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GLOBAL SENSITIVITY INDICES, ESTIMATORS AND TRADEOFF
BETWEEN EXPLORATIONS AND REPETITIONS FOR SOME
STOCHASTIC MODELS*

GILDAS MAZO*t

Abstract. Sobol sensitivity indices assess how the output of a given mathematical model is
sensitive to its inputs. If the model is stochastic then it cannot be represented as a function of the
inputs , thus raising questions as how to do a sensitivity analysis in such models. Practitioners have
been using a method that exploits the availability of softwares for deterministic models. For each
input, the stochastic model is repeated and the outputs averaged. These averages are seen as if they
were the outputs of a deterministic model and as such can feed standard softwares. In the context
of limited computational resources, one must ensure that the number of repetitions of the stochastic
model multiplied by the number of explorations of the input space is less than a fixed threshold.
The problem of finding an optimal tradeoff between the repetitions and the explorations is addressed
and the sensitivity indices corresponding to the above method are formally defined. A bound on
an error criterion that penalizes bad rankings of the inputs is minimized. Moreover, exploiting a
representation of stochastic models obtained from minimal distributional assumptions, another kind
of Sobol-like sensitivity index is considered. Estimators of both kinds are constructed and their
asymptotic properties studied. The theory is illustrated on numerical experiments.

Key words. asymptotic normality, Sobol indices, tradeoff, sensitivity analysis, stochastic model.

AMS subject classifications. 62G20, 60H99, 65C05

1. Introduction. The goal of sensitivity analysis is to assess how the output of
a given physical or mathematical model is sensitive to its inputs [23, 24]. Classically,
the model of interest is deterministic. To each input there corresponds an output
given by the model. Thus, in this case, the model is in fact a function, say f. To
assess the sensitivity of the model to its inputs, the probabilistic/statistical framework
is often employed. One draws at random a large number of inputs and observe how
the corresponding outputs vary. From a statistical perspective, at each draw, one
observes a random pair (X,Y’) such that Y = f(X), where X = (X;,...,X,) is the
input vector and Y is the output.

Sobol’s idea [26, 27] was to notice that, if X;,..., X, are drawn independently
then f(X) can be decomposed into a sum of lower-dimensional functions and that this
decomposition can be used to allocate the variance of the output to the individual
components of the decomposition. More precisely, we have

(1.1) J(X) = fo=fi(X1) + -+ fp(Xp)
+ fr2(Xy, Xo) 4+ + foo1p(Xpo1, Xp)
_|_ P

+ fl,...,p(Xh .. 'aXp)a

where fo = E f(X), f;(X;) = E(f(X) - folX;),j=1,...,p, and fi12,..., f1,_ , are
some functions defined iteratively; see [26] and [30, p. 157] for more details. The
above decomposition is sometimes called the Sobol-Hoeffding decomposition. The
expectations and the covariances of the individual components in the right-hand side
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2 G. MAZO

of (1.1) are zero and hence we have the variance decomposition
Var f(X) = Var f1(X1)+---+ Var f(Xp) + -+,
which leads to the so-called Sobol indices

| Varfy(X))  VarB(f(X)|X,) | EFOOS(X) — (B F(X))
I Varf(X) T Varf(X) Ef(X)? - (BfX)2

7 =1,...,p; here X —; stands for an independent copy of X where the jth compo-
nent has been replaced by that of X. Thus the Sobol index associated with the jth
argument of f is defined as the proportion of the total variance associated with the
lower-dimensional function that depends on the jth argument only. Sobol indices are
interpreted as sensitivity measures and used to achieve various goals in uncertainty
quantification [24].

If the model is nonadditive (it is said that the inputs “interact” with each other)
then the Sobol indices may be inadequate. To account for interactions, the so-called
total sensitivity indices [10] are often computed along with Sobol indices. The total
sensitivity index associated with the jth argument of f is given by

S :1_VaI‘E(f(X>|X1,...,Xj,l,Xj+1,...,Xp)
B Var f(X) '

The total sensitivity index quantifies the sensitivity of the output of f to its jth
argument through the interactions it may have with the other inputs.

There are numerous methods to estimate the sensitivity indices. For simplic-
ity, we describe below Sobol’s original method to estimate .S; through Monte Carlo
sampling [26]. For a review of the many other methods, see [20] or the package
sensitivity [14] of the R software for an up-to-date list of many methods, with ref-
erences. Thus, draw two independent sets of inputs {X(i), i=1,...,n}, {)N((i) =
()?1, . ,)~(p), i=1,...,n} and make p more sets by combining the first two: {)~((fj),
1=1,...,n},j=1,...,p, where
12) RO (R0, K0, X0 RO %),

The first and the p last sets are passed on to the function f which produces the
outputs {Y® i =1,...,n} (for the first set) and {Yj(i), t=1,...,n},5=1,...,p
(for the p last sets), which in turn make up the so-called pick-freeze estimator

oIy yay® (I oy
(1.3) G == (i
LENL Y- (XL Y0)

This gives a simple procedure to estimate all the Sobol indices S, ..., S, with (p+1)n
runs of the model. The pick-freeze estimator is asymptotically normal [6, 15]. The
above formula can be improved in many ways [10, 15, 19]. Many versions of this
estimator exist, the goal being always to get the most efficient estimator with the least
computations. Sobol indices for multivariate, functional outputs [5, 16] or functional
inputs [13] have been proposed as well.

The big difference between a deterministic model and a stochastic model is that
the stochastic model is not a function anymore. To a particular value of the input there
does not correspond any particular value for the output. Instead, there corresponds a
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SENSITIVITY INDICES, ESTIMATORS AND A TRADEOFF 3

range of possible values, assumed to come from a probability distribution depending
on the input. Examples can be found in epidemiology [2, 3, 21, 25] or ecology [28], to
name a few.

To do the sensitivity analysis of a stochastic model, several approaches have been
investigated. In [17], to the best of my understanding, the authors carry out the sen-
sitivity analysis of a stochastic model based on a joint metamodel. In [9], a stochastic
model is seen as a functional relation of the form Y (¢, w) = f(X(¢}),w), where the X
is a random vector on some probability space, w is a point in some probability space
distinct from that on which X is defined, f is some function and Y (¢, w) is a random
variable on the induced product probability space. The quantity f(X(¥),w) repre-
sents the output of the stochastic model run with input X (¢); the point w represents
the intrinsic randomness. The idea is then to decompose the function ¢ — f(X(9),w)
for each w and estimate the associated sensitivity indices, which depend on w. The
estimates are then averaged over w to make the final sensitivity estimates. In [1],
to the best of my understanding, the stochastic model is represented as a determin-
istic mapping which with an input associates a probability density function. The
Sobol-Hoeffding decomposition is applied to the mapping which with an input asso-
ciates the entropy of the output evaluated at that input. Here the entropy is the
Kullback-Leibler divergence of the output density. In [31], the output of the sto-
chastic model is seen as a semiparametric statistical model—the generalized lambda
distribution—with parameters depending on the inputs. These parameters have a
polynomial chaos expansion which is estimated by maximum likelihood. Once the
law of the output conditionally on the input has been estimated, its inverse cumu-
lative distribution function is used to turn the stochastic model into a deterministic
model to which standard methods are applied. In [4], the stochastic model is seen as
a mapping that goes from the input space to a space of probability measures equipped
with the Wasserstein distance. Following [7, 8], the Wasserstein space is mapped to
R with some family of test functions, thus allowing for a standard Sobol-Hoeffding
decomposition which is then averaged over all possible test functions.

In practice, although it has not been formally defined in the literature, another
method has been used for some time [2, 21, 25, 28]. The idea is simple: at each
draw of the input X, one produces as many outputs Y1) ... V(™) ag possible,
makes the average m~* 37" | V(%) and does as if it were the output of some deter-
ministic model. The same is done with the inputs )?(f; (1.2) to produce the outputs

m=IyY Y (7 ") The obtained estimator is then the same as that in (1.3) but with

Yy replaced by m~1 3L, YR) and Yj(i) replaced by m=* Y7 | Yj(i’k)7 yielding

(1.4)

D DL vy g Ve i GO VT D WD S

i= — h=1 .
& i (mT L Y k)) (5 iy m L, YOR)

The big advantage for practitioners is that they can use the numerous available and
ready-to-use softwares for deterministic models.

To build the estimator (1.4), the stochastic model must be run mn(p 4+ 1) times.
The number m is called the number of repetitions and the number n is called the
number of explorations. If the stochastic model is computationally intensive—that
is, each model run is time-consuming—, then the estimator is built with limited
resources. In this context, an increase of m must go along with a decrease of n, and
conversely. What is then a good balance between m and n? How to choose m and
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n such that the estimator (1.4) will be the most efficient? This question was asked
by [28].

We address this problem by minimizing a bound on the missranking error. The
missranking error penalizes bad rankings of the Sobol indices associated with the
inputs. This type of error leads to an explicit solution of the induced minimization
problem and hence the “optimal” pair (m,n) can be estimated. A two-step procedure
can then be implemented to get efficient estimators. We also establish the asymptotic
normality of the estimators (1.4). The sensitivity indices to which they converge are
formally defined; they are called the sensitivity indices of the second kind.

The sensitivity indices of the first kind are other sensitivity indices arising from
our representation of stochastic models. We regard a stochastic model as a set of
probability measures that captures how the outputs are produced by the model. We
construct a probabilistic framework compatible with these prespecified distributions
and show that the output of the stochastic model can be seen as a function of the
inputs and some “noise”. The sensitivity indices of the first kind arise from an appli-
cation of the Sobol-Hoeffding decomposition to the above-mentioned function. The
indices of the first and of the second kinds are complementary as they offer distinct
pieces of information. Interestingly, these indices can be estimated jointly with no
additional cost, the joint estimator is asymptotically normal and the two kinds of
sensitivity indices lead to the same solution for the tradeoff problem.

This paper is organized as follows. Section 2 defines a class of stochastic models
and discusses the connections with [9]. Section 3 defines the indices of both kinds and
their estimators. The asymptotic properties are deferred to Section 5. Section 4 intro-
duces the tradeoff problem, gives a procedure to attack it and gives some theoretical
guarantees. Section 6 illustrates the theory on numerical simulations. A Conclusion
closes the paper.

2. Representations of stochastic models. The concept of stochastic models
is intuitive and shared by many people but there are different mathematical routes
to describe them. One is given in Section 2.1. It makes minimal distributional as-
sumptions to get to a representation in terms of random variables and establishes the
existence of a function on which the Sobol-Hoeffding decomposition can be applied.
Section 2.2 makes connections with the stochastic models of [9].

