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AN OPTIMAL TRADEOFF BETWEEN EXPLORATIONS AND
REPETITIONS IN GLOBAL SENSITIVITY ANALYSIS FOR
STOCHASTIC MODELS*

GILDAS MAZO*t

Abstract. Global sensitivity analysis often accompanies computer modeling to understand what
are the important factors of a model of interest. In particular, Sobol indices, naturally estimated
by Monte-Carlo methods, permit to quantify the contribution of the inputs to the variability of the
output. However, stochastic computer models raise difficulties. There is no unique definition of Sobol
indices and their estimation is difficult because a good balance between repetitions of the computer
code and explorations of the input space must be found. The problem of finding an optimal tradeoft
between explorations and repetitions is addressed. Two kinds of Sobol-like indices are considered.
Their estimators are built and their asymptotic properties are established. To find an optimal tradeoff
between repetitions and explorations, an error criterion that penalizes bad rankings of the inputs
is considered. A bound is found and minimized under a fixed computing budget. Estimators that
asymptotically achieve the minimal bound are built. Numerical tests are performed.

Key words. Explorations, repetitions, Sobol, estimation, sensitivity, stochastic, random, model.

AMS subject classifications. 62G20, 60H99, 65C05

1. Introduction. Sensitivity analysis often accompanies computer modeling to
understand what are the important factors of a model of interest [17, 18]. In partic-
ular, Sobol indices [20, 21] permit to quantify the contribution of the inputs to the
variability of the output. The estimation of Sobol indices is naturally performed by
Monte-Carlo methods [6, 14, 20, 21], which permit to build estimators with statis-
tical guarantees [4, 10]. Sobol indices for multivariate, functional outputs [3, 11] or
functional inputs [9] have been proposed as well.

Computer models employed to simulate physical systems/natural phenomena are
increasingly stochastic. That is, two runs of the computer with the same input may
lead to two different outputs. Examples can be found in epidemiology [1, 2, 15, 19]
or ecology [22].

It is still unclear how sensitivity analysis should be performed when the models are
stochastic. First, there is no unique definition of Sobol indices [5]. Second, it is unclear
how to account for noise in the inference. Monte-Carlo sampling with repetitions is
natural, but what is a good balance between the number of repetitions of the model
and the number of explorations of the input space [22]7 Having efficient estimators
would permit to achieve the same level of precision but with less computations, an
important practical issue. An approach based on meta-models has been proposed [12],
but it is difficult to control the induced bias and the construction of the meta-model
itself can be challenging.

The problem of finding an optimal Monte-Carlo design to estimate Sobol indices
in stochastic computer models is addressed. Two definitions of Sobol indices are
given. Their estimators, based on Monte-Carlo sampling with repetitions, are built
and their asymptotic properties are established. To find an optimal tradeoff between
repetitions and explorations, an error criterion that penalizes bad rankings of the
inputs is considered. A bound is found and minimized under a fixed computing
budget. To get estimators that asymptotically achieve the minimal bound, a two-
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2 G. MAZO

stage procedure is proposed. The first stage estimates the combination of repetitions
and explorations that achieves the minimal bound and the second stage uses that
combination to optimize the design of the Monte-Carlo data generation. The resulting
estimators are shown to achieve the minimal bound asymptotically.

This paper is organized as follows. The sensitivity indices and their estimators are
defined and discussed in Section 2. The two-stage procedure to optimize the Monte-
Carlo design is given in Section 3. Some theoretical guarantees are given. Section 4
contains asymptotic results for the sensitivity indices estimators of Section 2. Section 4
and Section 3 are not related to each other and can be read independently. Numerical
experiments are provided in Section 5 to test and illustrate the theory. A discussion
closes the paper. The proofs are given in Appendix A.

2. Sensitivity analysis for stochastic models.

2.1. Representation of a stochastic model. A model is a mechanism that
takes an input X and returns an output Y. A stochastic model has the following
property: two runs of the model with the same input may return two different outputs.
To account for this property, we assume that there exist a function f and a hidden
random variable Z independent of X such that

(2.1) Y = f(X1,....Xp, 2),

where X;,..., X, are the components of X, which are assumed to be independent.
The variable Z is seen as an unobserved and uncontrollable noise variable that rep-
resents the intrinsic stochasticity of the model. Even if X were to be fixed to some
arbitrary value, say x, the output would remain a random variable, the distribution
of which would be that of f(z, Z).

Note that no pairs (W;,Y;) with W; = (X;, Z;) can be observed because Z is
not observable. Thus we have no access to the function f. The specification of Z is
unnecessary: it can be a random variable, a random vector or something else.

The following assumption is needed to derive some results in Section 3 and in
Section 4: there exists some function F with E F(X)® < oo such that, for all z and z
in the domain of definition of f,

(2.2) |f(z,2)] < F(x).

This assumption, needed to apply various versions of central limit theorems, appears
to be mild. In particular every model with bounded outputs fulfill the condition.

2.2. Sobol’s decomposition. Sobol showed that every integrable multidimen-
sional function h decomposes uniquely into a sum of lower dimensional functions [20].

If ¢ is a natural integer and w = (w1, ..., w,) lies in the euclidean space RY, then
(2.3) h(w) =ho + hi(wy) + -+ + hg(wy)
+ hig(wi,w2) 4 -+ 4 hg—1,q(wg—1,wq)

+ hl,...,q(wh s awq)7

where hg is a constant and

1
hih»-,ik(whv'-~7wik)dwij7 1 S.] < k
0
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AN OPTIMAL TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS 3

for any k = 1,...,q. We call the lower-dimensional functions component functions.
It follows that the integral of every nonconstant component function is null and the
integral of the product of any two component functions is null as well. Integration
can be taken with respect to any product probability measure: the above properties
are not changed.

The decomposition (2.3) has been widely used to partition the variance of the
output of a given mathematical model. Let W be a random vector. From (2.3), it
follows that

(2.4) Var h(W) = Var hi(W1) + - - - + Var hg(Wy)
+ Var h172(W1, WQ) + .-+ 4 Var hq—l,q(Wq—ly Wq)
+---+Varhy,  (Wy,...,W,).

The variance of h(W) is decomposed into “individual” effects and “interaction” effects
of the components of W. The jth Sobol index, denoted by 5}, is defined as the fraction
of variance that is attributed to W; alone in the decomposition:

(2.5) - Varh(W;)  VarE(h(W)[W;)
| 'S Narh(W) T Varh(W)

The last equality is true because h;(W;) = E(R(W)|W;) — ho.

The jth total sensitivity index [6], denoted by St;, is the fraction of variance
attributed to W; and its interactions with the other components of W. A convenient
formula for Sp; can be found as follows. In (2.3), group all the component functions
(except the constant) that do not depend on w; and denote the sum by h;j(w;), where
we; stands for the vector complementary to w, that is, the vector whose components
are those of w with w; removed. Likewise, group all the interactions between w;
and the other components of w and denote the sum by h; .;(wj, we;). Then Sobol’s
decomposition rewrites

h(w) = ho + hj(w;) + hej(wes) + hj,ej(ws, wes)
and hence the jth total sensitivity index is given by

Varhe;(Wey) _ VarE(h(W)|We;))
Var h(W) Var h(W) '

(2.6) Sp;=1-—

The sensitivity indices defined above have been widely used to carry out sensitivity
analyses of computer implementations of mathematical models. These indices are
interpreted as a measure of “importance” or “influence” of the inputs for a given
model. The number h(w) is the output of the computer program and the input is w.
Monte-Carlo methods permit to estimate the sensitivity indices [20, 21, 4, 10] and to
get insight into what may be the “important” inputs of the mathematical model. The
goal in the next section is to find ways to apply Sobol’s decomposition to the special
case of stochastic models.

2.3. Definition of the sensitivity indices. To define sensitivity indices,
Sobol’s decomposition (2.3) can be exploited in two natural ways. The first approach
consists in applying Sobol’s decomposition directly to the hidden function f in (2.1).
Putting h = f and W = (X, Z) in (2.4) yields the indices in Definition 2.1. We call
them the indices of the first kind.

