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GLOBAL SENSITIVITY INDICES, ESTIMATORS AND TRADEOFF1

BETWEEN EXPLORATIONS AND REPETITIONS FOR SOME2

STOCHASTIC MODELS∗3

GILDAS MAZO†4

Abstract. Sobol sensitivity indices assess how the output of a given mathematical model is5
sensitive to its inputs. If the model is stochastic then it cannot be represented as a function of the6
inputs , thus raising questions as how to do a sensitivity analysis in such models. Practitioners have7
been using a method that exploits the availability of softwares for deterministic models. For each8
input, the stochastic model is repeated and the outputs averaged. These averages are seen as if they9
were the outputs of a deterministic model and as such can feed standard softwares. In the context10
of limited computational resources, one must ensure that the number of repetitions of the stochastic11
model multiplied by the number of explorations of the input space is less than a fixed threshold.12
The problem of finding an optimal tradeoff between the repetitions and the explorations is addressed13
and the sensitivity indices corresponding to the above method are formally defined. A bound on14
an error criterion that penalizes bad rankings of the inputs is minimized. Moreover, exploiting a15
representation of stochastic models obtained from minimal distributional assumptions, another kind16
of Sobol-like sensitivity index is considered. Estimators of both kinds are constructed and their17
asymptotic properties studied. The theory is illustrated on numerical experiments.18

Key words. asymptotic normality, Sobol indices, tradeoff, sensitivity analysis, stochastic model.19
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1. Introduction. The goal of sensitivity analysis is to assess how the output of21

a given physical or mathematical model is sensitive to its inputs [23, 24]. Classically,22

the model of interest is deterministic. To each input there corresponds an output23

given by the model. Thus, in this case, the model is in fact a function, say f . To24

assess the sensitivity of the model to its inputs, the probabilistic/statistical framework25

is often employed. One draws at random a large number of inputs and observe how26

the corresponding outputs vary. From a statistical perspective, at each draw, one27

observes a random pair (X,Y ) such that Y = f(X), where X = (X1, . . . , Xp) is the28

input vector and Y is the output.29

Sobol’s idea [26, 27] was to notice that, if X1, . . . , Xp are drawn independently30

then f(X) can be decomposed into a sum of lower-dimensional functions and that this31

decomposition can be used to allocate the variance of the output to the individual32

components of the decomposition. More precisely, we have33

f(X)− f0 =f1(X1) + · · ·+ fp(Xp)(1.1)34

+ f1,2(X1, X2) + · · ·+ fp−1,p(Xp−1, Xp)35

+ · · ·36

+ f1,...,p(X1, . . . , Xp),3738

where f0 = E f(X), fj(Xj) = E(f(X)− f0|Xj), j = 1, . . . , p, and f1,2, . . . , f1,...,p are39

some functions defined iteratively; see [26] and [30, p. 157] for more details. The40

above decomposition is sometimes called the Sobol-Hoeffding decomposition. The41

expectations and the covariances of the individual components in the right-hand side42

∗Submitted to the editors 2019/03/07.
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2 G. MAZO

of (1.1) are zero and hence we have the variance decomposition43

Var f(X) = Var f1(X1) + · · ·+ Var fp(Xp) + · · · ,4445

which leads to the so-called Sobol indices46

Sj =
Var fj(Xj)

Var f(X)
=

Var E(f(X)|Xj)

Var f(X)
=

E f(X)f(X̃−j)− (E f(X))2

E f(X)2 − (E f(X))2
,47

48

j = 1, . . . , p; here X̃−j stands for an independent copy of X where the jth compo-49

nent has been replaced by that of X. Thus the Sobol index associated with the jth50

argument of f is defined as the proportion of the total variance associated with the51

lower-dimensional function that depends on the jth argument only. Sobol indices are52

interpreted as sensitivity measures and used to achieve various goals in uncertainty53

quantification [24].54

If the model is nonadditive (it is said that the inputs “interact” with each other)55

then the Sobol indices may be inadequate. To account for interactions, the so-called56

total sensitivity indices [10] are often computed along with Sobol indices. The total57

sensitivity index associated with the jth argument of f is given by58

STj
= 1− Var E(f(X)|X1, . . . , Xj−1, Xj+1, . . . , Xp)

Var f(X)
.59

60

The total sensitivity index quantifies the sensitivity of the output of f to its jth61

argument through the interactions it may have with the other inputs.62

There are numerous methods to estimate the sensitivity indices. For simplic-63

ity, we describe below Sobol’s original method to estimate Sj through Monte Carlo64

sampling [26]. For a review of the many other methods, see [20] or the package65

sensitivity [14] of the R software for an up-to-date list of many methods, with ref-66

erences. Thus, draw two independent sets of inputs {X(i), i = 1, . . . , n}, {X̃(i) :=67

(X̃1, . . . , X̃p), i = 1, . . . , n} and make p more sets by combining the first two: {X̃(i)
−j ,68

i = 1, . . . , n}, j = 1, . . . , p, where69

X̃
(i)
−j := (X̃

(i)
1 , . . . , X̃

(i)
j−1, X

(i)
j , X̃

(i)
j+1, . . . , X̃

(i)
p ).(1.2)70

71

The first and the p last sets are passed on to the function f which produces the72

outputs {Y (i), i = 1, . . . , n} (for the first set) and {Y (i)
j , i = 1, . . . , n}, j = 1, . . . , p73

(for the p last sets), which in turn make up the so-called pick-freeze estimator74

Ŝj =
1
n

∑n
i=1 Y

(i)Y
(i)
j −

(
1
n

∑n
i=1 Y

(i)
)2

1
n

∑n
i=1 Y

(i)2 −
(

1
n

∑n
i=1 Y

(i)
)2 .(1.3)75

76

This gives a simple procedure to estimate all the Sobol indices S1, . . . , Sp with (p+1)n77

runs of the model. The pick-freeze estimator is asymptotically normal [6, 15]. The78

above formula can be improved in many ways [10, 15, 19]. Many versions of this79

estimator exist, the goal being always to get the most efficient estimator with the least80

computations. Sobol indices for multivariate, functional outputs [5, 16] or functional81

inputs [13] have been proposed as well.82

The big difference between a deterministic model and a stochastic model is that83

the stochastic model is not a function anymore. To a particular value of the input there84

does not correspond any particular value for the output. Instead, there corresponds a85
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SENSITIVITY INDICES, ESTIMATORS AND A TRADEOFF 3

range of possible values, assumed to come from a probability distribution depending86

on the input. Examples can be found in epidemiology [2, 3, 21, 25] or ecology [28], to87

name a few.88

To do the sensitivity analysis of a stochastic model, several approaches have been89

investigated. In [17], to the best of my understanding, the authors carry out the sen-90

sitivity analysis of a stochastic model based on a joint metamodel. In [9], a stochastic91

model is seen as a functional relation of the form Y (ϑ, ω) = f(X(ϑ), ω), where the X92

is a random vector on some probability space, ω is a point in some probability space93

distinct from that on which X is defined, f is some function and Y (ϑ, ω) is a random94

variable on the induced product probability space. The quantity f(X(ϑ), ω) repre-95

sents the output of the stochastic model run with input X(ϑ); the point ω represents96

the intrinsic randomness. The idea is then to decompose the function ϑ 7→ f(X(ϑ), ω)97

for each ω and estimate the associated sensitivity indices, which depend on ω. The98

estimates are then averaged over ω to make the final sensitivity estimates. In [1],99

to the best of my understanding, the stochastic model is represented as a determin-100

istic mapping which with an input associates a probability density function. The101

Sobol-Hoeffding decomposition is applied to the mapping which with an input asso-102

ciates the entropy of the output evaluated at that input. Here the entropy is the103

Kullback-Leibler divergence of the output density. In [31], the output of the sto-104

chastic model is seen as a semiparametric statistical model—the generalized lambda105

distribution—with parameters depending on the inputs. These parameters have a106

polynomial chaos expansion which is estimated by maximum likelihood. Once the107

law of the output conditionally on the input has been estimated, its inverse cumu-108

lative distribution function is used to turn the stochastic model into a deterministic109

model to which standard methods are applied. In [4], the stochastic model is seen as110

a mapping that goes from the input space to a space of probability measures equipped111

with the Wasserstein distance. Following [7, 8], the Wasserstein space is mapped to112

R with some family of test functions, thus allowing for a standard Sobol-Hoeffding113

decomposition which is then averaged over all possible test functions.114

In practice, although it has not been formally defined in the literature, another115

method has been used for some time [2, 21, 25, 28]. The idea is simple: at each116

draw of the input X(i), one produces as many outputs Y (i,1), . . . , Y (i,m) as possible,117

makes the average m−1
∑m
k=1 Y

(i,k) and does as if it were the output of some deter-118

ministic model. The same is done with the inputs X̃
(i)
−j (1.2) to produce the outputs119

m−1
∑m
k=1 Y

(i,k)
j . The obtained estimator is then the same as that in (1.3) but with120

Y (i) replaced by m−1
∑m
k=1 Y

(i,k) and Y
(i)
j replaced by m−1

∑m
k=1 Y

(i,k)
j , yielding121

Ŝj =
1
n

∑n
i=1m

−1
∑m
k=1 Y

(i,k)m−1
∑m
k=1 Y

(i,k)
j −

(
1
n

∑n
i=1m

−1
∑m
k=1 Y

(i,k)
)2

1
n

∑n
i=1

(
m−1

∑m
k=1 Y

(i,k)
)2 − ( 1

n

∑n
i=1m

−1
∑m
k=1 Y

(i,k)
)2 .

(1.4)

122

123

The big advantage for practitioners is that they can use the numerous available and124

ready-to-use softwares for deterministic models.125

To build the estimator (1.4), the stochastic model must be run mn(p+ 1) times.126

The number m is called the number of repetitions and the number n is called the127

number of explorations. If the stochastic model is computationally intensive—that128

is, each model run is time-consuming—, then the estimator is built with limited129

resources. In this context, an increase of m must go along with a decrease of n, and130

conversely. What is then a good balance between m and n? How to choose m and131
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4 G. MAZO

n such that the estimator (1.4) will be the most efficient? This question was asked132

by [28].133

We address this problem by minimizing a bound on the missranking error. The134

missranking error penalizes bad rankings of the Sobol indices associated with the135

inputs. This type of error leads to an explicit solution of the induced minimization136

problem and hence the “optimal” pair (m,n) can be estimated. A two-step procedure137

can then be implemented to get efficient estimators. We also establish the asymptotic138

normality of the estimators (1.4). The sensitivity indices to which they converge are139

formally defined; they are called the sensitivity indices of the second kind.140

The sensitivity indices of the first kind are other sensitivity indices arising from141

our representation of stochastic models. We regard a stochastic model as a set of142

probability measures that captures how the outputs are produced by the model. We143

construct a probabilistic framework compatible with these prespecified distributions144

and show that the output of the stochastic model can be seen as a function of the145

inputs and some “noise”. The sensitivity indices of the first kind arise from an appli-146

cation of the Sobol-Hoeffding decomposition to the above-mentioned function. The147

indices of the first and of the second kinds are complementary as they offer distinct148

pieces of information. Interestingly, these indices can be estimated jointly with no149

additional cost, the joint estimator is asymptotically normal and the two kinds of150

sensitivity indices lead to the same solution for the tradeoff problem.151

This paper is organized as follows. Section 2 defines a class of stochastic models152

and discusses the connections with [9]. Section 3 defines the indices of both kinds and153

their estimators. The asymptotic properties are deferred to Section 5. Section 4 intro-154

duces the tradeoff problem, gives a procedure to attack it and gives some theoretical155

guarantees. Section 6 illustrates the theory on numerical simulations. A Conclusion156

closes the paper.157

2. Representations of stochastic models. The concept of stochastic models158

is intuitive and shared by many people but there are different mathematical routes159

to describe them. One is given in Section 2.1. It makes minimal distributional as-160

sumptions to get to a representation in terms of random variables and establishes the161

existence of a function on which the Sobol-Hoeffding decomposition can be applied.162