2.1. Representing stochastic models from minimal distributional as-
sumptions. A stochastic model is some mechanism that produces outputs at ran-
dom given some inputs. Thus, a stochastic model can be seen as family of probability
measures {P,, z € X'} indexed by some input space X. The law P, governs how
the outputs are produced given the input . The stochastic experiment that consists
of drawing inputs at random according to some probability measure P and observ-
ing the corresponding outputs is then fully characterized by the family {P,} and the
probability measure P. This leads us to Definition 2.1.

DEFINITION 2.1. If P is a probability measure on some input space X and {P,
x € X} is a family of probability measures then the pair (P, {P,}) is called the complete
stochastic model.

From now on we assume that X’ is a subset of R? and that P is a product measure
on the product Borel o-field of RP, implying that the inputs are drawn independently.
(Note the difference between the symbols “P” and “P”.) We also assume that the
output produced by the stochastic model is a real number: let P, be a measure on R
endowed with its Borel o-field.

This manuscript is for review purposes only.



SENSITIVITY INDICES, ESTIMATORS AND A TRADEOFF 5

Now we look for a representation in terms of random variables that will allow us
to use the Sobol-Hoeffding decomposition later on.

LEMMA 2.2. If (P, {P.}) is a complete stochastic model then there exist a probabil-
ity space (2, F, P), a random vector (X, Z) on  and a real function f on X xrange Z
such that
(i) f(xz,Z) is measurable for every x € X,
(i) P(f(z,Z) € B) = P,(B) for every x € X and every Borelian B,
(iti)) P(X € A,Z € B) =P(A)P(Z € B) for every appropriate Borelians A and B.

Moreover, if (X, f(X,Z)) and (X', f'(X',Z")) are two joint vectors that satisfy the

conditions (i), (ii) and (iil) then (X, f(X, Z2)) 4 (X', (X', Z")) where 2 means

equality in distribution.

Note that the conditions in Lemma 2.2 do not determine the law of Z; see the
example below.

EXAMPLE 1 (The law of Z is not determined). Let p =1. Let P be the standard
uniform distribution and P, be the Gaussian distribution with mean x € R and vari-
ance 1. Let Q = (0,1)? endowed with the Borel o-field and set P to be the product
Lebesgue measure. Let X1 (w) = wy for w = (w1,ws) € Q. Let ® denote the distri-
bution function of the standard Gaussian distribution and denote by ®~' the inverse
of . If Z(w) = we and f(x,2) = & 1(2) +x, x € R, z € (0,1), then it is easy to
see that (X, Z) and f satisfy the conditions of Lemma 2.2 and the law of Z is the
standard uniform distribution. But the conditions of Lemma 2.2 are also satisfied with
Z(w) = \Jws and f(z,z) = ®71(2?) +x, in which case, P(Z < t) =t*, t € (0,1), that
is, the law of Z is the beta distribution with parameter (2,1).

The indeterminacy of the law of Z is symptomatic of the lack of control of the
intrinsic randomness assumed in our definition of stochastic models. But this is not
an issue because our interest lies in the joint vector (X, f(X, Z)), the law of which is
fully characterized by the conditions in Lemma 2.2. To each complete stochastic model
there corresponds a unique law that all vectors (X, f(X, Z)) must have, regardless of
the chosen representation. Therefore, the pair (X, f(X, Z)) can be used to define the
pair (input, output) of a complete stochastic model, as done in Definition 2.3.

DEFINITION 2.3. If (X, Z) and f satisfy the conditions in Lemma 2.2 then the
pair (X, f(X,Z)) is called an observation of the complete stochastic model (P, {Py});
the random variable X is called the input and f(X, Z) is called the output.

In sum, we have established the existence of random variables on a common
probability space and a function f that characterize the statistical experiment that
consists of drawing inputs and observing the outputs of a stochastic model. The set
of assumptions used to represent outputs and inputs of a stochastic model is minimal:
all we need is a family {P,} and a probability measure P. We remark that the above
formalism of stochastic models can be used to represent physical models as well [29].

2.2. Links with the stochastic models and the sensitivity indices in [9].
In [9], the authors consider the model (X'(w'), p(X'(w'),w")), W' € O, " € Q",
where (@', F', P’') and (", F", P") are probability spaces, X' = (Xi,...,X,) is a
random vector on £’ and ¢ is some function. They consider the sensitivity indices

S]HAG _ Sj(w") P”(dw"),
Q//

This manuscript is for review purposes only.
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6 G. MAZO

where
Var[E(p(X', w")|X})]
Var[p(X/,w")] 7

i (W) =

above the variances and the expectation are to be understood as integrals on ' with
respect to P’.

One can choose a representation in Lemma 2.2 that corresponds to the models
in [9]. In particular, one can recover the sensitivity indices SJHAG, 7=1...,p. Let
us illustrate this with an example. Let (P, {P,}) be a complete stochastic model and
let X =(X1,...,Xp), Z and f be as in Lemma 2.2. Define

~ B Var(E[f (X, 2)|X;, Z]|Z) C_
SJHAG_E< Var(f(X, 2)|2) ), J=heop

Consider the model in Example 1.1 of [9], given by
(2.1) P(X' (W), w") = X1 (w') + Xo(w)w",

where the law of X7 is the uniform distribution on (0, 1), the law of X} is the uniform
distribution on (1,L + 1), L > 0, and P” is the standard normal distribution on
) = R.. The indices in Example 1.1 of [9] are given by

SHAG:/ #P”(dw”):/ Lexp _w de
! or 1+ L2w" r 1+ L2w 2 ) \2r

and SPAG =1 — GHAG,

To recover these indices, let us extract the induced complete stochastic model.
Set P((O,tl} X (1,t2]) = tl(tg — 1)/L forall0<t; < 1,1 <ty <L+1, L >0 and
P,(—00,t] = ®((t — x1)/x2) for all t € R, where ®(t) = fioo(27r)*1/26’52/2 ds and
x = (x1,22) € R x (0,00). Now it remains to choose a representation that fulfills the
conditions in Lemma 2.2 and ensures that S1A¢ = gfIAG. Such a representation can
easily be found. For instance, take = (0,1)3 endowed with the product Lebesgue
measure and put Z(w) = w3, X1(w) = Fy ' (w1) and Xo(w) = Fp(ws) ™! for w =
(wl,wg,wg) S Q, where Fl(tl) =t for 0 < t; < 1 and Fg(tg) = (tg — 1)/L for
1 < ty < L+ 1. Finally take f(x,2) = ® *(2)z2 + 21 for z; € R, 22 > 0 and
z € (0,1). Then the conditions of Lemma 2.2 are fulfilled by construction and the
detailed calculations in Appendix A show that SHAG = §{{AG.

In sum, the stochastic models in [9] can be expressed with the framework of
Section 2.1. There is however a difference between [9] and Section 2.1. In [9], the
function f is fixed. It is given as being a part of the stochastic model. In our side,
we only assume that we are given a set of probability measures from which we can
sample. Consequently, in our case, the indices S;.{AG are not well-defined because
they depend on the law of Z, which is not characterized by Lemma 2.2. In other
words, one may find different representations such that the laws of (X, f(X, Z)) will
be identical but the laws of Z will differ, leading to different indices ngAG.

3. The sensitivity indices and their estimators. Let (P,{P,}) be a com-
plete stochastic model and let X, Z and f as in Lemma 2.2. To ensure the existence
of the sensitivity indices and later to derive theoretical results for the estimators, we
need to assume the following: there exists some function F' with E F(X)® < co such
that

(3.1) (X, Z)| < F(X)

This manuscript is for review purposes only.
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almost surely. This assumption appears to be mild. In particular every stochastic
model with bounded outputs fulfills the condition.

3.1. Definition of the sensitivity indices. We define two kinds of sensitivity
indices. The sensitivity indices of the first kind exploit the existence of the function f
by applying the Sobol-Hoeffding decomposition to it directly. The sensitivity indices
of the second kind result from an application of the Sobol-Hoeffding decomposition
to the conditional expectation of f(X,Z) given X, which is a function of X alone.
The indices of the second kind are those to which the estimators (1.4) mentioned in
the Introduction converge.

3.1.1. Indices of the first kind. Applying the Sobol-Hoeffding decomposition
to f yields

(3.2) (X, Z) = fo=fi(X1) +- -+ fp(Xp) + for1(Z) + -,

where fO = Ef(XaZ)’ fJ(XJ) = E(.f(X?Z) - fOIXj)7 .7 = 17"'7p7 fp+1(Z) =
E(f(X,Z) - fo|Z) and +--- stands for the interaction terms. Since X and Z are in-
dependent, we have Var f(X,Z) = Var f1(X1)+-- -+ Var f,(X,) + Var fp11(Z)+- - -,
which leads us to the indices in Definition 3.1.

DEFINITION 3.1 (Sobol indices of the first kind). The Sobol indices of the first
kind are defined as

g VarE(f(X, Z2)|X;)
T Varf(X,Z)

j=1...,p.

It is important to notice that the indices of the first kind depend on the law of
(X, f(X,Z)) only. Since the law of the joint vector (X, f(X,Z)) fully determines
the complete stochastic model, the indices of the first kind can be estimated from
(P,{P,}) even though one may not be able to evaluate the function f nor the law
of Z may be characterized. Notice that it does not make sense to define the total
sensitivity indices since they depend on the law of Z.

3.1.2. Indices of the second kind. Let g(X) := E[f(X, Z)|X] be the condi-
tional expectation of the output of the stochastic model given the input. The object
g is a function and the Sobol-Hoeffding decomposition can be applied to it, yielding

9(X) —go=9g1(X1) + -+ gp(Xp) +--,

where go = Eg(X), ¢9;(X;) = E(9(X) — 90| X;), j=1,...,p and +- - - stands for the
interaction terms. Since the components of X are independent, we have Var g(X) =
Var g1(X1) + --- + Var g,(X,) + - - -, leading to the indices in Definition 3.2.

DEFINITION 3.2 (Sobol indices of the second kind). The Sobol indices of the
second kind are defined as
VarE(g(X)|X;) _ VarE(E[f(X, 2)|X]|X;)
Var g(X) VarE[f(X,Z)|X]

S;/: ji=1,...,p.

On the opposite to the indices of the first kind, the total sensitivity indices of the
second kind are well defined, since the function g depends on X only. For instance,
the jth total sensitivity index is given by

VarE(g(X)|X1, e ,Xj,17Xj+1, . ,Xp)

7
. L= ]_ —
(3.3) T Var g(X)

This manuscript is for review purposes only.
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3.1.3. Comparison of the definitions. The sensitivity indices of the first kind
provide more refined “first-order” information than the indices of the second kind.
Example 2 and 3 illustrate this.

