START_REF] Newby | A bivariate process model for maintenance and inspection planning[END_REF]. In that way, several inspection quality levels are herein investigated, e.g., q = 0 for a perfect inspection action. That means the observation exactly reveals the hidden system state. Note also that the inspection quality is usually increasing with the inspection cost, a quality-based inspection model will be described in Section 3.2.

Problem statement of inspection quality adjustment and replacement decisions: an adaptive POMDPbased decision model

For inspection and maintenance decision-making, the crucial questions raising here are (i) whether or not investing in the improvement of inspection quality to optimize the total maintenance cost, and (ii) how to adapt the maintenance decision to a given inspection quality. To answer to these questions, in this paper, a POMDP-based inspection and maintenance model is proposed to optimize the total maintenance cost over a planning horizon [0, T end ].

The POMDP framework has been widely used to model a sequential decision process in which the system dynamics are characterized by a Markov Decision Process, but whose underlying states cannot be directly observed. In detail, the POMDP is defined in discrete time and formally determined by a 7-tuple (S Z , A, P T , C, S O , P O , γ), in which:

• S Z and S O are respectively the sets of system discrete states and discrete observations. In order to apply the POMDP model for a single unit system subject to a stochastic continuous degradation process with Gaussian observation errors, it is necessary to discretize the system states and also their observation states. This step is presented in detail in Subsection 2.3. The probabilistic state transition law and conditional observation law are also derived in this section.

• A is the set of actions. For our problem, the set of actions A consists of two subsets that are the inspection quality level options (q) and the maintenance options (Replace (R) or Do-nothing (DN )).

• P T is the set of conditional transition probabilities between states. It is derived in Subsection 2.3.1.

• C : S Z × A → R is the cost function that is connected to the actions and the system states. Its formulation is presented in Subsections 3.2 and 3.3.

• P O is the set of conditional observation probabilities. In Subsection 2.3.2, the conditional observation probabilities are derived.

• γ ∈ [0, 1] is the discount factor. In this paper, we are only interested in the expected sum of future cost and do not consider the discounted value, so γ = 1.

Figure 1 illustrates the POMDP-based inspection and maintenance process. At the beginning of the decision period T n , if the system still works, the appropriate actions for system are investigated. Recall that the underlying discrete system state, noted Z Tn , is hidden: we only have the prior information about the probability distribution of the current state, called belief function b Tn , that is derived from the last period.

To update the belief function at this moment, it is necessary to decide the inspection quality level (q) to perform an inspection. The details of the decision optimization (ie. how to choose an appropriate inspection) are presented in Section 3. Given an observation O Tn , the belief function is updated, see Subsection 2.4 for details. Then, the appropriate maintenance action is decided, see Section 3 for the details of the maintenance policy. If the DN option is chosen, the system state does not change. Contrarily, when the R option is chosen, the system is restored to its new state. Then, the corresponding belief function is derived for the next period, see Subsection 2.4 for the details of its transition process. 

State discretization modeling and formulation

The first step towards the development of a POMDP-based modeling approach for maintenance evaluation purpose is the discretization of the continuous-time continuous-state true deterioration process {X t } t≥0 into continuous-time discrete-state process {Z t } t≥0 . This discretization step is not only required from a methodological point of view for the model development, it is also interesting from a practical point of view. Indeed, very often in practice, even in the case of continuously deteriorating items, the maintenance decision-maker considers only a few discrete deterioration states, such as : "good", "minor deterioration", "medium deterioration", "severe deterioration", "critical deterioration", "failed". From a practical point of view, for the decision-maker, considering only a few discrete deterioration states allows having a more synthetic view on the system state, and allows a simpler maintenance decision-making process [START_REF] Welte | Markov state model for optimization of maintenance and renewal of hydro power components[END_REF]. In order to comply with this observed practice, in our proposed setting, we consider the number of discrete deterioration states N as an input for our modeling approach and for the policy optimisation, and not as a decision variable to be optimized.

The discrete-state space of {Z t } t≥0 is then defined by S Z = {1, 2, . . . , N, N + 1}, where the state N + 1

is the system failure state that corresponds to the interval [L, +∞) for the degradation level, and a state k ∈ {1, 2, . . . , N } is a degradation state that corresponds to the interval [(k -1) l, kl), where l = L N . The observed deterioration process {Y Tn } n∈N , Y Tn ∈ R, is then a discrete-time continuous-state stochastic process. Note that in practice the state space of {Y Tn } n∈N should be R + , the theoretical state space R approaches the practical one when σ q is not too large. As {X t } t≥0 , {Y Tn } n∈N is also discretized in N +1 state as S O = {1, 2, . . . , N, N + 1} to obtain the discrete-state observed deterioration process {O n } n∈N , where the states 1 and N + 1 correspond to the intervals (-∞, l) and [L, +∞) respectively, and a state h ∈ {2, . . . , N } corresponds to the interval [(h -1) l, hl) with l = L N . The process {O Tn } n∈N is thus a discrete-time discretestate stochastic process. At an inspection time t = T n , given the true deterioration level Z Tn = k, k ∈ {1, . . . , N + 1}, if the observed state O n = k, then the system state is correctly detected; otherwise (i.e., O n = h = k), the detection is wrong. Figure 2 shows an illustration of the system deterioration modeling and discretization approach. We derive in this section the expression of the state transition law P Z Tn+1 = m | Z Tn = k , which is the conditional probability that the system is in the discrete state m at the inspection date T n+1 given that it is in the discrete state k at the inspection date T n , where k, m ∈ S Z and m ≥ k. Recall that F X Tn and f X Tn are respectively the cdf and the pdf of the degradation process, the four following configurations of m and k are considered.

• If 1 ≤ k = m ≤ N , P Z Tn+1 = k | Z Tn = k = kl (k-1)l P X Tn+1 -X Tn < kl -x f X Tn (x) dx F X Tn (kl) -F X Tn ((k -1) l) , (3) 
• If 1 ≤ k < m ≤ N , P Z Tn+1 = m | Z Tn = k = kl (k-1)l P (m -1) l -x ≤ X Tn+1 -X Tn < ml -x f X Tn (x) dx F X Tn (kl) -F X Tn ((k -1) l) , (4) 
• If 1 ≤ k ≤ N , m = N + 1, P Z Tn+1 = N + 1 | Z Tn = k = kl (k-1)l P X Tn+1 -X Tn ≥ L -x f X Tn (x) dx F X Tn (kl) -F X Tn ((k -1) l) , (5) 
• If k = N + 1, m = N + 1, P Z Tn+1 = N + 1 | Z Tn = N + 1 = P L ≤ X Tn+1 | L ≤ X Tn = 1. ( 6 
)
The expressions P Z Tn+1 = m | Z Tn = k in the special case of a Gamma deterioration process are detailed in Appendix A.

