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AN OPTIMAL TRADEOFF BETWEEN EXPLORATIONS AND1

REPETITIONS IN GLOBAL SENSITIVITY ANALYSIS FOR2

STOCHASTIC MODELS∗3

GILDAS MAZO†4

Abstract. Global sensitivity analysis often accompanies computer modeling to understand what5
are the important factors of a model of interest. In particular, Sobol indices, naturally estimated6
by Monte-Carlo methods, permit to quantify the contribution of the inputs to the variability of the7
output. However, stochastic computer models raise difficulties. There is no unique definition of Sobol8
indices and their estimation is difficult because a good balance between repetitions of the computer9
code and explorations of the input space must be found. The problem of finding an optimal tradeoff10
between explorations and repetitions is addressed. Two kinds of Sobol-like indices are considered.11
Their estimators are built and their asymptotic properties are established. To find an optimal tradeoff12
between repetitions and explorations, an error criterion that penalizes bad rankings of the inputs13
is considered. A bound is found and minimized under a fixed computing budget. Estimators that14
asymptotically achieve the minimal bound are built. Numerical tests are performed.15
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1. Introduction. Sensitivity analysis often accompanies computer modeling to18

understand what are the important factors of a model of interest [17, 18]. In partic-19

ular, Sobol indices [20, 21] permit to quantify the contribution of the inputs to the20

variability of the output. The estimation of Sobol indices is naturally performed by21

Monte-Carlo methods [6, 14, 20, 21], which permit to build estimators with statis-22

tical guarantees [4, 10]. Sobol indices for multivariate, functional outputs [3, 11] or23

functional inputs [9] have been proposed as well.24

Computer models employed to simulate physical systems/natural phenomena are25

increasingly stochastic. That is, two runs of the computer with the same input may26

lead to two different outputs. Examples can be found in epidemiology [1, 2, 15, 19]27

or ecology [22].28

It is still unclear how sensitivity analysis should be performed when the models are29

stochastic. First, there is no unique definition of Sobol indices [5]. Second, it is unclear30

how to account for noise in the inference. Monte-Carlo sampling with repetitions is31

natural, but what is a good balance between the number of repetitions of the model32

and the number of explorations of the input space [22]? Having efficient estimators33

would permit to achieve the same level of precision but with less computations, an34

important practical issue. An approach based on meta-models has been proposed [12],35

but it is difficult to control the induced bias and the construction of the meta-model36

itself can be challenging.37

The problem of finding an optimal Monte-Carlo design to estimate Sobol indices38

in stochastic computer models is addressed. Two definitions of Sobol indices are39

given. Their estimators, based on Monte-Carlo sampling with repetitions, are built40

and their asymptotic properties are established. To find an optimal tradeoff between41

repetitions and explorations, an error criterion that penalizes bad rankings of the42

inputs is considered. A bound is found and minimized under a fixed computing43

budget. To get estimators that asymptotically achieve the minimal bound, a two-44
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2 G. MAZO

stage procedure is proposed. The first stage estimates the combination of repetitions45

and explorations that achieves the minimal bound and the second stage uses that46

combination to optimize the design of the Monte-Carlo data generation. The resulting47

estimators are shown to achieve the minimal bound asymptotically.48

This paper is organized as follows. The sensitivity indices and their estimators are49

defined and discussed in Section 2. The two-stage procedure to optimize the Monte-50

Carlo design is given in Section 3. Some theoretical guarantees are given. Section 451

contains asymptotic results for the sensitivity indices estimators of Section 2. Section 452

and Section 3 are not related to each other and can be read independently. Numerical53

experiments are provided in Section 5 to test and illustrate the theory. A discussion54

closes the paper. The proofs are given in Appendix A.55

2. Sensitivity analysis for stochastic models.56

2.1. Representation of a stochastic model. A model is a mechanism that57

takes an input X and returns an output Y . A stochastic model has the following58

property: two runs of the model with the same input may return two different outputs.59

To account for this property, we assume that there exist a function f and a hidden60

random variable Z independent of X such that61

Y = f(X1, . . . , Xp, Z),(2.1)6263

where X1, . . . , Xp are the components of X, which are assumed to be independent.64

The variable Z is seen as an unobserved and uncontrollable noise variable that rep-65

resents the intrinsic stochasticity of the model. Even if X were to be fixed to some66

arbitrary value, say x, the output would remain a random variable, the distribution67

of which would be that of f(x, Z).68

Note that no pairs (Wi, Yi) with Wi = (Xi, Zi) can be observed because Z is69

not observable. Thus we have no access to the function f . The specification of Z is70

unnecessary: it can be a random variable, a random vector or something else.71

The following assumption is needed to derive some results in Section 3 and in72

Section 4: there exists some function F with EF (X)8 <∞ such that, for all x and z73

in the domain of definition of f ,74

(2.2) |f(x, z)| ≤ F (x).75

This assumption, needed to apply various versions of central limit theorems, appears76

to be mild. In particular every model with bounded outputs fulfill the condition.77

2.2. Sobol’s decomposition. Sobol showed that every integrable multidimen-78

sional function h decomposes uniquely into a sum of lower dimensional functions [20].79

If q is a natural integer and w = (w1, . . . , wq) lies in the euclidean space Rq, then80

h(w) =h0 + h1(w1) + · · ·+ hq(wq)(2.3)81

+ h1,2(w1, w2) + · · ·+ hq−1,q(wq−1, wq)82

+ · · ·83

+ h1,...,q(w1, . . . , wq),8485

where h0 is a constant and86 ∫ 1

0

hi1,...,ik(wi1 , . . . , wik) dwij , 1 ≤ j ≤ k87
88
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AN OPTIMAL TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS 3

for any k = 1, . . . , q. We call the lower-dimensional functions component functions.89

It follows that the integral of every nonconstant component function is null and the90

integral of the product of any two component functions is null as well. Integration91

can be taken with respect to any product probability measure: the above properties92

are not changed.93

The decomposition (2.3) has been widely used to partition the variance of the94

output of a given mathematical model. Let W be a random vector. From (2.3), it95

follows that96

Varh(W ) = Varh1(W1) + · · ·+ Varhq(Wq)(2.4)97

+ Varh1,2(W1,W2) + · · ·+ Varhq−1,q(Wq−1,Wq)98

+ · · ·+ Varh1,...,q(W1, . . . ,Wq).99100

The variance of h(W ) is decomposed into “individual” effects and “interaction” effects101

of the components of W . The jth Sobol index, denoted by Sj , is defined as the fraction102

of variance that is attributed to Wj alone in the decomposition:103

Sj =
Varhj(Wj)

Varh(W )
=

Var E(h(W )|Wj)

Varh(W )
.(2.5)104

105

The last equality is true because hj(Wj) = E(h(W )|Wj)− h0.106

The jth total sensitivity index [6], denoted by STj , is the fraction of variance107

attributed to Wj and its interactions with the other components of W . A convenient108

formula for STj can be found as follows. In (2.3), group all the component functions109

(except the constant) that do not depend on wj and denote the sum by hcj(wcj), where110

wcj stands for the vector complementary to w, that is, the vector whose components111

are those of w with wj removed. Likewise, group all the interactions between wj112

and the other components of w and denote the sum by hj,cj(wj , wcj). Then Sobol’s113

decomposition rewrites114

h(w) = h0 + hj(wj) + hcj(wcj) + hj,cj(wj , wcj)115116

and hence the jth total sensitivity index is given by117

STj = 1− Varhcj(Wcj)

Varh(W )
= 1− Var E(h(W )|Wcj))

Varh(W )
.(2.6)118

119

The sensitivity indices defined above have been widely used to carry out sensitivity120

analyses of computer implementations of mathematical models. These indices are121

interpreted as a measure of “importance” or “influence” of the inputs for a given122

model. The number h(w) is the output of the computer program and the input is w.123

Monte-Carlo methods permit to estimate the sensitivity indices [20, 21, 4, 10] and to124

get insight into what may be the “important” inputs of the mathematical model. The125

goal in the next section is to find ways to apply Sobol’s decomposition to the special126

case of stochastic models.127

2.3. Definition of the sensitivity indices. To define sensitivity indices,128

Sobol’s decomposition (2.3) can be exploited in two natural ways. The first approach129

consists in applying Sobol’s decomposition directly to the hidden function f in (2.1).130

Putting h = f and W = (X,Z) in (2.4) yields the indices in Definition 2.1. We call131

them the indices of the first kind.132
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4 G. MAZO

Definition 2.1 (Sobol indices of the first kind). The Sobol indices of the first133

kind are defined as134

S′j =
Var E(f(X,Z)|Xj)

Var f(X,Z)
, j = 1, . . . , p.135

Interestingly, the inaccessibility of the function f , due to the lack of control over136

the noise variable, does not prevent computing the indices of the first kind. Indeed,137

the jth index depends on the conditional law of the output given Xj only and Xj138

is controllable: the output of f can be generated with Xj fixed to some value. Not139

so much can be said with Z. As a result, in principle the jth total sensitivity index140

can be defined as in (2.6) with Wcj = (X1, . . . , Xj−1, Xj+1, . . . , Xp, Z) but it is not141

estimable.142

The second approach consists in turning the stochastic model (2.1) into a com-143

pletely controllable deterministic one. To do this, one takes the conditional expecta-144

tion of the output Y given the input X, given by145

g(X) = E(f(X,Z))|X).146

The new function g is then subjected to Sobol’s decomposition. In (2.3), taking147

W = X and h = g yields the indices in Definition 2.2.148

Definition 2.2 (Sobol indices of the second kind). The Sobol indices of the149

second kind are defined as150

S′′j =
Var E(E[f(X,Z)|X]|Xj)