Section 2.2 makes connections with the stochastic models of [9].163

2.1. Representing stochastic models from minimal distributional as-164

sumptions. A stochastic model is some mechanism that produces outputs at ran-165

dom given some inputs. Thus, a stochastic model can be seen as family of probability166

measures {Px, x ∈ X} indexed by some input space X . The law Px governs how167

the outputs are produced given the input x. The stochastic experiment that consists168

of drawing inputs at random according to some probability measure P and observ-169

ing the corresponding outputs is then fully characterized by the family {Px} and the170

probability measure P. This leads us to Definition 2.1.171

Definition 2.1. If P is a probability measure on some input space X and {Px,172

x ∈ X} is a family of probability measures then the pair (P, {Px}) is called the complete173

stochastic model.174

From now on we assume that X is a subset of Rp and that P is a product measure175

on the product Borel σ-field of Rp, implying that the inputs are drawn independently.176

(Note the difference between the symbols “P” and “P”.) We also assume that the177

output produced by the stochastic model is a real number: let Px be a measure on R178

endowed with its Borel σ-field.179
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SENSITIVITY INDICES, ESTIMATORS AND A TRADEOFF 5

Now we look for a representation in terms of random variables that will allow us180

to use the Sobol-Hoeffding decomposition later on.181

Lemma 2.2. If (P, {Px}) is a complete stochastic model then there exist a probabil-182

ity space (Ω,F , P ), a random vector (X,Z) on Ω and a real function f on X×rangeZ183

such that184

(i) f(x, Z) is measurable for every x ∈ X ,185

(ii) P (f(x, Z) ∈ B) = Px(B) for every x ∈ X and every Borelian B,186

(iii) P (X ∈ A,Z ∈ B) = P(A)P (Z ∈ B) for every appropriate Borelians A and B.187

Moreover, if (X, f(X,Z)) and (X ′, f ′(X ′, Z ′)) are two joint vectors that satisfy the188

conditions (i), (ii) and (iii) then (X, f(X,Z))
d
= (X ′, f ′(X ′, Z ′)) where

d
= means189

equality in distribution.190

Note that the conditions in Lemma 2.2 do not determine the law of Z; see the191

example below.192

Example 1 (The law of Z is not determined). Let p = 1. Let P be the standard193

uniform distribution and Px be the Gaussian distribution with mean x ∈ R and vari-194

ance 1. Let Ω = (0, 1)2 endowed with the Borel σ-field and set P to be the product195

Lebesgue measure. Let X1(ω) = ω1 for ω = (ω1, ω2) ∈ Ω. Let Φ denote the distri-196

bution function of the standard Gaussian distribution and denote by Φ−1 the inverse197

of Φ. If Z(ω) = ω2 and f(x, z) = Φ−1(z) + x, x ∈ R, z ∈ (0, 1), then it is easy to198

see that (X,Z) and f satisfy the conditions of Lemma 2.2 and the law of Z is the199

standard uniform distribution. But the conditions of Lemma 2.2 are also satisfied with200

Z(ω) =
√
ω2 and f(x, z) = Φ−1(z2) +x, in which case, P (Z ≤ t) = t2, t ∈ (0, 1), that201

is, the law of Z is the beta distribution with parameter (2, 1).202

The indeterminacy of the law of Z is symptomatic of the lack of control of the203

intrinsic randomness assumed in our definition of stochastic models. But this is not204

an issue because our interest lies in the joint vector (X, f(X,Z)), the law of which is205

fully characterized by the conditions in Lemma 2.2. To each complete stochastic model206

there corresponds a unique law that all vectors (X, f(X,Z)) must have, regardless of207

the chosen representation. Therefore, the pair (X, f(X,Z)) can be used to define the208

pair (input, output) of a complete stochastic model, as done in Definition 2.3.209

Definition 2.3. If (X,Z) and f satisfy the conditions in Lemma 2.2 then the210

pair (X, f(X,Z)) is called an observation of the complete stochastic model (P, {Px});211

the random variable X is called the input and f(X,Z) is called the output.212

In sum, we have established the existence of random variables on a common213

probability space and a function f that characterize the statistical experiment that214

consists of drawing inputs and observing the outputs of a stochastic model. The set215

of assumptions used to represent outputs and inputs of a stochastic model is minimal:216

all we need is a family {Px} and a probability measure P. We remark that the above217

formalism of stochastic models can be used to represent physical models as well [29].218

2.2. Links with the stochastic models and the sensitivity indices in [9].219

In [9], the authors consider the model (X ′(ω′), ϕ(X ′(ω′), ω′′)), ω′ ∈ Ω′, ω′′ ∈ Ω′′,220

where (Ω′,F ′, P ′) and (Ω′′,F ′′, P ′′) are probability spaces, X ′ = (X ′1, . . . , X
′
p) is a221

random vector on Ω′ and ϕ is some function. They consider the sensitivity indices222

SHAG
j =

∫
Ω′′
Sj(ω

′′)P ′′(dω′′),223
224
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6 G. MAZO

where225

Sj(ω
′′) =

Var[E(ϕ(X ′, ω′′)|X ′j)]
Var[ϕ(X ′, ω′′)]

;226
227

above the variances and the expectation are to be understood as integrals on Ω′ with228

respect to P ′.229

One can choose a representation in Lemma 2.2 that corresponds to the models230

in [9]. In particular, one can recover the sensitivity indices SHAG
j , j = 1, . . . , p. Let231

us illustrate this with an example. Let (P, {Px}) be a complete stochastic model and232

let X = (X1, . . . , Xp), Z and f be as in Lemma 2.2. Define233

S̃HAG
j = E

(
Var(E[f(X,Z)|Xj , Z]|Z)

Var(f(X,Z)|Z)

)
, j = 1, . . . , p.234

235

Consider the model in Example 1.1 of [9], given by236

ϕ(X ′(ω′), ω′′) = X1(ω′) +X2(ω′)ω′′,(2.1)237238

where the law of X ′1 is the uniform distribution on (0, 1), the law of X ′2 is the uniform239

distribution on (1, L + 1), L > 0, and P ′′ is the standard normal distribution on240

Ω′′ = R. The indices in Example 1.1 of [9] are given by241

SHAG
1 =

∫
Ω′′

1

1 + L2ω′′
P ′′(dω′′) =

∫
R

1

1 + L2w
exp

(
−w

2

2

)
1√
2π

dw242
243

and SHAG
2 = 1− SHAG

2 .244

To recover these indices, let us extract the induced complete stochastic model.245

Set P((0, t1] × (1, t2]) = t1(t2 − 1)/L for all 0 < t1 < 1, 1 < t2 < L + 1, L > 0 and246

Px(−∞, t] = Φ((t − x1)/x2) for all t ∈ R, where Φ(t) =
∫ t
−∞(2π)−1/2e−s

2/2 ds and247

x = (x1, x2) ∈ R× (0,∞). Now it remains to choose a representation that fulfills the248

conditions in Lemma 2.2 and ensures that SHAG
1 = S̃HAG

1 . Such a representation can249

easily be found. For instance, take Ω = (0, 1)3 endowed with the product Lebesgue250

measure and put Z(ω) = ω3, X1(ω) = F−1
1 (ω1) and X2(ω) = F2(ω2)−1 for ω =251

(ω1, ω2, ω3) ∈ Ω, where F1(t1) = t1 for 0 < t1 < 1 and F2(t2) = (t2 − 1)/L for252

1 < t2 < L + 1. Finally take f(x, z) = Φ−1(z)x2 + x1 for x1 ∈ R, x2 > 0 and253

z ∈ (0, 1). Then the conditions of Lemma 2.2 are fulfilled by construction and the254

detailed calculations in Appendix A show that SHAG
1 = S̃HAG

1 .255

In sum, the stochastic models in [9] can be expressed with the framework of256

Section 2.1. There is however a difference between [9] and Section 2.1. In [9], the257

function f is fixed. It is given as being a part of the stochastic model. In our side,258

we only assume that we are given a set of probability measures from which we can259

sample. Consequently, in our case, the indices S̃HAG
j are not well-defined because260

they depend on the law of Z, which is not characterized by Lemma 2.2. In other261

words, one may find different representations such that the laws of (X, f(X,Z)) will262

be identical but the laws of Z will differ, leading to different indices S̃HAG
j .263

3. The sensitivity indices and their estimators. Let (P, {Px}) be a com-264

plete stochastic model and let X,Z and f as in Lemma 2.2. To ensure the existence265

of the sensitivity indices and later to derive theoretical results for the estimators, we266

need to assume the following: there exists some function F with EF (X)8 <∞ such267

that268

(3.1) |f(X,Z)| ≤ F (X)269
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SENSITIVITY INDICES, ESTIMATORS AND A TRADEOFF 7

almost surely. This assumption appears to be mild. In particular every stochastic270

model with bounded outputs fulfills the condition.271

3.1. Definition of the sensitivity indices. We define two kinds of sensitivity272

indices. The sensitivity indices of the first kind exploit the existence of the function f273

by applying the Sobol-Hoeffding decomposition to it directly. The sensitivity indices274

of the second kind result from an application of the Sobol-Hoeffding decomposition275

to the conditional expectation of f(X,Z) given X, which is a function of X alone.276

The indices of the second kind are those to which the estimators (1.4) mentioned in277

the Introduction converge.278

3.1.1. Indices of the first kind. Applying the Sobol-Hoeffding decomposition279

to f yields280

f(X,Z)− f0 = f1(X1) + · · ·+ fp(Xp) + fp+1(Z) + · · · ,(3.2)281282

where f0 = E f(X,Z), fj(Xj) = E(f(X,Z) − f0|Xj), j = 1, . . . , p, fp+1(Z) =283

E(f(X,Z)− f0|Z) and + · · · stands for the interaction terms. Since X and Z are in-284

dependent, we have Var f(X,Z) = Var f1(X1) + · · ·+ Var fp(Xp) + Var fp+1(Z) + · · · ,285

which leads us to the indices in Definition 3.1.286

Definition 3.1 (Sobol indices of the first kind). The Sobol indices of the first287

kind are defined as288

S′j =
Var E(f(X,Z)|Xj)

Var f(X,Z)
, j = 1, . . . , p.289

It is important to notice that the indices of the first kind depend on the law of290

(X, f(X,Z)) only. Since the law of the joint vector (X, f(X,Z)) fully determines291

the complete stochastic model, the indices of the first kind can be estimated from292

(P, {Px}) even though one may not be able to evaluate the function f nor the law293

of Z may be characterized. Notice that it does not make sense to define the total294

sensitivity indices since they depend on the law of Z.295

3.1.2. Indices of the second kind. Let g(X) := E[f(X,Z)|X] be the condi-296

tional expectation of the output of the stochastic model given the input. The object297

g is a function and the Sobol-Hoeffding decomposition can be applied to it, yielding298

g(X)− g0 = g1(X1) + · · ·+ gp(Xp) + · · · ,299300

where g0 = E g(X), gj(Xj) = E(g(X)− g0|Xj), j = 1, . . . , p and + · · · stands for the301

interaction terms. Since the components of X are independent, we have Var g(X) =302

Var g1(X1) + · · ·+ Var gp(Xp) + · · · , leading to the indices in Definition 3.2.303

Definition 3.2 (Sobol indices of the second kind). The Sobol indices of the304

second kind are defined as305

S′′j =
Var E(g(X)|Xj)

Var g(X)
=

Var E(E[f(X,Z)|X]|Xj)

Var E[f(X,Z)|X]
, j = 1, . . . , p.306

On the opposite to the indices of the first kind, the total sensitivity indices of the307

second kind are well defined, since the function g depends on X only. For instance,308

the jth total sensitivity index is given by309

S′′Tj = 1− Var E (g(X)|X1, . . . , Xj−1, Xj+1, . . . , Xp)

Var g(X)
.(3.3)310

311
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3.1.3. Comparison of the definitions. The sensitivity indices of the first kind312

provide more refined “first-order” information than the indices of the second kind.313

Example 2 and 3 illustrate this.314

Example 2. Let f(X,Z) = aX1 + cX2φ(Z), where X1, X2, Z are independent315

standard normal variables, a, c are real coefficients and φ is a function such that316

Eφ(Z) = 0. Then317

S′1 =
a2

a2 + c2 Eφ(Z)2
, S′2 = 0, S′′1 = 1 and S′′2 = 0.318

319

According to the sensitivity indices of the second kind, X1 has the same impor-320

tance regardless of the value of its coefficient a, while the sensitivity indices of the321

first kind acknowledge that the importance of X1 should depend on its coefficient.322