Derivation of the conditional observation probability

P q (O n = h | Z Tn = k)
We derive in this section the expression of the conditional observation probability

P q (O n = h | Z Tn = k)
which is the conditional probability that the discrete observation is h given that the system is in the discrete state k (where h ∈ S O and k ∈ S Z ), under an inspection quality index q. Recall that G σq is the cdf of the Gaussian noise and that F X Tn and f X Tn are respectively the cumulative distribution function (cdf) and the probability density function (pdf) of the degradation process. To derive the expression of the conditional observation probability, the following cases have to be distinguished:

• If h ∈ [2, N ] and k ∈ [1, N ], P q (O n = h | Z Tn = k) = kl (k-1)l G σq (hl -x) -G σq ((h -1) l -x) f X Tn (x) dx F X Tn (kl) -F X Tn ((k -1) l) , (7) 
• If h = N + 1 and k ∈ [1, N ], P q (O n = N + 1 | Z Tn = k) = kl (k-1)l 1 -G σq (L -x) f X Tn (x) dx F X Tn (kl) -F X Tn ((k -1) l) , (8) 
• If h ∈ [2, N ] and k = N + 1, P q (O n = h | Z Tn = N + 1) = ∞ L G σq (hl -x) -G σq ((h -1) l -x) f X Tn (x) dx 1 -F X Tn (L) , (9) 
• If h = N + 1 and k = N + 1,

P q (O n = N + 1 | Z Tn = N + 1) = ∞ L 1 -G σq (L -x) f X Tn (x) dx 1 -F X Tn (L) , (10) 
• If h = 1 and k ∈ [1, N + 1], P q (O n = 1 | Z Tn = k) = 1 - N +1 h=2 P q (O n = h | Z Tn = k) . (11) 
These different expressions of P (O n = h | Z Tn = k) are further detailed in Appendix B for the special case of a Gamma deterioration process.

The integrals in Eqs. [START_REF] Castanier | A sequential condition-based repair/replacement policy with non-periodic inspections for a system subject to continuous wear[END_REF][START_REF] Castanier | A condition-based maintenance policy with non-periodic inspections for a two-unit series system[END_REF][START_REF] Do | A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions[END_REF][START_REF] Ellis | Inspection, maintenance, and repair with partial observability[END_REF][START_REF] Faddoul | A generalised partially observable Markov decision process updated by decision trees for maintenance optimisation[END_REF][START_REF] Fouladirad | Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition[END_REF][START_REF] Nagi | Residual-life distributions from component degradation signals: A Bayesian approach[END_REF][START_REF] Ghasemi | Optimal condition based maintenance with imperfect information and the proportional hazards model[END_REF][START_REF] Michel | Encyclopedia of Mathematics[END_REF] are numerically evaluated using the Gauss-Kronrod quadrature formula [START_REF] Michel | Encyclopedia of Mathematics[END_REF] implemented in the integrate R function.

Belief function

Since the real degradation state of system cannot be revealed exactly by imperfect inspections, then the state of knowledge of the decision-maker on the system state at time t is characterized by a belief function b t consisting of a vector of the probabilities of the real system degradation level over the discrete-state space S Z . Each element of b t is defined as P (Z t = k), k ∈ S Z . For a new system, the initial belief function, noted b 0 is known without inspection: b 0 = [1, 0, 0...0], i.e. the probability of the new state is equal to 1 and the one of other states is 0.

As the observation measure obtained after an inspection at T n depends on the system state and the inspection quality index q, then P q (O n = h) the probability that the observation measure is h is given by:

P q (O n = h) = k∈S Z P (Z Tn = k) • P q (O n = h|Z Tn = k) (12) 
Given the observation measure O n = h after an inspection with quality index q, we update the belief function b T + n whose each element is given by:

P (Z + Tn = k) = P (Z Tn = k|O n = h) = P (Z Tn = k) • P q (O n = h|Z Tn = k) P q (O n = h) (13) 
where P (Z + Tn = k) is the probability that the real degradation state is k given that the observation h is obtained after an inspection at quality index q. The value of the belief function at the next inspection period, without maintenance can then be evaluated as :

b Tn+1 = b + Tn • P (z |z) Tn ( 14 
)
where

P (z |z) Tn
is the state transition matrix of the discrete system state without maintenance action. Each element of the state transition matrix, that is the conditional probability that the system is in the discrete state m at the inspection date T n+1 given that it is in the discrete state k at the inspection date T n , where k, m ∈ S Z and m ≥ k, have been derived in Subsection 2.3.1.

Dynamic inspection-maintenance policy

In this section, a dynamic inspection-maintenance policy is proposed. Within this policy, the maintenance decision for both inspection quality adjustment and preventive maintenance action is based on the knowledge on the system deterioration state summarized in the belief function vector. The maintenance cost is herein used as a criterion for the optimization process.

Policy description

At each periodic discrete time T n = T n-1 + T (T is a decision variable which needs to be optimized), if the system is still functioning, the online adaption process for the inspection quality and the maintenance decision structure are as follows:

• First, the belief function is derived from the information at the last period (see again Section 2.4).

Then, an inspection quality index q is selected by minimizing the expected total maintenance cost corresponding to the belief function value at this moment. It should be noticed that the relationship between the belief function and the expected maintenance cost is discussed in Section 3.3. An associated inspection cost c q i is incurred when performing an inspection with quality index q;

• Given the deterioration state observation returned by the inspection operation, the belief function is then updated;

• Based on the updated belief function after inspection, the preventive maintenance action (replace the system (R) or do nothing (DN)) is selected by minimizing the expected total maintenance cost.

Figure 3 illustrates the decision process for inspection and maintenance decision-making.

The proposed policy involves two kinds of decision variables:

• The inspection period T: this is a global decision variable in the sense that it is set of the whole planning horizon.

• Two local decision variables, whose value is set for each discrete time period (T n = T n-1 + T ):

inspection quality index q and maintenance action (replacement R or DN).

To find the optimal value of these decision variables, cost models are herein developed and presented in next sections. 

Inspection cost formulation

It is pointed out in the literature that a higher quality inspection incurs a higher inspection cost, see for instance [START_REF] Do | A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions[END_REF]. Therefore, we consider σ q as a decreasing function of the corresponding inspection cost c q i . In that sense, it is assumed in this work that when the quality index q is chosen at inspection time T n , one has to pay an inspection cost which is defined as:

c q i = c l i • (ν -( σ q σ l ) k • (ν -1)), (15) 
where

• σ l and c l i are respectively the standard deviation of the measurement errors and the inspection cost at the lowest inspection quality;

• ν is the ratio between the cost of the best quality inspection and the cost of the lowest quality inspection

(ν = c h i /c l i );
• k is the parameter characterizing the shape of the inspection cost function.

Note that, for the best quality inspection, we suppose that the observation reveals the real system state, According to this cost model, different shapes of the inspection cost function can be found depending on the value of k, see Figure 4 as an illustration:
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• k = 0, the inspection cost is constant (c q i = c l i )
• 0 < k < 1, the inspection cost is a convex function: the inspection cost decreases more than the decrease gain of inspection quality

• k = 1, the inspection cost is a linear function • k > 1,
the inspection cost is a concave function: the inspection cost decreases less than the decrease gain of inspection quality.