EXAMPLE 2. Let f(X,Z) = aXy + ¢Xo¢(Z), where X1, X2, 7 are independent
standard normal variables, a,c are real coefficients and ¢ is a function such that
E¢(Z) =0. Then

2
, a

- /: //: ,,:
1= a?+ 2E¢(2)%’ Sy =0,5 =1and 5 =0.

According to the sensitivity indices of the second kind, X7 has the same impor-
tance regardless of the value of its coefficient a, while the sensitivity indices of the
first kind acknowledge that the importance of X; should depend on its coefficient.
However, the sensitivity indices of the first kind cannot provide insight into the in-
teractions between the inputs. For instance, if a is small then the sum S 4 S5 will
be small and hence the contribution to the variance of the output must come from
elsewhere. Perhaps it comes from the intrinsic stochasticity of the model or from the
interactions.

Example 3 returns to the model (2.1).

EXAMPLE 3. Let f(X,Z) = ® 1(Z) X2 + X; such that the law of X1 and that of
Z are the uniform distribution on (0,1), the law of Xa is the uniform distribution on
(1,L+1), L >0, and @~ denotes the inverse distribution function of the standard
normal distribution. The detailed calculations in Appendiz A show that S5 =0

S; = !
P42+ 3(L+ 1)+ 1

As in Example 2, the sensitivity indices of the second kind do not depend on the
coefficient L. The sensitivity indices of the first kind do depend on L but note that
St + S5 < 1/13, indicating that most of the contribution to the output comes from
the intrinsic randomness or the interactions.

In sum, both kinds of sensitivity indices provide useful insights although neither
kind is perfect. The sensitivity indices of the second kind are good indices for doing a
sensitivity analysis of the model averaged over the intrinsic randomness but by doing
so information may be lost. The sensitivity indices of the first kind provide more
refined information into the individual contributions of the inputs but the information
is only partial because the knowledge of the interactions and the intrinsic randomness
are lacking. Remember that the sensitivity indices S]HAG cannot be used in our case.

3.2. Construction of the estimators. We construct estimators for the indices
in Definition 3.1 and 3.2 by Monte-Carlo simulation. The input space is “explored”
n times; at each exploration two independent input vectors are drawn, combined
and passed to the stochastic model which is run m times. The integer n is called
the number of explorations and the integer m is called the number of repetitions.
The couple (n,m) is called the design of the Monte-Carlo sampling scheme. The
total number of calls to the stochastic model is mn(p + 1). The details are given in
Algorithm 3.1.

In the algorithm above, )~((_Z()) = X® by convention. By assumption, the ob-
jects )?(i), )~((fj) and Yj(i’k)7 j=0,....,p, k =1,...,m, i« = 1,...,n, are ran-

dom vectors such that the sets {)A(:(i),)z(_i;,)/}(i’k) 7 =0,...,p;k = 1,...,m},
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Algorithm 3.1 Generate a Monte-Carlo sample

for i =1ton do ‘ ‘ ‘ ‘
draw two independent copies X () = (Xl(l), ... ,X,(,Z)), X@ = ()Z'l(z), . .)}z(,l))
for j=0,1,...,pdo
for k =1 tom do

run the stochasti(c rr)lodel at )Z'(_ZJ) = ()Z'l(i), ey )?(1) X( R X](_gl, ceey
ik

get an output Y;
end for
end for
end for

i=1,...,n, are iid., X® and X® are independent and P(N_ N7y {Yj(i’k) €

B;k)}\X(i),)?(i)) Hp oTie, P( jZk) € B](k)\X(i),)?(i)) for all appropriate Bore-

(k)

lians B;™. It is easy to see that these conditions characterize the joint law of the set

{X(_J),Y(’ M=, k=1, mi = 1,...,n}, that is, the inputs and the
outputs of Algorlthm 3.1.

In view of Section 2, assume without loss of generality that there is some function
f and some random variables Zj(.l’k),j =0,...,p,k=1,...,m,i=1,...,n, such that

Yj(z’k) = f(X(_zg, Z(Z k)) where all of the random vectors in the sets {X’(i), X, Zj(z’k) :
7=0,...,p; k= 1 .,m}, i =1,...,n, are mutually independent and all of these
sets are i.i.d. We shall use both the Y-notation and the f(X, Z)-notations.

With the above notation, the estimators (1.4) of the indices of the second kind

are rewritten

. 2
zk n m i,k
(3.4) & 7 et ket Vo 'L k1Y, (% Ei:l%Ek:lYO( ))
’ m ik (i,k 2
Ly (A S, ) —( Sy S )

jnm_ 5

j=1,...,p, which are indeed the empirical versions of the indices 5’3’ , since

, Eg(XM)g(x%) — (Eg(xM))?
;T Eg(X1)2 — (Eg(X1))2
(3.5)

BE[f(X®, 28 )X OB (XY, 7)) XU - BE[F(x 0, Z5H) X )2
EE[f(X®), Zg"V)| XD — BE[f(X®D), 25" x D])2 '

As said in the Introduction, this estimator is used implicitly by practitioners but has
not been formally studied in the literature. A simplified version with m = n appears
n [11, 12].

To estimate the sensitivity indices of the first kind, we exploit a formula similar
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to (3.5). Indeed, we have
o _BIXO 2 (X0 20 - @ 0, 25))
’ Ef(XM, Z§D)2 — (B f(X M, Z"Y))2
(3.6)
2
1,1 (1 1,1 (1 1,1
EELA(X, 28")) X O] B[f(XY), Z8D) X)) - (BR[ (X O, 2{) X D))

2
BE[/(X0, Z§"V)2 X 0] - (BE[F(XO, 2{")| x0])

Notice that the upper left, upper right and the lower right terms are identical to the
upper left, upper right and the lower right terms in (3.5) respectively. The upper
left term is the only term that depends on j and, therefore, it is the only term that
permits to discriminate between any two indices of the same kind. For this reason, it
is called the discriminator, denoted by D;. Formula (3.6) yields the estimator

. y . 2
1 n m (i,k) 1 m (i,k") 1 n 1 m (i,k)
n Zi:l % Zk:l YO m Zk’:l YJ - (ﬁ Zi:l m Zk:l YO )
) ) 2 :
n m k)2 n m k
LS A Y (A A )

Since the estimators for the discriminator are identical, both kinds of sensitivity
indices lead to the same estimated ranking of the inputs. All of the 2p estimators
can be computed with mn(p + 1) runs of the stochastic model. In (3.7) and (3.4), if
m = 1 and if the function f does in fact not depend on Z, then the estimators reduce
to Sobol estimators [26, 27] for deterministic models.

(3.7) S, =

Jin,m

4. Choosing between Monte-Carlo designs. The estimators in Section 3
depend on the design (n,m) of the Monte-Carlo sampling scheme. To estimate the
sensitivity indices in Definition 3.1 and Definition 3.2, the stochastic model has to be
called (p+ 1)mn times.

It is reasonable to think of a sensitivity analysis as done the following way. The
total number of calls is set to a limit, say 7. Then n and m are chosen so that
T = (p + 1)mn. For instance, suppose that one cannot afford more than 150 calls to
a model with two inputs. Then T = 150, p = 2 and one can choose either one of the
columns in the following table

n 50 25 10 5 2 1
m 1 2 5 10 25 50.

Denote by div,(T") the set of all divisors of T//(p + 1) between 1 and T'/(p + 1).
In the example above, divy(150) = {1,2,5,10,25,50}. There are as many designs as
there are elements in the set div,(T). Each one of those elements corresponds to a
possible combination for n and m which Algorithm 3.1 can be run with. The resulting
estimators require the same number of calls but do not perform equally well. The
goal of this section is to find the “best” way to estimate the sensitivity indices.

4.1. Introducing the miss-ranking error and its bound. To compare the
estimators, a measure of performance has to be defined. We shall consider the miss-
ranking error (MRE), defined by

P
MRE =E |Rjnm — Ry,
j=1
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113 where R; is the rank of D; among Dy, ..., D,, that is, R; = >0 _, 1(D; < D),
114 and }A%j;mm is an estimator of R;. Recall that Dq,..., D, are the upper-left terms
115 in (3.6) and (3.5). They determine the ranks of the sensitivity indices. Recall that
416 the ranks of the sensitivity indices of the first kind coincide with the ranks of the
417 sensitivity indices of the second kind. Thus, the MRE permits to find a unique
418 solution for both kinds of sensitivity indices. The MRE is small when one succeeds
419 in ranking the inputs from the most to the least important, a task which is called
120 “factors prioritization” in [24, p. 52].

421 The MRE has a bound with interesting mathematical properties. Denote by
422 MRE(T,m) the MRE based on T number of calls and m repetitions, so that the
423 number of explorations is T'/(p + 1)/m. Remember the notation of Section 3: denote
o (XW,X0) =X, f(XxW, 25"Y) = Y and f(XU), 20 = ;.

—j>

425 PROPOSITION 4.1. Let ﬁjm,m, j=1,...,p, be the upper-left term in (3.7) or (3.4)'
126 and put Rjmm = > oy 1 Dispm < Djinom). If D1,..., D, are all distincts then
427 MRE(T, m) < ( ZVar [YoY;|X))

P
128 + ) E(Var[YoY;|X] — Var[Yy|X] Var[Y;|X])

j=1

12
429 D B(Var[¥[X] Var[Yj|X])>7
430 J=1
431 where

4p—1)

439 L =
. min([D; — Dy [2)’
433 i<y’
434 The constant L tells us that the bound is smaller when the indices are well

135 separated. The bound goes to zero when the number of explorations goes to infinity.
436 This is true even if the number of repetitions is fixed. Most interestingly, the bound
437 separates T and m:

1
438 (4.1) MRE(T,m) < Tv(m), m € div,(T),

440  where the function v is implicitly defined through Proposition 4.1. Denote by mTT

141 the element m in div,(7") that minimizes v(m). Taking m = m} in (4.1), we get the

142 bound

"
443 MRE(T, m;) < U(W;T) < v(;%)7 for all m € div,(T).
144 Thus the best guarantee coincides with m = mTT and n = T/(p+1) /mTT in Algo-

445 rithm 3.1. However mTT is unknown.

446 Remark 4.2. The choice of T', through the specification of div,(T"), will influence
447  the quality of the bound. It is clear that choosing T'/(p + 1) a prime number may
115 not be a good idea because v(m}.) will be either one of v(1) or v(T/(p +1)). On the
149 opposite, choosing T'/(p + 1) a factorial number ensures many more choices (in fact,
150 all).
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4.2. A two-stage procedure to estimate the sensitivity indices. The re-
sults in Section 4.1 suggest a two-stage procedure to estimate the sensitivity indices.
The procedure is given in Algorithm 4.1. The computational budget is split into two
parts K and T'— K. The first K calls to the model are used to estimate m;LK. The
last T'— K calls to the model are used to estimate the sensitivity indices.