Var E[f(X,Z)|X]
, j = 1, . . . , p.151

Here, since g is accessible, it makes sense to define total sensitivity indices. The152

jth total sensitivity index is given by153

S′′Tj = 1− Var E (g(X)|X1, . . . , Xj−1, Xj+1, . . . , Xp)

Var g(X)
.(2.7)154

155

The noise variable Z does not appear in the conditioning variables because the com-156

plementary vector Xcj is to be understood with respect to X, not (X,Z).157

However, the operation of taking the conditional expectation leads to a loss of158

information. This is illustrated in Example 1.159

Example 1. Let Y = aX1 +cX2φ(Z), where X1, X2, Z are independent standard160

normal variables, a, c are real coefficients and φ is a function such that Eφ(Z) = 0.161

Then162

S′1 =
a2

a2 + c2 Eφ(Z)2
, S′2 = 0, S′′1 = 1 and S′′2 = 0.163

164

The information loss in Example 1 is severe: the sensitivity indices of the second165

kind seem to indicate that only X1 is influential. This is because the part involving166

X2 has been “removed” along with the noise. In this example it may be argued that167

the indices of the first kind better reflect the “importance” of the inputs.168

In sum, the two kinds of sensitivity indices defined above seem to be complemen-169

tary. Information about interaction effects will be missing with the indices of the first170

kind but no first-order information is lost. The reverse is true for the indices of the171
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second kind. Another difference will be shown in Section 4: it is more difficult to172

estimate the indices of the second kind than the indices of the first kind.173

For estimation purposes, it is convenient to rewrite the indices as174

(2.8) S′j =
E E[f(X,Z)|X] E[f(X̃−j , Z)|X̃−j ]− (E E[f(X,Z)|X])

2

E E[f(X,Z)2|X]− (E E[f(X,Z)|X])
2175

and176

(2.9) S′′j =
E E[f(X,Z)|X] E[f(X̃−j , Z)|X̃−j ]− (E E[f(X,Z)|X])

2

E E[f(X,Z)|X]2 − (E E[f(X,Z)|X])
2 ,177

where X̃ = (X̃1, . . . , X̃p) is an independent copy of X and178

X̃−j = (X̃1, . . . , X̃j−1, Xj , X̃j+1, . . . , X̃p),179

for j = 1, . . . , p. Note that S′j and S′′j differ only by the lower left term. In particular,180

the upper left term is the same in both formula. It is the only term that depends on181

j, and hence the only term that permits to discriminate between any two indices of182

the same kind. For this reason, it is called the discriminator and is denoted by Dj .183

Notice that S′j ≤ S′′j .184

2.4. Estimation of the sensitivity indices. The sensitivity indices are es-185

timated by Monte-Carlo sampling. Outputs of the stochastic model are produced186

through Algorithm 2.1. The input space is explored n times and, for each explo-187

ration, the computer is run m times to smooth out the noise. Thus, the total number188

of calls to the computer is proportional to mn. The integer n is called the number of189

explorations and the integer m is called the number of repetitions. The couple (n,m)190

is called the design of the Monte-Carlo sampling scheme.191

Algorithm 2.1 Generate a Monte-Carlo sample

for i = 1 to n do
draw two independent copies X(i), X̃(i)

for j = 0, 1, . . . , p do
for k = 1 to m do

run the computer model at X̃
(i)
−j to get an output Y

(i,k)
j

end for
end for

end for

The data generated by the algorithm are192

(Y
(i,k)
j , X̃

(i)
−j),193

for j = 0, 1, . . . , p, i = 1, . . . , n and k = 1, . . . ,m, with the convention X̃
(i)
−0 = X(i).194

By assumption, there are independent random elements (Z
(i,k)
j ) such that195

(2.10) Y
(i,k)
j = f(X̃

(i)
−j , Z

(i,k)
j ).196
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6 G. MAZO

The estimators of the sensitivity indices are built by substituting empirical averages197

for expectations in (2.8) and (2.9), that is,198

(2.11) Ŝ′j;n,m =

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

1
m

∑m
k′=1 Y

(i,k′)
j −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)2
0 −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2199

and200

(2.12)

Ŝ′′j;n,m =

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

1
m

∑m
k′=1 Y

(i,k′)
j −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2
1
n

∑n
i=1

(
1
m

∑m
k=1 Y

(i,k)
0

)2
−
(

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2 .201

The estimation of total sensitivity indices of the second kind is not considered in this202

paper. However, the formula (2.7) suggests that estimators can be built similarly.203

To our knowledge (personal communication), when faced with stochastic com-204

puter models, practitioners tend to use softwares for deterministic sensitivity analysis205

in which an average over repetitions is given to the program as a substitute for the206

value of the output. Thus, the second estimator is used in practice, albeit implicitly.207

The first estimator, to the best of our knowledge, was not formally defined. The208

second estimator appeared in [7, 8], where it was studied only in the case m = n (to209

the best of our understanding).210

In (2.11) and (2.12), if m = 1 and the function f does in fact not depend on211

Z, then the estimators reduce to Sobol estimators [20, 21] for deterministic models.212

These are sometimes called pick-freeze estimators [4].213

3. Choosing between Monte-Carlo designs. The estimators in Section 2214

depend on the design (n,m) of the Monte-Carlo sampling scheme. To estimate the215

sensitivity indices, the stochastic model has to be called (p+ 1)mn times.216

It is reasonable to think of a sensitivity analysis as done the following way. The217

total number of calls is set to a limit, say T . Then n and m are chosen so that218

T = (p+ 1)mn. For instance, suppose that one cannot afford more than 150 calls to219

a model with two inputs. Then T = 150, p = 2 and one can choose either one of the220

columns in the following table221

n 50 25 10 5 2 1
m 1 2 5 10 25 50.

222

Denote by divp(T ) the set of all divisors of T/(p + 1) between 1 and T/(p + 1).223

In the example above, div2(150) = {1, 2, 5, 10, 25, 50}. There are as many designs as224

there are elements in the set divp(T ). Each one of those elements corresponds to a225

possible combination for n and m which Algorithm 2.1 can be run with. The resulting226

estimators require the same number of calls but do not perform equally well. The227

goal of this section is to find the “best” way to estimate the sensitivity indices.228

3.1. Introducing the miss-ranking error and its bound. To compare the229

estimators, a measure of performance has to be defined. We shall consider the miss-230

ranking error (MRE), defined by231

MRE = E

p∑
j=1

|R̂j;n,m −Rj |,232
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AN OPTIMAL TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS 7

where Rj is the rank of Dj among D1, . . . , Dp, that is, Rj =
∑p
i=1 1(Di ≤ Dj),233

and R̂j;n,m is an estimator of Rj . Recall that D1, . . . , Dp are the upper-left terms234

in (2.8) and (2.9). They determine the ranks of the sensitivity indices. Recall that235

the ranks of the sensitivity indices of the first kind coincide with the ranks of the236

sensitivity indices of the second kind. Thus, the MRE permits to find a unique237

solution for both kinds of sensitivity indices. The MRE is small when one succeeds238

in ranking the inputs from the most to the least important, a task which is called239

“factors prioritization” in [18, p. 52].240

The MRE has a bound with interesting mathematical properties. Denote by241

MRE(T,m) the MRE based on T number of calls and m repetitions, so that the242

number of explorations is T/(p+ 1)/m. Remember the notation of Section 2: denote243

(X(1), X̃(1)) = X, f(X(1), Z
(1,1)
0 ) = Y0 and f(X̃

(1)
−j , Z

(1,1)
j ) = Yj .244

Proposition 3.1. Let D̂j;n,m, j = 1, . . . , p, be the upper-left term in (2.11)245

(or (2.12)) and put R̂j;n,m =
∑p
i=1 1(D̂i;n,m ≤ D̂j;n,m). Then246

MRE(T,m) ≤ L

nm

(
m

p∑
j=1

Var(E[Y0Yj |X])247

+

p∑
j=1

E(Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X])248

+
1

m

p∑
j=1

E(Var[Y0|X] Var[Yj |X])
)
,249

250

where251

L =
4(p− 1)

min
j<j′

(|Dj −Dj′ |2)
.252

253

The constant L tells us that the bound is smaller when the indices are well254

separated. The bound goes to zero when the number of explorations goes to infinity.255

This is true even if the number of repetitions is fixed. Most interestingly, the bound256

separates T and m:257

MRE(T,m) ≤ 1

T
v(m), m ∈ divp(T ),(3.1)258

259

where the function v is implicitly defined through Proposition 3.1. Denote by m†T260

the element m in divp(T ) that minimizes v(m). Taking m = m†T in (3.1), we get the261

bound262

MRE(T,m†T ) ≤
v(m†T )

T
≤ v(m)

T
, for all m ∈ divp(T ).263

Thus the best guarantee coincides with m = m†T and n = T/(p + 1)/m†T in Algo-264

rithm 2.1. However m†T is unknown.265

Remark 3.2. The choice of T , through the specification of divp(T ), will influence266

the quality of the bound. It is clear that choosing T/(p + 1) a prime number may267

not be a good idea because v(m†T ) will be either one of v(1) or v(T/(p+ 1)). On the268

opposite, choosing T/(p + 1) a factorial number ensures many more choices (in fact,269

all).270

This manuscript is for review purposes only.



8 G. MAZO

3.2. A two-stage procedure to estimate the sensitivity indices. The re-271

sults in Section 3.1 suggest a two-stage procedure to estimate the sensitivity indices.272

The procedure is given in Algorithm 3.1. The computational budget is split into two273

parts K and T −K. The first K calls to the model are used to estimate m†T−K . The274

last T −K calls to the model are used to estimate the sensitivity indices.275

Algorithm 3.1 Estimate the sensitivity indices by a two-stage procedure

Stage 1. Choose an integer K such that K/(p+1) and (T −K)/(p+1) are integers
also. Choose integers m0 and n0 such that K = m0n0(p + 1). Run Algorithm 2.1

with m = m0 and n = n0. Estimate m†T−K by an estimator m̂†T−K in divp(T −K).