However, the sensitivity indices of the first kind cannot provide insight into the in-323

teractions between the inputs. For instance, if a is small then the sum S′1 + S′2 will324

be small and hence the contribution to the variance of the output must come from325

elsewhere. Perhaps it comes from the intrinsic stochasticity of the model or from the326

interactions.327

Example 3 returns to the model (2.1).328

Example 3. Let f(X,Z) = Φ−1(Z)X2 +X1 such that the law of X1 and that of329

Z are the uniform distribution on (0, 1), the law of X2 is the uniform distribution on330

(1, L + 1), L > 0, and Φ−1 denotes the inverse distribution function of the standard331

normal distribution. The detailed calculations in Appendix A show that S′2 = 0332

S′1 =
1

4(L2 + 3(L+ 1)) + 1
.333

334

As in Example 2, the sensitivity indices of the second kind do not depend on the335

coefficient L. The sensitivity indices of the first kind do depend on L but note that336

S′1 + S′2 ≤ 1/13, indicating that most of the contribution to the output comes from337

the intrinsic randomness or the interactions.338

In sum, both kinds of sensitivity indices provide useful insights although neither339

kind is perfect. The sensitivity indices of the second kind are good indices for doing a340

sensitivity analysis of the model averaged over the intrinsic randomness but by doing341

so information may be lost. The sensitivity indices of the first kind provide more342

refined information into the individual contributions of the inputs but the information343

is only partial because the knowledge of the interactions and the intrinsic randomness344

are lacking. Remember that the sensitivity indices S̃HAG
j cannot be used in our case.345

3.2. Construction of the estimators. We construct estimators for the indices346

in Definition 3.1 and 3.2 by Monte-Carlo simulation. The input space is “explored”347

n times; at each exploration two independent input vectors are drawn, combined348

and passed to the stochastic model which is run m times. The integer n is called349

the number of explorations and the integer m is called the number of repetitions.350

The couple (n,m) is called the design of the Monte-Carlo sampling scheme. The351

total number of calls to the stochastic model is mn(p + 1). The details are given in352

Algorithm 3.1.353

In the algorithm above, X̃
(i)
−0 = X(i) by convention. By assumption, the ob-354

jects X̃(i), X̃
(i)
−j and Y

(i,k)
j , j = 0, . . . , p, k = 1, . . . ,m, i = 1, . . . , n, are ran-355

dom vectors such that the sets {X̃(i), X̃
(i)
−j , Y

(i,k)
j : j = 0, . . . , p; k = 1, . . . ,m},356
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Algorithm 3.1 Generate a Monte-Carlo sample

for i = 1 to n do
draw two independent copies X(i) = (X

(i)
1 , . . . , X

(i)
p ), X̃(i) = (X̃

(i)
1 , . . . X̃

(i)
p )

for j = 0, 1, . . . , p do
for k = 1 to m do

run the stochastic model at X̃
(i)
−j := (X̃

(i)
1 , . . . , X̃

(i)
j−1, X

(i)
j , X̃

(i)
j+1, . . . , X̃

(i)
p ) to

get an output Y
(i,k)
j

end for
end for

end for

i = 1, . . . , n, are i.i.d., X(i) and X̃(i) are independent and P (∩pj=0 ∩mk=1 {Y
(i,k)
j ∈357

B
(k)
j }|X(i), X̃(i)) =

∏p
j=0

∏m
k=1 P (Y

(i,k)
j ∈ B(k)

j |X(i), X̃(i)) for all appropriate Bore-358

lians B
(k)
j . It is easy to see that these conditions characterize the joint law of the set359

{X̃(i)
−j , Y

(i,k)
j : j = 0, . . . , p; k = 1, . . . ,m; i = 1, . . . , n}, that is, the inputs and the360

outputs of Algorithm 3.1.361

In view of Section 2, assume without loss of generality that there is some function362

f and some random variables Z
(i,k)
j , j = 0, . . . , p, k = 1, . . . ,m, i = 1, . . . , n, such that363

Y
(i,k)
j = f(X̃

(i)
−j , Z

(i,k)
j ), where all of the random vectors in the sets {X̃(i), X(i), Z

(i,k)
j :364

j = 0, . . . , p; k = 1, . . . ,m}, i = 1, . . . , n, are mutually independent and all of these365

sets are i.i.d. We shall use both the Y -notation and the f(X,Z)-notations.366

With the above notation, the estimators (1.4) of the indices of the second kind367

are rewritten368

(3.4) Ŝ′′j;n,m =

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

1
m

∑m
k′=1 Y

(i,k′)
j −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2

1
n

∑n
i=1

(
1
m

∑m
k=1 Y

(i,k)
0

)2

−
(

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2 ,369

j = 1, . . . , p, which are indeed the empirical versions of the indices Ŝ′′j , since370

S′′j =
E g(X(1))g(X̃

(1)
−j )− (E g(X(1)))2

E g(X(1))2 − (E g(X(1)))2
371

=
E E[f(X(1), Z

(1,1)
0 )|X(1)] E[f(X̃

(1)
−j , Z

(1,1)
j )|X̃(1)

−j ]− (E E[f(X(1), Z
(1,1)
0 )|X(1)])2

E E[f(X(1), Z
(1,1)
0 )|X(1)]2 − (E E[f(X(1), Z

(1,1)
0 )|X(1)])2

.

(3.5)

372

373

As said in the Introduction, this estimator is used implicitly by practitioners but has374

not been formally studied in the literature. A simplified version with m = n appears375

in [11, 12].376

To estimate the sensitivity indices of the first kind, we exploit a formula similar377

This manuscript is for review purposes only.



10 G. MAZO

to (3.5). Indeed, we have378

S′j =
E f(X(1), Z

(1,1)
0 )f(X̃

(1)
−j , Z

(1,1)
j )− (E f(X(1), Z

(1,1)
0 ))2

E f(X(1), Z
(1,1)
0 )2 − (E f(X(1), Z

(1,1)
0 ))2

379

=
E E[f(X(1), Z

(1,1)
0 )|X(1)] E[f(X̃

(1)
−j , Z

(1,1)
j )|X̃(1)

−j ]−
(

E E[f(X(1), Z
(1,1)
0 )|X(1)]

)2

E E[f(X(1), Z
(1,1)
0 )2|X(1)]−

(
E E[f(X(1), Z

(1,1)
0 )|X(1)]

)2 .

(3.6)

380

381

Notice that the upper left, upper right and the lower right terms are identical to the382

upper left, upper right and the lower right terms in (3.5) respectively. The upper383

left term is the only term that depends on j and, therefore, it is the only term that384

permits to discriminate between any two indices of the same kind. For this reason, it385

is called the discriminator, denoted by Dj . Formula (3.6) yields the estimator386

(3.7) Ŝ′j;n,m =

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

1
m

∑m
k′=1 Y

(i,k′)
j −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)2
0 −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2 .387

Since the estimators for the discriminator are identical, both kinds of sensitivity388

indices lead to the same estimated ranking of the inputs. All of the 2p estimators389

can be computed with mn(p+ 1) runs of the stochastic model. In (3.7) and (3.4), if390

m = 1 and if the function f does in fact not depend on Z, then the estimators reduce391

to Sobol estimators [26, 27] for deterministic models.392

4. Choosing between Monte-Carlo designs. The estimators in Section 3393

depend on the design (n,m) of the Monte-Carlo sampling scheme. To estimate the394

sensitivity indices in Definition 3.1 and Definition 3.2, the stochastic model has to be395

called (p+ 1)mn times.396

It is reasonable to think of a sensitivity analysis as done the following way. The397

total number of calls is set to a limit, say T . Then n and m are chosen so that398

T = (p+ 1)mn. For instance, suppose that one cannot afford more than 150 calls to399

a model with two inputs. Then T = 150, p = 2 and one can choose either one of the400

columns in the following table401

n 50 25 10 5 2 1
m 1 2 5 10 25 50.

402

Denote by divp(T ) the set of all divisors of T/(p + 1) between 1 and T/(p + 1).403

In the example above, div2(150) = {1, 2, 5, 10, 25, 50}. There are as many designs as404

there are elements in the set divp(T ). Each one of those elements corresponds to a405

possible combination for n and m which Algorithm 3.1 can be run with. The resulting406

estimators require the same number of calls but do not perform equally well. The407

goal of this section is to find the “best” way to estimate the sensitivity indices.408

4.1. Introducing the miss-ranking error and its bound. To compare the409

estimators, a measure of performance has to be defined. We shall consider the miss-410

ranking error (MRE), defined by411

MRE = E

p∑
j=1

|R̂j;n,m −Rj |,412
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where Rj is the rank of Dj among D1, . . . , Dp, that is, Rj =
∑p
i=1 1(Di ≤ Dj),413

and R̂j;n,m is an estimator of Rj . Recall that D1, . . . , Dp are the upper-left terms414

in (3.6) and (3.5). They determine the ranks of the sensitivity indices. Recall that415

the ranks of the sensitivity indices of the first kind coincide with the ranks of the416

sensitivity indices of the second kind. Thus, the MRE permits to find a unique417

solution for both kinds of sensitivity indices. The MRE is small when one succeeds418

in ranking the inputs from the most to the least important, a task which is called419

“factors prioritization” in [24, p. 52].420

The MRE has a bound with interesting mathematical properties. Denote by421

MRE(T,m) the MRE based on T number of calls and m repetitions, so that the422

number of explorations is T/(p+ 1)/m. Remember the notation of Section 3: denote423

(X(1), X̃(1)) = X, f(X(1), Z
(1,1)
0 ) = Y0 and f(X̃

(1)
−j , Z

(1,1)
j ) = Yj .424

Proposition 4.1. Let D̂j;n,m, j = 1, . . . , p, be the upper-left term in (3.7) or (3.4)425

and put R̂j;n,m =
∑p
i=1 1(D̂i;n,m ≤ D̂j;n,m). If D1, . . . , Dp are all distincts then426

MRE(T,m) ≤ L

nm

(
m

p∑
j=1

Var(E[Y0Yj |X])427

+

p∑
j=1

E(Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X])428

+
1

m

p∑
j=1

E(Var[Y0|X] Var[Yj |X])
)
,429

430

where431

L =
4(p− 1)

min
j<j′

(|Dj −Dj′ |2)
.432

433

The constant L tells us that the bound is smaller when the indices are well434

separated. The bound goes to zero when the number of explorations goes to infinity.435

This is true even if the number of repetitions is fixed. Most interestingly, the bound436

separates T and m:437

MRE(T,m) ≤ 1

T
v(m), m ∈ divp(T ),(4.1)438

439

where the function v is implicitly defined through Proposition 4.1. Denote by m†T440

the element m in divp(T ) that minimizes v(m). Taking m = m†T in (4.1), we get the441

bound442

MRE(T,m†T ) ≤
v(m†T )

T
≤ v(m)

T
, for all m ∈ divp(T ).443

Thus the best guarantee coincides with m = m†T and n = T/(p + 1)/m†T in Algo-444

rithm 3.1. However m†T is unknown.445

Remark 4.2. The choice of T , through the specification of divp(T ), will influence446

the quality of the bound. It is clear that choosing T/(p + 1) a prime number may447

not be a good idea because v(m†T ) will be either one of v(1) or v(T/(p+ 1)). On the448

opposite, choosing T/(p + 1) a factorial number ensures many more choices (in fact,449

all).450
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4.2. A two-stage procedure to estimate the sensitivity indices. The re-451

sults in Section 4.1 suggest a two-stage procedure to estimate the sensitivity indices.452

The procedure is given in Algorithm 4.1. The computational budget is split into two453

parts K and T −K. The first K calls to the model are used to estimate m†T−K . The454

last T −K calls to the model are used to estimate the sensitivity indices.455

Algorithm 4.1 Estimate the sensitivity indices by a two-stage procedure

Stage 1. Choose an integer K such that K/(p+1) and (T −K)/(p+1) are integers
also. Choose integers m0 and n0 such that K = m0n0(p + 1). Run Algorithm 3.1

with m = m0 and n = n0. Estimate m†T−K by an estimator m̂†T−K in divp(T −K).

Stage 2. Run Algorithm 3.1 with m = m̂†T−K and

n =
T −K

(p+ 1)m̂†T−K
.

Compute the sensitivity indices estimators (3.7) and (3.4).