Algorithm 4.1 Estimate the sensitivity indices by a two-stage procedure

Stage 1. Choose an integer K such that K/(p+1) and (T'— K)/(p+1) are integers
also. Choose integers mg and ng such that K = mgono(p + 1). Run Algorithm 3.1
with m = mg and n = ng. Estimate m;_K by an estimator ﬁ@}_K in div, (T — K).

Stage 2. Run Algorithm 3.1 with m = nAﬁLK and

T-K

(p+ D)mip_

Compute the sensitivity indices estimators (3.7) and (3.4).

The estimator of mTTi i is built as follows. Let m* be the minimizer of v seen as
a function on the positive reals. Since v is convex, the minimizer is unique. It follows
from (4.1) and Proposition 4.1 that

12) \/Z . E Var[Yy|X] Var[Y;|X] \/Z ey

_ VarB[Y,Y;|X] S G

where (3 ; = E Var[Y;|X] Var[Y;|X] and (; ; = VarE[Y,Y;|X], j =1,.
Let @7 : (0,00) — div,(T), be the function defined by @r(z) =1 1f 0<z<l,
or(z)=T/(p+1)ifz>T/(p+1), and

(@) Leap  if /Lol >z >1
T) = .
T ol Vo zlr <z < p%

where
Lz op = max{m € div,(T), m <z}, "z*7p =min{m € div,(T), m > x}.
The function @ is piecewise constant with discontinuity points at /77, where ¢ and

Jj are two consecutive elements of div,(T').

ProrosITION 4.3. If m* > 0 then mTTiK = @r_g(m*). If, moreover,
Lm* o k" m* r_ s not equal to m*? then the minimizer of v(m), m € div,(T—K),
1S UNIqUe.

Proposition 4.3 suggests that mTTi kx can be estimated by applying the function
o7k to an estimate of m*. Remember that K = mgng(p + 1) and put

This manuscript is for review purposes only.



480

481

482
483
184

485

486

487
488
489
190

491
492

493

494

SENSITIVITY INDICES, ESTIMATORS AND A TRADEOFF 13

where
ésj =
~ 1 (k2 1 QR 5@ iks)
4.4 — x® glikyz Xzt
(44) ZmOZf Voo 2 FXT 2
kl 1 k2:1
1~ ( L Jer) 138 o) k)
(4.5) +n72 - ZfX(l)Z ) miz‘f(ij7Z )
0 =1 0 pi=1 0 pp=1
11§ G ) L) ik
(4.6) —;Z m*Zf(X(l)aZo’l) oo (XY, Z50"0)?
0 =1 0 ki1=1 0 ka=1
L LSS x glikoge (LSS o 50 gk i
4.7 - _ Z'Lyl - Xz Z»Z72
D nOZ;mO kz;lf( i <m0k *1f( Y )> 7
1 1= 2=
and
CAl,j -
1 & 1 () k)N pr () (k) ’
(4.8) ;Z oo fXY, Z57 ) (X5, Z)
0%i=1 0 k=1
1 &1 & _ i b . 2
(4.9) - (nozmo Fx©, 25 p(X8, 3" ’)) :
=1 k=1
Notice that 217]' >0 and 234 > 0 so that mj, > 0. If mg =1 then 2373- = 0 and hence

mi = 0.
The estimator m}, is consistent and asymptotically normal on some conditions
on the rates of ng and my.

THEOREM 4.4. Assume (3.1) holds. Let ng — oo. If mg is fized then
~ x * C d 2
Vo | my — |m +m——|—6m0 — N(0,05,,)s
0

where C is some constant, em, = C1/m¢ 4 - 4+ Cn/md ™t for some constants
Cy,...,Cn and o,zno is some variance depending on mg. If myg — oo then the above
display with €y, = o(1/mg) and o.,, replaced by limy,, oo Om, 1S true.

Theorem 4.4 shows that m}, is asymptotically biased. The bias is polynomial in
1/myg. Corollary 4.5 shows that letting my — oo suffices to get the consistency of mj,
but to get a central limit theorem centered around m*, it is furthermore needed that

\/no/mo — 0.
COROLLARY 4.5. Assume (3.1) holds. Let ng — oo and mg — co. Then mj; KR
m*. If, moreover, \/ng/mgo — 0, then

Vio(iy —m*) %5 N, lim o2,).

mo— 00

To estimate m;_K, put ’//T\L,}_K = @r_x(m3}). Proposition 4.6 states that ﬁ@}_K

and m;_ x are equal with probability going to one.
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PROPOSITION 4.6. Assume (3.1) holds. Let ng — oo and mg — co. Then
P (fﬁT =m} ) =1
T-K = Mr-K :

All the details of Algorithm 4.1 have been given.

4.3. Performance. To get some insight into the performance of the procedure
given in Algorithm 4.1, we look at the performance of the sensitivity indices estimators
produced in Stage 2. Since they are built with T'— K calls to the model with ffLTT_K
repetitions, they satisfy

_ IR
(4.10) MRE(T — K, m}_ ) < - Ku(m}_K),

where the left-hand side is the conditional expectation of the MRE, given the outputs
. . ~f . .
produced in Stage 1. The estimator MmJ._ . is computed with K calls only.

It is difficult to compare the guarantee above with that which got by choosing
an arbitrary number of repetitions, say m. In the later case K = 0 and hence the
guarantee is (4.1). The denominator in (4.10) is smaller but we expect that the
numerator v(fﬁ}_ ) will be less than v(m) for many values of m. Indeed, the numer-
ator should be close to v(mTTiK). If T — K is well chosen then v(mTTiK) and v(mTT)

should be close and since v(m) < v(mTT) for all m in div,(T'), the numerator ’U(T?L;iK)
should be an approximate minimizer. For instance if K and T are large enough and
div,(T - K)={1,2,...,(T - K)/(p+ 1)} and div,(T) = {1,2,...,T/(p+ 1)} hold
then ’U(m;i ) and v(mTT) are equal. Note that the numerator and the denominator

in (4.10) cannot be good at the same time and K determines the balance.

THEOREM 4.7. Assume that the conditions of Proposition 4.6 are fulfilled. Sup-
pose furthermore that K — oo such that K/T — 0. Then

T _1 Kv(m}—}() = %U(WTT_K)(l +op(1)).

The bound in Theorem 4.7 is the best possible guarantee inflated by a factor not
much larger than one. This result is valid if K is large but not too large with regard
to T. In particular, if div,(T) N div,(T — K) = div,(T — K) then for every fixed
m # mlb., it holds that P(T~w(m}_ )1+ 0p(1)) < T~ v(m)) — 1. In other words
it is always better, in terms of obtainable guarantees, to use the procedure rather than
to choose the number of repetitions arbitrarily, except for the lucky case m = mTT.

5. Asymptotic normality of the sensitivity indices estimators. The sen-
sitivity indices estimators of Section 3.2 depend on both m and n. It is clear that
n should go to infinity to get central limit theorems. It may be less clear, however,
whether or not m should go to infinity as well. The answer depends on the kind of
the sensitivity index we are looking at.

Two frameworks are considered:

e n — oo and m is fixed;
e n — oo and m — 0.
In the second framework m., is a sequence indexed by n that goes to infinity as n goes

to infinity. Denote by S (resp. S”) the (column) vector with coordinates S} (resp.
S%7), 3 =1,...,p, and denote by /S\;m (resp. /S\Zm) the vector with coordinates S

Jin,m

given in (3.7) (resp. S7, , given in (3.4)).

Jsn,m
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THEOREM 5.1. Assume (3.1) holds. Let n — oco. If m is fized then

S 4
Vvn (g,, _gn [1 "B Varlf(X,2)|X] }) — N(0,ZEnm),

T EVar[f(X,2)|X|+m Var E[f(X,2)|X]

for some nonnegative matriz =Z,, of size 2p X 2p. If m — oo then, elementwise,
lim,, oo Z exists and the above display with Z,, replaced by lim,, o =, is true.
§/T §//T

n,m~n,m

is asymptotically normal

Theorem 5.1 predicts the behavior of the joint vector (

behaviors of S, ,, and S), | are different. The estimator S, ,

). However the

around S’, even if m is kept fixed. The estimator §ZTm is also asymptotically normal,
but not around S”.
The estimator S7 ,, under-estimates S”. The bias, given by

% E Var[f(X, Z)|X]
EVar[f(X, Z)|X]+mVarE[f(X, Z)|X]’

is null whenever f actually does not depend on Z, and large whenever the stochastic
model is highly stochastic. As Theorem 5.1 shows, the bias is still present even if m
goes to infinity. Corollary 5.2 shows that m must go to infinity fast enough to avoid
the estimator to be tightly concentrated around the wrong target.

COROLLARY 5.2. Assume (3.1) holds. Letn — co. If m — oo such that /n/m —
0 then

vn (§;;,m - s”) 4 N(0,Z20),

where Soy is the lower-right block of the matriz lim,, ..o =, given in Theorem 5.1.

The difference between §;Lm and §Zm is due to the difference between the lower-
left terms in (3.7) and (3.4). While the lower-left term in (3.7) is unbiased for all n
and m, the lower-left term in (3.4) has a bias depending on m which propagates to the
estimator of the sensitivity indices. (The calculations are carried out in Appendix D.)

From a statistical perspective, it is more difficult to estimate the sensitivity indices
of the second kind than to estimate the sensitivity indices of the first kind. To estimate
the former, one needs to repeat the model many times. To estimate the later, this is
not necessary.

6. Numerical tests. Section 6.1 illustrates how the MRE responds to a change
in the Monte-Carlo design. In Section 6.1 the total budget T is kept fixed. Section 6.2
illustrates how the sensitivity indices estimators behave asymptotically. In Section 6.2
the total budget T increases.

6.1. Comparison of Monte-Carlo designs. The effect of the number of rep-
etitions on the sensitivity indices estimators and the effect of the calibration in the
two-stage procedure are examined in two kinds of experiments: the “direct” experi-
ments and the “calibration” experiments.

In the direct experiments, the sensitivity indices are estimated directly with the
given number of repetitions. Increasing numbers of repetitions m are tested. (Since
the budget is fixed, this goes with decreasing numbers of explorations.) For each m,
the mean squared errors (MSEs), given by E Z?:l(/\};n,m —5})? and E Zf=1(§§/nm —
S7 )2, are estimated with replications. They are also split into the sum of the squared
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biases and the sum of the variances to get further insight about the behavior of the
estimators. The MREs are estimated as well. A normalized version is considered:
it is the MRE divided by the number of variables. For models with two inputs, the
normalized MRE is interpreted directly as the probability that the two inputs are
ranked incorrectly.