Stage 2. Run Algorithm 2.1 with m = m̂†T−K and

n =
T −K

(p+ 1)m̂†T−K
.

Compute the sensitivity indices estimators (2.11) and (2.12).

The estimator of m†T−K is built as follows. Let m∗ be the minimizer of v seen as276

a function on the positive reals. Since v is convex, the minimizer is unique. It follows277

from (3.1) and Proposition 3.1 that278

m∗ :=

√∑p
j=1 E Var[Y0|X] Var[Yj |X]∑p

j=1 Var E[Y0Yj |X]
=

√∑p
j=1 ζ3,j∑p
j=1 ζ1,j

,(3.2)279

280

where ζ3,j = E Var[Y0|X] Var[Yj |X] and ζ1,j = Var E[Y0Yj |X], j = 1, . . . , p.281

Let ϕT : (0,∞) −→ divp(T ), be the function defined by ϕT (x) = 1 if 0 < x < 1,282

ϕT (x) = T/(p+ 1) if x > T/(p+ 1), and283

ϕT (x) =

{
xxyT if

√
xxyT pxqT > x ≥ 1

pxqT if
√
xxyT pxqT ≤ x ≤ T

p+1

284

285

where286

xx∗yT = max{m ∈ divp(T ), m ≤ x}, px∗qT = min{m ∈ divp(T ), m ≥ x}.287288

The function ϕT is piecewise constant with discontinuity points at
√
ij, where i and289

j are two consecutive elements of divp(T ).290

Proposition 3.3. If m∗ > 0 then m†T−K = ϕT−K(m∗). If, moreover,291

xm∗yT−Kpm∗qT−K is not equal to m∗2 then the minimizer of v(m), m ∈ divp(T−K),292

is unique.293

Proposition 3.3 suggests that m†T−K can be estimated by applying the function294

ϕT−K to an estimate of m∗. Remember that K = m0n0(p+ 1) and put295

(3.3) m̂∗K :=

√√√√∑p
j=1 ζ̂3,j∑p
j=1 ζ̂1,j

,296
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AN OPTIMAL TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS 9

where297

ζ̂3,j =298

1

n0

n∑
i=1

1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )2

1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )2(3.4)299

+
1

n0

n∑
i=1

(
1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )

)2(
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )

)2

(3.5)300

− 1

n0

n∑
i=1

(
1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )

)2
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )2(3.6)301

− 1

n0

n∑
i=1

1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )2

(
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )

)2

,(3.7)302

303

and304

ζ̂1,j =305

1

n0

n∑
i=1

(
1

m0

m0∑
k=1

f(X(i), Z
(i,k)
0 )f(X̃

(i)
−j , Z

(i,k)
j )

)2

(3.8)306

−

(
1

n0

n∑
i=1

1

m0

m0∑
k=1

f(X(i), Z
(i,k)
0 )f(X̃

(i)
−j , Z

(i,k)
j )

)2

.(3.9)307

308

Notice that ζ̂1,j ≥ 0 and ζ̂3,j ≥ 0 so that m̂∗K ≥ 0. If m0 = 1 then ζ̂3,j = 0 and hence309

m̂∗K = 0.310

The estimator m̂∗K is consistent and asymptotically normal on some conditions311

on the rates of n0 and m0.312

Theorem 3.4. Assume (2.2) holds. Let n0 →∞. If m0 is fixed then313

√
n0

(
m̂∗K −

[
m∗ +

C

m0
+ εm0

])
d→ N(0, σ2

m0
),314

for some constant C, real εm0
depending on m0 and variance σ2

m0
depending on315

m0. If m0 → ∞ then the above display with εm0
= o(1/m0) and σm0

replaced by316

limm0→∞ σm0 is true.317

Theorem 3.4 shows that m̂∗K is asymptotically biased. The bias is polynomial in318

1/m0. Corollary 3.5 shows that letting m0 →∞ suffices to get the consistency of m̂∗K319

but to get a central limit theorem centered around m∗, it is furthermore needed that320 √
n0/m0 → 0.321

Corollary 3.5. Assume (2.2) holds. Let n0 → ∞ and m0 → ∞. Then m̂∗K
P→322

m∗. If, moreover,
√
n0/m0 → 0, then323

√
n0(m̂∗K −m∗)

d→ N(0, lim
m0→∞

σ2
m0

).324

To estimate m†T−K , put m̂†T−K = ϕT−K(m̂∗K). Proposition 3.6 states that m̂†T−K325

and m†T−K are equal with probability going to one.326
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Proposition 3.6. Assume (2.2) holds. Let n0 →∞ and m0 →∞. Then327

P
(
m̂†T−K = m†T−K

)
→ 1.328

329

All the details of Algorithm 3.1 have been given.330

3.3. Performance. To get some insight into the performance of the procedure331

given in Algorithm 3.1, we look at the performance of the sensitivity indices estimators332

produced in Stage 2. Since they are built with T −K calls to the model with m̂†T−K333

repetitions, they satisfy334

MRE(T −K, m̂†T−K) ≤ 1

T −K
v(m̂†T−K),(3.10)335

336

where the left-hand side is the conditional expectation of the MRE, given the outputs337

produced in Stage 1. The estimator m̂†T−K is computed with K calls only.338

It is difficult to compare the guarantee above with that which got by choosing339

an arbitrary number of repetitions, say m. In the later case K = 0 and hence the340

guarantee is (3.1). The denominator in (3.10) is smaller but we expect that the341

numerator v(m̂†T−K) will be less than v(m) for many values of m. Indeed, the numer-342

ator should be close to v(m†T−K). If T −K is well chosen then v(m†T−K) and v(m†T )343

should be close and since v(m) ≤ v(m†T ) for all m in divp(T ), the numerator v(m̂†T−K)344

should be an approximate minimizer. For instance if K and T are large enough and345

divp(T −K) = {1, 2, . . . , (T −K)/(p + 1)} and divp(T ) = {1, 2, . . . , T/(p + 1)} hold346

then v(m†T−K) and v(m†T ) are equal. Note that the numerator and the denominator347

in (3.10) cannot be good at the same time and K determines the balance.348

Theorem 3.7. Assume that the conditions of Proposition 3.6 are fulfilled. Sup-349

pose furthermore that K →∞ such that K/T → 0. Then350

1

T −K
v(m̂†T−K) =

1

T
v(m†T−K)(1 + oP (1)).351

352

The bound in Theorem 3.7 is the best possible guarantee inflated by a factor not353

much larger than one. This result is valid if K is large but not too large with regard354

to T . In particular, if divp(T ) ∩ divp(T − K) = divp(T − K) then for every fixed355

m 6= m†T , it holds that P (T−1v(m†T−K)(1 + oP (1)) ≤ T−1v(m))→ 1. In other words356

it is always better, in terms of obtainable guarantees, to use the procedure rather than357

to choose the number of repetitions arbitrarily, except for the lucky case m = m†T .358

4. Asymptotic normality of the sensitivity indices estimators. The sen-359

sitivity indices estimators of Section 2.4 depend on both m and n. It is clear that360

n should go to infinity to get central limit theorems. It may be less clear, however,361

whether or not m should go to infinity as well. The answer depends on the kind of362

the sensitivity index we are looking at.363

Two frameworks are considered:364

• n→∞ and m is fixed;365

• n→∞ and m→∞.366

In the second framework mn is a sequence indexed by n that goes to infinity as n goes367

to infinity. Denote by S′ (resp. S′′) the (column) vector with coordinates S′j (resp.368

S′′j ), j = 1, . . . , p, and denote by Ŝ′n,m (resp. Ŝ′′n,m) the vector with coordinates Ŝ′j;n,m369

given in (2.11) (resp. Ŝ′′j;n,m given in (2.12)).370
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Theorem 4.1. Assume (2.2) holds. Let n→∞. If m is fixed then371

√
n

(
Ŝ′n,m − S′

Ŝ′′n,m − S′′
[
1− EVar[f(X,Z)|X]

EVar[f(X,Z)|X]+mVarE[f(X,Z)|X]

]) d→ N(0,Ξm),372

for some nonnegative matrix Ξm of size 2p × 2p. If m → ∞ then, elementwise,373

limm→∞ Ξm exists and the above display with Ξm replaced by limm→∞ Ξm is true.374

Theorem 4.1 predicts the behavior of the joint vector (Ŝ′>n,mŜ′′>n,m). However the375

behaviors of Ŝ′n,m and Ŝ′′n,m are different. The estimator Ŝ′>n,m is asymptotically normal376

around S′, even if m is kept fixed. The estimator Ŝ′′>n,m is also asymptotically normal,377

but not around S′′.378

The estimator Ŝ′′n,m under-estimates S′′. The bias, given by379

S′′
E Var[f(X,Z)|X]

E Var[f(X,Z)|X] +mVar E[f(X,Z)|X]
,380

381

is null whenever f actually does not depend on Z, and large whenever the computer382

model is highly stochastic. As Theorem 4.1 shows, the bias is still present even if m383

goes to infinity. Corollary 4.2 shows that m must go to infinity fast enough to avoid384

the estimator to be tightly concentrated around the wrong target.385

Corollary 4.2. Assume (2.2) holds. Let n→∞. If m→∞ such that
√
n/m→386

0 then387

√
n
(
Ŝ′′n,m − S′′

)
d→ N(0,Ξ22),388

where Ξ22 is the lower-right block of the matrix limm→∞ Ξm given in Theorem 4.1.389