The estimator of m†T−K is built as follows. Let m∗ be the minimizer of v seen as456

a function on the positive reals. Since v is convex, the minimizer is unique. It follows457

from (4.1) and Proposition 4.1 that458

m∗ :=

√∑p
j=1 E Var[Y0|X] Var[Yj |X]∑p

j=1 Var E[Y0Yj |X]
=

√∑p
j=1 ζ3,j∑p
j=1 ζ1,j

,(4.2)459

460

where ζ3,j = E Var[Y0|X] Var[Yj |X] and ζ1,j = Var E[Y0Yj |X], j = 1, . . . , p.461

Let ϕT : (0,∞) −→ divp(T ), be the function defined by ϕT (x) = 1 if 0 < x < 1,462

ϕT (x) = T/(p+ 1) if x > T/(p+ 1), and463

ϕT (x) =

{
xxyT if

√
xxyT pxqT > x ≥ 1

pxqT if
√
xxyT pxqT ≤ x ≤ T

p+1

464

465

where466

xx∗yT = max{m ∈ divp(T ), m ≤ x}, px∗qT = min{m ∈ divp(T ), m ≥ x}.467468

The function ϕT is piecewise constant with discontinuity points at
√
ij, where i and469

j are two consecutive elements of divp(T ).470

Proposition 4.3. If m∗ > 0 then m†T−K = ϕT−K(m∗). If, moreover,471

xm∗yT−Kpm∗qT−K is not equal to m∗2 then the minimizer of v(m), m ∈ divp(T−K),472

is unique.473

Proposition 4.3 suggests that m†T−K can be estimated by applying the function474

ϕT−K to an estimate of m∗. Remember that K = m0n0(p+ 1) and put475

(4.3) m̂∗K :=

√√√√∑p
j=1 ζ̂3,j∑p
j=1 ζ̂1,j

,476
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where477

ζ̂3,j =478

1

n0

n∑
i=1

1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )2 1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )2(4.4)479

+
1

n0

n∑
i=1

(
1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )

)2(
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )

)2

(4.5)480

− 1

n0

n∑
i=1

(
1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )

)2
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )2(4.6)481

− 1

n0

n∑
i=1

1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )2

(
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )

)2

,(4.7)482

483

and484

ζ̂1,j =485

1

n0

n∑
i=1

(
1

m0

m0∑
k=1

f(X(i), Z
(i,k)
0 )f(X̃

(i)
−j , Z

(i,k)
j )

)2

(4.8)486

−

(
1

n0

n∑
i=1

1

m0

m0∑
k=1

f(X(i), Z
(i,k)
0 )f(X̃

(i)
−j , Z

(i,k)
j )

)2

.(4.9)487

488

Notice that ζ̂1,j ≥ 0 and ζ̂3,j ≥ 0 so that m̂∗K ≥ 0. If m0 = 1 then ζ̂3,j = 0 and hence489

m̂∗K = 0.490

The estimator m̂∗K is consistent and asymptotically normal on some conditions491

on the rates of n0 and m0.492

Theorem 4.4. Assume (3.1) holds. Let n0 →∞. If m0 is fixed then493

√
n0

(
m̂∗K −

[
m∗ +

C

m0
+ εm0

])
d→ N(0, σ2

m0
),494

where C is some constant, εm0 = C1/m
2
0 + · · · + CN/m

N+1
0 for some constants495

C1, . . . , CN and σ2
m0

is some variance depending on m0. If m0 → ∞ then the above496

display with εm0
= o(1/m0) and σm0

replaced by limm0→∞ σm0
is true.497

Theorem 4.4 shows that m̂∗K is asymptotically biased. The bias is polynomial in498

1/m0. Corollary 4.5 shows that letting m0 →∞ suffices to get the consistency of m̂∗K499

but to get a central limit theorem centered around m∗, it is furthermore needed that500 √
n0/m0 → 0.501

Corollary 4.5. Assume (3.1) holds. Let n0 → ∞ and m0 → ∞. Then m̂∗K
P→502

m∗. If, moreover,
√
n0/m0 → 0, then503

√
n0(m̂∗K −m∗)

d→ N(0, lim
m0→∞

σ2
m0

).504

To estimate m†T−K , put m̂†T−K = ϕT−K(m̂∗K). Proposition 4.6 states that m̂†T−K505

and m†T−K are equal with probability going to one.506
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Proposition 4.6. Assume (3.1) holds. Let n0 →∞ and m0 →∞. Then507

P
(
m̂†T−K = m†T−K

)
→ 1.508

509

All the details of Algorithm 4.1 have been given.510

4.3. Performance. To get some insight into the performance of the procedure511

given in Algorithm 4.1, we look at the performance of the sensitivity indices estimators512

produced in Stage 2. Since they are built with T −K calls to the model with m̂†T−K513

repetitions, they satisfy514

MRE(T −K, m̂†T−K) ≤ 1

T −K
v(m̂†T−K),(4.10)515

516

where the left-hand side is the conditional expectation of the MRE, given the outputs517

produced in Stage 1. The estimator m̂†T−K is computed with K calls only.518

It is difficult to compare the guarantee above with that which got by choosing519

an arbitrary number of repetitions, say m. In the later case K = 0 and hence the520

guarantee is (4.1). The denominator in (4.10) is smaller but we expect that the521

numerator v(m̂†T−K) will be less than v(m) for many values of m. Indeed, the numer-522

ator should be close to v(m†T−K). If T −K is well chosen then v(m†T−K) and v(m†T )523

should be close and since v(m) ≤ v(m†T ) for all m in divp(T ), the numerator v(m̂†T−K)524

should be an approximate minimizer. For instance if K and T are large enough and525

divp(T −K) = {1, 2, . . . , (T −K)/(p + 1)} and divp(T ) = {1, 2, . . . , T/(p + 1)} hold526

then v(m†T−K) and v(m†T ) are equal. Note that the numerator and the denominator527

in (4.10) cannot be good at the same time and K determines the balance.528

Theorem 4.7. Assume that the conditions of Proposition 4.6 are fulfilled. Sup-529

pose furthermore that K →∞ such that K/T → 0. Then530

1

T −K
v(m̂†T−K) =

1

T
v(m†T−K)(1 + oP (1)).531

532

The bound in Theorem 4.7 is the best possible guarantee inflated by a factor not533

much larger than one. This result is valid if K is large but not too large with regard534

to T . In particular, if divp(T ) ∩ divp(T − K) = divp(T − K) then for every fixed535

m 6= m†T , it holds that P (T−1v(m†T−K)(1 + oP (1)) ≤ T−1v(m))→ 1. In other words536

it is always better, in terms of obtainable guarantees, to use the procedure rather than537

to choose the number of repetitions arbitrarily, except for the lucky case m = m†T .538

5. Asymptotic normality of the sensitivity indices estimators. The sen-539

sitivity indices estimators of Section 3.2 depend on both m and n. It is clear that540

n should go to infinity to get central limit theorems. It may be less clear, however,541

whether or not m should go to infinity as well. The answer depends on the kind of542

the sensitivity index we are looking at.543

Two frameworks are considered:544

• n→∞ and m is fixed;545

• n→∞ and m→∞.546

In the second framework mn is a sequence indexed by n that goes to infinity as n goes547

to infinity. Denote by S′ (resp. S′′) the (column) vector with coordinates S′j (resp.548

S′′j ), j = 1, . . . , p, and denote by Ŝ′n,m (resp. Ŝ′′n,m) the vector with coordinates Ŝ′j;n,m549

given in (3.7) (resp. Ŝ′′j;n,m given in (3.4)).550
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Theorem 5.1. Assume (3.1) holds. Let n→∞. If m is fixed then551

√
n

(
Ŝ′n,m − S′

Ŝ′′n,m − S′′
[
1− E Var[f(X,Z)|X]

E Var[f(X,Z)|X]+mVar E[f(X,Z)|X]

]) d→ N(0,Ξm),552

for some nonnegative matrix Ξm of size 2p × 2p. If m → ∞ then, elementwise,553

limm→∞ Ξm exists and the above display with Ξm replaced by limm→∞ Ξm is true.554

Theorem 5.1 predicts the behavior of the joint vector (Ŝ′>n,mŜ′′>n,m). However the555

behaviors of Ŝ′n,m and Ŝ′′n,m are different. The estimator Ŝ′>n,m is asymptotically normal556

around S′, even if m is kept fixed. The estimator Ŝ′′>n,m is also asymptotically normal,557

but not around S′′.558

The estimator Ŝ′′n,m under-estimates S′′. The bias, given by559

S′′
E Var[f(X,Z)|X]

E Var[f(X,Z)|X] +mVar E[f(X,Z)|X]
,560

561

is null whenever f actually does not depend on Z, and large whenever the stochastic562

model is highly stochastic. As Theorem 5.1 shows, the bias is still present even if m563

goes to infinity. Corollary 5.2 shows that m must go to infinity fast enough to avoid564

the estimator to be tightly concentrated around the wrong target.565

Corollary 5.2. Assume (3.1) holds. Let n→∞. If m→∞ such that
√
n/m→566

0 then567

√
n
(
Ŝ′′n,m − S′′

)
d→ N(0,Ξ22),568

where Ξ22 is the lower-right block of the matrix limm→∞ Ξm given in Theorem 5.1.569

The difference between Ŝ′n,m and Ŝ′′n,m is due to the difference between the lower-570

left terms in (3.7) and (3.4). While the lower-left term in (3.7) is unbiased for all n571

and m, the lower-left term in (3.4) has a bias depending on m which propagates to the572

estimator of the sensitivity indices. (The calculations are carried out in Appendix D.)573

From a statistical perspective, it is more difficult to estimate the sensitivity indices574

of the second kind than to estimate the sensitivity indices of the first kind. To estimate575

the former, one needs to repeat the model many times. To estimate the later, this is576

not necessary.577

6. Numerical tests. Section 6.1 illustrates how the MRE responds to a change578

in the Monte-Carlo design. In Section 6.1 the total budget T is kept fixed. Section 6.2579

illustrates how the sensitivity indices estimators behave asymptotically. In Section 6.2580

the total budget T increases.581

6.1. Comparison of Monte-Carlo designs. The effect of the number of rep-582

etitions on the sensitivity indices estimators and the effect of the calibration in the583

two-stage procedure are examined in two kinds of experiments: the “direct” experi-584

ments and the “calibration” experiments.585

In the direct experiments, the sensitivity indices are estimated directly with the586

given number of repetitions. Increasing numbers of repetitions m are tested. (Since587

the budget is fixed, this goes with decreasing numbers of explorations.) For each m,588

the mean squared errors (MSEs), given by E
∑p
j=1(Ŝ′j;n,m−S′j)2 and E

∑p
j=1(Ŝ′′j;n,m−589

S′′j )2, are estimated with replications. They are also split into the sum of the squared590
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biases and the sum of the variances to get further insight about the behavior of the591

estimators. The MREs are estimated as well. A normalized version is considered:592

it is the MRE divided by the number of variables. For models with two inputs, the593

normalized MRE is interpreted directly as the probability that the two inputs are594

ranked incorrectly.595

In the calibration experiments, the sensitivity indices are estimated with the two-596

stage procedure, the results of which depend on the calibration parameters K and597

m0. Various calibration parameters are tested to see their effect on the MRE. The598

budgets for the direct experiments and the calibration experiments are the same so599

that the numbers can be compared. In particular, the direct experiments correspond600

to the case K = 0 in the calibration experiments.601

A linear model of the form Y = X1 + βX2 + σZ, where X1, X2, Z, are standard602

normal random variables and β, σ are real coefficients, has been considered because603

the sensitivity indices are explicit and hence the performance of the estimators can604

be evaluated easily. The quantity m∗ is explicit: the formula is given in Appendix E.605

6.1.1. High noise context. The coefficients are β = 1.2 and σ = 4. The606

sensitivity indices are S′1 = 0.05, S′2 = 0.08, S′′1 = 0.41 and S′′2 = 0.59. The real607

m∗ is about 5.8. The total budget is T = 3 × 500 = 1500 and hence div2(1500) =608

{1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500}. The integer m†1500 is equal to ϕ1500(m∗) =609

5. Since the budget is kept fixed, the numbers of explorations are, respectively,610

500, 250, 125, 100, 50, 25, 20, 10, 5, 4, 2, 1. The number of replications is 1500.611

The results of the direct experiment are given in Figure 1 for m = 1, 2, 4, 5, 10,612