In the calibration experiments, the sensitivity indices are estimated with the two-
stage procedure, the results of which depend on the calibration parameters K and
mg. Various calibration parameters are tested to see their effect on the MRE. The
budgets for the direct experiments and the calibration experiments are the same so
that the numbers can be compared. In particular, the direct experiments correspond
to the case K = 0 in the calibration experiments.

A linear model of the form Y = X7 + X5 + 0Z, where X1, X5, Z, are standard
normal random variables and 3,0 are real coefficients, has been considered because
the sensitivity indices are explicit and hence the performance of the estimators can
be evaluated easily. The quantity m™* is explicit: the formula is given in Appendix E.

6.1.1. High noise context. The coefficients are § = 1.2 and ¢ = 4. The
sensitivity indices are S{ = 0.05, S5 = 0.08, Sy = 0.41 and S§ = 0.59. The real
m* is about 5.8. The total budget is 7' = 3 x 500 = 1500 and hence divy(1500) =
{1,2,4,5,10,20, 25, 50,100,125, 250,500}. The integer m];500 is equal to p1500(m*) =
5. Since the budget is kept fixed, the numbers of explorations are, respectively,
500, 250, 125, 100, 50, 25, 20,10, 5,4, 2, 1. The number of replications is 1500.

The results of the direct experiment are given in Figure 1 for m = 1, 2, 4, 5, 10,
20, 25. The MSE of first kind does not vary with the number of repetitions and is
much lower than the MSE of second kind, see (¢). The estimators of the second kind
are highly biased for small numbers of repetitions (a) and they have a higher variance
for larger numbers of repetitions (b). The fact that the bias is high for small numbers
of repetitions agrees with the theory, according to which the bias should vanish as m
goes to infinity. Overall, the sensitivity indices of the second kind seem to be much
harder to estimate than the indices of the first kind, the estimators of which have a
negligible bias and a very small variance whatever the number of repetitions.

According to Figure 1(c), the normalized MRE curve has a banana shape with a
minimum of about slightly less than 30% reached around m € {5,10} and endpoints
with a value of about 35%. A value of 30% means that the probability of ranking
the inputs correctly is about 70%. The region of observed optimal performance m €
{5,10} coincides with m{., = 5, the point at which the bound is minimal.

The results of the calibration experiment is given in Table 1 for the normalized
MRE. The lowest MREs are reached at the bottom right of the table, with values
corresponding to 2 < m < 10 in Figure 1 (¢). Optimal performance is reached with
very few explorations in the first stage of the two-stage procedure. In this case, the
estimator mj, has a small bias but a high variance. It seems to be better than an
estimator with a small variance but a large bias. This might be explained by the low
curvature of the MRE curve.

6.1.2. Low noise context. The coefficients are § = 1.2 and ¢ = 0.9. The
sensitivity indices are S{ = 0.31, S} = 0.44, Sy = 0.41 and S5 = 0.59. The real
m* is about 0.30 and hence the integer m§500 is equal to 1. As expected, these
numbers are smaller than the ones found in the high noise context. The total budget
is T'= 3 x 500 = 1500. The number of replications is 500.

The results for the direct experiment are given in Figure 2. The MSE of first

kind increases with the number of repetitions, see (c): this is due to the increase
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Fig. 1: Sum of squared biases (a), sum of variances (b) and errors (c) of the sensitivity
indices estimators for the linear model in the high noise setting. Confidence intervals

of level 95% are added in (c).

mo no
K/3 2 5 10 20 | 20 10 5 2
400 | 0.43 0.42 0.42 - - 042 0.39 040
200 | 0.38 0.39 0.37 - - 035 035 0.34
100 | 0.36  0.37 - - - - 032 0.30
50 | 0.39 0.33 - - - - 033 031

Table 1: Normalized MRE in the linear model with high noise for various calibrations:
K/(p+ 1) = 50,100, 200,400 and mq = 2,5,10,20, ... For instance, for K/(p+ 1) =
200 = mgng, the normalized MRE is available for mo = 2, 5, 10, 20, 40, 100.
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Fig. 2: Sum of squared biases (a), sum of variances (b) and errors (c¢) of the sensitivity
indices estimators for the linear model in the low noise context. Confidence intervals
of level 95% are added in (c).

of the variance (b), while the bias is negligible (a). As in the high noise context,
the estimators of the second kind have a decreasing bias and an increasing variance,
although the decrease of the bias is of much less magnitude. This agrees with the
theory, where we have seen that, for the sensitivity indices of the second kind, the
biases of the estimators are small when the noise of the model is low.

In Figure 2 (¢), the normalized MRE varies a lot. It increases from about 2% at
m = 1 to 30% at m = 25. Thus, unlike in the high noise setting, choosing a good
number of repetitions is important. The best performance is achieved at m = 1, which
coincides with the minimizer mlyy, = 1 of the bound.

The results of the calibration experiment for the normalized MRE is given in
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mo o
K/3 2 5 10 20 | 20 10 5 2
400 | 0.18 0.15 0.17 - - 016 0.18 0.20
200 | 0.05 0.04 0.04 - - 0.06 0.05 0.07
100 | 0.02 0.04 - - - - 0.04 0.04
50 | 0.03 0.02 - - - - 0.02 0.04

Table 2: Normalized MRE in the linear model with low noise for various calibrations:
K/(p+ 1) = 50,100, 200,400 and mq = 2,5,10,20, ... For instance, for K/(p+ 1) =
200 = mgng, the normalized MRE is available for mo = 2, 5, 10, 20, 40, 100.

Table 2. The best performance is reached at the bottom left of the table with numbers
that correspond to the optimal performance in Figure 2 (¢). Moreover, notice that a
large spectrum of calibration parameters (K, mg) yield low errors.

6.2. Asymptotic behavior of the sensitivity indices estimators. To illus-
trate the asymptotic behavior of the sensitivity indices estimators, Sobol’s g-function,
a benchmark in sensitivity analysis [22, 18], is considered. Sobol’s g-function is given
by
ﬁ [4U; — 2| + |4U; — 2|+ a;

Uy,...
g( 1 ) P+1 1+G/]

)

where the a; are nonnegative and the U; are independent standard uniform random
variables. The less a; the more U; is important. Elementary calculations show that
the first-order Sobol index associated with U; is given by
p+1 2 -
Glarmapn) _ 1 —1+H (4/3 + aj + 2a;)
J 3(1+a;)? (1+a,;)?

j=1

To build a stochastic model out of Sobol’s g-function, we let one of the U; play
the role of Z. For instance if U;, 1 < i < p + 1, were to play this role, then the
stochastic model would be

(61) Y = f(Xl, e ,Xp, Z) == g(Xl, e 7AX'Z'_l,Z, XZ‘, N ,Xp).

Of course Y and f above depend on 4. In the rest of this section we choose arbitrarily
i=2and p=4.

The Sobol indices of the first and of the second kind (in the sense of Definition 3.1
and 3.2) are then easily seen to be

g Sleran) i1 < <i—1
= S§11£...,ap+1) lflﬁjgp

bi1,..0,b4y
and S = S\ yhere

b a; f1<j<i—1,
K aj+1 1fz§]§p
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For each kind of Sobol index, we produced 500 estimates of the p Sobol indices
and computed the values of the mean squared error (MSE) by averaging over the
500 replications and summing over the p indices. We tested n = 100, 500, 2500 and
m = 1,10, 100.
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9 ©
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100 500 2500 100 500 2500
n n
(a) first kind (b) second kind
Fig. 3: MSEs for the Sobol index estimators of the first and second kind (logarithmic

scale).
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Fig. 4: Boxplots of the estimates for the Sobol index of the second kind associated
with X;. The red horizontal line is the truth.

The MSEs are shown in Figure 3. Let us look at 3a. As n increases, the decrease
is linear for each m. This indicates that the MSEs go to zero at a polynomial rate,
even if m is fixed (look at the line m = 1). This agrees with the theoretical results
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of Section 5. The picture is different for the estimator of Sobol indices of the second
kind. In 3b, the curve for m = 1 is not a straight line, indicating that the MSE may
not go to zero. Indeed, the MSE for m fixed is not expected to go to zero because
of the bias depending on m. To make the MSE go to zero, one has to force m go to
infinity.

Figure 4, which shows the distribution of the estimates for the index associated
to X7, better explains this phenomenon. Here the bias is apparent for m = 1 and
vanishes as m goes to infinity. The bias for the indices associated with the other
inputs is not as large (not shown here).

7. Conclusion. The practical method that consists of repeating the stochastic
model at each exploration of the input space was analysed in the context of global
sensitivity analysis. To address the problem of finding an optimal tradeoff between the
number of repetitions and the number of explorations, the MRE was considered. It
was shown that the MRE is less than some bound, the global minimum of which can be
found explicitly and used in a two-stage procedure to construct asymptotically efficient
estimators. To do this analysis, we had to formally define the sensitivity indices to
which the estimator converges, which led us to consider a definition of stochastic
models arising from minimal distributional assumptions. A link was made with the
model in [9]. Our representation of stochastic models allowed to define another kind
of sensitivity indices, called the indices of the first kind, for which estimators were
constructed. During our asymptotic analysis, it was discovered that the estimators
for the indices of the second kind are asymptotically biased, while the estimators
for the indices of the first kind are not. To test the theory, simulation experiments
were conducted, where the bias of the sensitivity estimator of the second kind was
confirmed. Optimal compromises between repetitions and explorations have been
identified and compared with the output of the two-stage procedure for different
values of the tuning parameters.

This work opens many research directions. First, the sensitivity estimators of the
two stages could be aggregated to build estimators with a lower variance. Second,
other methods might be developed to optimize the Monte-Carlo sampling scheme. For
instance the MSE might be approximated or asymptotic variance-covariance matrices
might be minimized. Third, multilevel Monte-Carlo sampling schemes might be con-
sidered to alleviate the bias issue. Fourth, a finite-sample analysis could be conducted
to get insight into the tradeoff K is subjected to. Fifth, since the bias is known, it
could be estimated to build bias-corrected sensitivity indices estimators. Sixth, the
problem of choosing a number of calls with many divisors must be addressed. It may
be worth to call the model a bit less if this permits to have a better set div,(T'). Sev-
enth, the connection between our representation of stochastic models and that of [9]
could be investigated further.

Appendix A. Calculations of some sensitivity indices.