The difference between Ŝ′n,m and Ŝ′′n,m is due to the difference between the lower-390

left terms in (2.11) and (2.12). While the lower-left term in (2.11) is unbiased for all n391

and m, the lower-left term in (2.12) has a bias depending on m which propagates to the392

estimator of the sensitivity indices. (The calculations are carried out in Appendix C.)393

From a statistical perspective, it is more difficult to estimate the sensitivity indices394

of the second kind than to estimate the sensitivity indices of the first kind. To estimate395

the former, one needs to repeat the model many times. To estimate the later, this is396

not necessary.397

5. Numerical tests. Section 5.1 illustrates how the MRE responds to a change398

in the Monte-Carlo design. In Section 5.1 the total budget T is kept fixed. Section 5.2399

illustrates how the sensitivity indices estimators behave asymptotically. In Section 5.2400

the total budget T increases.401

5.1. Comparison of Monte-Carlo designs. The effect of the number of rep-402

etitions on the sensitivity indices estimators and the effect of the calibration in the403

two-stage procedure are examined in two kinds of experiments: the “direct” experi-404

ments and the “calibration” experiments.405

In the direct experiments, the sensitivity indices are estimated directly with the406

given number of repetitions. Increasing numbers of repetitions m are tested. (Since407

the budget is fixed, this goes with decreasing numbers of explorations.) For each m,408

the mean squared errors (MSEs), given by E
∑p
j=1(Ŝ′j;n,m−S′j)2 and E

∑p
j=1(Ŝ′′j;n,m−409

S′′j )2, are estimated with replications. They are also split into the sum of the squared410
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biases and the sum of the variances to get further insight about the behavior of the411

estimators. The MREs are estimated as well. A normalized version is considered:412

it is the MRE divided by the number of variables. For models with two inputs, the413

normalized MRE is interpreted directly as the probability that the two inputs are414

ranked incorrectly.415

In the calibration experiments, the sensitivity indices are estimated with the two-416

stage procedure, the results of which depend on the calibration parameters K and417

m0. Various calibration parameters are tested to see their effect on the MRE. The418

budgets for the direct experiments and the calibration experiments are the same so419

that the numbers can be compared. In particular, the direct experiments correspond420

to the case K = 0 in the calibration experiments.421

A linear model of the form Y = X1 + βX2 + σZ, where X1, X2, Z, are standard422

normal random variables and β, σ are real coefficients, has been considered because423

the sensitivity indices are explicit and hence the performance of the estimators can424

be evaluated easily. The quantity m∗ is explicit: the formula is given in Appendix D.425

5.1.1. High noise context. The coefficients are β = 1.2 and σ = 4. The426

sensitivity indices are S′1 = 0.05, S′2 = 0.08, S′′1 = 0.41 and S′′2 = 0.59. The real427

m∗ is about 5.8. The total budget is T = 3 × 500 = 1500 and hence div2(1500) =428

{1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500}. The integer m†1500 is equal to ϕ1500(m∗) =429

5. Since the budget is kept fixed, the numbers of explorations are, respectively,430

500, 250, 125, 100, 50, 25, 20, 10, 5, 4, 2, 1. The number of replications is 1500.431

The results of the direct experiment are given in Figure 1 for m = 1, 2, 4, 5, 10,432

20, 25. The MSE of first kind does not vary with the number of repetitions and is433

much lower than the MSE of second kind, see (c). The estimators of the second kind434

are highly biased for small numbers of repetitions (a) and they have a higher variance435

for larger numbers of repetitions (b). The fact that the bias is high for small numbers436

of repetitions agrees with the theory, according to which the bias should vanish as m437

goes to infinity. Overall, the sensitivity indices of the second kind seem to be much438

harder to estimate than the indices of the first kind, the estimators of which have a439

negligible bias and a very small variance whatever the number of repetitions.440

According to Figure 1(c), the normalized MRE curve has a banana shape with a441

minimum of about slightly less than 30% reached around m ∈ {5, 10} and endpoints442

with a value of about 35%. A value of 30% means that the probability of ranking443

the inputs correctly is about 70%. The region of observed optimal performance m ∈444

{5, 10} coincides with m†1500 = 5, the point at which the bound is minimal.445

The results of the calibration experiment is given in Table 1 for the normalized446

MRE. The lowest MREs are reached at the bottom right of the table, with values447

corresponding to 2 ≤ m ≤ 10 in Figure 1 (c). Optimal performance is reached with448

very few explorations in the first stage of the two-stage procedure. In this case, the449

estimator m̂∗K has a small bias but a high variance. It seems to be better than an450

estimator with a small variance but a large bias. This might be explained by the low451

curvature of the MRE curve.452

5.1.2. Low noise context. The coefficients are β = 1.2 and σ = 0.9. The453

sensitivity indices are S′1 = 0.31, S′2 = 0.44, S′′1 = 0.41 and S′′2 = 0.59. The real454

m∗ is about 0.30 and hence the integer m†1500 is equal to 1. As expected, these455

numbers are smaller than the ones found in the high noise context. The total budget456

is T = 3× 500 = 1500. The number of replications is 500.457

The results for the direct experiment are given in Figure 2. The MSE of first458

kind increases with the number of repetitions, see (c): this is due to the increase459
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Fig. 1: Sum of squared biases (a), sum of variances (b) and errors (c) of the sensitivity
indices estimators for the linear model in the high noise setting. Confidence intervals
of level 95% are added in (c).

m0 n0
K/3 2 5 10 20 20 10 5 2
400 0.43 0.42 0.42 - - 0.42 0.39 0.40
200 0.38 0.39 0.37 - - 0.35 0.35 0.34
100 0.36 0.37 - - - - 0.32 0.30
50 0.39 0.33 - - - - 0.33 0.31

Table 1: Normalized MRE in the linear model with high noise for various calibrations:
K/(p+ 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For instance, for K/(p+ 1) =
200 = m0n0, the normalized MRE is available for m0 = 2, 5, 10, 20, 40, 100.
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Fig. 2: Sum of squared biases (a), sum of variances (b) and errors (c) of the sensitivity
indices estimators for the linear model in the low noise context. Confidence intervals
of level 95% are added in (c).

of the variance (b), while the bias is negligible (a). As in the high noise context,460

the estimators of the second kind have a decreasing bias and an increasing variance,461

although the decrease of the bias is of much less magnitude. This agrees with the462

theory, where we have seen that, for the sensitivity indices of the second kind, the463

biases of the estimators are small when the noise of the model is low.464

In Figure 2 (c), the normalized MRE varies a lot. It increases from about 2% at465

m = 1 to 30% at m = 25. Thus, unlike in the high noise setting, choosing a good466

number of repetitions is important. The best performance is achieved at m = 1, which467

coincides with the minimizer m†1500 = 1 of the bound.468

The results of the calibration experiment for the normalized MRE is given in469
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m0 n0
K/3 2 5 10 20 20 10 5 2
400 0.18 0.15 0.17 - - 0.16 0.18 0.20
200 0.05 0.04 0.04 - - 0.06 0.05 0.07
100 0.02 0.04 - - - - 0.04 0.04
50 0.03 0.02 - - - - 0.02 0.04

Table 2: Normalized MRE in the linear model with low noise for various calibrations:
K/(p+ 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For instance, for K/(p+ 1) =
200 = m0n0, the normalized MRE is available for m0 = 2, 5, 10, 20, 40, 100.

Table 2. The best performance is reached at the bottom left of the table with numbers470

that correspond to the optimal performance in Figure 2 (c). Moreover, notice that a471

large spectrum of calibration parameters (K,m0) yield low errors.472

5.2. Asymptotic behavior of the sensitivity indices estimators. To illus-473

trate the asymptotic behavior of the sensitivity indices estimators, Sobol’s g-function,474

a benchmark in sensitivity analysis [16, 13], is considered. Sobol’s g-function is given475

by476

g(U1, . . . , Up+1) =

p+1∏
j=1

|4Uj − 2|+ aj
1 + aj

,477

478

where the aj are nonnegative and the Uj are independent standard uniform random479

variables. The less aj the more Uj is important. Elementary calculations show that480

the first-order Sobol index (2.5), associated with Uj , is given by481

S
(a1,...,ap+1)
j =

1

3(1 + aj)2

−1 +

p+1∏
j=1

(4/3 + a2j + 2aj)

(1 + aj)2

−1 .482

483

To build a stochastic model out of Sobol’s g-function, we let one of the Uj play484

the role of Z. For instance if Ui, 1 ≤ i ≤ p + 1, were to play this role, then the485

stochastic model would be486

Y = f(X1, . . . , Xp, Z) = g(X1, . . . , Xi−1, Z,Xi, . . . , Xp).(5.1)487488

Of course Y and f above depend on i. In the rest of this section we choose arbitrarily489

i = 2 and p = 4.490

The Sobol indices of the first and of the second kind (in the sense of Definition 2.1491

and 2.2) are then easily seen to be492

S′j =

{
S
(a1,...,ap+1)
j if 1 ≤ j ≤ i− 1

S
(a1,...,ap+1)
j+1 if i ≤ j ≤ p

493

494

and S′′j = S
(bi1,...,bip)
j , where495

bij =

{
aj if 1 ≤ j ≤ i− 1,

aj+1 if i ≤ j ≤ p.496
497

This manuscript is for review purposes only.