This manuscript is for review purposes only.
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4 G. MAZO

DEFINITION 2.1 (Sobol indices of the first kind). The Sobol indices of the first
kind are defined as

, VarE(f(X, Z2)|X};) _
S T T Narf(x,z) 0 AT Lo

Interestingly, the inaccessibility of the function f, due to the lack of control over
the noise variable, does not prevent computing the indices of the first kind. Indeed,
the jth index depends on the conditional law of the output given X; only and X;
is controllable: the output of f can be generated with X; fixed to some value. Not
so much can be said with Z. As a result, in principle the jth total sensitivity index
can be defined as in (2.6) with We; = (X1,...,X;-1, X 41,..., X, Z) but it is not
estimable.

The second approach consists in turning the stochastic model (2.1) into a com-
pletely controllable deterministic one. To do this, one takes the conditional expecta-
tion of the output Y given the input X, given by

9(X) =E(f(X, 2))|X).
The new function g is then subjected to Sobol’s decomposition. In (2.3), taking

W = X and h = g yields the indices in Definition 2.2.
DEFINITION 2.2 (Sobol indices of the second kind).  The Sobol indices of the
second kind are defined as
gr _ VarE(E[f(X, 2)|X]|X;)
J VarE[f(X, Z)|X]

j=1...,p.

Here, since g is accessible, it makes sense to define total sensitivity indices. The
jth total sensitivity index is given by
Var B (9(X)| X1, X5 1, Xji1, -, Xp)
Var g(X) '

(2.7) =1

The noise variable Z does not appear in the conditioning variables because the com-
plementary vector X.; is to be understood with respect to X, not (X, Z).

However, the operation of taking the conditional expectation leads to a loss of
information. This is illustrated in Example 1.

EXAMPLE 1. Let Y = aX1+cX20(Z), where X1, X2, Z are independent standard
normal variables, a,c are real coefficients and ¢ is a function such that E¢(Z) = 0.
Then

2
, a

Slzm,Sé:O7 Si’:l anng:O

The information loss in Example 1 is severe: the sensitivity indices of the second
kind seem to indicate that only X; is influential. This is because the part involving
X5 has been “removed” along with the noise. In this example it may be argued that
the indices of the first kind better reflect the “importance” of the inputs.

In sum, the two kinds of sensitivity indices defined above seem to be complemen-
tary. Information about interaction effects will be missing with the indices of the first
kind but no first-order information is lost. The reverse is true for the indices of the

This manuscript is for review purposes only.



178

179

180
181
182
183

184

185
186
187
188
189
190
191

192

193

196

AN OPTIMAL TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS 5
second kind. Another difference will be shown in Section 4: it is more difficult to
estimate the indices of the second kind than the indices of the first kind.

For estimation purposes, it is convenient to rewrite the indices as

EE[f(X, 2)|X]E[f(X_;, 2)|X_;] - (EE[f(X, 2)|X))*

(2.8) S = '
EE[f(X, Z)2|X] - (EE[f(X, Z)|X])

and

29 s = EEUEOIXIEFX;, 2)|X] - BE[X, 2)IX)°

EE[f(X, Z)|X]? - (EE[f(X, 2)|X])"

where X = ()?1, cee )}p) is an independent copy of X and

X_j = (Xl, . 7Xj_1,Xj,Xj+1, . ,Xp),

for j =1,...,p. Note that S7 and S7 differ only by the lower left term. In particular,
the upper left term is the same in both formula. It is the only term that depends on
7, and hence the only term that permits to discriminate between any two indices of
the same kind. For this reason, it is called the discriminator and is denoted by Dj;.
Notice that S]’- < S}'.

2.4. Estimation of the sensitivity indices. The sensitivity indices are es-
timated by Monte-Carlo sampling. Outputs of the stochastic model are produced
through Algorithm 2.1. The input space is explored n times and, for each explo-
ration, the computer is run m times to smooth out the noise. Thus, the total number
of calls to the computer is proportional to mn. The integer n is called the number of
explorations and the integer m is called the number of repetitions. The couple (n,m)
is called the design of the Monte-Carlo sampling scheme.

Algorithm 2.1 Generate a Monte-Carlo sample

for i =1ton do B
draw two independent copies X (), X ()
for j=0,1,...,pdo
for k=1 tom do o ‘
run the computer model at X(f; to get an output Yj(l’k)
end for
end for
end for

The data generated by the algorithm are

(i,k) 5 (2)
(Y X j)a

J ) —

for j=0,1,...,p,i=1,....,n and k = 1,...,m, with the convention )Z'(f()) = X0,

By assumption, there are independent random elements (Zj(i’k)) such that

(2.10) Yj(i,k) _ f()?(i) Z](.i,k)).

-3

This manuscript is for review purposes only.



197
198

199

212

214
215
216
217
218
219
220
221

N
N
[\

223
224
225
226

228

6 G. MAZO

The estimators of the sensitivity indices are built by substituting empirical averages
for expectations in (2.8) and (2.9), that is,

. R . 2
n m k m Jk n m k
L AT YL v - (%ziﬂ%zk_lw )

(2.11) S, =
i,k)2 i,k)
Zz 1mZk1 ( (Ezz 1m2k1 ( )
and
(2.12)

zk zk n m ik)\ 2

1 ZZ 1mzk 1 + Zk/ 1 ) (% Zi:l%zk‘*l Y( ))
n ik n m ik
Ly (S ) - (Ao A, v

j;n,m -

The estimation of total sensitivity indices of the second kind is not considered in this
paper. However, the formula (2.7) suggests that estimators can be built similarly.

To our knowledge (personal communication), when faced with stochastic com-
puter models, practitioners tend to use softwares for deterministic sensitivity analysis
in which an average over repetitions is given to the program as a substitute for the
value of the output. Thus, the second estimator is used in practice, albeit implicitly.
The first estimator, to the best of our knowledge, was not formally defined. The
second estimator appeared in [7, 8], where it was studied only in the case m = n (to
the best of our understanding).

In (2.11) and (2.12), if m = 1 and the function f does in fact not depend on
Z, then the estimators reduce to Sobol estimators [20, 21] for deterministic models.
These are sometimes called pick-freeze estimators [4].

3. Choosing between Monte-Carlo designs. The estimators in Section 2
depend on the design (n,m) of the Monte-Carlo sampling scheme. To estimate the
sensitivity indices, the stochastic model has to be called (p + 1)mn times.

It is reasonable to think of a sensitivity analysis as done the following way. The
total number of calls is set to a limit, say 7. Then n and m are chosen so that
T = (p+ 1)mn. For instance, suppose that one cannot afford more than 150 calls to
a model with two inputs. Then T = 150, p = 2 and one can choose either one of the
columns in the following table

n 50 25 10 5 2 1
m 1 2 5 10 25 50.

Denote by div,(T") the set of all divisors of T'/(p + 1) between 1 and T/(p + 1).
In the example above, divy(150) = {1,2,5,10,25,50}. There are as many designs as
there are elements in the set div,(T). Each one of those elements corresponds to a
possible combination for n and m which Algorithm 2.1 can be run with. The resulting
estimators require the same number of calls but do not perform equally well. The
goal of this section is to find the “best” way to estimate the sensitivity indices.

3.1. Introducing the miss-ranking error and its bound. To compare the
estimators, a measure of performance has to be defined. We shall consider the miss-
ranking error (MRE), defined by

P
MRE =E |Rjnm — Ry,
j=1

This manuscript is for review purposes only.
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AN OPTIMAL TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS 7

where R; is the rank of D; among Dy, ..., D,, that is, R; = >0 _, 1(D; < D),
and }A%j;mm is an estimator of R;. Recall that Dq,..., D, are the upper-left terms
n (2.8) and (2.9). They determine the ranks of the sensitivity indices. Recall that
the ranks of the sensitivity indices of the first kind coincide with the ranks of the
sensitivity indices of the second kind. Thus, the MRE permits to find a unique
solution for both kinds of sensitivity indices. The MRE is small when one succeeds
in ranking the inputs from the most to the least important, a task which is called
“factors prioritization” in [18, p. 52].