Maintenance total cost formulation and optimization

The optimal cost incurred by this policy is given by the minimal value of the expected cost

V [0,T end ] (T, b 0 )
associated to different values of inspection period length T :

V P 0 = min T V [0,T end ] (T, b 0 ) , where V [0,T end ] (T, b 0 ) is calculated by : V [0,T end ] (T, b 0 ) = E[C D (b 0 )] + V [T1,T end ] (T, b T1 ) (16) 
At the initial time, the system is new, then we do nothing. Therefore, the system continuously operates until the first inspection at time T 1 , the belief function at this time is known as b T1 (calculated by Eq.(( 14 

E[C D (b Tn )] = k∈Sz P (Z Tn = k) • E[C D (Z Tn = k)] (17) 
where the evaluation of E[C D (Z Tn = k)] is made using a discretization method. Recall that the length between two successive inspections T is a multiple of ∆t: (1 ≤ j ≤ J, j ∈ N) then the downtime cost associated is evaluated to

T = J • ∆t, in order words, the interval [T n , T n+1 ] can be discretized into J sub-interval of length ∆t, that is [T n , T n + ∆t[, [T n + ∆t, T n + 2∆t[, ...
c d • (T i -(j -1)∆t).
Hence, the expected downtime cost

E[C D (Z Tn = k)] during interval [T n , T n+1
] is given by:

E[C D (Z Tn = k)] = c d J j=1 P (Z Tn+j∆t = N + 1|Z Tn = k) -P (Z Tn+(j-1)∆t = N + 1|Z Tn = k (T i -(j-1)∆t) (18) 
where P (Z Tn+j∆t = N + 1|Z Tn = k) can be evaluated be Eq.( 5)

Let e be the maximal integer that is inferior than e, then we define N = T end Ti as the number of observation periods during [0, T end ].

For 1 ≤ n ≤ N -1, the expected accumulated cost from T n until the final time T end is given by:

V n (T, b Tn ) = P f (T n )C C (•) + (1 -P f (T n )) • min q c q i + h∈S O P q (O n = h) • min [C R (•), C DN (•)] ( 19 
)
where P f (t) is the probability that the system is failed at t. In detail, the equation Eq.( 19) is evaluated by the sum of : 2. The expected accumulated cost associated to the case where the system still works at the beginning of the observation period T n . In this case, it is necessary to decide the quality level for inspection.

Then, based on the updated belief function, the adequate maintenance action is performed (preventive replacement (R) or do nothing (DN )). The quality index q is chosen such that the expected cost associated to this decision (accumulated from this time until the end of the planning horizon) is minimal.

It is evaluated using the inspection cost c q i , the minimal value of the expected accumulated cost C R (•) corresponding to the preventive replacement decision (see Eq.( 21)) and the expected accumulated cost C DN (•) corresponding to the do-nothing decision (see Eq.( 22)).

• C R (•) is evaluated as the sum of the preventive replacement cost c p , the expected downtime cost

E[C D (b 0 )],
and the expected accumulated cost from the next period until the end of the planning horizon V n+1 (T, b T1 ) (see Eq.( 21)).

• C DN (•) is evaluated as the sum of the expected downtime cost E[C D (b T n + )] during [T n , T n+1 )
and the expected accumulated cost from the next period until the end of the planning horizon V n+1 (T, b Tn+1 ) (see Eq.( 22)).

C C (•) = c c + V n+1 (T, b Tn+1 ) + E[C D (b 0 )] ( 20 
) C R (•) = c p + V n+1 (T, b Tn+1 ) + E[C D (b 0 )] (21) 
C DN (•) = V n+1 (T, b Tn+1 ) + E[C D (b T + n )] (22) 
For the terminal condition of the planning horizon, we suppose that V T end = 0.

Numerical experiments

In this section, we present the results of a numerical experiment implemented to get a better insight into the behavior of the proposed inspection and maintenance policy. Through this example, the aim is to show how the proposed maintenance decision rule helps to choose whether and when it is necessary to improve the inspection quality, and to illustrate the benefit of implementing a flexible/dynamic inspection and maintenance policy instead of a static one.

For this example, the system degradation is assumed to follow a homogeneous Gamma process, see Appendix A. The parameters (characteristics and costs of the system deterioration, inspection and maintenance actions) used for the numerical experiments are represented in Table 1. In the remainder of this section, benchmark maintenance policies are first presented: they are used for performance comparison with the proposed maintenance policy. The behavior of the proposed maintenance policy, tuned at its optimum, is then analyzed and compared to the behavior of the benchmark policies.

Finally, the benefit of using the proposed maintenance policy in terms of maintenance cost is investigated and compared to the cost performance of the benchmark policies.

Presentation of the benchmark policies for performance analysis and comparison

In order to study the performance of the proposed dynamic inspection-maintenance policy (presented in Section 3), namely policy P, three variant policies (namely P1, P2 and P3) are considered:

• Policy P1 -Classic CBM (Condition Based Maintenance) policy. System degradation states are periodically inspected after period length T . If the observed degradation state is greater than a preventive replacement threshold M , the system is then replaced by a new one. The inspection quality cannot be adjusted. Either a CBM with low quality inspections (noted P O l 1 ) or a CBM with high quality inspections (noted P O h 1 ) is considered in this experiment and applied throughout a planning horizon [0, T end ].

• Policy P2 -CBM with dynamic inspections policy. Similar to Policy P1, a CBM policy is applied based on the observed degradation state. The inspection quality can be adjusted at each period. In detail, at the beginning of an inspection period, we decide the quality index q for an instantaneous inspection with a cost c q i (depending on the inspection quality q).

• Policy P3 -Dynamic maintenance policy with fixed inspection quality. Similar to Policy1, the inspection quality cannot be adjusted: either a dynamic replacement policy with low quality inspections (noted P O l 3 ) or with high quality inspections (noted P O h 3 ) is applied throughout a planning horizon [0, T end ]. Given an observation, the belief function is updated and then the relevant expected cost is evaluated for each option (DN or R). Based on the comparison between these costs, we decide to replace the system or not.

Table 2 reports a summary of the proposed policy (policy P) and the variant policies considered for comparison (policy P1, P2 and P3). Appendix C. For each policy, the optimal expected accumulated cost over a planning horizon is evaluated using the classical backward induction algorithm and the grid-based algorithm [START_REF] Lovejoy | Computationally Feasible Bounds for Partially Observed Markov Decision Processes[END_REF]. For numerical examples, the system states and observations are discretized by 6 states. Among them, Z Tn = 6 is the failure state.

Then, the belief space is discretized by a set of vectors of 6 elements e i . Each element of the belief function represents the probability of the corresponding state, and 6 i=1 e i = 1. For each value of T , using the backward induction algorithm, the cost function corresponding to each possible maintenance action at T end is computed for the set of points in the belief space. The optimal action at this moment is the one leading to the minimal cost. Next, using the optimal cost function at T n , we derive the cost function corresponding to every action at T n-1 for the belief space and then find the optimal action. This procedure is iterated until n = 1, so that the optimal expected cost over the planning horizon is obtained.