16 G. MAZO

For each kind of Sobol index, we produced 500 estimates of the p Sobol indices498

and computed the values of the mean squared error (MSE) by averaging over the499

500 replications and summing over the p indices. We tested n = 100, 500, 2500 and500

m = 1, 10, 100.501
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Fig. 3: MSEs for the Sobol index estimators of the first and second kind (logarithmic
scale).
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Fig. 4: Boxplots of the estimates for the Sobol index of the second kind associated
with X1. The red horizontal line is the truth.

The MSEs are shown in Figure 3. Let us look at 3a. As n increases, the decrease502

is linear for each m. This indicates that the MSEs go to zero at a polynomial rate,503

even if m is fixed (look at the line m = 1). This agrees with the theoretical results504
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of Section 4. The picture is different for the estimator of Sobol indices of the second505

kind. In 3b, the curve for m = 1 is not a straight line, indicating that the MSE may506

not go to zero. Indeed, the MSE for m fixed is not expected to go to zero because507

of the bias depending on m. To make the MSE go to zero, one has to force m go to508

infinity.509

Figure 4, which shows the distribution of the estimates for the index associated510

to X1, better explains this phenomenon. Here the bias is apparent for m = 1 and511

vanishes as m goes to infinity. The bias for the indices associated with the other512

inputs is not as large (not shown here).513

6. Discussion. We have considered two kinds of sensitivity indices for stochastic514

models. Asymptotic normality of the estimators, which depend both on the number of515

explorations and the number of repetitions, has been established, and it was noticed516

that the second kind, that which arises from smoothing out the computer model,517

suffers from a bias term which vanishes only when the number of repetitions goes518

to infinity. Assuming a fixed computing budget, the performance of the sensitivity519

indices estimators, measured by the MRE, depends on the design of the Monte-Carlo520

sampling scheme. The optimal design corresponds to the minimal MRE. A bound521

on the MRE has been minimized and a two-stage procedure has been built to get522

estimators that asymptotically achieve the minimal bound. To test the procedure,523

simulation experiments were conducted, where the bias of the sensitivity estimator524

of the second kind was confirmed. Optimal compromises between repetitions and525

explorations have been identified and compared with the output of the two-stage526

procedure for different values of the tuning parameters.527

This work opens many research directions. First, the sensitivity estimators of the528

two stages could be aggregated to build estimators with a lower variance. Second,529

other methods might be developed to optimize the Monte-Carlo sampling scheme. For530

instance the MSE might be approximated or asymptotic variance-covariance matrices531

might be minimized. Third, multilevel Monte-Carlo sampling schemes might be con-532

sidered to alleviate the bias issue. Fourth, a finite-sample analysis could be conducted533

to get insight into the tradeoff K is subjected to. Fifth, since the bias is known, it534

could be estimated to build bias-corrected sensitivity indices estimators. Sixth, the535

problem of choosing a number of calls with many divisors must be addressed. It may536

be worth to call the model a bit less if this permits to have a better set divp(T ).537

Seventh, the assumption that X and Z are independent might be relaxed.538

Appendix A. Proofs.539

Proof of Proposition 3.1. Assume without loss of generality that D1 < · · · <540

Dp. We first prove the following Lemma. For convenience, the subscripts n and m541

are left out.542

Lemma A.1. Let i < j. Then543

P (D̂i − D̂j ≥ 0) ≤ Var D̂i + Var D̂j
1
2 |Di −Dj |2

.544

545

Proof. We have546

P (D̂i − D̂j ≥ 0) ≤P (|D̂i −Di|+ |D̂j −Dj | ≥ Dj −Di)547

≤P (|D̂i −Di|2 + |D̂j −Dj |2 ≥
1

2
|Dj −Di|2)548

549550
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and the claim follows from Markov’s inequality.551

We now prove Proposition 3.1. Recall that D1 < · · · < Dp. We have552

p∑
i=1

E |R̂i −Ri| ≤
p∑
i=1

p∑
j=1

E |1(D̂j ≤ D̂i)− 1(Dj ≤ Di)|553

≤
p∑
i=1

∑
j 6=i

Var D̂i + Var D̂j
1
2 |Di −Dj |2

554

≤ 4(p− 1)

min
j<j′
|Dj −Dj′ |2

p∑
i=1

Var D̂i,555

556

where the second inequality holds by Lemma A.1 and because557

E |1(D̂j ≤ D̂i)− 1(Dj ≤ Di)| =

 E |1(D̂j > D̂i)| if j < i,
0 if j = i,

E |1(D̂j ≤ D̂i)| if j > i.

558

559

It remains to calculate the variances. But this is done in Lemma C.3 in Appendix C,560

where it is found that561

Var D̂j =
1

n
{Var E[Y0Yj |X] +

1

m
(E Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X])562

+
1

m2
E Var[Y0|X] Var[Yj |X]}.563

564

Proof of Proposition 3.3. We distinguish between three cases: 0 < m∗ < 1,565

m∗ > (T − K)/(p + 1) and 1 ≤ m∗ ≤ (T − K)/(p + 1). Recall that m†T−K is the566

minimizer of v(m), m in divp(T −K).567

If 0 < m∗ < 1 then by definition ϕT−K(m∗) = 1 and by convexity v(m∗) ≤568

v(1) ≤ v(m) for all m in divp(T −K). Therefore m†T−K = 1.569

If m∗ > (T −K)/(p+ 1) then by definition ϕT−K(m∗) = (T −K)/(p+ 1) and by570

convexity v(m∗) ≤ v((T −K)/(p + 1)) ≤ v(m) for all m in divp(T −K). Therefore571

m†T−K = (T −K)/(p+ 1).572

If 1 ≤ m∗ ≤ (T −K)/(p+ 1) then by definition573

ϕT−K(m∗) =

{
xm∗yT−K if

√
xm∗yT−Kpm∗qT−K > m∗

pm∗qT−K if
√

xm∗yT−Kpm∗qT−K ≤ m∗.
574

575

By convexity m†T−K must be xm∗yT−K or pm∗qT−K . If xm∗yT−K = pm∗qT−K then576

m†T−K = pm∗qT−K = ϕT−K(m∗). Otherwise, since v(x) = ζ1x + ζ2 + ζ3/x, x > 0,577

for some constants ζ1, ζ2 and ζ3 such that ζ3/ζ1 = m∗, we have578

v(xm∗yT−K) < v(pm∗qT−K) iff
√

xm∗yT−Kpm∗qT−K >
ζ3
ζ1

= m∗.579
580

Therefore ϕT−K(m∗) = m†T−K .581

Let us prove that the minimizer of v(m), m ∈ divp(T − K), is unique if m∗ 6=582 √
xm∗yT−Kpm∗qT−K . If it were not, then we would have v(xm∗yT−K)583

= v(pm∗qT−K). Bus this implies m∗ =
√

xm∗yT−Kpm∗qT−K , which is a contra-584

diction.585
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Proof of Theorem 3.4. In this proof m0 and n0 are denoted by m and n,586

respectively. In view of (3.3) and (3.4)–(3.9), we have587

m̂∗K =

√√√√∑p
j=1 ζ̂3,j∑p
j=1 ζ̂1,j

=

√√√√√∑p
j=1

1
n

∑n
i=1 ξ

(3.4)
j;m,i + ξ

(3.5)
j;m,i − ξ

(3.6)
j;m,i − ξ

(3.7)
j;m,i∑p

j=1
1
n

∑n
i=1 ξ

(3.8)
j;m,i −

(
1
n

∑n
i=1 ξ

(3.9)
j;m,i

)2 ,588

589

where the ξ
(e)
j;m,i, i = 1, . . . , n, j = 1, . . . , p, e = 3.4, . . . , 3.9, are implicitly defined590

through (3.4)–(3.9). Let591

ξ =
1

n

n∑
i=1

ξm,i,592

ξm,i = (ξ>1;m,i, . . . , ξ
>
p;m,i)

>, i = 1, . . . , n,593

ξj;m,i = (ξ
(3.4)
j;m,i, . . . , ξ

(3.9)
j;m,i)

>, j = 1, . . . , p, i = 1, . . . , n.594
595

Let s be the function defined by596

s(x) =

√√√√∑p
j=1 x

(3.4)
j + x

(3.5)
j − x(3.6)j − x(3.7)j∑p

j=1 x
(3.8)
j − x(3.9)2j

,597

598

where x = (x>1 , . . . ,x
>
p )>, xj = (x

(3.4)
j , . . . , x

(3.9)
j )>, j = 1, . . . , p. With the above599

notation we have m̂∗K = s(ξ). Moreover, elementary calculations show that600

E ξm,1 = θ +

4∑
ν=1

Cν

mν
,(A.1)601

602

where the Cν are vectors of constants, θ = (θ>1 , . . . ,θ
>
p )> and603

θj = E



Y
(1,1)2
0 Y

(1,1)2
j

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)
j Y

(1,2)
j

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)2
j

Y
(1,1)
j Y

(1,2)
j Y

(1,1)2
0

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)
j Y

(1,2)
j

Y
(1,1)
j Y

(1,1)
0


.604

605

Check that m∗ = s(θ). A concatenation of two Taylor expansions yield606

√
n(ξ − E ξm,1)>ṡ(E ξm,1) +

1

2
(ξ − E ξm,1)>s̈n,m(ξ − E ξm,1)607

=
√
n(s(ξ)− s(E ξm,1))(A.2)608

=
√
n(s(ξ)− s(θ)− (E ξm,1 − θ)>ṡ(θ)− 1

2
(E ξm,1 − θ)>s̈m(E ξm,1 − θ)),609

610

where ṡ is the gradient of s, s̈n,m is the Hessian matrix of s at a point between ξ611

and θm, and, s̈m is the Hessian matrix of s at a point between E ξm,1 and θ. It612
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follows from (A.1) that (E ξm,1 − θ)>ṡ(θ) is clearly of the form
∑4
ν=1 Cν/m