The MRE has a bound with interesting mathematical properties. Denote by
MRE(T,m) the MRE based on T number of calls and m repetitions, so that the
number of explorations is T'/(p + 1)/m. Remember the notation of Section 2: denote

(XM, X0) =X, f(XD, Z5") = Yy and (XU, 2V = v,

s
PROPOSITION 3.1. Let ﬁj;n,m, j = 1,...,p, be the upper-left term in (2.11)
(or (2.12)) and put Rjm = >y 1(Disnm < Djinm). Then

MRE(T, m) < %(m Var(E[YoY;|X])

-

Il
-

J

NE

+ 37 E(Var[Yo¥; [X] — Var[Yo|X] Var[Y; [X])

1

<.
Il

1 p
+- ZlE (Var[Yp|X] Var[Y; |X])>
j:

where
4(p—1)

min(|D; — Dy |?)
1<J

L=

The constant L tells us that the bound is smaller when the indices are well
separated. The bound goes to zero when the number of explorations goes to infinity.
This is true even if the number of repetitions is fixed. Most interestingly, the bound
separates 1" and m:

(3.1) MRE(T,m) < %v(m)7 m € div,(T),

where the function v is implicitly defined through Proposition 3.1. Denote by m}

the element m in div,(T") that minimizes v(m). Taking m = mTT in (3.1), we get the

bound :

o(mb) _ v(m)
T — T

Thus the best guarantee coincides with m = mTT and n = T/(p + 1)/mTT in Algo-

rithm 2.1. However m} is unknown.

MRE(T,m}.) < for all m € div,(T).

Remark 3.2. The choice of T', through the specification of div,(T"), will influence
the quality of the bound. It is clear that choosing T'/(p + 1) a prime number may
not be a good idea because v(m}) will be either one of v(1) or v(T/(p +1)). On the
opposite, choosing T'/(p + 1) a factorial number ensures many more choices (in fact,
all).

This manuscript is for review purposes only.
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3.2. A two-stage procedure to estimate the sensitivity indices. The re-
sults in Section 3.1 suggest a two-stage procedure to estimate the sensitivity indices.
The procedure is given in Algorithm 3.1. The computational budget is split into two
parts K and T'— K. The first K calls to the model are used to estimate m;LK. The
last T'— K calls to the model are used to estimate the sensitivity indices.

Algorithm 3.1 Estimate the sensitivity indices by a two-stage procedure
Stage 1. Choose an integer K such that K/(p+1) and (T'— K)/(p+1) are integers
also. Choose integers mg and ng such that K = mgono(p + 1). Run Algorithm 2.1
with m = mg and n = ng. Estimate m;_K by an estimator ﬁ@}_K in div, (T — K).

Stage 2. Run Algorithm 2.1 with m = nAﬁLK and

T-K

(p+ D)mip_

Compute the sensitivity indices estimators (2.11) and (2.12).

The estimator of mTTi i is built as follows. Let m* be the minimizer of v seen as
a function on the positive reals. Since v is convex, the minimizer is unique. It follows
from (3.1) and Proposition 3.1 that

(3.2)

Z EVar [Yo|X] VarY|X Z —1 03,5
_, VarE[Y,Y;|X] S Gy

where (3 ; = E Var[Y;|X] Var[Y;|X] and (; ; = VarE[Y,Y;|X], j =1,.
Let @7 : (0,00) — div,(T), be the function defined by @r(z) =1 1f 0<z<l,
or(z)=T/(p+1)ifz>T/(p+1), and

(@) Leap  if /Lol >z >1
T) = .
T ol Vo zlr <z < p%

where

¥

Lz op = max{m € div,(T), m <z}, "z*7p =min{m € div,(T), m > x}.
The function ¢ is piecewise constant with discontinuity points at /77, where ¢ and
Jj are two consecutive elements of div,(T').

ProrosiTION 3.3. If m* > 0 then mTTiK = @r_g(m*). If, moreover,
Lm* o k" m* r_ s not equal to m*? then the minimizer of v(m), m € div,(T—K),
1S UNIqUe.

Proposition 3.3 suggests that mTTi kx can be estimated by applying the function
o7k to an estimate of m*. Remember that K = mgng(p + 1) and put

This manuscript is for review purposes only.
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where
éS,j =

n 1 . 1 mo .

(3.4) fzm§hfwfk2 S AR, 70y
0 pi=1 0 jam1

Il — (1 ’
(3.5) +1TZ (m Z f( X() Z(1k1) > ( Z f X(_lj,Z(l kz)))

) 0 pi=1 0 k=1

1 ~ 1 (3) (3, kl) < (2) (i,k2)\2
(3.6) _TTZ - ZfX A ZfX_j,Z )?

) 0 pi=1 0 k=1

1 & ’
ik S ik

69 -3 L S ooz (L5 . 20)

05=1 "0 k=1 0 joem1
and

CAl,jz

n

1 1 @) (k) 70 k) i

(3:8) %ZQme 2y (X 2 0
@), 7GRN (XD, 700

(3.9) ( ?1’“05 f(x NHXY, z )) :

Notice that Zl,j >0 and 234- > 0 so that mj, > 0. If mg = 1 then ES,j = 0 and hence
my, = 0.

The estimator mj, is consistent and asymptotically normal on some conditions
on the rates of ng and my.

THEOREM 3.4. Assume (2.2) holds. Let ng — oo. If mg is fized then

m(m;{— [m*—ks—kemo}) —>N(0 mo)
0

for some constant C, real €y, depending on mqy and variance U,Qno depending on
mo. If mg — oo then the above display with €, = o(1/mg) and o, replaced by
limy, 00 Omy, @8 true.

Theorem 3.4 shows that m}, is asymptotically biased. The bias is polynomial in
1/myg. Corollary 3.5 shows that letting my — oo suffices to get the consistency of mj,
but to get a central limit theorem centered around m*, it is furthermore needed that

\/no/mo — 0.
COROLLARY 3.5. Assume (2.2) holds. Let ng — oo and mg — co. Then m; Eis
m*. If, moreover, \/ng/mqo — 0, then

Vio(y —m*) %5 N0, lim o2,).

mo—r00

To estimate m;_K, put ’//T\L,}_K = @r_x(m3}). Proposition 3.6 states that ﬁ@}_K
and m;_ x are equal with probability going to one.

This manuscript is for review purposes only.
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PROPOSITION 3.6. Assume (2.2) holds. Let ng — oo and mg — co. Then

P (fh;iK = mTTfK) — 1.
All the details of Algorithm 3.1 have been given.

3.3. Performance. To get some insight into the performance of the procedure
given in Algorithm 3.1, we look at the performance of the sensitivity indices estimators
produced in Stage 2. Since they are built with T'— K calls to the model with ffLTT_K
repetitions, they satisfy

_ 1
(3.10) MRE(T — K, il _g) < e v(iip_),

where the left-hand side is the conditional expectation of the MRE, given the outputs
produced in Stage 1. The estimator m;7 x is computed with K calls only.

It is difficult to compare the guarantee above with that which got by choosing
an arbitrary number of repetitions, say m. In the later case K = 0 and hence the
guarantee is (3.1). The denominator in (3.10) is smaller but we expect that the
numerator v(fﬁ}_ ) will be less than v(m) for many values of m. Indeed, the numer-

ator should be close to v(mTTiK). If T — K is well chosen then v(mTTiK) and v(mTT)

should be close and since v(m) < v(mTT) for all m in div,(T'), the numerator ’U(T?L;iK)
should be an approximate minimizer. For instance if K and T are large enough and
div,(T - K)={1,2,...,(T - K)/(p+ 1)} and div,(T) = {1,2,...,T/(p+ 1)} hold
then ’U(m;i ) and v(mTT) are equal. Note that the numerator and the denominator

in (3.10) cannot be good at the same time and K determines the balance.

THEOREM 3.7. Assume that the conditions of Proposition 3.6 are fulfilled. Sup-
pose furthermore that K — oo such that K/T — 0. Then

T _1 Kv(m}—}() = %U(WTT_K)(l +op(1)).