Let V P l 1 0 and V P h 1 0
be respectively the minimal value of the optimal expected accumulated cost incurred by Policy P1 with either low quality inspection or high quality inspections:

V P1 0 = min(V P l 1 0 , V P h 1 0 ) (23) 
Similarly, the optimal expected accumulated cost for Policy P3 is given by:

V P3 0 = min(V P l 3 0 , V P h 3 0 ) (24) 
For policies with quality-adjusted-inspections (policies P and P2), six quality levels are examined. In de-tails, the probability that an observation reveals the true system state is respectively 100%, 90%, 80%, 70%, 60% and 50% for these six inspection levels. Note that q is the quality index, q = 1 characterizes the highest quality and q = 6 represents the lowest quality. At the initial moment, T 0 , the system is totally new, therefore, its state is known and we are only interested in the maintenance options for next periods (from the the first inspection period, T 1 ).

Discussion of the belief function deviation under an adjusted-inspection-quality policy

The initial prior belief is assumed to be perfect. In practice, this assumption is reasonable because, considering a new system, it is trivial to have a perfect prior knowledge: Z = 1. In addition, at every stage, the belief function is updated according to the observation. Therefore, an adjusted-inspection-quality policy with the perfect inspection option allows correcting belief functions. Hence, the belief function does not derived so far from the truth. For an illustration, Figure 5 presents the changes of the belief function at the early stages of the policy application in two cases: highest quality inspection and lowest quality inspection.

Note that, in Figure 5, for a simplification of the notations, the belief function b Tn is represented by b n .

We consider a system whose the deterioration process is discretized by 6 states Z = [1, 2, 3, ...6], with the failure state Z = 6. From the initial state Z = 1, after one decision period, the belief function is equal to b 1 = [0.63, 0.24, 0.09, 0.03, 0.01, 0]. Then, a highest quality inspection allows correcting the belief function thanks to its perfect outcome. Indeed, given the system state at the first stage, Z 1 = 1, the updated belief function in the case of the highest quality inspection, b + 1 in sub-figure 6.(a), provides the probability that the system belongs to the initial state is 1, P (Z 1 = 1) = 1. In the case of the lowest inspection, see subfigure 6.(b), thanks to the correct result, O 1 = 1, its relevant belief function indicates that the probability of the initial state is high P (Z 1 = 1) = 0.9. One can notice that even if using the lowest inspection, the belief function is close to the ground truth thanks to the correct inspection result. Next, after consecutive wrong observations, O 2 = O 3 = 3, the belief function deviates quite far from the truth, for example at the beginning of the fourth decision period, b 4 = [0, 0.05, 0.31, 0.35, 0.18, 0.11], instead of the correct results b 4 = [0, 0.4, 0.38, 0.14, 0.05, 0.03]. However, thanks to the correct observation O 4 = 5, the belief function is updated and then, its value at the next period, i.e. b 5 = [0, 0, 0.01, 0.14, 0.35, 0.5] does not deviate so far from the ground truth, i.e. b 5 = [0, 0, 0, 0, 0.39, 0.61].

Analysis of the optimally tuned policies

In order to guarantee the solution accuracy, a large belief space is considered, consequently the computational cost is high. Using the MacBook Pro 3,1 GHz Intel Core i5, the computational time to optimize the policies 1, 2, 3 and 4 are respectively 980, 8550, 1020 and 16890 seconds. Considering the set of parameters presented in Table 1, all the considered policies are optimized and the following analysis can be made on their optimal structure: (a) Highest quality inspection, q = 1 (b) Lowest quality inspection, q = 6 • For maintenance policies with non-adjusted-quality-inspections (i.e. P1 and P3), -Policy P1 -Under the optimal tuning of the decision variables, lowest quality inspections are performed at every inspection period T = 1 and the system is preventively replaced when the observed state is greater than 4, O Tn > 4, which means that the replacement threshold M is 5.

In summary, the optimal decision variables are q * = 6 and (T * , M * ) = (1, 5).

-Policy P3 -Highest quality inspections (q = 1) are performed every period T = 2 and the replacement option triggered when the degradation state is equal or greater than 4, Z Tn ≥ 4.

Note that for highest quality inspections, the observation reveals the true degradation state.

• For maintenance policies with adjusted-quality-inspections (i.e. P2 and P), the optimal action is decided by minimizing the relevant expected cost function that depends on the action and belief function. Figures 6 and7 show the behavior of the policies at steady state (without the influence of the starting-ending conditions) ; note that the steady state behavior is guaranteed when there are still at least 11 periods from the current decision period to the end of the planning horizon, T end . As the belief function is strictly connected to the observation state and the historical process of the maintenance actions, in order to facilitate the description of the optimal policy, we present it in the format of the action process and the observation state. The behavior of these two policies, when optimally tuned, is sketched in Figures 6 and7, and described below.

-Policy P2 -The system is inspected at every period T = 1 and is preventively replaced when the observed state is greater than 4, i.e. (T, M ) = [START_REF] Andriotis | Managing engineering systems with large state and action spaces through deep reinforcement learning[END_REF][START_REF] Do | A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions[END_REF]. For an illustration, we assume that the belief function at the decision period T n is b n = [0.63, 0.24, 0.09, 0.03, 0.01, 0]. Then, the optimal stationary adjusted-inspection-quality policy in this case prescribes that at this inspection period, the lowest-quality-inspection q = 6 is implemented, see Figure 6. If the observation state O is lower than 3, the lowest-quality-inspection is still used at the inspection period T n+1 . In the case of the observation state O = 3 at T n , the inspection with quality index q = 3 is performed at the next period, T n+1 , while for the higher observation result, O = 4, the system is inspected with higher inspection quality, q = 2. For O > 4, the system will be replaced by a new one, thus, a new maintenance cycle is then repeatedly performed. Next, at T n+1 , consider Figure 6, we find that the inspection quality is flexibly adjusted for every situation that depends on the historical action process and the observation gathered at T n+1 . Note that considering the planning horizon T end = 30, the terminal condition impact is negligible for T n , T n+1 and T n+2 when T n+2 ≤ 19.

-Policy P -Under the optimally tuned policy P, the system is inspected at every period T = 1. For an illustration, we assume that the belief function at the decision period T n is b n = [0.63, 0.24, 0.09, 0.03, 0.01, 0]. Then, the optimal stationary policy in this case prescribes that at this inspection period, the lowest-quality-inspection q = 6 is implemented. Based on the updated inspected with lowest quality (q = 6) at the next inspection period T n+1 and then is replaced for O ≥ 5. If the observation state at T n is O = 2 or 3, the inspection with quality q = 3 is implemented at T n+1 and the system is replaced for O > 3. Figure 7 shows a policy behavior under which both replacement option and the inspection quality are flexibly changed to adapt to every situation. Note that considering the planning horizon T end = 30, the steady state is guaranteed for T n , T n+1 and T n+2 when T n+2 ≤ 19.