ν for613

some constants Cν . Putting614

εm =
1

2
(E ξm,1 − θ)>s̈m(E ξm,1 − θ)) +

4∑
ν=2

Cν
mν

,615

616

it follows from (A.2) that617

618

(A.3)
√
n(ξ − E ξm,1)>ṡ(E ξm,1) +

1

2
(ξ − E ξm,1)>s̈n,m(ξ − E ξm,1)619

=
√
n(m̂∗K −m∗ −

C1

m
− εm).620

621

If m is fixed then Lemma B.2 in Appendix B yields622

√
n(ξ − E ξm,1)→ N(0,Σm),623624

for some variance-covariance matrix Σm of size 6p×6p. Moreover, the second term in625

the left-hand side of (A.3) is oP (1) by Cauchy-Schwartz’s inequality and the continuity626

of the second derivatives of s. The first term goes to N(0, ṡ(E ξm,1)>Σmṡ(E ξm,1))627

and hence the claim follows with σ2
m = ṡ(E ξm,1)>Σmṡ(E ξm,1) and C = C1.628

If m→∞ then again Lemma B.2 in Appendix B applies: we have629

√
n(ξ − E ξm,1)→ N(0, lim

m→∞
Σm).630

631

Since εm−
∑4
ν=2 Cν/m

ν = o(m−1), ṡ is continuous and E ξm,1 → θ, the claim follows.632

The proof is complete.633

Proof of Proposition 3.6. By definition, m̂†T−K = ϕT−K(m̂∗K) and m†T−K =634

ϕT−K(m∗). The function ϕT−K is piecewise constant and has |divp(T−K)|−1 points635

of discontinuity of the form
√
ij, where i and j are two consecutive members of636

divp(T −K) \
{

1,
T −K
p+ 1

}
.637

638

Denote the set of discontinuity points by DT−K . Clearly,639

DT−K ⊂ {
√
ij : i and j are two consecutive integers} = E .640641

There exists an open interval that contains m∗ but does not contain any points of642

E and hence does not contain any points of DT−K , whatever T and K. If m̂∗K is in643

this interval then there are no discontinuity points between m∗ and m̂∗K and hence644

m̂†T−K = ϕT−K(m̂∗K) = ϕT−K(m∗) = m†T−K . By Corollary 3.5, the probability of645

that event goes to one as m0 and n0 go to infinity.646

Proof of Theorem 3.7. Let ε > 0. An obvious algebraic manipulation and647

Taylor’s expansion yield648

P

(∣∣∣∣∣ 1
T−K v(m̂†T−K)− 1

T v(m†T−K)

1
T v(m†T−K)

> ε

∣∣∣∣∣
)

649

≤ P
(∣∣∣∣ T

T −K
(m̂†T−K −m

†
T−K)v′(m̃) +

K

T −K
v(m†T−K)

∣∣∣∣ > v(m†T−K)ε

)
,650

651
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where m̃ denotes a real between m̂†T−K andm†T−K . A decomposition of the probability652

above according to whether m̂†T−K −m
†
T−K 6= 0 or m̂†T−K −m

†
T−K = 0 yields the653

bound654

P
(
m̂†T−K −m

†
T−K 6= 0

)
+ P

(
K

T −K
> ε

)
.655

656

The first term goes to zero by Proposition 3.6. The second term goes to zero because657

K/T → 0.658

Proof of Theorem 4.1. The proof is based on the results in Appendix B. The659

Sobol estimators in (2.11) and (2.12) are of the form660

Ŝ′j;n,m =
1
n

∑n
i=1 ξ

UL
j;m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2
1
n

∑n
i=1 ξ

′LL
m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2 , j = 1, . . . , p,661

662

and663

Ŝ′′j;n,m =
1
n

∑n
i=1 ξ

UL
j;m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2
1
n

∑n
i=1 ξ

′′LL
m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2 , j = 1, . . . , p,664

665

where the notation is obvious. Denote ξm,i := (ξUL
1;m,i, . . . , ξ

UL
p;m,i, ξ

UR
m,i, ξ

′LL
m,i , ξ

′′LL
m,i )>.666

Elementary but burdensome calculations show that667

E ξm,1 =



E E[f(X,Z)|X] E[f(X̃−1, Z)|X̃−1]
...

E E[f(X,Z)|X] E[f(X̃−p, Z)|X̃−p]
E f(X,Z)
E f(X,Z)2

E E[f(X,Z)|X]2 + EVar[f(X,Z)|X]
m


.668

(Some calculations are carried out in Appendix C.) Define the function669

670

s(x1, . . . , xp, xp+1, xp+2, xp+3)671

=

(
x1 − x2p+1

xp+2 − x2p+1

, . . . ,
xp − x2p+1

xp+2 − x2p+1

,
x1 − x2p+1

xp+3 − x2p+1

, . . . ,
xp − x2p+1

xp+3 − x2p+1

)
.672

673

Clearly, we have674

s

(
1

n

n∑
i=1

ξm,i

)
=

(
Ŝ′n,m
Ŝ′′n,m

)
675

and676

s(E ξm,1) =

(
S′

S′′
[
1− EVar[f(X,Z)|X]

EVar[f(X,Z)|X]+mVarE[f(X,Z)|X]

])
.677

If m is fixed then Lemma B.2 in Appendix B yields678

√
n

(
1

n

n∑
i=1

ξm,i − E ξm,1

)
d→ N(0,Σm),679
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for some nonnegative matrix Σm of size (p+ 3)× (p+ 3) and the result follows by the680

delta-method.681

If m → ∞, Lemma B.2 still holds with the variance-covariance matrix replaced682

by its limit. Taylor’s expansion yields683

√
n

(
s

(
1

n

n∑
i=1

ξm,i

)
− s(E ξm,1)

)
684

=
√
n

((
1

n

n∑
i=1

ξm,i − E ξm,1

)
ṡm685

+
1

2

(
1

n

n∑
i=1

ξm,i − E ξm,1

)>
s̈n,m

(
1

n

n∑
i=1

ξm,i − E ξm,1

) ,686

687

where ṡm is the gradient of s at E ξm,1 and s̈n,m is the Hessian matrix of s at a688

point between n−1
∑
i ξm,i and E ξm,1. Since that point goes to a constant and s has689

continuous second derivatives, it holds that s̈n,m goes to a constant as well. So does690

ṡm and the claim follows by Slutsky’s lemma.691

Appendix B. A unified treatment of the asymptotics. All estimators in692

this paper have a common form, given by693

(B.1)
1

n

n∑
i=1

ξm,i,694

with695

ξm,i =

L∏
l=1

1

m

m∑
k=1

p∏
j=0

Y
(i,k)bj;l
j ,(B.2)696

697

where Y
(i,k)
0 = Y (i,k) = f(X(i), Z

(i,k)
0 ), Y

(i,k)
j = f(X̃

(i)
−j , Z

(i,k)
j ) for j = 1, . . . , p, and698

bj;l, j = 0, . . . , p, l = 1, . . . , L, are nonnegative coefficients. The coefficients are699

arranged in a matrix (bj;l) with L rows and p+1 columns, where bj;l is the element in700

the lth row and (j+1)th column. This way, all estimators of the form (B.1) and (B.2),701

or, equivalently, all summands (B.2), can be represented by a matrix. We sometimes702

write ξm,i ' (bj;l), where (bj;l) is the matrix of size L× (p+ 1) with coefficients bj;l,703

j = 0, . . . , p, l = 1, . . . , L.704

B.1. Examples. The estimator705

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0

1

m

m∑
k′=1

Y
(i,k′)
j706

707

is of the form (B.1) and (B.2) with L = 2 and coefficients708 (
1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0

)
,709

710
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where the non-null columns are the first and the (j + 1)th ones. The estimators711

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0 ,

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)2
0 ,712

1

n

n∑
i=1

(
1

m

m∑
k=1

Y
(i,k)
0

)2

713

714

are of the form (B.1) and (B.2) with L = 2 and coefficients715 (
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

)
,

(
2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

)
,716 (

1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0

)
,717

718

respectively.719

The estimators of Section 3. In view of (3.4)–(3.9), the estimators ζ̂3,j and720

ζ̂1,j can be expressed in terms of estimators of the form (B.1) and (B.2): we have721

ζ̂3,j =
1

n

n∑
i=1

ξ
(3.4)
j;m,i + ξ

(3.5)
j;m,i − ξ

(3.6)
j;m,i − ξ

(3.7)
j;m,i, and,722

ζ̂1,j =
1

n

n∑
i=1

ξ
(3.8)
j;m,i −

(
1

n

n∑
i=1

ξ
(3.9)
j;m,i

)2

,723

724

where725

ξ
(3.4)
j;m,i, ξ

(3.5)
j;m,i726

ξ
(3.6)
j;m,i, ξ

(3.7)
j;m,i,727

ξ
(3.8)
j;m,i, ξ

(3.9)
j;m,i728

729

are all of the form (B.2) with L = 4 and coefficients730 
2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 2 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 1 0 . . . 0

 ,731


1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 2 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,732


1 0 . . . 0 1 0 . . . 0
1 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


1 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,733

734

respectively. In the matrices above, the first and j + 1th columns are nonnull.735
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The estimators of Section 4. The Sobol estimators in (2.11) and (2.12) are736

of the form (B.1) and (B.2) with L = 2 and coefficients737

ξUL
1;m,i '

(
1 0 0 · · · 0
0 1 0 · · · 0

)
, · · · , ξUL

p;m,i '
(

1 0 · · · 0 0
0 0 · · · 0 1

)
738

for the upper left (UL) terms,739

ξUR
m,i '

(
1 0 · · · 0
0 0 · · · 0

)
740

for the upper right (UR) term,741

ξ′LLm,i '
(

2 0 · · · 0
0 0 · · · 0

)
742

for the lower left (LL) term of Ŝ′j;n,m and743

ξ′′LLm,i '
(

1 0 · · · 0
1 0 · · · 0

)
744

for the lower left (LL) term of Ŝ′′j;n,m.745

B.2. A central limit theorem. For each n, the random variables ξm,1, . . . , ξm,n746

are independent and identically distributed. Denote by Em,i(L) the set of all sum-747

mands (B.2). In other words, Em,i(L) is the set of all nonnegative matrices of size748

L× (p+1). This set has useful properties, gathered in Proposition B.1 for subsequent749

use.750

Proposition B.1. Let ξ be an element of Em,i(L) with coefficients (bj;l). The751

following statements are true.752

(i) If ξ′ is an element of Em,i(L) with coefficients (b′j;l) then ξξ′ is an element of753

Em,i(2L) with coefficients754 

b0;1 · · · bp;1
...