The bound in Theorem 3.7 is the best possible guarantee inflated by a factor not
much larger than one. This result is valid if K is large but not too large with regard
to T. In particular, if div,(T) N div,(T — K) = div,(T — K) then for every fixed
m # mlb., it holds that P(T~w(m}_ )1+ 0p(1)) < T~ v(m)) — 1. In other words
it is always better, in terms of obtainable guarantees, to use the procedure rather than
to choose the number of repetitions arbitrarily, except for the lucky case m = mTT.

4. Asymptotic normality of the sensitivity indices estimators. The sen-
sitivity indices estimators of Section 2.4 depend on both m and n. It is clear that
n should go to infinity to get central limit theorems. It may be less clear, however,
whether or not m should go to infinity as well. The answer depends on the kind of
the sensitivity index we are looking at.

Two frameworks are considered:

e n — oo and m is fixed;

e n — oo and m — 0.
In the second framework m., is a sequence indexed by n that goes to infinity as n goes
to infinity. Denote by S (resp. S”) the (column) vector with coordinates S} (resp.

S7), 3 =1,...,p, and denote by /S\;m (resp. /S\Zm) the vector with coordinates S

Jin,m

given in (2.11) (resp. SY, , given in (2.12)).

J7n,m

This manuscript is for review purposes only.
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THEOREM 4.1. Assume (2.2) holds. Let n — oo. If m is fived then

S 4
v (§“ — g [1 _  EVarlf(X.2)[X] }) % N(0,Em),
n,m E Var[f(X,Z)| X]+m Var E[f(X,Z)| X]

for some nonnegative matriz =Z,, of size 2p X 2p. If m — oo then, elementwise,
lim,, oo Z exists and the above display with Z,, replaced by lim,, o =, is true.

Theorem 4.1 predicts the behavior of the joint vector (/S\’,LTm/S\ZTm) However the
T

behaviors of /S\;Lm and §Zm are different. The estimator §;m is asymptotically normal
around S’, even if m is kept fixed. The estimator §ZTm is also asymptotically normal,
but not around S”.

The estimator S7 ,, under-estimates S”. The bias, given by

% E Var[f(X, Z)|X]
EVar[f(X, Z)|X]+mVarE[f(X, Z)|X]’

is null whenever f actually does not depend on Z, and large whenever the computer
model is highly stochastic. As Theorem 4.1 shows, the bias is still present even if m
goes to infinity. Corollary 4.2 shows that m must go to infinity fast enough to avoid
the estimator to be tightly concentrated around the wrong target.

COROLLARY 4.2. Assume (2.2) holds. Letn — co. If m — oo such that /n/m —
0 then

vn (§;;,m - s”) 4 N(0,Z20),

where Soy is the lower-right block of the matriz lim,, ..o =, given in Theorem j.1.

The difference between §;Lm and §Zm is due to the difference between the lower-
left terms in (2.11) and (2.12). While the lower-left term in (2.11) is unbiased for all n
and m, the lower-left term in (2.12) has a bias depending on m which propagates to the
estimator of the sensitivity indices. (The calculations are carried out in Appendix C.)

From a statistical perspective, it is more difficult to estimate the sensitivity indices
of the second kind than to estimate the sensitivity indices of the first kind. To estimate
the former, one needs to repeat the model many times. To estimate the later, this is
not necessary.

5. Numerical tests. Section 5.1 illustrates how the MRE responds to a change
in the Monte-Carlo design. In Section 5.1 the total budget T is kept fixed. Section 5.2
illustrates how the sensitivity indices estimators behave asymptotically. In Section 5.2
the total budget T increases.

5.1. Comparison of Monte-Carlo designs. The effect of the number of rep-
etitions on the sensitivity indices estimators and the effect of the calibration in the
two-stage procedure are examined in two kinds of experiments: the “direct” experi-
ments and the “calibration” experiments.

In the direct experiments, the sensitivity indices are estimated directly with the
given number of repetitions. Increasing numbers of repetitions m are tested. (Since
the budget is fixed, this goes with decreasing numbers of explorations.) For each m,
the mean squared errors (MSEs), given by E Z?:l(/\};n,m —5})? and E Zf=1(§§/nm —
S7 )2, are estimated with replications. They are also split into the sum of the squared
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biases and the sum of the variances to get further insight about the behavior of the
estimators. The MREs are estimated as well. A normalized version is considered:
it is the MRE divided by the number of variables. For models with two inputs, the
normalized MRE is interpreted directly as the probability that the two inputs are
ranked incorrectly.

In the calibration experiments, the sensitivity indices are estimated with the two-
stage procedure, the results of which depend on the calibration parameters K and
mg. Various calibration parameters are tested to see their effect on the MRE. The
budgets for the direct experiments and the calibration experiments are the same so
that the numbers can be compared. In particular, the direct experiments correspond
to the case K = 0 in the calibration experiments.

A linear model of the form Y = X7 + X5 + 0Z, where X1, X5, Z, are standard
normal random variables and 3,0 are real coefficients, has been considered because
the sensitivity indices are explicit and hence the performance of the estimators can
be evaluated easily. The quantity m™* is explicit: the formula is given in Appendix D.

5.1.1. High noise context. The coefficients are § = 1.2 and ¢ = 4. The
sensitivity indices are S{ = 0.05, S5 = 0.08, Sy = 0.41 and S§ = 0.59. The real
m* is about 5.8. The total budget is 7' = 3 x 500 = 1500 and hence divy(1500) =
{1,2,4,5,10,20, 25, 50,100,125, 250,500}. The integer m];500 is equal to p1500(m*) =
5. Since the budget is kept fixed, the numbers of explorations are, respectively,
500, 250, 125, 100, 50, 25, 20,10, 5,4, 2, 1. The number of replications is 1500.

The results of the direct experiment are given in Figure 1 for m = 1, 2, 4, 5, 10,
20, 25. The MSE of first kind does not vary with the number of repetitions and is
much lower than the MSE of second kind, see (¢). The estimators of the second kind
are highly biased for small numbers of repetitions (a) and they have a higher variance
for larger numbers of repetitions (b). The fact that the bias is high for small numbers
of repetitions agrees with the theory, according to which the bias should vanish as m
goes to infinity. Overall, the sensitivity indices of the second kind seem to be much
harder to estimate than the indices of the first kind, the estimators of which have a
negligible bias and a very small variance whatever the number of repetitions.

According to Figure 1(c), the normalized MRE curve has a banana shape with a
minimum of about slightly less than 30% reached around m € {5,10} and endpoints
with a value of about 35%. A value of 30% means that the probability of ranking
the inputs correctly is about 70%. The region of observed optimal performance m €
{5,10} coincides with m{., = 5, the point at which the bound is minimal.

The results of the calibration experiment is given in Table 1 for the normalized
MRE. The lowest MREs are reached at the bottom right of the table, with values
corresponding to 2 < m < 10 in Figure 1 (¢). Optimal performance is reached with
very few explorations in the first stage of the two-stage procedure. In this case, the
estimator mj, has a small bias but a high variance. It seems to be better than an
estimator with a small variance but a large bias. This might be explained by the low
curvature of the MRE curve.

5.1.2. Low noise context. The coefficients are § = 1.2 and ¢ = 0.9. The
sensitivity indices are S{ = 0.31, S} = 0.44, Sy = 0.41 and S5 = 0.59. The real
m* is about 0.30 and hence the integer m§500 is equal to 1. As expected, these
numbers are smaller than the ones found in the high noise context. The total budget
is T'= 3 x 500 = 1500. The number of replications is 500.