20, 25. The MSE of first kind does not vary with the number of repetitions and is613

much lower than the MSE of second kind, see (c). The estimators of the second kind614

are highly biased for small numbers of repetitions (a) and they have a higher variance615

for larger numbers of repetitions (b). The fact that the bias is high for small numbers616

of repetitions agrees with the theory, according to which the bias should vanish as m617

goes to infinity. Overall, the sensitivity indices of the second kind seem to be much618

harder to estimate than the indices of the first kind, the estimators of which have a619

negligible bias and a very small variance whatever the number of repetitions.620

According to Figure 1(c), the normalized MRE curve has a banana shape with a621

minimum of about slightly less than 30% reached around m ∈ {5, 10} and endpoints622

with a value of about 35%. A value of 30% means that the probability of ranking623

the inputs correctly is about 70%. The region of observed optimal performance m ∈624

{5, 10} coincides with m†1500 = 5, the point at which the bound is minimal.625

The results of the calibration experiment is given in Table 1 for the normalized626

MRE. The lowest MREs are reached at the bottom right of the table, with values627

corresponding to 2 ≤ m ≤ 10 in Figure 1 (c). Optimal performance is reached with628

very few explorations in the first stage of the two-stage procedure. In this case, the629

estimator m̂∗K has a small bias but a high variance. It seems to be better than an630

estimator with a small variance but a large bias. This might be explained by the low631

curvature of the MRE curve.632

6.1.2. Low noise context. The coefficients are β = 1.2 and σ = 0.9. The633

sensitivity indices are S′1 = 0.31, S′2 = 0.44, S′′1 = 0.41 and S′′2 = 0.59. The real634

m∗ is about 0.30 and hence the integer m†1500 is equal to 1. As expected, these635

numbers are smaller than the ones found in the high noise context. The total budget636

is T = 3× 500 = 1500. The number of replications is 500.637

The results for the direct experiment are given in Figure 2. The MSE of first638

kind increases with the number of repetitions, see (c): this is due to the increase639
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Fig. 1: Sum of squared biases (a), sum of variances (b) and errors (c) of the sensitivity
indices estimators for the linear model in the high noise setting. Confidence intervals
of level 95% are added in (c).

m0 n0

K/3 2 5 10 20 20 10 5 2
400 0.43 0.42 0.42 - - 0.42 0.39 0.40
200 0.38 0.39 0.37 - - 0.35 0.35 0.34
100 0.36 0.37 - - - - 0.32 0.30
50 0.39 0.33 - - - - 0.33 0.31

Table 1: Normalized MRE in the linear model with high noise for various calibrations:
K/(p+ 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For instance, for K/(p+ 1) =
200 = m0n0, the normalized MRE is available for m0 = 2, 5, 10, 20, 40, 100.
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Fig. 2: Sum of squared biases (a), sum of variances (b) and errors (c) of the sensitivity
indices estimators for the linear model in the low noise context. Confidence intervals
of level 95% are added in (c).

of the variance (b), while the bias is negligible (a). As in the high noise context,640

the estimators of the second kind have a decreasing bias and an increasing variance,641

although the decrease of the bias is of much less magnitude. This agrees with the642

theory, where we have seen that, for the sensitivity indices of the second kind, the643

biases of the estimators are small when the noise of the model is low.644

In Figure 2 (c), the normalized MRE varies a lot. It increases from about 2% at645

m = 1 to 30% at m = 25. Thus, unlike in the high noise setting, choosing a good646

number of repetitions is important. The best performance is achieved at m = 1, which647

coincides with the minimizer m†1500 = 1 of the bound.648

The results of the calibration experiment for the normalized MRE is given in649
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m0 n0

K/3 2 5 10 20 20 10 5 2
400 0.18 0.15 0.17 - - 0.16 0.18 0.20
200 0.05 0.04 0.04 - - 0.06 0.05 0.07
100 0.02 0.04 - - - - 0.04 0.04
50 0.03 0.02 - - - - 0.02 0.04

Table 2: Normalized MRE in the linear model with low noise for various calibrations:
K/(p+ 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For instance, for K/(p+ 1) =
200 = m0n0, the normalized MRE is available for m0 = 2, 5, 10, 20, 40, 100.

Table 2. The best performance is reached at the bottom left of the table with numbers650

that correspond to the optimal performance in Figure 2 (c). Moreover, notice that a651

large spectrum of calibration parameters (K,m0) yield low errors.652

6.2. Asymptotic behavior of the sensitivity indices estimators. To illus-653

trate the asymptotic behavior of the sensitivity indices estimators, Sobol’s g-function,654

a benchmark in sensitivity analysis [22, 18], is considered. Sobol’s g-function is given655

by656

g(U1, . . . , Up+1) =

p+1∏
j=1

|4Uj − 2|+ aj
1 + aj

,657

658

where the aj are nonnegative and the Uj are independent standard uniform random659

variables. The less aj the more Uj is important. Elementary calculations show that660

the first-order Sobol index associated with Uj is given by661

S
(a1,...,ap+1)
j =

1

3(1 + aj)2

−1 +

p+1∏
j=1

(4/3 + a2
j + 2aj)

(1 + aj)2

−1

.662

663

To build a stochastic model out of Sobol’s g-function, we let one of the Uj play664

the role of Z. For instance if Ui, 1 ≤ i ≤ p + 1, were to play this role, then the665

stochastic model would be666

Y = f(X1, . . . , Xp, Z) = g(X1, . . . , Xi−1, Z,Xi, . . . , Xp).(6.1)667668

Of course Y and f above depend on i. In the rest of this section we choose arbitrarily669

i = 2 and p = 4.670

The Sobol indices of the first and of the second kind (in the sense of Definition 3.1671

and 3.2) are then easily seen to be672

S′j =

{
S

(a1,...,ap+1)
j if 1 ≤ j ≤ i− 1

S
(a1,...,ap+1)
j+1 if i ≤ j ≤ p

673

674

and S′′j = S
(bi1,...,bip)
j , where675

bij =

{
aj if 1 ≤ j ≤ i− 1,

aj+1 if i ≤ j ≤ p.676
677
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For each kind of Sobol index, we produced 500 estimates of the p Sobol indices678

and computed the values of the mean squared error (MSE) by averaging over the679

500 replications and summing over the p indices. We tested n = 100, 500, 2500 and680

m = 1, 10, 100.681
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Fig. 3: MSEs for the Sobol index estimators of the first and second kind (logarithmic
scale).
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Fig. 4: Boxplots of the estimates for the Sobol index of the second kind associated
with X1. The red horizontal line is the truth.

The MSEs are shown in Figure 3. Let us look at 3a. As n increases, the decrease682

is linear for each m. This indicates that the MSEs go to zero at a polynomial rate,683

even if m is fixed (look at the line m = 1). This agrees with the theoretical results684
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of Section 5. The picture is different for the estimator of Sobol indices of the second685

kind. In 3b, the curve for m = 1 is not a straight line, indicating that the MSE may686

not go to zero. Indeed, the MSE for m fixed is not expected to go to zero because687

of the bias depending on m. To make the MSE go to zero, one has to force m go to688

infinity.689

Figure 4, which shows the distribution of the estimates for the index associated690

to X1, better explains this phenomenon. Here the bias is apparent for m = 1 and691

vanishes as m goes to infinity. The bias for the indices associated with the other692

inputs is not as large (not shown here).693

7. Conclusion. The practical method that consists of repeating the stochastic694

model at each exploration of the input space was analysed in the context of global695

sensitivity analysis. To address the problem of finding an optimal tradeoff between the696

number of repetitions and the number of explorations, the MRE was considered. It697

was shown that the MRE is less than some bound, the global minimum of which can be698

found explicitly and used in a two-stage procedure to construct asymptotically efficient699

estimators. To do this analysis, we had to formally define the sensitivity indices to700

which the estimator converges, which led us to consider a definition of stochastic701

models arising from minimal distributional assumptions. A link was made with the702

model in [9]. Our representation of stochastic models allowed to define another kind703

of sensitivity indices, called the indices of the first kind, for which estimators were704

constructed. During our asymptotic analysis, it was discovered that the estimators705

for the indices of the second kind are asymptotically biased, while the estimators706

for the indices of the first kind are not. To test the theory, simulation experiments707

were conducted, where the bias of the sensitivity estimator of the second kind was708

confirmed. Optimal compromises between repetitions and explorations have been709

identified and compared with the output of the two-stage procedure for different710

values of the tuning parameters.711

This work opens many research directions. First, the sensitivity estimators of the712

two stages could be aggregated to build estimators with a lower variance. Second,713

other methods might be developed to optimize the Monte-Carlo sampling scheme. For714

instance the MSE might be approximated or asymptotic variance-covariance matrices715

might be minimized. Third, multilevel Monte-Carlo sampling schemes might be con-716

sidered to alleviate the bias issue. Fourth, a finite-sample analysis could be conducted717

to get insight into the tradeoff K is subjected to. Fifth, since the bias is known, it718

could be estimated to build bias-corrected sensitivity indices estimators. Sixth, the719

problem of choosing a number of calls with many divisors must be addressed. It may720

be worth to call the model a bit less if this permits to have a better set divp(T ). Sev-721

enth, the connection between our representation of stochastic models and that of [9]722

could be investigated further.723

Appendix A. Calculations of some sensitivity indices.724

A.1. Calculations for S̃HAG
1 . We have725

S̃HAG
1 = E

(
Var(E[f(X,Z)|Xj , Z]|Z)

Var(f(X,Z)|Z)

)
=

∫
Ω

Var(E[f(X,Z)|Xj , Z]|Z)

Var(f(X,Z)|Z)
dP.726

727728
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Since the term inside the integral is a function of Z and the law of Z is the standard729

uniform distribution, a change of measures yields730

S̃HAG
1 =

∫
(0,1)

Var(E[f(X, z)|Xj , Z = z]|Z = z)

Var(f(X, z)|Z = z)
dz =

∫
(0,1)

Var(E[f(X, z)|X1])

Var(f(X, z))
dz.731

732

It remains to know what the ratio inside the integral is. We have733

Var(f(X, z)) = Var(Φ−1(z)X2 +X1) =Φ−1(z)2 Var(X2) + Var(X1)734

=Φ−1(z)2L
2

12
+

1

12
,735

736

and737

Var(E[f(X, z)|X1]) = Var(E[Φ−1(z)X2 +X1|X1])738

= Var(Φ−1(z) E[X2|X1] + E[X1|X1])739

= Var(Φ−1(z) E[X2] +X1)740

= Var(X1)741

=
1

12
742
743

and hence744

S̃HAG
1 =

∫
(0,1)

1

Φ−1(z)2L2 + 1
dz =

∫ ∞
−∞

1

z2L+ 1

1√
2π
e−z

2/2 dz.745

746

A.2. Calculations for S′1 in Example 3. The sensitivity index of the first747

kind associated with the first input is given by748

S′1 =
Var[E(X1 +X2Φ−1(Z)|X1)]

Var[X1 +X2Φ−1(Z)]
.749

750

The numerator is given by Var[E(X1 +X2Φ−1(Z)|X1)] = Var[X1 + E(X1Φ−1(Z))] =751

Var[X1] = 1/12. The denominator is given by Var[X1 + X2Φ−1(Z)] = Var[X1] +752

Var[X2Φ−1(Z)] = 1/12 + Var[X2Φ−1(Z)], where753

Var[X2Φ−1(Z)] = Var[E(X2Φ−1(Z)|Z)] + E(Var[X2Φ−1(Z)|Z])754

= Var

[
Φ−1(Z)

(
L

2
+ 1

)]
+

∫ 1

0

Φ−1(z)2 Var[X2] dz755

=

(
L

2
+ 1

)2

+
L2

12
,756

757

so that758

S′1 =
1/12

1/12 + (L/2 + 1)2 + L2/12
=

1

4(L2 + 3(L+ 1)) + 1
.759

760

Appendix B. Proofs.761
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B.1. Proof of Lemma 2.2. Since P is a product probability measure, we can762

write P = ⊗pj=1Pj . Let Ω = (0, 1)p+1 endowed with its Borel σ-field and let P be the763

product Lebesgue measure λ⊗
p+1
j=1 . If Fj denotes the distribution function corresonding764

to Pj then, for ω = (ω1, . . . , ωp+1) ∈ Ω, put Xj(ω) = F←j (ωj) := inf{xj ∈ R :765

Fj(xj) ≥ ωj} for all j = 1, . . . , p and Z(ω) = ωp+1. Take f(x, z) = F←x (z) := inf{t ∈766