A.1. Calculations for EPAG. We have

aiae o (VarELF(X, 21X, Z2)2)\ [ Var(EBIf(X. 2)X,. 2)12)
51 ‘E< Var(f(X. 2)|2) >‘/Q Var(f(X.2)2)
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Since the term inside the integral is a function of Z and the law of Z is the standard
uniform distribution, a change of measures yields

guac _ [ Var(BIf(XOIX; Z=2l|Z=2) [ Var(B[/(X,2)X0)

dz.
o Var(f(X,2)|Z = 2) oy Var(f(X,2)

It remains to know what the ratio inside the integral is. We have

Var(f(X, z)) = Var(®(2) Xy + X;) =0 (2)? Var(Xs) + Var(X;)
L2 1

:q)il(z) ﬁ + E,

and
Var(E[f (X, 2)|X1]) = Var(E[®™" (2) X2 + X1]X1])
= Var(® ! (2) E[X2| X1] + E[X1|X1])
(
(

=Var(®(2) E[X5] + X1)
X1)

and hence

~ 1 Sl | 1 >
SHAG = / ——dz = / —_ e ” /2 dz.
! 01 271(2)2L% + 1 oo 220+ 121

A.2. Calculations for S| in Example 3. The sensitivity index of the first
kind associated with the first input is given by

S, _Var[E(Xl + XQCI)il(Z”Xl)]
T VarlXy + Xp®1(Z)]

The numerator is given by Var[E(X; + Xo®71(2)|X;)] = Var[X; + E(X1@71(2))] =
Var[X;] = 1/12. The denominator is given by Var[X; + Xo®~1(Z)] = Var[X;] +
Var[Xo®~1(Z)] = 1/12 + Var[X,® 1 (Z)], where

Var[X,® ' (Z)] = Var[E(X,® ' (2)|Z)] + E(Var[ X2 @~ (2)|2])

= Var [qa—l(z) (g + 1)} + /01 ®1(2)? Var[X,) dz

L 22
= —_ 1 _—
<2+ ) BETR

o 1/12 _ 1
VU124 (L2 4+1)2+02/12 0 A(L2+3(L+1)+ 17

so that

Appendix B. Proofs.
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B.1. Proof of Lemma 2.2. Since P is a product probability measure, we can
write P = @”_,P;. Let Q = (0,1)?*! endowed with its Borel o-field and let P be the

product Lebesgue measure ABTIf F); denotes the distribution function corresonding
to P; then, for w = (w1,...,wp41) € Q, put X;(w) = F"(w;) = inf{z; € R :
Fi(zj) >w;} forall j=1,...,pand Z(w) = wpy1. Take f(z,2) = F} (2) :=inf{t €
R: F,(t) > z}, 2 € (0,1), where F, is the cumulative distribution function associated
with P,. Standard probability techniques show that f(z,Z) is measurable for every
x. Moreover, for every t € R,

P(f(z,2) <1)
=P(Z < Fy(t)) = A1 {w € Qw1 < Fu(t)} = A0, Fu(t)] = Fu(t).
Finally, by the same token,
P(Xy <t1,...,Xp <tp,Z <tpy1)

p
=P{w:w < Fi(t1),...,wp < Fpltp),wpi1 <t} = tpir [[ F(t))

j=1
The proof is complete.

Proof of Proposition 4.1. Assume without loss of generality that D; < --- <
D,. We first prove the following Lemma. For convenience, the subscripts n and m
are left out.

LeEmMMA B.1. Leti < j. Then
~ . Var D; + Var D;
P(Di_DjZO)SM
31D — D;?
Proof. We have
P(D; — D; > 0) <P(|D; — D;| + |D; — D;| > D; — D)

) A 1
<P(D,~ DI 41D~ Dy = 5Dy~ DY

and the claim follows from Markov’s inequality.

We now prove Proposition 4.1. Recall that Dy < --- < D,. We have

ZP:E R —
=1

D; < D) - 1(D; < D)

I N

i M-s

| N

1D, — D,P

MIzy Y
>

ZVarD —|—VarD
i

<> Var D,
mln\D D |2 & Z o
i<y’

where the second inequality holds by Lemma B.1 and because
L E[1(D; > D,)| ifj<i,
E1(D; < D;) = 1(D; < Dy)| = 0 ifj=4i,

~

E|L(D; < Dy)| ifj >
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It remains to calculate the variances. But this is done in Lemma D.3 in Appendix D,
where it is found that

~ 1 1
Var D, :E{VarE[YOYAX] + E(EVar[YoYﬂX] — Var[Yy|X] Var[Y; | X])
1
+ poog) E Var[Yy|X] Var[Y;|X]}.

Proof of Proposition 4.3. We distinguish between three cases: 0 < m* < 1,

>(T-K)/(p+1)and 1 <m* < (I'— K)/(p+1). Recall that m}._, is the
minimizer of v(m), m in div, (T — K).

If 0 < m* < 1 then by definition ¢r_g(m*) = 1 and by convexity v(m*) <
v(1) < wv(m) for all m in div,(T — K'). Therefore m;LK =1

If m* > (T — K)/(p+ 1) then by definition pr_x(m*) = (T — K)/(p+ 1) and by
convexity v(m*) < v((T' — K)/(p+ 1)) < v(m) for all m in div,(T — K). Therefore
mp e = (T = K)/(p+1).

If1<m*<(T—-K)/(p+1) then by definition

" vm*or_gif \/\_m*_lT,K'—m*—‘T,K >m*
r—k(m")

r’I”I’L*TT,K if \/Lm*JT,Krm*jT,K S m*.

By convexity mTT x must be Lm*ar_g or "Tm* r_g. If Lm*or_g = "m* 'r_k then

mTT x ="M r_g = er_g(m*). Otherwise, since v(z) = Gz + (2 + (3/z, © > 0,

for some constants (1, (s and (3 such that (3/{; = m*, we have

v(Lm*or_g) <v("Tm r_g) iff \/I_m*_IT_KI—m T_K > 9 =m*.

G

Therefore pr_g(m*) = mTT_K.
Let us prove that the minimizer of v(m), m € div,(T — K), is unique if m* #
\/I_m*_IT_KI—m*jT_K. If it were not, then we would have v(Lm*.ir_k)

= v("m* 'r_k). Bus this implies m* = \/Lm*JT,Krm*jT,K, which is a contra-
diction.

Proof of Theorem 4.4. In this proof my and ny are denoted by m and n,
respectively. In view of (4.3) and (4.4)—(4.9), we have

P -~ P 1 n (4.4) (4.5) (4.6) (4.7)
~ s Zj:lC&j o j=1n Zui=1 jmz+£jmz fjmz g]mz

Mg = = =

21 S B (4-8)_(;2’% (4~9>,)

j=1ln z:l Jim,t n 1=15j;m,1

where the f i = 1 oon, j=1,...,p, e =4.4,...,4.9, are implicitly defined
through (4. 4) (4. )

E = %ng,ia
i=1

ém,i:(gz—;m,i""aggm,i)—rv izla"'ana
4.4 4.9 . .
:(£§;m?i,...7 J(-;m?i)T, j=1,...,p, i=1,...,n.
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Let s be the function defined by

P LG (5 (46) _ (a)

. T . — T
_ Jj=1"J J J J
s(x) = P (48 (492 )
j=1%j J

where x = (XI,...7X;—)T, X; = (m§4'4),...7m§4'9))—'—, j=1,...,p. With the above

notation we have mj, = s(£). Moreover, elementary calculations show that

e
v=1

where the C,, are vectors of constants, 8 = (8 , ... ,0;)—'— and
%(1,1)2Y§1,1)2

J
1,1)~(1,2) (1,1 1,2
y Py 3Dy Dy (12
y Iy 2y .02

(1’1)Y4(172)Y::)(1’1)2

o

6, =E
(1jl) (112) (1,1)y(1,2)
}/0 k] YO ’ Y ) Y El

J
(L)1)
Yy,

Check that m* = s(0). A concatenation of two Taylor expansions yield

VA€ B 1) 8B 0) + (€~ BEp) Fnm(E By )
(B2)  =Va(s®) - s(BE,.1))
—V(5(8) ~ 5(0) ~ (B&ys — ) T5(0) ~ 5(BEy s —0) 8n(BE, 1 ).

where $ is the gradient of s, §,,, is the Hessian matrix of s at a point between &
and 6,,, and, §p, is the Hessian matrix of s at a point between E§,, ; and 6. It

follows from (B.1) that (E&,, ; —8)T () is clearly of the form Zizl C,/m” for some
constants C,,. Putting

1 ¢
€m = §(E£m,l - H)Tsm(Egm,l - 0)) + Z mil:,’

v=2

it follows from (B.2) that

(B3) VA€~ Bbps) 8(B80) + 5~ Bbyr) 5@~ B, )
~ % * C
=Vn(mj —m —Hl—em).

If m is fixed then Lemma C.2 in Appendix C yields
\/’E(E - E€m7l> - N(07 Zm)a

for some variance-covariance matrix 3., of size 6p x 6p. Moreover, the second term in
the left-hand side of (B.3) is op(1) by Cauchy-Schwartz’s inequality and the continuity
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of the second derivatives of 5. The first term goes to N(0,3(EE,, )  Ems(EE,, 1))
and hence the claim follows with o2, = 3(E¢,, ;) Sms(EE,, ;) and C = C1.
If m — oo then again Lemma C.2 in Appendix C applies: we have

Vi€~ E&,,) = N(0, lim 3,,).

Since €, — 224:2 Cy,/m” =o(m™"), 5 is continuous and E€,, ; — 0, the claim follows.
The proof is complete.

Proof of Proposition 4.6. By definition, ﬁiTT_K = or_K(Mmj) and mTT_K =
er—_k(m*). The function ¢7_ g is piecewise constant and has |div,(T'— K)|—1 points
of discontinuity of the form 1/7j, where ¢ and j are two consecutive members of

div, (T — K) \ {1, Z;f}

Denote the set of discontinuity points by Dy_ k. Clearly,
Dr_x C{+/ij : i and j are two consecutive integers} = £.

There exists an open interval that contains m* but does not contain any points of
& and hence does not contain any points of Dr_g, whatever T' and K. If m}, is in
this interval then there are no discontinuity points between m* and m}, and hence
ﬁ%TT_K = pr_g (M%) = pr_x(m*) = mTT_K. By Corollary 4.5, the probability of
that event goes to one as mg and ng go to infinity.

Proof of Theorem 4.7. Let ¢ > 0. An obvious algebraic manipulation and
Taylor’s expansion yield

P T—lKU(mTT—K) - %U(mTT—K)
1 T > €
TU(mT7K>

T - _ K
< P (|2 g s =m0 )+ 2 oot > o(m_ ).

where m denotes a real between fﬁTT_  and mTT_ - A decomposition of the probability

above according to whether M., —mh_ . # 0 or ml_, —ml_, = 0 yields the

bound

N K
P(m}_K—mTT_K#O)+P<T_K>5>.