The results for the direct experiment are given in Figure 2. The MSE of first

kind increases with the number of repetitions, see (c): this is due to the increase
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Fig. 1: Sum of squared biases (a), sum of variances (b) and errors (c) of the sensitivity
indices estimators for the linear model in the high noise setting. Confidence intervals
of level 95% are added in (c).

mo no
K/3 2 5 10 20 | 20 10 5 2
400 | 0.43 0.42 0.42 - - 042 0.39 040
200 | 0.38 0.39 0.37 - - 035 035 0.34
100 | 0.36  0.37 - - - - 032 0.30
50 | 0.39 0.33 - - - - 033 031

Table 1: Normalized MRE in the linear model with high noise for various calibrations:
K/(p+ 1) = 50,100, 200,400 and mq = 2,5,10,20, ... For instance, for K/(p+ 1) =
200 = mgng, the normalized MRE is available for mo = 2, 5, 10, 20, 40, 100.
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Fig. 2: Sum of squared biases (a), sum of variances (b) and errors (c¢) of the sensitivity
indices estimators for the linear model in the low noise context. Confidence intervals
of level 95% are added in (c).

of the variance (b), while the bias is negligible (a). As in the high noise context,
the estimators of the second kind have a decreasing bias and an increasing variance,
although the decrease of the bias is of much less magnitude. This agrees with the
theory, where we have seen that, for the sensitivity indices of the second kind, the
biases of the estimators are small when the noise of the model is low.

In Figure 2 (¢), the normalized MRE varies a lot. It increases from about 2% at
m = 1 to 30% at m = 25. Thus, unlike in the high noise setting, choosing a good
number of repetitions is important. The best performance is achieved at m = 1, which
coincides with the minimizer mlyy, = 1 of the bound.

The results of the calibration experiment for the normalized MRE is given in
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mo o
K/3 2 5 10 20 | 20 10 5 2
400 | 0.18 0.15 0.17 - - 016 0.18 0.20
200 | 0.05 0.04 0.04 - - 0.06 0.05 0.07
100 | 0.02 0.04 - - - - 0.04 0.04
50 | 0.03 0.02 - - - - 0.02 0.04

Table 2: Normalized MRE in the linear model with low noise for various calibrations:
K/(p+ 1) = 50,100, 200,400 and mq = 2,5,10,20, ... For instance, for K/(p+ 1) =
200 = mgng, the normalized MRE is available for mo = 2, 5, 10, 20, 40, 100.

Table 2. The best performance is reached at the bottom left of the table with numbers
that correspond to the optimal performance in Figure 2 (¢). Moreover, notice that a
large spectrum of calibration parameters (K, mg) yield low errors.

5.2. Asymptotic behavior of the sensitivity indices estimators. To illus-
trate the asymptotic behavior of the sensitivity indices estimators, Sobol’s g-function,
a benchmark in sensitivity analysis [16, 13], is considered. Sobol’s g-function is given
by
ﬁ [4U; — 2| + |4U; — 2|+ a;

Uy,...
g( 1 ) P+1 1+G/]

)

where the a; are nonnegative and the U; are independent standard uniform random
variables. The less a; the more U; is important. Elementary calculations show that
the first-order Sobol index (2.5), associated with Uj, is given by
p+1 2 -
Glarmapn) _ 1 —1+H (4/3 + aj + 2a;)
J 3(1+a;)? (1+a,;)?

j=1

To build a stochastic model out of Sobol’s g-function, we let one of the U; play
the role of Z. For instance if U;, 1 < i < p + 1, were to play this role, then the
stochastic model would be

(51) Y = f(Xl, e ,Xp, Z) == g(Xl, e 7AX'Z'_l,Z, XZ‘, N ,Xp).

Of course Y and f above depend on 4. In the rest of this section we choose arbitrarily
i=2and p=4.

The Sobol indices of the first and of the second kind (in the sense of Definition 2.1
and 2.2) are then easily seen to be

Slme) i< <p

e { levai) p < <1

bi1,..0,b4y
and S = S\ yhere

b a; f1<j<i—1,
K aj+1 1fz§]§p
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498 For each kind of Sobol index, we produced 500 estimates of the p Sobol indices
499 and computed the values of the mean squared error (MSE) by averaging over the
500 500 replications and summing over the p indices. We tested n = 100, 500, 2500 and
501 m =1,10,100.

B
S 4 3 {4
# o
o
o
<} o
o
(=}
S - %
o o N 4 © N
3 Y % g 9 | % %
E o5 @ j A R £ 3 %
s X D
8 | N
[} ]
N
o 4
o 4
1 & 4
T T T © T T T
100 500 2500 100 500 2500
n n
(a) first kind (b) second kind

Fig. 3: MSEs for the Sobol index estimators of the first and second kind (logarithmic
scale).
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4
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-
X
o
T T T T T T
- O O - O O - O O
AT AT T
EEII EEII EEII

m
m
m

Fig. 4: Boxplots of the estimates for the Sobol index of the second kind associated
with X;. The red horizontal line is the truth.

502 The MSEs are shown in Figure 3. Let us look at 3a. As n increases, the decrease
503 is linear for each m. This indicates that the MSEs go to zero at a polynomial rate,
504 even if m is fixed (look at the line m = 1). This agrees with the theoretical results
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of Section 4. The picture is different for the estimator of Sobol indices of the second
kind. In 3b, the curve for m = 1 is not a straight line, indicating that the MSE may
not go to zero. Indeed, the MSE for m fixed is not expected to go to zero because
of the bias depending on m. To make the MSE go to zero, one has to force m go to
infinity.

Figure 4, which shows the distribution of the estimates for the index associated
to X7, better explains this phenomenon. Here the bias is apparent for m = 1 and
vanishes as m goes to infinity. The bias for the indices associated with the other
inputs is not as large (not shown here).

6. Discussion. We have considered two kinds of sensitivity indices for stochastic
models. Asymptotic normality of the estimators, which depend both on the number of
explorations and the number of repetitions, has been established, and it was noticed
that the second kind, that which arises from smoothing out the computer model,
suffers from a bias term which vanishes only when the number of repetitions goes
to infinity. Assuming a fixed computing budget, the performance of the sensitivity
indices estimators, measured by the MRE, depends on the design of the Monte-Carlo
sampling scheme. The optimal design corresponds to the minimal MRE. A bound
on the MRE has been minimized and a two-stage procedure has been built to get
estimators that asymptotically achieve the minimal bound. To test the procedure,
simulation experiments were conducted, where the bias of the sensitivity estimator
of the second kind was confirmed. Optimal compromises between repetitions and
explorations have been identified and compared with the output of the two-stage
procedure for different values of the tuning parameters.

This work opens many research directions. First, the sensitivity estimators of the
two stages could be aggregated to build estimators with a lower variance. Second,
other methods might be developed to optimize the Monte-Carlo sampling scheme. For
instance the MSE might be approximated or asymptotic variance-covariance matrices
might be minimized. Third, multilevel Monte-Carlo sampling schemes might be con-
sidered to alleviate the bias issue. Fourth, a finite-sample analysis could be conducted
to get insight into the tradeoff K is subjected to. Fifth, since the bias is known, it
could be estimated to build bias-corrected sensitivity indices estimators. Sixth, the
problem of choosing a number of calls with many divisors must be addressed. It may
be worth to call the model a bit less if this permits to have a better set div,(T).
Seventh, the assumption that X and Z are independent might be relaxed.

Appendix A. Proofs.

Proof of Proposition 3.1. Assume without loss of generality that D; < --- <
D,. We first prove the following Lemma. For convenience, the subscripts n and m
are left out.

LEMMA A.1. Leti < j. Then

Var ﬁz + Var ﬁj

P(D; —D; >0) <
( J = )— %|D1—DJ‘2

Proof. We have
P(D; — D; > 0) <P(|D; — D;| +|D; — D;| > D; — D;)

) 2 1
<P(D,~ DI 41D~ Dy = 5Dy~ DY
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and the claim follows from Markov’s inequality.

We now prove Proposition 3.1. Recall that D; < --- < D,. We have

P P P
Y EB|R;— R <> > E(D, < D;) - 1(D; < D)
i=1 i=1j=1
P
Var D; + Var D
SZZ 1|D —D-|2 :
i=1 j#i 277" J
dp-1)
Var D
min|D; — D;/|? Z e
3<i’ i=1

where the second inequality holds by Lemma A.1 and because

L E[1(D; > D,)| ifj<i,
E1(D; < D;) = 1(D; < Dy)| = 0 ifg=1,

It remains to calculate the variances. But this is done in Lemma C.3 in Appendix C,
where it is found that

~ 1 1
Var D; :E{Var E[YoY;|X] + E(E Var[Y,Y;|X] — Var[Yy|X] Var[Y;|X])
1
+ —5 E Var[Y|X] Var[Y;|X]}.
m

Proof of Proposition 3.3. We distinguish between three cases: 0 < m* < 1,
m* > (T — K)/(p+1) and 1 < m* < (T — K)/(p +1). Recall that m},_, is the
minimizer of v(m), m in div, (T — K).