Comparison of the policies performance in terms of cost

In this section, we study and compare the cost performance of the considered policies. To this aim, let consider the percentage of the difference in their optimal values defined as follows:

∆ 12 = (V P2 0 -V P1 0 )100% V P1 0 ; ∆ 13 = (V P3 0 -V P1 0 )100% V P1 0 ; ∆ 14 = (V P 0 -V P1 0 )100% V P1 0 ; ∆ 23 = (V P3 0 -V P2 0 )100% V P2 0 ; ∆ 24 = (V P 0 -V P2 0 )100% V P2 0 ; ∆ 34 = (V P 0 -V P3 0 )100% V P3 0 ; ( 25 
)
For example, ∆ 12 quantifies the relative cost increase (when ∆ 12 > 0) or decrease (when ∆ 12 < 0) between the optimal costs of Policy P2 and Policy P1. If ∆ 12 < 0, Policy P2 is more cost efficient than Policy P1 since it incurs a lower cost over the considered planning horizon. The other ∆ ij (i < j, 1 ≤ i ≤ 3 and 1 ≤ i ≤ 4) can be interpreted in the same way.

Influence of the maintained system parameters on the relative performance of the maintenance policies

We investigate here the effect on the policies performance of the different characteristics of the maintained system (parameter characterizing the shape of the inspection cost function k, inspection cost c i , downtime cost rate c d , variance coefficient of the degradation process vc and the ratio between corrective and preventive replacement cost c c /c p ). In order to compare the performance between the different inspection-maintenance policies, we consider only the difference (∆ ij ) in their optimal values. Table 3 presents the Pearson correlation values, that belong to [-1, 1], between the system parameters and the relative cost difference ∆ ij . This

Pearson correlation is equal to zero when there is no the correlation between two variables and equal to 1

(or -1) when two variables are positive (or negative) linearly proportional. The results presented in Table 3 The following conclusions can be drawn:

• In general, the impact of the ratio between corrective and preventive maintenance cost c c /c p on the performance difference between these inspection-maintenance policies (∆ ij ) is not significant.

• The performance differences between adjusted-quality inspections and non-adjusted-quality inspections, that are characterized by the values of ∆ 12 and ∆ 34 , significantly depend on k, the parameter characterizing the shape of the inspection cost function.

• The performance differences between the dynamic replacement option and the fixed preventive replacement policy, that are characterized by the values of ∆ 13 and ∆ 24 , principally depend on c i , the inspection cost and on vc, the variance coefficient of the degradation process.

• When considering the performance difference between Policy P2, the fixed preventive replacement policy with adjusted-quality inspections and Policy P3, the dynamic replacement option with nonadjusted-quality inspections, it is found that ∆ 23 depends strictly on k and might have a correlation with vc. These relations are further investigated in detail in subsection 4.4.3.

• The difference in performance between the proposed dynamic-inspection-replacement policy (Policy P) and the static one (Policy P1), that is characterized by ∆ 14 , does not depend neither on the downtime cost nor on the ratio between the preventive and corrective replacement cost.

After this general overview of the effects of the parameters of the maintained system on the relative performance of the different considered maintenance policies, the next sections further examine the sensitivity of the maintenance policy performance to the most influent parameters. In this section, we investigate the performance gain brought by adjusted-quality inspections over nonadjusted ones. We firstly consider the policies with a fixed preventive replacement threshold (i.e. P1 and P2)

and then the policies with dynamic replacement option (i.e. P and P3). In detail, corresponding to every combination of the input parameters (c l i , k, etc.) we find the minimum maintenance cost of 4 maintenance policies and then calculate the percentage of their difference, e.g. ∆ 12 and ∆ 34 given by Eq. [START_REF] Konstantinos | POMDP and MOMDP solutions for structural life-cycle cost minimization under partial and mixed observability[END_REF]. Note that the minimum maintenance cost of each policy is numerically obtained by using the approaches presented in Appendix C when varying the decision variables's values.

Policy P1 vs Policy P2. Following Table 3, there are significant correlations between ∆ 12 and the two parameters k and c i . Therefore, in this paragraph, we first investigate how much more benefit Policy P2 provides over Policy P1 with different values of k and c i . The results are sketched in Figure 8. In other words, it characterizes the benefit provided by adjusted-quality inspections when being integrated in the maintenance policy with fixed preventive replacement threshold. The shade of gray represents the value range of ∆ 12 : the darker, the greater the benefit of the adjusted-quality inspection option is. The horizontal axis represents the value of k -the parameter characterizing the shape of the inspection cost function (see Eq.( 15)) while the vertical axis characterizes the cost of low quality inspection (c l i ). Recall that if 0 < k < 1, the inspection cost function is convex, whereas it is linear for k = 1, and concave for

k > 1.
When k increases, the benefit of adjusted-quality inspections decreases. In other words, if the inspection cost decreases faster than the inspection quality, it is preferable to use adjusted-quality inspections for fixed maintenance policy.

Consider for example the first column of Figure 8, when k = 0.1, using adjusted-quality inspections helps to reduce from 2.1% to 6.7% of the cost incurred by fixed inspection policy. However, when the inspection cost decreases slower than the inspection quality, (i.e. k = 3 or 5), adjusted-quality inspection cannot provide more benefit when compared with the non-adjusted one (∆ 12 = 0), especially for high inspection cost. Indeed, the benefit of adjusted-quality inspections decreases when the inspection cost increases. Since we consider a constant ratio between the high and low inspection cost, c h i /c l i = 3, if c l i = 5, then c h i = 15, it is preferable to use only inspections with low quality, which explains why the benefit of adjusted-quality inspections decreases when k increases.

Proposed Policy P vs Policy P3. Figure 9 represents the relative decrease (∆ 34 < 0) in the maintenance cost incurred by the Proposed Policy P when compared to Policy P3. It characterizes the benefit provided by adjusted-quality inspections when being integrated in a dynamic maintenance policy (with replacement option at every inspection period). The smaller the negative value of ∆ 34 is, the greater the benefit that the Proposed Policy P can provide when used instead of Policy P3. The significations of color shades, horizontal and vertical axis are similar to the ones of Figure 8. In the most favorable configurations (not too expensive inspections and convex inspection cost function), the Proposed Policy P allows significant savings over Policy P3. The results show that when k increases, the benefit provided by the Proposed Policy significantly decreases. This benefit also decreases with c i , showing that when the inspection cost is high, it is preferable to use low quality inspections. In this latter case, the adjusted-quality inspection policy tends to the fixed-quality inspection policy.

Dynamic inspection vs dynamic maintenance decision : performance comparison

Policy P2 consists in the combination of dynamic inspections and a fixed maintenance decision rule whereas Policy P3 combines fixed inspections and a dynamic maintenance decision rule. Corresponding to every combination of the input parameters (c l i , k, c d , vc, etc.) we find the minimum maintenance cost of the maintenance policies P2, P3 and then calculate the percentage of their difference, e.g. ∆ 23 given by Eq. [START_REF] Konstantinos | POMDP and MOMDP solutions for structural life-cycle cost minimization under partial and mixed observability[END_REF]. Based on the evolution of ∆ 23 as a function of different system parameters, the aim of this section is to compare more in depth the behavior and the performance of these two policies P2 and P3 to gain a better understanding of their respective interests. • ∆ 23 is positive for all cases of k between k = 0.1 and 0.3, which indicates that the performance of the adjusted-quality policy is better than the one of the dynamic replacement policy when the inspection cost decreases faster than the inspection quality (k < 1).

• When k = 1, it is preferable to use Policy 2 with adjusted-quality inspections to reduce the maintenance cost for low inspection cost (c l i = 1). When the inspection cost increases, the performance of adjustedquality inspection decreases, then the performance of Policy P3 is better than the one of Policy P2.