The first term goes to zero by Proposition 4.6. The second term goes to zero because
K/T — 0.

Proof of Theorem 5.1. The proof is based on the results in Appendix C. The
Sobol estimators in (3.7) and (3.4) are of the form

2
_ a2 G — (X &)

g — 1=1,...,p
jin,m 27 B
 im S — (7 2 60)
and
2
W AYmgn o (Ayr e

! = ) =1,...
Jin,m 2 J ) 2
%Z?:l LL (1 Zn UR)

m,i n Lai=15m,i
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90
9(

UL UL UR ¢/LL //LL)T

Iym,i * 0 Spym,t) Smye Smyio Smye

 where the notation is obvious. Denote &, ; := (
5 Elementary but burdensome calculations show that

EE[f(X, 2)|X]E[f(X-1, 2)|X_1]

EE[f(X, Z)|X]? + BYalf(X.2)IX]

m

907  (Some calculations are carried out in Appendix D.) Define the function

908
909 S(@1, ... Tp, Tpt1s Tpt2, Tpts)
r1 — T x —IQ T —1‘2 T —1‘2
) _ 1 p+1 P p+1 1 p+1 P p+1
910 = e S T 5 .
911 Tp+2 — Tpyq Tp+2 = Tpy1 Tp4+3 — Tpyg Tp+3 = Tppq

912 Clearly, we have

914 and
S/
915 s(E€,,1) = <S” {1 _ E Var[f(X,Z)|X] }) :
E Var[f(X,Z)|X]+m VarE[f(X,Z)|X]
916 If m is fixed then Lemma C.2 in Appendix C yields

917 Vn <71L Zém,i - E&m,l) i N(0,%),

i=1

918 for some nonnegative matrix ¥, of size (p+3) x (p+ 3) and the result follows by the
919  delta-method.

920 If m — oo, Lemma C.2 still holds with the variance-covariance matrix replaced
921 by its limit. Taylor’s expansion yields

1 n
9292 vn (s (n Zlﬁm’i> - S(Eﬁm,1)>
923 = vn <<; Zﬁm,i - EEm,l) Sm
n T n
| 11 . (1
924 +§ (’I’L ;Em,i - Egm,l) Sn,m (TL ;Em,i - Egm,l) )

925

926 where $,, is the gradient of s at EE,, ; and &, is the Hessian matrix of s at a
927 point between n=t ", §niand EE, 4. Since that point goes to a constant and s has
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continuous second derivatives, it holds that 3, ,, goes to a constant as well. So does
$m and the claim follows by Slutsky’s lemma.

Appendix C. A unified treatment of the asymptotics. All estimators in
this paper have a common form, given by

(Cl) l me,ia

with
1 i
(C.2) Soa = [T o TT v

where Yb(l’k) = Y6k = ]"(X(i),Z(()Z’k))7 Yj(z’k) = f()?(f;,Zj(-l’k)) for j =1,...,p, and
bju, j = 0,...,p, I = 1,...,L, are nonnegative coefficients. The coefficients are
arranged in a matrix (b;;) with L rows and p+ 1 columns, where b;,; is the element in
the Ith row and (j+1)th column. This way, all estimators of the form (C.1) and (C.2),
or, equivalently, all summands (C.2), can be represented by a matrix. We sometimes
write &y, =~ (bj1), where (b;,;) is the matrix of size L x (p+ 1) with coefficients b,
j=0,....p,1=1,...,L.

C.1. Examples. The estimator

I I m ik Lo G
SO DD IR (R DR F
=1 k=1 k'=1
is of the form (C.1) and (C.2) with L = 2 and coefficients
10 - 000 - 0
00 --- 010 --- 0)°

where the non-null columns are the first and the (j + 1)th ones. The estimators

Il 1 & Il &
EZ*ZYO( k)a ﬁ;%;%( k)Qa

i=1 k=1
n m 2
1 3 1 R
n m 0
i=1 k=1

are of the form (C.1) and (C.2) with L = 2 and coefficients
1 0 2 0 ... 0
0 0/’ 00 ... 0
1 0
1 0/’

respectively.

oo O O
oo oo
oo oo
o o
o O
o O
N———
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958 The estimators of Section 4. In view of (4.4)—(4.9), the estimators ng and
959 (1,; can be expressed in terms of estimators of the form (C.1) and (C.2): we have

y ~ 4. 4.6) 4.7)
960 (35 =— Z@ j(,,fz fj(mz 5](7,“7 and,

-~ 1 " 4.8 4.9
961 Cj= - Zﬁj(w?)l - ( Zf]( m)z> ;
=1

962

963  where
964 § J(‘4r}21 )i RS 54,,? )i
965 55477? i 5;47; i
0 (4.8) (4.9)
969 Eftmis jom
968 are all of the form (C.2) with L = 4 and coefficients
20 0 0O 0 10 0 00 0
060 00 0 2 0 0 10 0 0O 0
o 0 0 000 o> (o o 010 0|’
0 0 0 0 O 0 0 0 0 1 0 0
10 0 0O 0 2 0 0 0O 0
970 1 0 0 0 0 0 0 0 0 1 0 0
o 00 020 o] |o o 010 0]
00 0 0O 0 00 0 0O 0
10 010 0 10 010 0
- 1 0 01 0 0 0 0 0 0 O 0
o 0 0 00 0 o[> (o o 00 0 0"
979 0 0 . 0 0O 0 0 0 0 00 0
973 respectively. In the matrices above, the first and j 4+ 1th columns are nonnull.
974 The estimators of Section 5. The Sobol estimators in (3.7) and (3.4) are of
975  the form (C.1) and (C.2) with L = 2 and coefficients
- vw (1 00 - 0y L _(1L O -+ 00
I mi=\g 1 0 ... 0)’ “Smmi—\g 0 ... 0 1
977 for the upper left (UL) terms,
- ;55.2((1) o g)
979 for the upper right (UR) term,
L 2 0 0
980 Emi <O 0 0
981 for the lower left (LL) term of §;nm and
982 [l G 8 8)
983 for the lower left (LL) term of S;’n m-
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984 C.2. A central limit theorem. For each n, the random variables &,.1,...,&mn
985 are independent and identically distributed. Denote by &, (L) the set of all sum-
986 mands (C.2). In other words, &, (L) is the set of all nonnegative matrices of size
987 L x (p+1). This set has useful properties, gathered in Proposition C.1 for subsequent
988 use.

989 PROPOSITION C.1. Let & be an element of &,;(L) with coefficients (b;). The
990  following statements are true.

991 (i) If & is an element of &y, (L) with coefficients (b)) then §&' is an element of
992 Em,i(2L) with coefficients

boi - bpa
‘ bor - bpr
993 " it
0;1 7 p;1
/ /
994 bO;L T bp;L

995 (i) The limit of E€ exists as m — 0o.
996 (iii) If there exists some function F such that |f(x,2)| < F(x) for all x and z in the
997 domain of definition of f then

L
Z?:o 2121 by

P

998 €] < \/ Fj(X(i)) ,
j=0

999 where F;(X®) is F(X®) if j =0 and F()?(jj) if j > 1.

1000 Proof. The proof of (i) is trivial. Let us prove (ii). We have

L
1001 E¢ % Z EHﬁyj(l,kl)bj;z

(k1,.kp)€{L,..,m}L  1=13=0

L p
. 1 (LE)bju |~ (1)
1002 =7 Z EE H H YJ X
(k1y..nkp)€{l,...,m}E I=15=0
1 e (T
s _ Lk)bj [~ (1)
1003 (C.3) =1 Z E H E (HYJ X ) .
1004 (k1,..kp)€{1,....m}E j=0 =1
1005 Since (i) X and {ZM*)| k =1,...,m} are independent and (i) the law of
1006 VAR AL 2)
1007 is invariant through any permutation of distinct k1, ..., ky, all the inner expectations
1008 in (C.3) are equal to some others. For if ky, ...,k are distinct then
L L
1009 E (H Y’j(lvkl)bj;l X(1)> —F (H Y}(lvl)bj;l X(1)>
1010 1=1 1=1
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for all 5 = 0,...,p. The number of inner expectations equal to the one above is
m(m —1)---(m — L+ 1), a polynomial in m with degree L. If some components of
the tuple (k1,...,kr) are equal, then we can always write
) - (1,0
(1,k; sz (1) 1,085 |~ (1)
(T ) < T
I=1

for some L' < L and coefficients 3;; It is easy to see that the number of inner expec-
tations equal to the one above is a polynomial in m with degree at most L. (Looking
at examples helps to see this; see e.g. the proof of Lemma D.2 in Appendix D.)
Therefore, the sum in (C.3) is also a polynomial in m with degree at most L and the
claim follows (E ¢ can be zero). To prove (iii), simply remember that, by assumption,
YR < F(XD) and [v"] < F(XY) for all k and all j. O

Two frameworks are considered:
e n — oo and m is fixed;
e n — oo and m — 0.
In the second framework m., is a sequence indexed by n that goes to infinity as n goes
to infinity.
LEMMA C.2. Let 57(71;)1-, I =1,...,N, be elements of En, (L) with coefficients
(bg.,ll)). Assume
E 1.7‘()((1))2 Z?:o ZZL:I b§;lz) < 00

forallI =1,....N. Let n — oo. If m is fixed then

+
1 & d
ﬁ;gf‘;)z *Efr(rlb,)lv--- 25([\]) fq(nN1) = N(0,%,),

where X, is the variance-covariance matriz of §,, ; = (57(,1)17,57(,1]\?)—'— If m —

00 then lim,, oo 2 exists elementwise and the above display with ¥, replaced by
lim,,, —y o0 2y, 48 true.

Proof. Let m be fixed. By Proposition C.1 (i), f
Em,i(2L) and has coefficients

., N, belongs to

mz’

I I
bé;f bx();%
i I
(02 bf()}% bi();%
myi boq o by
i I
R

Thus, denoting >-7_ Zle b§';ll) by 3, Proposition C.1 (iii) yields

(C.4) \p/ (X ()2
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and hence

p 28
E¢? <E\/ F;(XD)* < (p+ 1)E (F(X<1>)) < .
3=0

Therefore we can apply the central limit theorem to finish the proof for m fixed.
Let m — oo. According to Lindeberg-Feller’s central limit theorem (see e.g. [30]),
it suffices to show
(i) for all e > 0,
e} — 0,

1 2 1
> 1{[[ R
and

(i) the limit Y7 | Cov(§,, ;/+/n) exists and is finite.
Let us show (i). Denoting X = (X, X)), we have

2
E £m,i
n

L{[|&,l] > e} =B (1€, 1 1*1{l1€, 11l > v/ne}

N
=By e t1{le,, ne}
I=1

N

=Y B [B (71,0 > vaeHX)]

I=1

By (C.4), we have

B (021416, > VaeHX) <\ BXO)2P (|[g,,.]| > vielX)

=0
()2
v S B (e IX)
< \/ Fj(xM)2
- \:/ ne2
- N \/7_y Fj(X(1)45

ne2 ’
where the last inequality holds by using (C.4) once more. The upper bound goes to
zero and is dominated by an integrable function. Thus, we can apply the dominated
convergence theorem to complete the proof.