If 0 < m* < 1 then by definition ¢r_g(m*) = 1 and by convexity v(m*) <
v(1) < wv(m) for all m in div,(T — K). Therefore mTTfK =1

If m* > (I'— K)/(p+1) then by definition pr_x(m*) = (T'— K)/(p+1) and by
convexity v(m*) < v((T' — K)/(p+ 1)) < v(m) for all m in div,(T — K). Therefore
mh_ = (T = K)/(p+1).

If1<m*<(T—-K)/(p+1) then by definition

or K(m*) . cm*or_if \/I_m*_lT_Kl—m* Tr_g >m*
- "m* p_g if \/I_m*_lT_Kl—m* Tk <m*.

By convexity mTTfK must be Lm*ar_g or "Tm* r_g. I Lm*or_g = "m* 'r_k then

mTTiK ="m*p_g = pr_g(m*). Otherwise, since v(z) = iz + (2 + (3/z, z > 0,

for some constants (1, (s and (3 such that (3/{; = m*, we have

U(Lm*JT,K) < v(rm*"'T,K) iff \/Lm*JT,K'_m*jT,K > % =m*.
1
Therefore pr_ g (m*) = mTTfK.
Let us prove that the minimizer of v(m), m € div,(T — K), is unique if m* #
\/Lm*JT,Krm*jT,K. If it were not, then we would have v(um*ir_k)

= v("m*p_k). Bus this implies m* = \/um*r_g"m* 7_k, which is a contra-
diction.
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586 Proof of Theorem 3.4. In this proof my and ny are denoted by m and n,
587 respectively. In view of (3.3) and (3.4)—(3.9), we have

P P 1 n (3.4) (3.5) (3.6) (3.7)
« Zj:lc?’,] j=1 n £Zui=1 gm7.+§]mi é-jmz_ sz
588 mK = p = =
>y » 38) (1 (3.9)
Ej*l C J j=1n =155;m,2 n Zi:l Jim,i

589

590 where the § mis 0 =1,...n, 7 =1,...,p, e =34,...,3.9, are implicitly defined
591  through (3. 4) (3 9) Let

_ o1&
592 EZEZ€mm
593 £m’i:(£1;m’i,...,§;mi)i i=1,...,n,
594 £j;m,i:(§j(f?7‘3?i,...7j(1:1), j=1,...,p, i=1,...,n.

596  Let s be the function defined by

P (34 (3-5) (3.6) _ (37

597 s(x) = I I J
: p (5 8) (3.9)2 )
598 =1 T
3.4 3.9 . .
599 where x = (x7,...,x )7, x; = !t ),...71'( ) T j=1,...,p. With the above
1> »*p J J 7 ] p

600 notation we have M} = s(£). Moreover, elementary calculations show that
. C
> _ v
601 (A.1) E¢,1= 0—&—21?7
v=

603 where the C,, are vectors of constants, 8 = (67 , ... ,BZ)T and

1,1)2+-(1,1)2
y {1y 0
y 10y 2y (1 Dy a2)
a, 1)Y(1 2)Y(1 2
604 0; =E Y(l 1) (1 2 (1,1)2
Y Y Yy
y 1y 12y 0Dy 02

(1 1)y-(1,1)
605 YJ YO

606 Check that m* = s(0). A concatenation of two Taylor expansions yield

aor Vi€~ BE,,1) 3(BE,,1) + 5E &y 1) S0 m(E - BE,)
05 (A2) =) ~ s(B6,1)
09 —VA(5(E) ~ 5(6) ~ (B&,1 ~ 0)T3(0) ~ 5(EE,,, —0) 8n(BE,, — ),

611 where § is the gradient of s, 3, ,, is the Hessian matrix of s at a point between I3
612 and 6,,, and, §,, is the Hessian matrix of s at a point between EE,, ; and 6. It
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follows from (A.1) that (E&,, , — 0)75(0) is clearly of the form Zi:l Cy,/m” for
some constants C,. Putting

1 3 ¢
n = 5 (B~ 0) 5 (B, —0) + Y 2.

v=2

it follows from (A.2) that

(A3) Vi€~ Bey1) 3(BE,0) + 3(E ~BEyy) Sum(E &)
A~ % * C
:\/ﬁ(mK—m —El—em).

If m is fixed then Lemma B.2 in Appendix B yields
\/ﬁ(g - Eém,l) - N(Oa Em),

for some variance-covariance matrix ¥, of size 6p x 6p. Moreover, the second term in
the left-hand side of (A.3) is op(1) by Cauchy-Schwartz’s inequality and the continuity
of the second derivatives of s. The first term goes to N(0,3(EE,, 1)  Ems(EE,, 1))

and hence the claim follows with o2, = $(E¢,, ;) Sms(EE,, ;) and C = C1.
If m — oo then again Lemma B.2 in Appendix B applies: we have

VA€~ EE,,1) = N(O, lim ).

Since €, — 22452 C,/m” = o(m™"), 5 is continuous and E,,, ; — 6, the claim follows.
The proof is complete.

Proof of Proposition 3.6. By definition, fﬁ}_K = or_k(Mmj) and m}_K =
er—_k(m*). The function ¢7_k is piecewise constant and has |div, (T — K)|—1 points
of discontinuity of the form +/4j, where i and j are two consecutive members of

T-K
div (T — K)\ 41, — 22 L
-\ {1 28
Denote the set of discontinuity points by Dp_ k. Clearly,
Dr_g C {\/ij : i and j are two consecutive integers} = &.

There exists an open interval that contains m* but does not contain any points of
€ and hence does not contain any points of Dr_g, whatever T and K. If m}, is in
this interval then there are no discontinuity points between m* and m}, and hence
fﬁ;_K = pr_g (M%) = pr_g(m*) = m}_K. By Corollary 3.5, the probability of
that event goes to one as mg and ng go to infinity.

Proof of Theorem 3.7. Let ¢ > 0. An obvious algebraic manipulation and
Taylor’s expansion yield

P(
K 1

T - ~
< P (|7 Pl =m0 ) + 2 peotondg)| > wtmd_)e).

T v(Mh_ ) — Rv(mh_ ) D
> €

%U(m;—K)
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where 1 denotes a real between 7)., and m},_,.. A decomposition of the probability

above according to whether ﬁz}_K — m}_K # 0 or ’//ﬁ}_K — m;_K = 0 yields the

bound

P(ﬁzTK—mTTK#O)—i—P(TKK >€).

The first term goes to zero by Proposition 3.6. The second term goes to zero because
K/T — 0.

Proof of Theorem 4.1. The proof is based on the results in Appendix B. The
Sobol estimators in (2.11) and (2.12) are of the form

2
_ IZ =1 ],mz (% Z:L:lggfz)

S = j=1,...,p
Jin,m n 2 b) b b)
7 2im G — (5 2 6l)
and
n 2
’\/'/ :1Ezljmz_(%2i:1 1915) C_
RS VTR 5 o)
where the notation is obvious. Denote &, ; = (1545 Epmir Emss S Em) T
Elementary but burdensome calculations show that
EE[f(X, Z)[X]E[f(X -1, Z)|X ]
E¢, = | EE/ (X, 2)|X]E[f(X_p, 2)|X ]
Ef(X,Z)
E f(X,Z2)?
EE[f(X Z)lX]2 Evar[fgiﬂzﬂx}
(Some calculations are carried out in Appendix C.) Define the function
(L1, o Tpy Tpt1, Tpy2, Tpts)
_ xl—fo_l xp—mgH xl—mgﬂ ﬂcp—fo_l
Tpr2 = Tpi1 Tpy2 — Tppy Tpt3 — Tpyy Tpas — Tpp

Clearly, we have

and

S/
sE&na) = gr [y E Var[f(X,2)|X] :
 EVar[f(X,2)[X]|+m Var E[f(X,2)] X]

If m is fixed then Lemma B.2 in Appendix B yields

\/ﬁ <711 ism,z - Eém,l) i N(O’ Em)ﬂ

i=1

This manuscript is for review purposes only.