• When k = 3 or 5, the inspection cost increases faster than the inspection quality, and it is not possible to take advantage from an adjusted-quality inspection policy. In this case, it preferable to use Policy P3 with a dynamic replacement option to reduce the maintenance cost.

On the other hand, Figure 11 presents the evolution of ∆ 23 with the variance coefficient of the deterioration process vc and the shape coefficient of the inspection cost function k. It can be seen in Figure 11 that ∆ 23 is not monotone when vc increases, which explains why the correlation value of ∆ 23 and vc is low, see Table 3 . However, an interesting result can be recognized: when vc increases from 0.1 to 0.3 or 0.5, ∆ 23 increases as well. It is thus preferable to use Policy P2 with adjusted-qualityinspections than Policy P3 with fixed-quality-inspections when the variance coefficient vc of the degradation process increases. However, if vc is very high, e.g. vc = 0.7, the high quality inspections might not be necessary. Therefore, the performance of adjusting-quality-inspections decreases and then, the value of ∆ 23 also decreases when vc increases from 0.5 to 0.7.

Performance of dynamic inspection-maintenance policy

In this section, we investigate the performance gain brought by the dynamic inspection-maintenance policy (P) over the classic CBM. In detail, corresponding to every combination of the input parameters (c d , k, c l i , etc.) we find the optimal values of the policies P and P1 and then calculate the percentage of their difference, e.g. ∆ 14 given by Eq.( 25). The performance gain brought by the policy P over the policy P1 is represented in Figure 12. We find that in all cases, ∆ 14 is negative, the policy P is always better than Policy 1. In addition, the benefit of using P is more significant when the value of k is decreasing. In fact, when c l i = 1, c d = 35 (sub figure 12d), using the dynamic maintenance inspection policy helps the manager to reduce 8.6% of the cost incurred by the fixed inspection maintenance policy if k = 0.1 while it is only 3.6% if k = 5.

On the other hand, we recognize the performance gain brought by the policy P is increasing in c d . In fact, in order to avoid an important down-time cost when c d increases, it prefers high quality inspections with dynamic maintenance option than the classic CBM. And therefore, a dynamic inspection-maintenance policy that allows using acceptable quality inspections with low cost will provide more benefit in these cases.

Conclusion

In this paper, we propose a dynamic condition-based maintenance and monitoring policy using POMDP model for a system subject to a continuous degradation process and imperfect inspection representative by observation noises. We firstly develop some discretization formulations that allow applying a POMDP model for a continuous degradation process. More importantly, this allows removing the barrier of the assumption that the conditional probability of the discrete observation given the system state is known.

The impacts of imperfect inspection are described by Gaussian distribution. Different inspections quality levels are considered and investigated regarding not only their impacts on observation noises and their related cost. A cost model is then proposed to evaluate the performance of the proposed maintenance and monitoring policy. The performance of the Proposed Policy is highlighted through numerical examples. It is compared to the performance of different inspection-maintenance policies: 1) a classical condition-based inspection and replacement policy, 2) a fixed replacement policy with adjusted-quality inspections, 3) a dynamic inspection policy with non-adjusted-quality inspections. Thanks to the flexibility introduced by the adaptive inspection quality, the proposed dynamic policy gives better results than the more classical static one. When the inspection cost decreases faster than inspection quality, the benefit of adjusted-quality inspections for maintenance policy is important. Otherwise, the benefit is non significant when the inspection cost decreases less rapidly than the inspection quality.

This work focuses on the interest of adjustment of inspection quality in maintenance optimization. Therefore, we have only considered perfect maintenance actions, and do not investigate imperfect maintenances.

It can be seen as a limitation of our model. In further work, we plan to develop a more flexible model that allows us to consider multiple options for maintenance and also to schedule dynamically the next inspection time. In addition, working all along the model development with the continuous deterioration should lead to better maintenance performance in theory, but may be more difficult to implement in practice. Hence, the impact of the discretization of the continuous process on the performance optimal policies and the trade-off resulting from this discretization could be investigated in detail. In the case where {X t } t≥0 evolves monotonically according to a homogeneous gamma process with shape parameter α > 0 and scale parameter β > 0, the system degradation increment between two instants s and t, X t -X s , is gamma distributed with probability density function (pdf):

f α•(t-s),β (x) = 1 Γ(α) • (β) α • x α-1 • e -β•x • I {x≥0} ,
where:

• Γ(α) = +∞ 0 u α-1 • e -u du denotes a complete gamma function; inspections will be effected throughout the planning horizon. Then the formulation of Policy P3 is similar to the one of the proposed policy but Eq.( 19) is re-written as follows:

V [Tn,T end ] (T, b Tn ) = P f (T n )C C (•) + Pf (T n ) • c q i + h∈S O P q (O n = h) • min [C R (•), C DN (•)] (26) 
where c q i = c h i , σ q = σ h for P O h 3 -policy and c q i = c l i , σ q = σ l for P O l 3 -policy. The optimal value of Policy P3 with high (or low) quality inspections is given by the minimal value of the expected accumulated cost V T 0 (•) associated to different values of inspection period length T . For Policy P2, we firstly decide the inspection period length T and the preventive replacement threshold M that is used throughout the planning horizon. Then, preventive replacement is decided directly based on the observation state O n ,

• If O n ≥ M the system is preventively replaced by a new one with cost c p .

• If system is failed, it is correctively replaced by a new one with cost c c (c c > c p ).

The formulation of Policy P2 is similar to the one of the proposed policy but Eq.( 19) is re-written as follows:

V [Tn,T end ] (T, b Tn ) = P f (T n )C C (•) + Pf (T n ) • min q c q i + z h=M P q (O n = h)C R (•) + M -1 h=1 P q (O n = h)C DN (•) (28) 
It is evaluated by the sum of the expected accumulated cost associated to system failure C C (•) and the one associated to system non-failure. At the beginning of the observation period T n , if system still works, it is
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 1 Figure 1: Illustration of POMDP-based inspection and maintenance process
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 2 Figure 2: Illustration of degradation-based failure model and discretization approach
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 3 Figure 3: Illustration of the proposed maintenance policy.
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 4 Figure 4: Illustration of inspection cost function, ν = 3

  )). Hence, the expected accumulated cost V [0,T end ] (T, b 0 ) over the planning period [0, T end ] is the sum of the expected downtime cost E[C D (b 0 )] during period [0, T 1 ] and the expected accumulated cost from the observation period T 1 until the final time T end . A replacement, whether preventive or corrective, can only be instantaneously performed at inspection times. Therefore, there exists the possibility of system failure, and an additional cost is incurred from the failure time until the next replacement time with down-time cost rate, c d . Let E[C D (Z Tn = k)] be the expected downtime cost of the system during the period [T n , T n+1 ] when knowing the real state Z Tn = k at T n , then the expected downtime cost E[C D (•)] of the system during the period [T n , T n+1 ] when knowing the belief function b Tn is given by:

  , and [T n + (J -1)∆t, T n+1 [. If the failure time belongs to one of these intervals, we approximate it by the left end value. Given c d the downtime cost rate c d , if the failure time belongs [T n + (j -1)∆t, T n + j∆t[, where

1 .