Let us show that (ii) holds. We have )" | Cov(§,, ;/v/n) = Cov(§,, ). The

5(1) f(J) 5(1) E(J) Remember that

E¢? <00, I=1,...,N,and hence E£), 5“) < Eg<”2/2+§ ‘”2/2 < co. Therefore
the hrnlt of Cov £m71 exists and is finite. The proof is complete 0

element (I, J) in this matrix is given by E

Appendix D. Explicit moment calculations. Explicit moment calculations
are given for the summands in the proof of Theorem 5.1. In this section, E f(X, Z)
and EE[f(X, Z)| X]? are denoted by u and D, respectively. Recall that the upper-left
term in (3.6) and (3.5) is denoted by D;. The moments are given in Lemma D.1
and Lemma D.2. The variances and covariances are given in Lemma D.3. Let X =
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(X1, X®)). Whenever there is a superscript X added to the expectation symbol E
or the variance symbol Var, this means that these operators are to be understood
conditionally on X. An integral with respect to P(dx) means that we integrate with
respect to the law of X.

LEMMA D.1 (Moments of order 1). The moments of order 1 are given by

UL __ .
E jml_DJ’
UR
E ml _/J‘a

Eghl = EVar FXD, ZzOD) 4 p.

Proof. One has

S 1,k
]ml QZEf 1) Z(lk)f(X(_J)aZ]( ))

k,k’

— > [ E S 200 £ 20 Pla)
k,k’

— 1) 7@y x 1) F11)

=Ef(XY, 25N A(X25,Z2)

:D]7

where the integral is taken with respect to the law of x = (z, Z), and,

1 ,
Egt =—5 > BAXW, 200 p(x W), Z(19)
k,k’

:% EVar® f(X,Z) + E(EX f(X, Z))?

1
- EVar® f(X, Z) + D.

The proof for (YT is similar. d
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(Moments of order 2). The moments of order 2 are given by

E&(UR2 = var EX £(xM, 200 (XY, 700 4 p2

jyml

1
+ = [Evar® f(x, 200y px Mz
m

— Var®

FxW, 20Dy varX p(x ), 2(00))

1
+—2EVarX FX®, 20Dy varX (X0 20D,

6(UR)2

Ef/l(LL
E f(X(

m(m —1)(m — 2)

EVarX FXD ZzWD) L BEX f(xD, 2002,
(m —1)(m —2)(m — 3)

ma
. Z(l,l))f(X(l)’ Z(l’z))f(X(l), Z(l’?’))f(X(l), Z(1’4))

NE

(§)m< 1)

A E (XD, 2002 p(x O 702) p(x D, 7(13))

Ef(X®, zED3p(x M) 712

m
+ mEf(X(l ,ZH0)

_|_

(3)m(m —1)/2

— Ef(xW, 2002 p(x D, 20:2)2

Proof. Let us first deal with & UL . We have

EeUl2 = L

Jml 4

Z Ef(XMW, zWk0yp(x M) 7(1k2))
k1,k2 k3 ka

Ty ko)) ¢ ) (k)
FOXZ5, 250 F(X 5, Z57)

-3’ -3’

where, in the sum, the indices run over 1,...,m. We split the sum into four parts.
The first contains the m?(m — 1)? terms that satisfy k; # ko and k3 # k4. In this
part, all the terms are equal to

(term 1)

. 2
E (EX f(X(l), Z(l’l))f(X(_lj), Z](l,l))) )

The second part contains the m? (m — 1) terms that satisfy k; # ko and ks = k4 and

that are equal to

(term 2)

1) Z(1,1) (1) 712)ypex1) F(11)y2

The third part contains the m?(m — 1) terms that satisfy k1 = ko and k3 # k4 and

that are equal to
(term 3)

Finally, the fourt
are equal to

(term 4)

Ef(X(l),Z(l’l))Qf()N((j},Z](l’l))f()N(Elj?,Z](l’2)).

h part contains the m? terms that satisfy k; = ks and ks = k4 and

1 1,2 g (1) ~(1,1)\2
B (XM, 2002 p(xE) 730 0)2,
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(One can see that the number of terms is m*.) Thus,
E¢, (UL)2 =(term 1)

+ %[(term 2) + (term 3) — 2(term 1)]
+ #[(term 1) — (term 2) — (term 3) + (term 4)].

Furthermore, [(term 1) - (term 2) - (term 3) + (term 4)] is equal to

[ (& s 2165 2))

7EX ((13 Z(ll )f(’l} 212))f(£% i (1 1))
—EX f(z, 200 (3, 2V f <x_], (12)
+EX f(a, 200 f (8-, 237) AP (x)

)

:/(Exf(a:,Z)) (E* f(a-y.2 )2
_(Exf(x,Z)> EX f(z_;,2;)*
—EX f(z,2)? (EX f@—;, Zﬁ)

+EX f(2, 2)°EX f(i_;, Z;)* dP(x)

/Varxf X, Z) Var* f(X_;, Z;) dP(x).

Likewise, we find that [(term 2)4(term 3)-2(term 1)] is equal to
EVar® f(X,2) f(X_;, Z;) — Var® f(X, Z) Var™ f(X_;, Z;),

and term 1 is VarEX f(X, Z) f(X_;,Z) + D2.
We now deal with ¢”5F. We have

1
BONY? = 3 B, 2000 p(x 0, Z0k)

k1,ka,ks,ka
f(X(l), Z(lst))f(X(l)7 Z(l,k4)).

The sum is split into five parts. The first part consists of the m(m —1)(m —2)(m — 3)
terms with different indices; those terms are equal to

E (XM, 200 p(x W, 202) p(x D, 209) f(xW, Z209),

The second part consists of the (g)m(m — 1)(m — 2) terms with exactly two equal
indices; those terms are equal to

B (XD, z002p(x W, 202) f(x @, 209).

The third part consists of the (g)m(m — 1) terms with exactly three equal indices;
those terms are equal to

Ef(X(l),Z(l’l))3f(X(1),Z(1’2)).
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The fourth part consists of the m terms with exactly four equal indices; those terms
are equal to

Ef(X®, zGy4,

The fifth and last part consists of the (3)m(m —1)/2 terms with exactly two pairs of
equal indices; those terms are equal to

Ef(xW, 2002 p(x D, 202)2,

(One can check that the total number of terms is m?.) |

(i)

LEMMA D.3 (Variances and covariances).

Var €00 = Var EX f(x®, z00) p(x 1) Z0Y)

B VA f(X0, 200) (R, 70)

— Var® f(XD, z0D) var® (X 20D

1
+ — EVarX f(x, 20)) Var® f(xilg,zf’”),

7n17 ml

Cov(6Vk, €48 = "L B f(X ), 200 p(x ), 209) (R, 70
£ B (X0, 20072 (XY, 200) - Dy

Cov(€4%, F(X, 7)) = - B f(X, 200) (XY, 70D

ml’
m—1 (1 1,1
B, 200 f(xW, 209) p(XY), 27) — Dy
1
Var U = — — Var f(X, 2)

Cov(el (X 2)?) = 2 —f(X,2)"

m17
+ m-1 Ef(X(l), Z(lyl))Qf(X(l)7 Z(1’2)) —
m

mapl

3m =~
+ ( —1) Ef(X (1),2(1’1))2f(X(1), Z(l’Q))f(X(_lj), ZJ(-M))

L mm = 1)3(m -2 E (XD, 200y p(x D, 70:2))
m
D 03y 71 LD
FxW, z03 p(xE) Z30Y)

—Ef(X(l) Zz0yp(x ), Z(.Ll))

Cov(ghly €nth) = ZL B (X, 200y (X ), 21

Ef(X(l) Z(1)y2 + Ef(X(l) AS 1))f(X(1) Z(L?))
m )

Proof. The proof follows from direct calculations. ]

Appendix E. Calculations for the linear model.

LeMMA E.1. Suppose that f(X,Z) = fo + Bpt1Z + 27—, BjX; where X =
(X1,

 Xp), Zi, Zite are independent, EX;=EZ=0, EX2 EZ? =1, EX3 =0,
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EX;1 = 3. Then the squared optimal number of repetitions is given by

4
(m})? = s

(Bo + Bi)? — 285 + (325 B7)?

and the discriminator (the upper-left term in (3.6) and (3.5)) is

B3+ B

Proof. We have

with

Ai+ B +C; + D,

i = E, s
A =Ef(X,2:)°f(X_i, Zn)*
Bi =Ef(X,Z1)(X_ 72 (X, Z5) f(X i, Zia)
Ci=—Ef(X.2) PH(X i, Zi) F(X i, Zio)
Dy =—E f(X_i,Zn)"f(X, Z0) (X, Z2)
Ei=B—[Ef(X,2)f(X_i, Zn)]?

where X = (Xl,...,Xp),Zk,Zik are independent, EX; = EZ =0, EXJ2 =EZ2=1,
EX? =0, EX} = 3. We deal with the case

p
F(X,2) = Bo+ Bpr1Z + > _BiX

j=1

We calculate the terms one by one as follows. We have

2 2

p
A =E | B+ > BiX; Bo+BiXi+ > BiX;
J=1 Ji1<j#i
2

p
+ | Bo+ D B X; | BysaZh + By ZiZi
2

+BeZt [ Bo+BiXi+ D> BiX;

J1<j#i

= Aj1 + Aja + Ajs,

where E (A2) =

1B 2o 87, B(A3) = 87,1 >°F_ B3, Elementary but some-

what tedious calculations yield

E(A

1) =

By 438} +6838] +285+8]) > B+ | Y, B

Jil<ji Jil<j#i
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1226 Similar calculations show that Bj = Ajla Cj = _Ajl — Ajg, Dj = _Ajl — Ajg,
1227 Ej = Aj1 — (B2 + 8%)?. Thus,

(m>§<)2 _ /B§+1 )
1228 ' (Bo + Bi)? = 285 + (35— 57)? 0
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