R : Fx(t) ≥ z}, z ∈ (0, 1), where Fx is the cumulative distribution function associated767

with Px. Standard probability techniques show that f(x, Z) is measurable for every768

x. Moreover, for every t ∈ R,769

P (f(x, Z) ≤ t)770

=P (Z ≤ Fx(t)) = λ⊗
p+1
j=1{ω ∈ Ω : ωp+1 ≤ Fx(t)} = λ(0, Fx(t)] = Fx(t).771772

Finally, by the same token,773

P (X1 ≤ t1, . . . , Xp ≤ tp, Z ≤ tp+1)774

=P{ω : ω1 ≤ F1(t1), . . . , ωp ≤ Fp(tp), ωp+1 ≤ tp+1} = tp+1

p∏
j=1

Fj(tj).775

776

The proof is complete.777

Proof of Proposition 4.1. Assume without loss of generality that D1 < · · · <778

Dp. We first prove the following Lemma. For convenience, the subscripts n and m779

are left out.780

Lemma B.1. Let i < j. Then781

P (D̂i − D̂j ≥ 0) ≤ Var D̂i + Var D̂j
1
2 |Di −Dj |2

.782

783

Proof. We have784

P (D̂i − D̂j ≥ 0) ≤P (|D̂i −Di|+ |D̂j −Dj | ≥ Dj −Di)785

≤P (|D̂i −Di|2 + |D̂j −Dj |2 ≥
1

2
|Dj −Di|2)786

787788

and the claim follows from Markov’s inequality.789

We now prove Proposition 4.1. Recall that D1 < · · · < Dp. We have790

p∑
i=1

E |R̂i −Ri| ≤
p∑
i=1

p∑
j=1

E |1(D̂j ≤ D̂i)− 1(Dj ≤ Di)|791

≤
p∑
i=1

∑
j 6=i

Var D̂i + Var D̂j
1
2 |Di −Dj |2

792

≤ 4(p− 1)

min
j<j′
|Dj −Dj′ |2

p∑
i=1

Var D̂i,793

794

where the second inequality holds by Lemma B.1 and because795

E |1(D̂j ≤ D̂i)− 1(Dj ≤ Di)| =

 E |1(D̂j > D̂i)| if j < i,
0 if j = i,

E |1(D̂j ≤ D̂i)| if j > i.

796

797
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It remains to calculate the variances. But this is done in Lemma D.3 in Appendix D,798

where it is found that799

Var D̂j =
1

n
{Var E[Y0Yj |X] +

1

m
(E Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X])800

+
1

m2
E Var[Y0|X] Var[Yj |X]}.801

802

Proof of Proposition 4.3. We distinguish between three cases: 0 < m∗ < 1,803

m∗ > (T − K)/(p + 1) and 1 ≤ m∗ ≤ (T − K)/(p + 1). Recall that m†T−K is the804

minimizer of v(m), m in divp(T −K).805

If 0 < m∗ < 1 then by definition ϕT−K(m∗) = 1 and by convexity v(m∗) ≤806

v(1) ≤ v(m) for all m in divp(T −K). Therefore m†T−K = 1.807

If m∗ > (T −K)/(p+ 1) then by definition ϕT−K(m∗) = (T −K)/(p+ 1) and by808

convexity v(m∗) ≤ v((T −K)/(p + 1)) ≤ v(m) for all m in divp(T −K). Therefore809

m†T−K = (T −K)/(p+ 1).810

If 1 ≤ m∗ ≤ (T −K)/(p+ 1) then by definition811

ϕT−K(m∗) =

{
xm∗yT−K if

√
xm∗yT−Kpm∗qT−K > m∗

pm∗qT−K if
√

xm∗yT−Kpm∗qT−K ≤ m∗.
812

813

By convexity m†T−K must be xm∗yT−K or pm∗qT−K . If xm∗yT−K = pm∗qT−K then814

m†T−K = pm∗qT−K = ϕT−K(m∗). Otherwise, since v(x) = ζ1x + ζ2 + ζ3/x, x > 0,815

for some constants ζ1, ζ2 and ζ3 such that ζ3/ζ1 = m∗, we have816

v(xm∗yT−K) < v(pm∗qT−K) iff
√

xm∗yT−Kpm∗qT−K >
ζ3
ζ1

= m∗.817
818

Therefore ϕT−K(m∗) = m†T−K .819

Let us prove that the minimizer of v(m), m ∈ divp(T − K), is unique if m∗ 6=820 √
xm∗yT−Kpm∗qT−K . If it were not, then we would have v(xm∗yT−K)821

= v(pm∗qT−K). Bus this implies m∗ =
√

xm∗yT−Kpm∗qT−K , which is a contra-822

diction.823

Proof of Theorem 4.4. In this proof m0 and n0 are denoted by m and n,824

respectively. In view of (4.3) and (4.4)–(4.9), we have825

m̂∗K =

√√√√∑p
j=1 ζ̂3,j∑p
j=1 ζ̂1,j

=

√√√√√∑p
j=1

1
n

∑n
i=1 ξ

(4.4)
j;m,i + ξ

(4.5)
j;m,i − ξ

(4.6)
j;m,i − ξ

(4.7)
j;m,i∑p

j=1
1
n

∑n
i=1 ξ

(4.8)
j;m,i −

(
1
n

∑n
i=1 ξ

(4.9)
j;m,i

)2 ,826

827

where the ξ
(e)
j;m,i, i = 1, . . . , n, j = 1, . . . , p, e = 4.4, . . . , 4.9, are implicitly defined828

through (4.4)–(4.9). Let829

ξ =
1

n

n∑
i=1

ξm,i,830

ξm,i = (ξ>1;m,i, . . . , ξ
>
p;m,i)

>, i = 1, . . . , n,831

ξj;m,i = (ξ
(4.4)
j;m,i, . . . , ξ

(4.9)
j;m,i)

>, j = 1, . . . , p, i = 1, . . . , n.832
833
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Let s be the function defined by834

s(x) =

√√√√∑p
j=1 x

(4.4)
j + x

(4.5)
j − x(4.6)

j − x(4.7)
j∑p

j=1 x
(4.8)
j − x(4.9)2

j

,835

836

where x = (x>1 , . . . ,x
>
p )>, xj = (x

(4.4)
j , . . . , x

(4.9)
j )>, j = 1, . . . , p. With the above837

notation we have m̂∗K = s(ξ). Moreover, elementary calculations show that838

E ξm,1 = θ +

4∑
ν=1

Cν

mν
,(B.1)839

840

where the Cν are vectors of constants, θ = (θ>1 , . . . ,θ
>
p )> and841

θj = E



Y
(1,1)2
0 Y

(1,1)2
j

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)
j Y

(1,2)
j

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)2
j

Y
(1,1)
j Y

(1,2)
j Y

(1,1)2
0

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)
j Y

(1,2)
j

Y
(1,1)
j Y

(1,1)
0


.842

843

Check that m∗ = s(θ). A concatenation of two Taylor expansions yield844

√
n(ξ − E ξm,1)>ṡ(E ξm,1) +

1

2
(ξ − E ξm,1)>s̈n,m(ξ − E ξm,1)845

=
√
n(s(ξ)− s(E ξm,1))(B.2)846

=
√
n(s(ξ)− s(θ)− (E ξm,1 − θ)>ṡ(θ)− 1

2
(E ξm,1 − θ)>s̈m(E ξm,1 − θ)),847

848

where ṡ is the gradient of s, s̈n,m is the Hessian matrix of s at a point between ξ849

and θm, and, s̈m is the Hessian matrix of s at a point between E ξm,1 and θ. It850

follows from (B.1) that (E ξm,1−θ)>ṡ(θ) is clearly of the form
∑4
ν=1 Cν/m

ν for some851

constants Cν . Putting852

εm =
1

2
(E ξm,1 − θ)>s̈m(E ξm,1 − θ)) +

4∑
ν=2

Cν
mν

,853

854

it follows from (B.2) that855

856

(B.3)
√
n(ξ − E ξm,1)>ṡ(E ξm,1) +

1

2
(ξ − E ξm,1)>s̈n,m(ξ − E ξm,1)857

=
√
n(m̂∗K −m∗ −

C1

m
− εm).858

859

If m is fixed then Lemma C.2 in Appendix C yields860

√
n(ξ − E ξm,1)→ N(0,Σm),861862

for some variance-covariance matrix Σm of size 6p×6p. Moreover, the second term in863

the left-hand side of (B.3) is oP (1) by Cauchy-Schwartz’s inequality and the continuity864

This manuscript is for review purposes only.



26 G. MAZO

of the second derivatives of s. The first term goes to N(0, ṡ(E ξm,1)>Σmṡ(E ξm,1))865

and hence the claim follows with σ2
m = ṡ(E ξm,1)>Σmṡ(E ξm,1) and C = C1.866

If m→∞ then again Lemma C.2 in Appendix C applies: we have867

√
n(ξ − E ξm,1)→ N(0, lim

m→∞
Σm).868

869

Since εm−
∑4
ν=2 Cν/m

ν = o(m−1), ṡ is continuous and E ξm,1 → θ, the claim follows.870

The proof is complete.871

Proof of Proposition 4.6. By definition, m̂†T−K = ϕT−K(m̂∗K) and m†T−K =872

ϕT−K(m∗). The function ϕT−K is piecewise constant and has |divp(T−K)|−1 points873

of discontinuity of the form
√
ij, where i and j are two consecutive members of874

divp(T −K) \
{

1,
T −K
p+ 1

}
.875

876

Denote the set of discontinuity points by DT−K . Clearly,877

DT−K ⊂ {
√
ij : i and j are two consecutive integers} = E .878879

There exists an open interval that contains m∗ but does not contain any points of880

E and hence does not contain any points of DT−K , whatever T and K. If m̂∗K is in881

this interval then there are no discontinuity points between m∗ and m̂∗K and hence882

m̂†T−K = ϕT−K(m̂∗K) = ϕT−K(m∗) = m†T−K . By Corollary 4.5, the probability of883

that event goes to one as m0 and n0 go to infinity.884

Proof of Theorem 4.7. Let ε > 0. An obvious algebraic manipulation and885

Taylor’s expansion yield886

P

(∣∣∣∣∣ 1
T−K v(m̂†T−K)− 1

T v(m†T−K)

1
T v(m†T−K)

> ε

∣∣∣∣∣
)

887

≤ P
(∣∣∣∣ T

T −K
(m̂†T−K −m

†
T−K)v′(m̃) +

K

T −K
v(m†T−K)

∣∣∣∣ > v(m†T−K)ε

)
,888

889

where m̃ denotes a real between m̂†T−K andm†T−K . A decomposition of the probability890

above according to whether m̂†T−K −m
†
T−K 6= 0 or m̂†T−K −m

†
T−K = 0 yields the891

bound892

P
(
m̂†T−K −m

†
T−K 6= 0

)
+ P

(
K

T −K
> ε

)
.893

894

The first term goes to zero by Proposition 4.6. The second term goes to zero because895

K/T → 0.896

Proof of Theorem 5.1. The proof is based on the results in Appendix C. The897

Sobol estimators in (3.7) and (3.4) are of the form898

Ŝ′j;n,m =
1
n

∑n
i=1 ξ

UL
j;m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2
1
n

∑n
i=1 ξ

′LL
m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2 , j = 1, . . . , p,899

900

and901

Ŝ′′j;n,m =
1
n

∑n
i=1 ξ

UL
j;m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2
1
n

∑n
i=1 ξ

′′LL
m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2 , j = 1, . . . , p,902

903
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where the notation is obvious. Denote ξm,i := (ξUL
1;m,i, . . . , ξ

UL
p;m,i, ξ

UR
m,i, ξ

′LL
m,i , ξ

′′LL
m,i )>.904

Elementary but burdensome calculations show that905

E ξm,1 =



E E[f(X,Z)|X] E[f(X̃−1, Z)|X̃−1]
...