...
b0;L · · · bp;L
b′0;1 · · · b′p;1

...
...

b′0;L · · · b′p;L


.755

756

(ii) The limit of E ξ exists as m→∞.757

(iii) If there exists some function F such that |f(x, z)| ≤ F (x) for all x and z in the758

domain of definition of f then759

|ξ| ≤

 p∨
j=0

Fj(X
(i))


∑p

j=0

∑L
l=1 bj;l

,760

where Fj(X
(i)) is F (X(i)) ∨ 1 if j = 0 and F (X̃

(i)
−j) ∨ 1 if j ≥ 1.761
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Proof. The proof of (i) is trivial. Let us prove (ii). We have762

E ξ =
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E

L∏
l=1

p∏
j=0

Y
(1,kl)bj;l
j763

=
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E E

 L∏
l=1

p∏
j=0

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

764

=
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E

p∏
j=0

E

(
L∏
l=1

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

)
.(B.3)765

766

Since (i) X(1) and {Z(1,k), k = 1, . . . ,m} are independent and (ii) the law of767

(Z(1,k1), . . . ,Z(1,kL))768

is invariant through any permutation of distinct k1, . . . , kL, all the inner expectations769

in (B.3) are equal to some others. For if k1, . . . , kL are distinct then770

E

(
L∏
l=1

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

)
= E

(
L∏
l=1

Y
(1,l)bj;l
j

∣∣∣∣∣X(1)

)
771

772

for all j = 0, . . . , p. The number of inner expectations equal to the one above is773

m(m − 1) · · · (m − L + 1), a polynomial in m with degree L. If some components of774

the tuple (k1, . . . , kL) are equal, then we can always write775

E

(
L∏
l=1

Y
(1,kl)bjl
j

∣∣∣∣∣X(1)

)
= E

 L′∏
l=1

Y
(1,l)βj;l

j

∣∣∣∣∣X(1)

776

777

for some L′ ≤ L and coefficients βjl It is easy to see that the number of inner expec-778

tations equal to the one above is a polynomial in m with degree at most L. (Looking779

at examples helps to see this; see e.g. the proof of Lemma C.2 in Appendix C.)780

Therefore, the sum in (B.3) is also a polynomial in m with degree at most L and the781

claim follows (E ξ can be zero). To prove (iii), simply remember that, by assumption,782

|Y (1,k)| ≤ F (X(1)) and |Y (1,k)
j | ≤ F (X̃

(1)
−j ) for all k and all j.783

Two frameworks are considered:784

• n→∞ and m is fixed;785

• n→∞ and m→∞.786

In the second framework mn is a sequence indexed by n that goes to infinity as n goes787

to infinity.788

Lemma B.2. Let ξ
(I)
m,i, I = 1, . . . , N , be elements of Em,i(L) with coefficients789

(b
(I)
j;l ). Assume790

EF (X(1))2
∑p

j=0

∑L
l=1 b

(I)
j;l <∞791

for all I = 1, . . . , N . Let n→∞. If m is fixed then792

√
n

[
1

n

n∑
i=1

ξ
(1)
m,i − E ξ

(1)
m,1, . . . ,

1

n

n∑
i=1

ξ
(N)
m,i − E ξ

(N)
m,1

]>
d→ N(0,Σm),793

794
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where Σm is the variance-covariance matrix of ξm,i = (ξ
(1)
m,i, . . . , ξ

(N)
m,i )>. If m →795

∞ then limm→∞Σm exists elementwise and the above display with Σm replaced by796

limm→∞Σm is true.797

Proof. Let m be fixed. By Proposition B.1 (i), ξ
(I)2
m,i , I = 1, . . . , N , belongs to798

Em,i(2L) and has coefficients799

ξ
(I)2
m,i '



b
(I)
0;1 · · · b

(I)
p;1

...
...

b
(I)
0;L · · · b

(I)
p;L

b
(I)
0;1 · · · b

(I)
p;1

...
...

b
(I)
0;L · · · b

(I)
p;L


.800

801

Thus, denoting
∑p
j=0

∑L
l=1 b

(I)
j;l by β, Proposition B.1 (iii) yields802

ξ
(I)2
m,i ≤

p∨
j=0

Fj(X
(i))2β(B.4)803

804

and hence805

E ξ
(I)2
m,i ≤ E

p∨
j=0

Fj(X
(1))2β ≤ (p+ 1) E

(
1 ∨ F (X(1))

)2β
<∞.806

807

Therefore we can apply the central limit theorem to finish the proof for m fixed.808

Let m→∞. According to Lindeberg-Feller’s central limit theorem (see e.g. [23]),809

it suffices to show810

(i) for all ε > 0,811

n∑
i=1

E

∥∥∥∥ 1√
n
ξm,i

∥∥∥∥2 1

{∥∥∥∥ 1√
n
ξm,i

∥∥∥∥ > ε

}
→ 0,812

813

and814

(ii) the limit
∑n
i=1 Cov(ξm,i/

√
n) exists and is finite.815

Let us show (i). Denoting X = (X(1), X̃(1)), we have816

n∑
i=1

E

∥∥∥∥ξm,i√n
∥∥∥∥2 1

{∥∥ξm,i∥∥ > √nε} = E ‖ξm,1‖21{‖ξm,1‖ >
√
nε}817

= E

N∑
I=1

ξ
(I)2
m,1 1{‖ξm,1‖ >

√
nε}818

=

N∑
I=1

E
[
E
(
ξ
(I)2
m,1 1{‖ξm,1‖ >

√
nε}|X

)]
.819

820
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By (B.4), we have821

E
(
ξ
(I)2
m,1 1{‖ξm,1‖ >

√
nε}|X

)
≤

p∨
j=0

Fj(X
(1))2βP

(∥∥ξm,1∥∥ > √nε|X)822

≤
p∨
j=0

Fj(X
(1))2β

∑N
I=1 E

(
ξ
(I)2
m,1 |X

)
nε2

823

≤
N
∨p
j=0 Fj(X

(1))4β

nε2
,824

825

where the last inequality holds by using (B.4) once more. The upper bound goes to826

zero and is dominated by an integrable function. Thus, we can apply the dominated827

convergence theorem to complete the proof.828

Let us show that (ii) holds. We have
∑n
i=1 Cov(ξm,i/

√
n) = Cov(ξm,1). The829

element (I, J) in this matrix is given by E ξ
(I)
m,1ξ

(J)
m,1 − E ξ

(I)
m,1 E ξ

(J)
m,1. Remember that830

E ξ
(I)2
m,1 <∞, I = 1, . . . , N , and hence E ξ

(I)
m,1ξ

(J)
m,1 ≤ E ξ

(I)2
m,1 /2+ξ

(J)2
m,1 /2 <∞. Therefore831

the limit of Cov ξm,1 exists and is finite. The proof is complete.832

Appendix C. Explicit moment calculations. Explicit moment calculations833

are given for the summands in the proof of Theorem 4.1. In this section, E f(X,Z)834

and E E[f(X,Z)|X]2 are denoted by µ and D, respectively. Recall that the upper-left835

term in (2.8) and (2.9) is denoted by Dj . The moments are given in Lemma C.1836

and Lemma C.2. The variances and covariances are given in Lemma C.3. Let X =837

(X(1), X̃(1)). Whenever there is a superscript X added to the expectation symbol E838

or the variance symbol Var, this means that these operators are to be understood839

conditionally on X. An integral with respect to P (dx) means that we integrate with840

respect to the law of X.841

Lemma C.1 (Moments of order 1). The moments of order 1 are given by842

E ξUL
m1 = Dj ,843

E ξUR
m1 = µ,844

E ξ′′LLm1 =
1

m
E VarX f(X(1), Z(1,1)) +D.845

846

847

Proof. One has848

E ξUL
m1 =

1

m2

∑
k,k′

E f(X(1), Z(1,k))f(X̃
(1)
−j , Z

(1,k′)
j )849

=
1

m2

∑
k,k′

∫
E f(x, Z(1,k))f(x̃−j , Z

(1,k′)
j )P (dx)850

= E f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )851

=Dj ,852853
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where the integral is taken with respect to the law of x = (x, x̃), and,854

E ξ′′LLm1 =
1

m2

∑
k,k′

E f(X(1), Z(1,k))f(X(1), Z(1,k′))855

=
1

m
E VarX f(X,Z) + E(EX f(X,Z))2856

=
1

m
E VarX f(X,Z) +D.857

858

The proof for ξUR
m1 is similar.859

Lemma C.2 (Moments of order 2). The moments of order 2 are given by860

E ξ
(UL)2
m1 = Var EX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j ) +D2

j861

+
1

m
[E VarX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )862

−VarX f(X(1), Z(1,1)) VarX f(X̃
(1)
−j , Z

(1,1)
j )]863

+
1

m2
E VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j ),864

E ξ
(UR)2
m1 =

1

m
E VarX f(X(1), Z(1,1)) + E(EX f(X(1), Z(1,1)))2,865

E ξ
′′(LL)2
m1 =

m(m− 1)(m− 2)(m− 3)

m4
866

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X(1), Z(1,3))f(X(1), Z(1,4))867