680
681
682
683

684

685

686
687
688
689

690
691

692

693

694

695

22 G. MAZO

for some nonnegative matrix X,, of size (p+ 3) x (p+3) and the result follows by the
delta-method.

If m — oo, Lemma B.2 still holds with the variance-covariance matrix replaced
by its limit. Taylor’s expansion yields

(( e E&m)

11 | Ly
+§ <TL Zém,z - E€7n,1> g"’m <’I’L Zém,i o E£m71> ’
=1

i=1

where $,, is the gradient of s at EE,, ; and §, ,, is the Hessian matrix of s at a
point between n=1 Y~ &, and EE,, ;. Since that point goes to a constant and s has
continuous second derivatives, it holds that 3, ,, goes to a constant as well. So does
$m and the claim follows by Slutsky’s lemma.

Appendix B. A unified treatment of the asymptotics. All estimators in
this paper have a common form, given by

1
(Bl) *ng,ia
n i=1
with
L 1 m p ( )b
(B.2) 1= STy
=1 m k=1j=0

where Y = y R = f(x®, z0"), v 0 = f(X9 200 for j = 1,...,p, and
bju, 3 = 0,...,p, I = 1,...,L, are nonnegative coeflicients. The coefficients are
arranged in a matrix (b;;) with L rows and p+ 1 columns, where bj; is the element in
the Ith row and (j+1)th column. This way, all estimators of the form (B.1) and (B.2),
or, equivalently, all summands (B.2), can be represented by a matrix. We sometimes
write &y,; =~ (bj,1), where (b)) is the matrix of size L x (p + 1) with coefficients b;,,
j=0,...,p,l=1,..., L.

B.1. Examples. The estimator

m
L Y(’L k) Y(z k")
DIESNTEES

k’l

is of the form (B.1) and (B.2) with L = 2 and coeflicients
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where the non-null columns are the first and the (j 4+ 1)th ones. The estimators

(

Im 1 (k) ()2
E,Z*ZYO : 7; ZY

i=1 k=1
I 1 & ’
()
n - m
i=1 k=1
are of the form (B.1) and (B.2) with L = 2 and coefficients
0 00 0 20 ... 000 ... 0
0 00 0/ \0 0 ... 000 ... 0)°
0 00 0
0 00 0)’

(G

respectively.

The estimators of Section 3. In view of (3.

where

oo oo

I~ 3.5) 3.6 3.7
Gy =1 Z€W+f§m— Jonns = & and,

2
~ I~ .65 1~ (39
-3 (R3]
i=1 =1

5(3.4) 5(3.5)

Jim,i? Jim,i
(3.6) (3.7)
g]mz’ gjmﬂ
(3.8) (3.9)
gjmz’ é-]ml

are all of the form (B.2) with L =4 and coefficients

OO HFH OO FHKMHFH OO0OOoON

OO OO OO0 OO0 oo

OO KF ONOO OO NnOo

OO OO OO oo oo oo
OO OO OO oo oo oo
OO0k O RO R EFHOO
DO OO OO0 oo oo
DO OO OO0 OO oo

DO OO OO0 OO0 oo
SO OO OO0 oo oo
SO OO OO OO0 OO0 oo
S OO OO N OO

respectively. In the matrices above, the first and j 4+ 1th columns are nonnull.
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(1,; can be expressed in terms of estimators of the form (B.1) and (B.2): we have
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The estimators of Section 4. The Sobol estimators in (2.11) and (2.12) are
of the form (B.1) and (B.2) with L = 2 and coefficients

v (L 00 -~ 0y o (L O - 00
Lmi—=\g 1 0 ... 0)7 Spmi—\g 0 ... 0 1

for the upper left (UL) terms,

vr (10 0

et 00 0
for the upper right (UR) term,

(2 0 - 0

mi =0 0 ... 0
for the lower left (LL) term of :S’\;-;nm and

NLL 1o - 0
§m7i—(1 0o --- 0)

for the lower left (LL) term of S

Jim,m?*

B.2. A central limit theorem. For each n, the random variables &,1,...,&n
are independent and identically distributed. Denote by &, (L) the set of all sum-
mands (B.2). In other words, &,, (L) is the set of all nonnegative matrices of size
L x (p+1). This set has useful properties, gathered in Proposition B.1 for subsequent
use.

PROPOSITION B.1. Let & be an element of &, (L) with coefficients (b;). The
following statements are true.
(i) If & is an element of &y, (L) with coefficients (b)) then §&' is an element of
Em,i(2L) with coefficients

bO;l A bp;l

bO;L A bp;L
/ A b
0;1 p;l
/ /

bO;L T bp;L

(i) The limit of E£ exists as m — 00.
(iii) If there exists some function F such that |f(x,z)| < F(z) for all x and z in the
domain of definition of f then

P Z?:o Zlel bj1
€< |V EEXD) )
j=0

where F;(X®) is F(XW)V1if j=0 and F(X"))V1ifj>1.
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Proof. The proof of (i) is trivial. Let us prove (ii). We have

L p
pe-—r > E[II[M

(k1yeoskr) €41 m}t  1=1=0

1 L ke
— Z EE HH}/j(vl)j;l

(k1,..kp)E{L,...,m}L 1=15=0
L

(B.3) SR SR | € (H e
L jZO

(kl,...,kL)G{l,...,m} =1

x (D

x<1>) )

Since (i) X and {Z("F) k =1,...,m} are independent and (i) the law of

VASL Y ASLR)

is invariant through any permutation of distinct k1,..., ky, all the inner expectations
in (B.3) are equal to some others. For if &y, ...,k are distinct then
- (1,k1) - (1,9
1,k‘l bj;l 1 . l,l bj; 1
E(Hl@- X >>—E(HYJ» X >)
1=1 1=1
for all j = 0,...,p. The number of inner expectations equal to the one above is
m(m —1)---(m — L+ 1), a polynomial in m with degree L. If some components of
the tuple (k1,...,kz) are equal, then we can always write
- (1,k) O (1,0
1,k;)b; 1 1,0)8;, 1
E(HYJ‘ l”X“)E [Ty 77 x®
=1 =1

for some L' < L and coefficients 3;; It is easy to see that the number of inner expec-
tations equal to the one above is a polynomial in m with degree at most L. (Looking
at examples helps to see this; see e.g. the proof of Lemma C.2 in Appendix C.)
Therefore, the sum in (B.3) is also a polynomial in m with degree at most L and the
claim follows (E ¢ can be zero). To prove (iii), simply remember that, by assumption,
YR < F(XM) and Y'Y < F(X)) for all k and all j. O

Two frameworks are considered:
e n — oo and m is fixed;
e n — oo and m — oo.
In the second framework m, is a sequence indexed by n that goes to infinity as n goes
to infinity.
LEMMA B.2. Let fg,)w I =1,...,N, be elements of &y (L) with coefficients
(b§';ll))‘ Assume
EF(X1)2 PN DA < 00
foralllI =1,...,N. Let n — oo. If m is fixed then

.
I I d

VI =S B D BT S N(O.2,),
i=1

i=1
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where Y, is the variance-covariance matriz of &, ; = (57(71)1, .,f(N)) o Ifm o —
00 then lim,,_so0 By exists elementwise and the above dzsplay with Em replaced by

lim,,— o0 2, 1S true.

Proof. Let m be fixed. By Proposition B.1 (i), gﬁn)z , I =1,...,N, belongs to
Em,i(2L) and has coefficients

I I
)
I I
s ol o)
R
I I
iy e )

Thus, denoting Y27, SELb (1) by 3, Proposition B.1 (iii) yields

p
(B.4) e < \/ Fy(X)2
and hence
(N2 g (1)y28 )
Be,f <BV XD <o+ DE(1vFXY)) T <.
=0

Therefore we can apply the central limit theorem to finish the proof for m fixed.
Let m — oo. According to Lindeberg-Feller’s central limit theorem (see e.g. [23]),
it suffices to show
(i) for all € > 0,

e}%(),

1 1
g R

and
(i) the limit Y27 | Cov(§,, ;/+/n) exists and is finite.
Let us show (i). Denoting X = (X1, X)), we have

L{[|&,l] > Vine} =B (1€, 1 1*1{l1&, 11l > v/ne}

N

:EZ EP1{||€, 11l > Ve

= E ém,i ?
i

~
15

tnﬂz

BB (€0 1{1€,0 > vaeHX)] .