E E[f(X,Z)|X] E[f(X̃−p, Z)|X̃−p]
E f(X,Z)
E f(X,Z)2

E E[f(X,Z)|X]2 + E Var[f(X,Z)|X]
m


.906

(Some calculations are carried out in Appendix D.) Define the function907

908

s(x1, . . . , xp, xp+1, xp+2, xp+3)909

=

(
x1 − x2

p+1

xp+2 − x2
p+1

, . . . ,
xp − x2

p+1

xp+2 − x2
p+1

,
x1 − x2

p+1

xp+3 − x2
p+1

, . . . ,
xp − x2

p+1

xp+3 − x2
p+1

)
.910

911

Clearly, we have912

s

(
1

n

n∑
i=1

ξm,i

)
=

(
Ŝ′n,m
Ŝ′′n,m

)
913

and914

s(E ξm,1) =

(
S′

S′′
[
1− E Var[f(X,Z)|X]

E Var[f(X,Z)|X]+mVar E[f(X,Z)|X]

])
.915

If m is fixed then Lemma C.2 in Appendix C yields916

√
n

(
1

n

n∑
i=1

ξm,i − E ξm,1

)
d→ N(0,Σm),917

for some nonnegative matrix Σm of size (p+ 3)× (p+ 3) and the result follows by the918

delta-method.919

If m → ∞, Lemma C.2 still holds with the variance-covariance matrix replaced920

by its limit. Taylor’s expansion yields921

√
n

(
s

(
1

n

n∑
i=1

ξm,i

)
− s(E ξm,1)

)
922

=
√
n

((
1

n

n∑
i=1

ξm,i − E ξm,1

)
ṡm923

+
1

2

(
1

n

n∑
i=1

ξm,i − E ξm,1

)>
s̈n,m

(
1

n

n∑
i=1

ξm,i − E ξm,1

) ,924

925

where ṡm is the gradient of s at E ξm,1 and s̈n,m is the Hessian matrix of s at a926

point between n−1
∑
i ξm,i and E ξm,1. Since that point goes to a constant and s has927
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continuous second derivatives, it holds that s̈n,m goes to a constant as well. So does928

ṡm and the claim follows by Slutsky’s lemma.929

Appendix C. A unified treatment of the asymptotics. All estimators in930

this paper have a common form, given by931

(C.1)
1

n

n∑
i=1

ξm,i,932

with933

ξm,i =

L∏
l=1

1

m

m∑
k=1

p∏
j=0

Y
(i,k)bj;l
j ,(C.2)934

935

where Y
(i,k)
0 = Y (i,k) = f(X(i), Z

(i,k)
0 ), Y

(i,k)
j = f(X̃

(i)
−j , Z

(i,k)
j ) for j = 1, . . . , p, and936

bj;l, j = 0, . . . , p, l = 1, . . . , L, are nonnegative coefficients. The coefficients are937

arranged in a matrix (bj;l) with L rows and p+1 columns, where bj;l is the element in938

the lth row and (j+1)th column. This way, all estimators of the form (C.1) and (C.2),939

or, equivalently, all summands (C.2), can be represented by a matrix. We sometimes940

write ξm,i ' (bj;l), where (bj;l) is the matrix of size L× (p+ 1) with coefficients bj;l,941

j = 0, . . . , p, l = 1, . . . , L.942

C.1. Examples. The estimator943

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0

1

m

m∑
k′=1

Y
(i,k′)
j944

945

is of the form (C.1) and (C.2) with L = 2 and coefficients946 (
1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0

)
,947

948

where the non-null columns are the first and the (j + 1)th ones. The estimators949

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0 ,

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)2
0 ,950

1

n

n∑
i=1

(
1

m

m∑
k=1

Y
(i,k)
0

)2

951

952

are of the form (C.1) and (C.2) with L = 2 and coefficients953 (
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

)
,

(
2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

)
,954 (

1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0

)
,955

956

respectively.957
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The estimators of Section 4. In view of (4.4)–(4.9), the estimators ζ̂3,j and958

ζ̂1,j can be expressed in terms of estimators of the form (C.1) and (C.2): we have959

ζ̂3,j =
1

n

n∑
i=1

ξ
(4.4)
j;m,i + ξ

(4.5)
j;m,i − ξ

(4.6)
j;m,i − ξ

(4.7)
j;m,i, and,960

ζ̂1,j =
1

n

n∑
i=1

ξ
(4.8)
j;m,i −

(
1

n

n∑
i=1

ξ
(4.9)
j;m,i

)2

,961

962

where963

ξ
(4.4)
j;m,i, ξ

(4.5)
j;m,i964

ξ
(4.6)
j;m,i, ξ

(4.7)
j;m,i,965

ξ
(4.8)
j;m,i, ξ

(4.9)
j;m,i966

967

are all of the form (C.2) with L = 4 and coefficients968 
2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 2 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 1 0 . . . 0

 ,969


1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 2 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,970


1 0 . . . 0 1 0 . . . 0
1 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


1 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,971

972

respectively. In the matrices above, the first and j + 1th columns are nonnull.973

The estimators of Section 5. The Sobol estimators in (3.7) and (3.4) are of974

the form (C.1) and (C.2) with L = 2 and coefficients975

ξUL
1;m,i '

(
1 0 0 · · · 0
0 1 0 · · · 0

)
, · · · , ξUL

p;m,i '
(

1 0 · · · 0 0
0 0 · · · 0 1

)
976

for the upper left (UL) terms,977

ξUR
m,i '

(
1 0 · · · 0
0 0 · · · 0

)
978

for the upper right (UR) term,979

ξ′LL
m,i '

(
2 0 · · · 0
0 0 · · · 0

)
980

for the lower left (LL) term of Ŝ′j;n,m and981

ξ′′LL
m,i '

(
1 0 · · · 0
1 0 · · · 0

)
982

for the lower left (LL) term of Ŝ′′j;n,m.983
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C.2. A central limit theorem. For each n, the random variables ξm,1, . . . , ξm,n984

are independent and identically distributed. Denote by Em,i(L) the set of all sum-985

mands (C.2). In other words, Em,i(L) is the set of all nonnegative matrices of size986

L× (p+1). This set has useful properties, gathered in Proposition C.1 for subsequent987

use.988

Proposition C.1. Let ξ be an element of Em,i(L) with coefficients (bj;l). The989

following statements are true.990

(i) If ξ′ is an element of Em,i(L) with coefficients (b′j;l) then ξξ′ is an element of991

Em,i(2L) with coefficients992 

b0;1 · · · bp;1
...

...
b0;L · · · bp;L
b′0;1 · · · b′p;1

...
...

b′0;L · · · b′p;L


.993

994

(ii) The limit of E ξ exists as m→∞.995

(iii) If there exists some function F such that |f(x, z)| ≤ F (x) for all x and z in the996

domain of definition of f then997

|ξ| ≤

 p∨
j=0

Fj(X
(i))


∑p

j=0

∑L
l=1 bj;l

,998

where Fj(X
(i)) is F (X(i)) if j = 0 and F (X̃

(i)
−j) if j ≥ 1.999

Proof. The proof of (i) is trivial. Let us prove (ii). We have1000

E ξ =
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E

L∏
l=1

p∏
j=0

Y
(1,kl)bj;l
j1001

=
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E E

 L∏
l=1

p∏
j=0

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

1002

=
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E

p∏
j=0

E

(
L∏
l=1

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

)
.(C.3)1003

1004

Since (i) X(1) and {Z(1,k), k = 1, . . . ,m} are independent and (ii) the law of1005

(Z(1,k1), . . . ,Z(1,kL))1006

is invariant through any permutation of distinct k1, . . . , kL, all the inner expectations1007

in (C.3) are equal to some others. For if k1, . . . , kL are distinct then1008

E

(
L∏
l=1

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

)
= E

(
L∏
l=1

Y
(1,l)bj;l
j

∣∣∣∣∣X(1)

)
1009

1010
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for all j = 0, . . . , p. The number of inner expectations equal to the one above is1011

m(m − 1) · · · (m − L + 1), a polynomial in m with degree L. If some components of1012

the tuple (k1, . . . , kL) are equal, then we can always write1013

E

(
L∏
l=1

Y
(1,kl)bjl
j

∣∣∣∣∣X(1)

)
= E

 L′∏
l=1

Y
(1,l)βj;l

j

∣∣∣∣∣X(1)

1014

1015

for some L′ ≤ L and coefficients βjl It is easy to see that the number of inner expec-1016

tations equal to the one above is a polynomial in m with degree at most L. (Looking1017

at examples helps to see this; see e.g. the proof of Lemma D.2 in Appendix D.)1018

Therefore, the sum in (C.3) is also a polynomial in m with degree at most L and the1019

claim follows (E ξ can be zero). To prove (iii), simply remember that, by assumption,1020

|Y (1,k)| ≤ F (X(1)) and |Y (1,k)
j | ≤ F (X̃

(1)
−j ) for all k and all j.1021

Two frameworks are considered:1022

• n→∞ and m is fixed;1023

• n→∞ and m→∞.1024

In the second framework mn is a sequence indexed by n that goes to infinity as n goes1025

to infinity.1026

Lemma C.2. Let ξ
(I)
m,i, I = 1, . . . , N , be elements of Em,i(L) with coefficients1027

(b
(I)
j;l ). Assume1028

EF (X(1))2
∑p

j=0

∑L
l=1 b

(I)
j;l <∞1029

for all I = 1, . . . , N . Let n→∞. If m is fixed then1030

√
n

[
1

n

n∑
i=1

ξ
(1)
m,i − E ξ

(1)
m,1, . . . ,

1

n

n∑
i=1

ξ
(N)
m,i − E ξ

(N)
m,1

]>
d→ N(0,Σm),1031

1032

where Σm is the variance-covariance matrix of ξm,i = (ξ
(1)
m,i, . . . , ξ

(N)
m,i )>. If m →1033

∞ then limm→∞ Σm exists elementwise and the above display with Σm replaced by1034

limm→∞Σm is true.1035

Proof. Let m be fixed. By Proposition C.1 (i), ξ
(I)2
m,i , I = 1, . . . , N , belongs to1036

Em,i(2L) and has coefficients1037

ξ
(I)2
m,i '



b
(I)
0;1 · · · b

(I)
p;1

...
...

b
(I)
0;L · · · b

(I)
p;L

b
(I)
0;1 · · · b

(I)
p;1

...
...

b
(I)
0;L · · · b

(I)
p;L


.1038

1039

Thus, denoting
∑p
j=0

∑L
l=1 b

(I)
j;l by β, Proposition C.1 (iii) yields1040

ξ
(I)2
m,i ≤

p∨
j=0

Fj(X
(i))2β(C.4)1041

1042
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and hence1043

E ξ
(I)2
m,i ≤ E

p∨
j=0

Fj(X
(1))2β ≤ (p+ 1) E

(
F (X(1))

)2β

<∞.1044

1045

Therefore we can apply the central limit theorem to finish the proof for m fixed.1046

Let m→∞. According to Lindeberg-Feller’s central limit theorem (see e.g. [30]),1047

it suffices to show1048

(i) for all ε > 0,1049

n∑
i=1

E

∥∥∥∥ 1√
n
ξm,i

∥∥∥∥2

1

{∥∥∥∥ 1√
n
ξm,i

∥∥∥∥ > ε

}
→ 0,1050

1051

and1052

(ii) the limit
∑n
i=1 Cov(ξm,i/

√
n) exists and is finite.1053

Let us show (i). Denoting X = (X(1), X̃(1)), we have1054

n∑
i=1

E

∥∥∥∥ξm,i√n
∥∥∥∥2

1
{∥∥ξm,i∥∥ > √nε} = E ‖ξm,1‖21{‖ξm,1‖ >

√
nε}1055

= E

N∑
I=1

ξ
(I)2
m,1 1{‖ξm,1‖ >

√
nε}1056

=

N∑
I=1

E
[
E
(
ξ

(I)2
m,1 1{‖ξm,1‖ >

√
nε}|X

)]
.1057

1058

By (C.4), we have1059

E
(
ξ

(I)2
m,1 1{‖ξm,1‖ >

√
nε}|X

)
≤

p∨
j=0

Fj(X
(1))2βP

(∥∥ξm,1∥∥ > √nε|X)1060

≤
p∨
j=0

Fj(X
(1))2β

∑N
I=1 E

(
ξ

(I)2
m,1 |X

)
nε2

1061

≤
N
∨p
j=0 Fj(X

(1))4β

nε2
,1062

1063

where the last inequality holds by using (C.4) once more. The upper bound goes to1064

zero and is dominated by an integrable function. Thus, we can apply the dominated1065