+

(
4
2

)
m(m− 1)(m− 2)

m4
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X(1), Z(1,3))868

+

(
4
3

)
m(m− 1)

m4
E f(X(1), Z(1,1))3f(X(1), Z(1,2))869

+
m

m4
E f(X(1), Z(1,1))4870

+

(
4
2

)
m(m− 1)/2

m4
E f(X(1), Z(1,1))2f(X(1), Z(1,2))2871

872

873

Proof. Let us first deal with ξUL
m1. We have874

875

E ξ
(UL)2
m1 =

1

m4

∑
k1,k2,k3,k4

E f(X(1), Z(1,k1))f(X(1), Z(1,k2))876

f(X̃
(1)
−j , Z

(1,k3)
j )f(X̃

(1)
−j , Z

(1,k4)
j )877

878

where, in the sum, the indices run over 1, . . . ,m. We split the sum into four parts.879

The first contains the m2(m − 1)2 terms that satisfy k1 6= k3 and k2 6= k4. In this880

part, all the terms are equal to881

E
(

EX f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )

)2
.(term 1)882

883

The second part contains the m2(m− 1) terms that satisfy k1 6= k3 and k2 = k4 and884

that are equal to885

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X̃
(1)
−j , Z

(1,1)
j )2.(term 2)886

887
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The third part contains the m2(m − 1) terms that satisfy k1 = k3 and k2 6= k4 and888

that are equal to889

E f(X(1), Z(1,1))2f(X̃
(1)
−j , Z

(1,1)
j )f(X̃

(1)
−j , Z

(1,2)
j ).(term 3)890

891

Finally, the fourth part contains the m2 terms that satisfy k1 = k4 and k2 = k4 and892

are equal to893

E f(X(1), Z(1,1))2f(X̃
(1)
−j , Z

(1,1)
j )2.(term 4)894

895

(One can see that the number of terms is m4.) Thus,896

E ξ
(UL)2
m1 =(term 1)897

+
1

m
[(term 2) + (term 3)− 2(term 1)]898

+
1

m2
[(term 1)− (term 2)− (term 3) + (term 4)].899

900

Furthermore, [(term 1) - (term 2) - (term 3) + (term 4)] is equal to901 ∫ (
EX f(x, Z)f(x̃−j , Zj)

)2
902

− EX f(x, Z(1,1))f(x, Z(1,2))f(x̃−j , Z
(1,1)
j )2903

− EX f(x, Z(1,1))2f(x̃−j , Z
(1,1)
j )f(x̃−j , Z

(1,2)
j )904

+ EX f(x, Z(1,1))2f(x̃−j , Z
(1,1)
j )2 dP (x)905

=

∫ (
EX f(x, Z)

)2 (
EX f(x̃−j , Zj)

)2
906

−
(

EX f(x, Z)
)2

EX f(x̃−j , Zj)
2

907

− EX f(x, Z)2
(

EX f(x̃−j , Zj)
)2

908

+ EX f(x, Z)2 EX f(x̃−j , Zj)
2 dP (x)909

=

∫
VarX f(X,Z) VarX f(X̃−j , Zj) dP (x).910

911

Likewise, we find that [(term 2)+(term 3)-2(term 1)] is equal to912

E VarX f(X,Z)f(X̃−j , Zj)−VarX f(X,Z) VarX f(X̃−j , Zj),913914

and term 1 is Var EX f(X,Z)f(X̃−j , Z̃) +D2
j .915

We now deal with ξ′′LLm1 . We have916

917

E ξ
′′(LL)2
m1 =

1

m4

∑
k1,k2,k3,k4

E f(X(1), Z(1,k1))f(X(1), Z(1,k2))918

f(X(1), Z(1,k3))f(X(1), Z(1,k4)).919920

The sum is split into five parts. The first part consists of the m(m−1)(m−2)(m−3)921

terms with different indices; those terms are equal to922

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X(1), Z(1,3))f(X(1), Z(1,4)).923
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The second part consists of the
(
4
2

)
m(m − 1)(m − 2) terms with exactly two equal924

indices; those terms are equal to925

E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X(1), Z(1,3)).926

The third part consists of the
(
4
3

)
m(m − 1) terms with exactly three equal indices;927

those terms are equal to928

E f(X(1), Z(1,1))3f(X(1), Z(1,2)).929

The fourth part consists of the m terms with exactly four equal indices; those terms930

are equal to931

E f(X(1), Z(1,1))4.932

The fifth and last part consists of the
(
4
2

)
m(m− 1)/2 terms with exactly two pairs of933

equal indices; those terms are equal to934

E f(X(1), Z(1,1))2f(X(1), Z(1,2))2.935

(One can check that the total number of terms is m4.)936
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Lemma C.3 (Variances and covariances).937

Var ξUL
m1 = Var EX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )(i)938

+
1

m
[E VarX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )939

−VarX f(X(1), Z(1,1)) VarX f(X̃
(1)
−j , Z

(1,1)
j )]940

+
1

m2
E VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j ),941

Cov(ξUL
m1 , ξ

UR
m1 ) =

m− 1

m
E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )(ii)942

+
1

m
E f(X(1), Z(1,1))2f(X̃

(1)
−j , Z

(1,1)
j )−Djµ943

Cov(ξUL
m1 , f(X,Z)2) =

1

m
E f(X(1), Z(1,1))3f(X̃

(1)
−j , Z

(1,1)
j )(iii)944

+
m− 1

m
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )−Djκ(iii)945

Var ξUR
m1 =

1

m
Var f(X,Z)(iv)946

Cov(ξUR
m1 , f(X,Z)2) =

1

m
f(X,Z)3(v)947

+
m− 1

m
E f(X(1), Z(1,1))2f(X(1), Z(1,2))− µκ948

Cov(ξUL
mn1, ξ

′′LL
mn1) =

m

m3
E f(X(1), Z(1,1))3f(X̃

(1)
−j , Z

(1,1)
j )(vi)949

+
3m(m− 1)

m3
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )950

+
m(m− 1)(m− 2)

m3
E f(X(1), Z(1,1))f(X(1), Z(1,2))951

f(X(1), Z(1,3))f(X̃
(1)
−j , Z

(1,1)
j )952

− E f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )953 {

1

m
E f(X(1), Z(1,1))2 +

m− 1

m
E f(X(1), Z(1,1))f(X(1), Z(1,2))

}
954
955

956

Proof. The proof follows from direct calculations.957

Appendix D. Calculations for the linear model.958

Lemma D.1. Suppose that f(X,Z) = β0 + βp+1Z +
∑p
j=1 βjXj where X =959

(X1, . . . , Xp), Zk, Z̃ik are independent, EXj = EZ = 0, EX2
j = EZ2 = 1, EX3

j = 0,960

EX4
j = 3. Then the squared optimal number of repetitions is given by961

(m∗i )
2 =

β4
p+1

(β0 + βi)2 − 2β4
0 + (

∑p
j=0 β

2
j )2

962

and the discriminator (the upper-left term in (2.8) and (2.9)) is963

β2
0 + β2

i .964

965
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Proof. We have966

m∗i =
Ai +Bi + Ci +Di

Ei
,967

with968

Ai = E f(X,Z1)2f(X̃−i, Z̃i1)2969

Bi = E f(X,Z1)f(X̃−i, Z̃i1)f(X,Z2)f(X̃−i, Z̃i2)970

Ci = −E f(X,Z1)2f(X̃−i, Z̃i1)f(X̃−i, Z̃i2)971

Di = −E f(X̃−i, Z̃i1)2f(X,Z1)f(X,Z2)972

Ei = B − [E f(X,Z1)f(X̃−i, Z̃i1)]2973974

where X = (X1, . . . , Xp), Zk, Z̃ik are independent, EXj = EZ = 0, EX2
j = EZ2 = 1,975

EX3
j = 0, EX4

j = 3. We deal with the case976

f(X,Z) = β0 + βp+1Z +

p∑
j=1

βjXj .977

We calculate the terms one by one as follows. We have978

Aj = E

β0 +

p∑
j=1

βjXj

2β0 + βiXi +
∑

j:1≤j 6=i

βjX̃j

2

979

+

β0 +

p∑
j=1

βjXj

2

β2
p+1Z̃

2
i1 + β4

p+1Z
2
1 Z̃

2
i1980

+ β2
p+1Z

2
1

β0 + βiXi +
∑

j:1≤j 6=i

βjX̃j

2

981

= Aj1 +Aj2 +Aj3,982983

where E (A2) = β4
p+1 +β2

p+1

∑p
j=0 β

2
j , E (A3) = β2

p+1

∑p
j=0 β

2
j . Elementary but some-984

what tedious calculations yield985

E (A1) = β4
0 + 3β4

i + 6β2
0β

2
i + 2(β2

0 + β2
i )

∑
j:1≤j 6=i

β2
j +

 ∑
j:1≤j 6=i

β2
j

2

.986

987

Similar calculations show that Bj = Aj1, Cj = −Aj1 − Aj3, Dj = −Aj1 − Aj3,988

Ej = Aj1 − (β2
0 + β2

i )2. Thus,989

(m∗i )
2 =

β4
p+1

(β0 + βi)2 − 2β4
0 + (

∑p
j=0 β

2
j )2

.
990
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