 1 C C (b Tn , T ): the expected accumulated cost associated to system failure at the beginning of the observation period T n , see Eq.(20). C C (b Tn , T ) is the sum between the corrective replacement cost c c , the expected downtime cost E[C D (b Tn )] during [T n , T n+1 ], and the expected accumulated cost from the next period until the end of the planning horizon V n+1 (T, b T1 ).
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 1 

Table 2 :

 2 Overview of the 4 policies Maintenance policy Inspection policy Decision variables Policy P Dynamic Adjusted T set throughout the planning horizon, q at the beginning of each inspection period and action (R or DN ) corresponding to the updated belief function Policy P1 Fixed Fixed (T, M ) set throughout the planning horizon Policy P2 Fixed Adjusted (T, M ) set throughout the planning horizon and q at the beginning of each inspection period Policy P3 Dynamic Fixed T set throughout the planning horizon and action (R or DN ) corresponding to the updated belief function at every inspection period The formulation of the cost model for the three policies P1, P2 and P3 can be adapted from the cost model developed for the proposed policy in Section 3.3. The detailed mathematical developments are presented in
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 5 Figure 5: Illustration of belief function changes at the early stages.
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 6 Figure 6: Illustration of the behavior of the optimally tuned policy P2 at steady state
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 7 Figure 7: Illustration of the behavior of the Proposed Policy P at steady state, when optimally tuned

  are obtained from a set of numerical experiments with different values of k = {0.1, 0.3, 1, 3, 5}, c i ∈ [1, 5], c d ∈ [20, 35], vc ∈ [0.1, 0.7], and c c /c p ∈ [1, 5].
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 8 Figure 8: Performance of adjusted-quality inspections for fixed maintenance policy : ∆ 12 as a function of k (shape parameter of the inspection cost function) and c l i (cost of the low quality inspection) -With c d = 25, cc = 100, cp = 50
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 8 Figure8represents the relative decrease (∆ 12 < 0) between the optimal costs of Policy P2 and Policy P1.
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 9 Figure 9: Performance of adjusted-quality inspections for dynamic replacement policy : ∆ 34 as a function of k (shape parameter of the inspection cost function) and c l i (cost of the low quality inspection) -With c d = 25, cc = 100, cp = 50
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 10 Figure 10: Comparison of Policy P2 and Policy P3: ∆ 23 as a function of k (shape parameter of the inspection cost function) and c l i (cost of the low quality inspection) -cc = 100, cp = 50 -For different values of c d
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 11 Figure 11: Comparison of Policy P2 and Policy P3 for different values of the variance coefficient vc and the shape parameter of the cost function k -With c d = 25, cc = 100, cp = 50 and c l i = 1
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 12 Figure 12: Comparison of Policy P and Policy P1: ∆ 14 as a function of k (shape parameter of the inspection cost function) and c l i (cost of the low quality inspection) -cc = 100, cp = 50 -For different values of c d .

noisy observation is characterized by σ q = 1 .

 1 Then, we compute numerically P Z Tn+1 = m | Z Tn = k and compare with the results returned by the Monte Carlo simulation under three different configurations: 1. varied n-th inspection time T n : T n varies from 5 to 20 with step 1, N = 5, and T = 4, 2. varied discretized number of states N : T n = 10, N varies from 5 to 15 with step 1, and T = 4, 3. varied inspection period T : T n = 10, N = 5, and T varies from 1 to 9 with step 1. The states m and k are chosen as 4 and 3 respectively, which corresponds the second case of P Z Tn+1 = m | Z Tn = k (i.e., 1 ≤ k < m ≤ N ). The other cases can be verified in the same manner, and are not represented here. The integral in the expression of P Z Tn+1 = m | Z Tn = k is numerically evaluated by integrate R function, and the number of histories for Monte Carlo Simulation is N h = 5 × 10 7 . The results of the three above configurations are represented in Figure ??, ?? and ?? respectively.
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 13 Figure 13: Numerical verification of P Z T n+1 = m | Z Tn = k
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 14 Figure 14: Numerical verification of P (On = h | Z Tn = k)
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Table 1 :

 1 Parameters set for the numerical example.

Table 3 :

 3 Pearson correlation between the parameters inputs and the ∆ ij . k: parameter characterizing the shape of the inspection cost function, c i : inspection cost, c d : downtime cost rate, vc: variance coefficient of degradation process, and cc/cp: the ratio between corrective and preventive replacement cost

		k	c i	c d	vc	c c /c p
	Policy P1 vs P2 (∆ 12 ) 0.68	0.57	0	-0.03	0
	Policy P1 vs P3 (∆ 13 )	0	0.89 -0.14 0.88 -0.11
	Policy P1 vs P (∆ 14 )	0.52	0.76	-0.1 -0.69 -0.04
	Policy P2 vs P3 (∆ 23 ) -0.83 -0.07 -0.09 0.04 -0.01
	Policy P2 vs P (∆ 24 ) -0.12 0.81 -0.27 0.69	-0.1
	Policy P3 vs P (∆ 34 )	0.78	0.48 -0.05 0.04	0
	4.4.2. Adjusted-quality vs. fixed-quality inspections: maintenance performance comparison
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We assume that {X t } t≥0 evolves monotonically according to a homogeneous gamma process with shape parameter α > 0 and scale parameter β > 0. This means the system degradation increment between two instants s and t, X t -X s , is gamma distributed with probability density function (pdf):

where:

• Γ(α) = +∞ 0 u α-1 • e -u du denotes a complete gamma function;

• I {x≥0} is an indicator function. I {x≥0} = 1 if x ≥ 0, I {x≥0} = 0 and otherwise.

In that way, P Z Tn+1 = m | Z Tn = k can be calculated as follows:

Verification of P Z

To verify the exactness of the expressions of P Z Tn+1 = m | Z Tn = k , we consider a system whose the deterioration/failure process is defined by the set of parameters α = 1, β = 1, L = 15, and the • I {x≥0} is an indicator function. I {x≥0} = 1 if x ≥ 0, I {x≥0} = 0 and otherwise.

In this case, P (O n = h | Z Tn = k) can be written as follows

Verification of P (O

To verify the expression of P (O n = h | Z Tn = k), a similar approach as above is used. Indeed, we always consider a system with parameters α = 1, β = 1, L = 15, choose the inspection period T = 4, and then study three different configurations:

1. varied n-th inspection time T n : T n varies from 5 to 20 with step 1, N = 5, and σ q = 1, 2. varied discretized number of states N : T n = 10, N varies from 5 to 15 with step 1, and σ q = 1, 3. varied standard deviation of Gaussian observation errors σ q : T n = 10, N = 5, and σ q varies from 0 to 6 with step 0.25.

The states h and k are chosen as 2 and 3 respectively, which corresponds the first case of

). The other cases can be verified in the same manner, and are not shown here for a concise representation. Figures 14a, 14b and14c show the results of the three above configurations.