convergence theorem to complete the proof.1066

Let us show that (ii) holds. We have
∑n
i=1 Cov(ξm,i/

√
n) = Cov(ξm,1). The1067

element (I, J) in this matrix is given by E ξ
(I)
m,1ξ

(J)
m,1 − E ξ

(I)
m,1 E ξ

(J)
m,1. Remember that1068

E ξ
(I)2
m,1 <∞, I = 1, . . . , N , and hence E ξ

(I)
m,1ξ

(J)
m,1 ≤ E ξ

(I)2
m,1 /2+ξ

(J)2
m,1 /2 <∞. Therefore1069

the limit of Cov ξm,1 exists and is finite. The proof is complete.1070

Appendix D. Explicit moment calculations. Explicit moment calculations1071

are given for the summands in the proof of Theorem 5.1. In this section, E f(X,Z)1072

and E E[f(X,Z)|X]2 are denoted by µ and D, respectively. Recall that the upper-left1073

term in (3.6) and (3.5) is denoted by Dj . The moments are given in Lemma D.11074

and Lemma D.2. The variances and covariances are given in Lemma D.3. Let X =1075
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(X(1), X̃(1)). Whenever there is a superscript X added to the expectation symbol E1076

or the variance symbol Var, this means that these operators are to be understood1077

conditionally on X. An integral with respect to P (dx) means that we integrate with1078

respect to the law of X.1079

Lemma D.1 (Moments of order 1). The moments of order 1 are given by1080

E ξUL
j;m1 = Dj ,1081

E ξUR
m1 = µ,1082

E ξ′′LLm1 =
1

m
E VarX f(X(1), Z(1,1)) +D.1083

1084

1085

Proof. One has1086

E ξUL
j;m1 =

1

m2

∑
k,k′

E f(X(1), Z(1,k))f(X̃
(1)
−j , Z

(1,k′)
j )1087

=
1

m2

∑
k,k′

∫
E f(x, Z(1,k))f(x̃−j , Z

(1,k′)
j )P (dx)1088

= E f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )1089

=Dj ,10901091

where the integral is taken with respect to the law of x = (x, x̃), and,1092

E ξ′′LL
m1 =

1

m2

∑
k,k′

E f(X(1), Z(1,k))f(X(1), Z(1,k′))1093

=
1

m
E VarX f(X,Z) + E(EX f(X,Z))2

1094

=
1

m
E VarX f(X,Z) +D.1095

1096

The proof for ξUR
m1 is similar.1097
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Lemma D.2 (Moments of order 2). The moments of order 2 are given by1098

E ξ
(UL)2
j;m1 = Var EX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j ) +D2

j1099

+
1

m
[E VarX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )1100

−VarX f(X(1), Z(1,1)) VarX f(X̃
(1)
−j , Z

(1,1)
j )]1101

+
1

m2
E VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j ),1102

E ξ
(UR)2
m1 =

1

m
E VarX f(X(1), Z(1,1)) + E(EX f(X(1), Z(1,1)))2,1103

E ξ
′′(LL)2
m1 =

m(m− 1)(m− 2)(m− 3)

m4
1104

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X(1), Z(1,3))f(X(1), Z(1,4))1105

+

(
4
2

)
m(m− 1)(m− 2)

m4
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X(1), Z(1,3))1106

+

(
4
3

)
m(m− 1)

m4
E f(X(1), Z(1,1))3f(X(1), Z(1,2))1107

+
m

m4
E f(X(1), Z(1,1))4

1108

+

(
4
2

)
m(m− 1)/2

m4
E f(X(1), Z(1,1))2f(X(1), Z(1,2))2

1109
1110

1111

Proof. Let us first deal with ξUL
j;m1. We have1112

1113

E ξ
(UL)2
j;m1 =

1

m4

∑
k1,k2,k3,k4

E f(X(1), Z(1,k1))f(X(1), Z(1,k2))1114

f(X̃
(1)
−j , Z

(1,k3)
j )f(X̃

(1)
−j , Z

(1,k4)
j )1115

1116

where, in the sum, the indices run over 1, . . . ,m. We split the sum into four parts.1117

The first contains the m2(m − 1)2 terms that satisfy k1 6= k2 and k3 6= k4. In this1118

part, all the terms are equal to1119

E
(

EX f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )

)2

.(term 1)1120
1121

The second part contains the m2(m− 1) terms that satisfy k1 6= k2 and k3 = k4 and1122

that are equal to1123

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X̃
(1)
−j , Z

(1,1)
j )2.(term 2)1124

1125

The third part contains the m2(m − 1) terms that satisfy k1 = k2 and k3 6= k4 and1126

that are equal to1127

E f(X(1), Z(1,1))2f(X̃
(1)
−j , Z

(1,1)
j )f(X̃

(1)
−j , Z

(1,2)
j ).(term 3)1128

1129

Finally, the fourth part contains the m2 terms that satisfy k1 = k2 and k3 = k4 and1130

are equal to1131

E f(X(1), Z(1,1))2f(X̃
(1)
−j , Z

(1,1)
j )2.(term 4)1132

1133

This manuscript is for review purposes only.



SENSITIVITY INDICES, ESTIMATORS AND A TRADEOFF 35

(One can see that the number of terms is m4.) Thus,1134

E ξ
(UL)2
m1 =(term 1)1135

+
1

m
[(term 2) + (term 3)− 2(term 1)]1136

+
1

m2
[(term 1)− (term 2)− (term 3) + (term 4)].1137

1138

Furthermore, [(term 1) - (term 2) - (term 3) + (term 4)] is equal to1139 ∫ (
EX f(x, Z)f(x̃−j , Zj)

)2

1140

− EX f(x, Z(1,1))f(x, Z(1,2))f(x̃−j , Z
(1,1)
j )2

1141

− EX f(x, Z(1,1))2f(x̃−j , Z
(1,1)
j )f(x̃−j , Z

(1,2)
j )1142

+ EX f(x, Z(1,1))2f(x̃−j , Z
(1,1)
j )2 dP (x)1143

=

∫ (
EX f(x, Z)

)2 (
EX f(x̃−j , Zj)

)2

1144

−
(

EX f(x, Z)
)2

EX f(x̃−j , Zj)
2

1145

− EX f(x, Z)2
(

EX f(x̃−j , Zj)
)2

1146

+ EX f(x, Z)2 EX f(x̃−j , Zj)
2 dP (x)1147

=

∫
VarX f(X,Z) VarX f(X̃−j , Zj) dP (x).1148

1149

Likewise, we find that [(term 2)+(term 3)-2(term 1)] is equal to1150

E VarX f(X,Z)f(X̃−j , Zj)−VarX f(X,Z) VarX f(X̃−j , Zj),11511152

and term 1 is Var EX f(X,Z)f(X̃−j , Z̃) +D2
j .1153

We now deal with ξ′′LL
m1 . We have1154

1155

E ξ
′′(LL)2
m1 =

1

m4

∑
k1,k2,k3,k4

E f(X(1), Z(1,k1))f(X(1), Z(1,k2))1156

f(X(1), Z(1,k3))f(X(1), Z(1,k4)).11571158

The sum is split into five parts. The first part consists of the m(m−1)(m−2)(m−3)1159

terms with different indices; those terms are equal to1160

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X(1), Z(1,3))f(X(1), Z(1,4)).1161

The second part consists of the
(

4
2

)
m(m − 1)(m − 2) terms with exactly two equal1162

indices; those terms are equal to1163

E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X(1), Z(1,3)).1164

The third part consists of the
(

4
3

)
m(m − 1) terms with exactly three equal indices;1165

those terms are equal to1166

E f(X(1), Z(1,1))3f(X(1), Z(1,2)).1167
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The fourth part consists of the m terms with exactly four equal indices; those terms1168

are equal to1169

E f(X(1), Z(1,1))4.1170

The fifth and last part consists of the
(

4
2

)
m(m− 1)/2 terms with exactly two pairs of1171

equal indices; those terms are equal to1172

E f(X(1), Z(1,1))2f(X(1), Z(1,2))2.1173

(One can check that the total number of terms is m4.)1174

Lemma D.3 (Variances and covariances).1175

Var ξUL
m1 = Var EX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )(i)1176

+
1

m
[E VarX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )1177

−VarX f(X(1), Z(1,1)) VarX f(X̃
(1)
−j , Z

(1,1)
j )]1178

+
1

m2
E VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j ),1179

Cov(ξUL
m1 , ξ

UR
m1 ) =

m− 1

m
E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )(ii)1180

+
1

m
E f(X(1), Z(1,1))2f(X̃

(1)
−j , Z

(1,1)
j )−Djµ1181

Cov(ξUL
m1 , f(X,Z)2) =

1

m
E f(X(1), Z(1,1))3f(X̃

(1)
−j , Z

(1,1)
j )(iii)1182

+
m− 1

m
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )−Djκ(iii)1183

Var ξUR
m1 =

1

m
Var f(X,Z)(iv)1184

Cov(ξUR
m1 , f(X,Z)2) =

1

m
f(X,Z)3(v)1185

+
m− 1

m
E f(X(1), Z(1,1))2f(X(1), Z(1,2))− µκ1186

Cov(ξUL
mn1, ξ

′′LL
mn1) =

m

m3
E f(X(1), Z(1,1))3f(X̃

(1)
−j , Z

(1,1)
j )(vi)1187

+
3m(m− 1)

m3
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )1188

+
m(m− 1)(m− 2)

m3
E f(X(1), Z(1,1))f(X(1), Z(1,2))1189

f(X(1), Z(1,3))f(X̃
(1)
−j , Z

(1,1)
j )1190

− E f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )1191 {

1

m
E f(X(1), Z(1,1))2 +

m− 1

m
E f(X(1), Z(1,1))f(X(1), Z(1,2))

}
1192
1193

1194

Proof. The proof follows from direct calculations.1195

Appendix E. Calculations for the linear model.1196

Lemma E.1. Suppose that f(X,Z) = β0 + βp+1Z +
∑p
j=1 βjXj where X =1197

(X1, . . . , Xp), Zk, Z̃ik are independent, EXj = EZ = 0, EX2
j = EZ2 = 1, EX3

j = 0,1198
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EX4
j = 3. Then the squared optimal number of repetitions is given by1199

(m∗i )
2 =

β4
p+1

(β0 + βi)2 − 2β4
0 + (

∑p
j=0 β

2
j )2

1200

and the discriminator (the upper-left term in (3.6) and (3.5)) is1201

β2
0 + β2

i .1202

1203

Proof. We have1204

m∗i =
Ai +Bi + Ci +Di

Ei
,1205

with1206

Ai = E f(X,Z1)2f(X̃−i, Z̃i1)2
1207

Bi = E f(X,Z1)f(X̃−i, Z̃i1)f(X,Z2)f(X̃−i, Z̃i2)1208

Ci = −E f(X,Z1)2f(X̃−i, Z̃i1)f(X̃−i, Z̃i2)1209

Di = −E f(X̃−i, Z̃i1)2f(X,Z1)f(X,Z2)1210

Ei = B − [E f(X,Z1)f(X̃−i, Z̃i1)]212111212

where X = (X1, . . . , Xp), Zk, Z̃ik are independent, EXj = EZ = 0, EX2
j = EZ2 = 1,1213

EX3
j = 0, EX4

j = 3. We deal with the case1214

f(X,Z) = β0 + βp+1Z +

p∑
j=1

βjXj .1215

We calculate the terms one by one as follows. We have1216

Aj = E

β0 +

p∑
j=1

βjXj

2β0 + βiXi +
∑

j:1≤j 6=i

βjX̃j

2

1217

+

β0 +

p∑
j=1

βjXj

2

β2
p+1Z̃

2
i1 + β4

p+1Z
2
1 Z̃

2
i11218

+ β2
p+1Z

2
1

β0 + βiXi +
∑

j:1≤j 6=i

βjX̃j

2

1219

= Aj1 +Aj2 +Aj3,12201221

where E (A2) = β4
p+1 +β2

p+1

∑p
j=0 β

2
j , E (A3) = β2

p+1

∑p
j=0 β

2
j . Elementary but some-1222

what tedious calculations yield1223

E (A1) = β4
0 + 3β4

i + 6β2
0β

2
i + 2(β2

0 + β2
i )

∑
j:1≤j 6=i

β2
j +

 ∑
j:1≤j 6=i

β2
j

2

.1224

1225
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Similar calculations show that Bj = Aj1, Cj = −Aj1 − Aj3, Dj = −Aj1 − Aj3,1226

Ej = Aj1 − (β2
0 + β2

i )2. Thus,1227

(m∗i )
2 =

β4
p+1

(β0 + βi)2 − 2β4
0 + (

∑p
j=0 β

2
j )2

.
1228
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