Once again, the identical curves given by both the numerical computation and Monte Carlo simulation justify the exactness of the expressions of

Appendix C. Formulation of policies P1, P2 and P3

Formulation of Policy 3:

For policy P3, we firstly decide the inspection period length T throughout the planning horizon. Then, associated to T , at every inspection period, preventive replacement (R) or do nothing decision (DN ) is effected based on the updated belief function b Tn after non-adjusted-quality-inspections. For P O l 3 -policy, low quality inspections will be effected throughout the planning horizon. For P O h 3 -policy, high quality necessary to decide the quality level for inspection and then, the maintenance action (preventive replace or not) based on the observation (O n ). The quality index q is chosen such as the expected cost accumulated is minimal. It is evaluated by the inspection cost c q i , the expected accumulated cost C R (•) corresponding to the preventive replacement decision if O n ≥ M and the expected accumulated cost C DN (•) corresponding to the operation decision without replacement when O n < M .

The optimal value of Policy P2, V P2 0 is given by the minimal value of the expected accumulated cost

Formulation of Policy 1:

Similar to Policy P2, we firstly decide the inspection period length T and the preventive replacement threshold M that is used throughout the planning horizon. Then, preventive replacement is decided directly based on the observation state O n : the system is preventively replaced when observation is superior than preventive replacement threshold O n ≥ M . For the failure case, it is correctively replaced. The formulation of Policy 1 is similar to the one of the proposed but Eq.( 19) is re-written as follows:

It is similar to Eq.( 28) but without inspection quality adjustments. For P l 1 -policy, low quality inspections will be effected throughout the planning horizon (σ q = σ l , c q i = c l i ). For P h 1 -policy, high quality inspections be effected throughout the planning horizon (σ q = σ h , c q i = c h i ). The optimal value of Policy P1 with high quality inspections V is given by the minimal value of the expected accumulated cost associated to different values of (T, M ).

Approach for the determination of the optimal policies:

The main contribution of this paper is not the development of a new optimization algorithm and we use a classical grid based search to find the optimal strategies. In principle, the cost model formulations of the three policies P1, P2 and P3 (presented in Appendix C) are used to evaluate the maintenance policy cost corresponding to every combination of the decision variables. Then, the combination that provides the minimal value is retained. This process is easy to implement, even if it may be computationally burdensome.

• Policy 1: The cost V P1 0 (T, M, q) over the planning horizon [0, T end ] where T end = 30 is evaluated for every value of the inspection period length T , T ∈ [1, 2, 3, ..., 15], for every value of the preventive replacement threshold M , M ∈ [1, 2, 3, ..., 5] and for every value of the inspection quality q ∈ [START_REF] Andriotis | Managing engineering systems with large state and action spaces through deep reinforcement learning[END_REF][START_REF] Ellis | Inspection, maintenance, and repair with partial observability[END_REF].

The optimal combination, which provides the minimal value, is (q * , T * , M * ) = (6, 1, 5).

• Policy 2: The cost V P2 0 (T, M ) over the planning horizon [0, T end ] where T end = 30 is evaluated for every value of the inspection period length T , T ∈ [1, 2, 3, ..., 15], and for every value of the preventive replacement threshold M , M ∈ [1, 2, 3, ..., 5]. Note that V P2 0 is the optimal value of the adjusted-quality-inspection process, in which the inspection quality is decided at the beginning of every decision period T n . This optimal decision, q * at T n , is the one that minimizes the accumulated cost from T n to T end , given by Eq. ( 28). Finally, the combination of the decision variables (T, M ) and the adjusted-quality-inspection process that provides the minimal value will be chosen.

• Policy 3: The cost V P3 0 (T, q) over the planning horizon [0, T end ] where T end = 30 is evaluated for every value of the inspection period length T , T ∈ [1, 2, 3, ..., 15], and for every value of the inspection quality q ∈ [START_REF] Andriotis | Managing engineering systems with large state and action spaces through deep reinforcement learning[END_REF][START_REF] Ellis | Inspection, maintenance, and repair with partial observability[END_REF]. Note that V P3 0 (T, q) (with low or high quality inspection) is the optimal value of the maintenance decision process, in which the option (replacement or not) is decided at the beginning of every decision period T n . This optimal decision is the one that minimizes the accumulated cost from T n to T end , given by Eq. ( 26). Finally, the combination of the decision variables (T, q) and the maintenance decision process that provides the minimal value will be chosen.

The optimal decision process, which minimizes the V P2 0 (T, M ) or V P3 0 (T, q), is solved as a POMDP, similar to the policy P. In this paper, a fixed grid approximation approach is used to solve the POMDP. This approach include the following phases:

• Phase 1 -Generate points of the belief grid.

We use the Monte Carlo Simulation approach to generate the single-step forward trajectories of the belief function b from the initial period to the 10-th period with random observations and actions (the approach SSRA presented in [START_REF] Pineau | Anytime point-based approximations for large pomdps[END_REF]). The acquired belief values are sorted following the likelihood ratio order, i.e. b2(x) LR b1(x) ⇒ x b2(x)φ(x) ≥ x b1(x)φ(x) for non-decreasing functions φ(x).

To assure the accuracy of solutions, an enough large space of approximated belief values, B, which includes 3003 values, is investigated. As the number of belief points is large, the computational cost is high.

• Phase 2 -Solve the problem using backward induction algorithm.

-We use the terminal condition of the planning horizon V T end = 0 to evaluate the policy value, 1) for every point b of belief function space B and for every action of the action set A by Eqs. (19 -22).

-The optimal action at the period (T end -1) for the belief b is the one that minimizes V P (T end -1) (b).

-Similarly, the accumulated policy value, V P Tn (b, a), from the n-th period to T end is evaluated based on -The optimal action at the period T n for the belief b is the one that minimizes V P Tn (b).

-Finally, the optimal strategy, which allows minimizing the policy value V P T0 is the optimal action process from the initial period T 0 to the end of the planning horizon T end .

For an illustration of the interpolation between the grid points, let's assume that the belief at (n+1)th decision period is b n+1 = [0.69, 0.29, 0.01, 0.01, 0]; and that its nearest neighbor in the grid is b = [0.7, 0.3, 0, 0, 0]. Then, the policy value at b n+1 can be approximated by the one at b.

Consider another example, let's assume that the belief at (n+1)-th decision period is b n+1 = [0.9, 0.05, 0.05, 0, 0]; and that its nearest neighbors in the grid are b1 = [0.9, 0.1, 0, 0, 0] and b2 = [0.9, 0, 0.1, 0, 0], b2(x) LR b1(x), then the policy value at b n+1 can be approximated by the mean value of V P Tn+1 at two points b1 and b2. Using the interpolation method presented in the above paragraphs, the accuracy of solutions depends on the differences of the policy values of nearest neighbor points in the belief grid. If these differences are insignificant, the solution error can be negligible. Let bi and bj be two consecutive points following the LR order in the grid (bi(x) LR bj(x)), the relative differences of their policy values are evaluated by: ∆ V P Tn =

V P Tn (bj) -V P Tn (bi) V P Tn (bi) Figure 15 shows the relative differences of accumulated cost from the second period to T end of two consecutive points among the belief grid (3003 points). One can notice that these differences are insignificant for all three policies. Therefore, the solution errors of three policies can be negligible.