~
I
—_
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By (B.4), we have

p
B (€07 1{1€,0111 > VReHX) < \/ Fy(XD)2PP (|lg,4]| > VnelX)

g2
v S B (60X
<\/ F;(x®
- \/ i ) ne2
Jj=0
NV B
- ne2

where the last inequality holds by using (B.4) once more. The upper bound goes to
zero and is dominated by an integrable function. Thus, we can apply the dominated
convergence theorem to complete the proof.

Let us show that (ii) holds. We have }_!"  Cov(§,, ;/v/n) = Cov(§,, ). The

element (I, J) in this matrix is given by EE(I) (J) Ef(l) f(‘]) Remember that

B¢ < oo, I=1,...,N,and hence E€) el < Eg”” /2467 /2 < co. Therefore
the limit of Cov§,, | ex1sts and is finite. The proof is complete 0

Appendix C. Explicit moment calculations. FExplicit moment calculations
are given for the summands in the proof of Theorem 4.1. In this section, E f(X, Z)
and EE[f(X, Z)| X]? are denoted by u and D, respectively. Recall that the upper-left
term in (2.8) and (2.9) is denoted by D;. The moments are given in Lemma C.1
and Lemma C.2. The variances and covariances are given in Lemma C.3. Let X =
(XM, XM). Whenever there is a superscript X added to the expectation symbol E
or the variance symbol Var, this means that these operators are to be understood
conditionally on X. An integral with respect to P(dx) means that we integrate with
respect to the law of X.

LEMMA C.1 (Moments of order 1). The moments of order 1 are given by

E€m1 - .77
Egml - Na
E&/LE — EVar F(XD, zEDy 4 D

Proof. One has

BEUk =3 SR (X0, 200 5(XY), 70))
k,k’

= 1> B0 @, 2 Plax)
k,k’

_ 1 1,1 v(1) ~(1,1)
=BEf(xW, z00) (x5, Z3Y)

=D.

R
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854  where the integral is taken with respect to the law of x = (z, &), and,

]55 I/LL — 2 ZEf 1) Z(l k) )f(X(l), Z(l,k/))
kk!
1
856 =—EVar® f(X,Z) + E(E* f(X,2))?
m
1
857 =—EVar® f(X,Z)+D.
858 m
859 The proof for EUR is similar. d
860 LEMMA C.2 (Moments of order 2). The moments of order 2 are given by
861 E&lT? = VarEX p(x @, 200y p(X0), 2001y 4 p?
1
862 + —[EVarX f(X(l),Z(l’l))f(X(l) (1 1))
863 — Var® f(x®, z0D) var® p(X) Z<1 )
864 + —2 E VarX f(x®, 20Dy yarX f(XQj), Z](M)),
865 EeUM? — EVarX FIXD, ZzEDY L EEX f(x D, z(D)Y)2)
-1 —9 —
866 EH? = m(m )(m4 )(m =3)
m
867 Ef(X(l), Z(l’l))f(X(l), Z(1’2))f(X(1), Z(l’g))f(X(l), Z(1’4))
4
868 4 mlm ;11)(’” =2 g p(x, 2002 f(X ), 702) f(x W), 709)
4
w0 N M B F(XW, 7003 p(x (1) 70.2))
m#
870 + g (X, Z00)
m
4
m(m—1)/2
8)1—,1 4 (2) ( - )/ Ef(X(l), Z(l’l))2f(X(l), Z(1,2))2
872 m
873
874 Proof. Let us first deal with £€U%. We have
875
1
s6 B2 = — D, B ZOR)px O, Z0k)
k1,k2 k3 ks
1 1k S (1 Lk
87 FXY, Z) p(x ),z

879 where, in the sum, the indices run over 1,...,m. We split the sum into four parts.
880 The first contains the m?(m — 1)? terms that satisfy k; # k3 and ko # k4. In this
881 part, all the terms are equal to

- 2
882 (term 1) E (EX F(x®, Z(Ll))f(X(_lj), Z§171))) )

884 The second part contains the m?(m — 1) terms that satisfy ki # k3 and ko = k4 and
885 that are equal to

i (torm 2) ES(XD, 200)f(x D, 202) f(XL), Z{MD)2.
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The third part contains the m?(m — 1) terms that satisfy k1 = k3 and ko # k4 and
that are equal to

(term 3) Ef(XW, 2002 (XY, 20" (XY), 23,

Finally, the fourth part contains the m? terms that satisfy ki = k4 and ke = k4 and
are equal to

(term 4) Ef(xM, z(11)2 f(X(l) Z(l 1))
(One can see that the number of terms is m?*.) Thus,
B &M% =(term 1)

+ %[(term 2) + (term 3) — 2(term 1)]

+ %[(term 1) — (term 2) — (term 3) + (term 4)].

Furthermore, [(term 1) - (term 2) - (term 3) + (term 4)] is equal to

2

/ (EXf(x,zw_j,Zj)

(X fw,2)) B 55, 2)
~EX fa, 2 (BX 5. 2)))
+EX f(x, 2)*EX f(i_;, Z;)* dP(x)

/Varfo Z)Var® f(X_;, Z;) dP(x).

Likewise, we find that [(term 2)+(term 3)-2(term 1)] is equal to
EVar™ f(X, 2)f(X_;,Z;) — Var* f(X, Z) Var® f(X_;, Z;),
and term 1 is Var EX f(X, 2)f(X_;, Z) + D?.
We now deal with ¢”5E. We have

1
Eé.//(LL _ m Z Ef(X(l), Z(l’kl))f(X(l),Z(l’kg))

k1,k2,k3,ka
f(X(l), Z(lJﬁa))f(X(l)7 Z(l’k“)).

The sum is split into five parts. The first part consists of the m(m —1)(m —2)(m — 3)
terms with different indices; those terms are equal to

Ef(XM, Z200)p(x ™, 202 p(x W, 209) p(x D), 209),
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4

The second part consists of the (2

indices; those terms are equal to

Jm(m — 1)(m — 2) terms with exactly two equal

Ef(X(l), Z(l’l))2f<X(1), Z(l’Z))f<X(1), Z(l’?’)).

The third part consists of the (g)m(m — 1) terms with exactly three equal indices;
those terms are equal to

B f(xM, 200)3 (XM, 209).

The fourth part consists of the m terms with exactly four equal indices; those terms
are equal to

Ef(XM, ZzLy4,

The fifth and last part consists of the (3)m(m —1)/2 terms with exactly two pairs of
equal indices; those terms are equal to

Ef(xM, 2002 p(x D, 20:2)2,

(One can check that the total number of terms is m*.) |
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937 LEMMA C.3 (Variances and covariances).

o3 () Varglh = VarEX f(x©, z00) (0 2

939 + %[EVarX f(X(l),Z(lvl))f(X(l) j(171))

940 — VarX f(x1), 2Dy varX f(X(l) Z(l 1)>]
941 + % EVar® f(X®, 20D) var® (X1 Z(00D),

. m—1 7
942 (ii) Cov/( fﬁ, fiff) = Ef(X(l), Z(1>1))f(X(1), 71, ))f(X(jJ)’ Z]('l 1))
1 ~
943 Jr7Ef(X(l)vz(Ll)yf(X(—lj)’ZJ(171))7Dj:u

1 ~
ou (i) Cov(En}, f(X,2)%) = — B (XM, 2003 (XY, Z5HY)

ml?
915 (iii) + mT_ E f(xW, 2002 p(x®, z02) (XD 20D) — Dk
916 (iv)  VargUf = — Var f(X,2)

017 (v)  Cov(¢Y (X 7)%) = %f(X,Z)?’

ml ’
948 ym-t Ef(XWD, 7002 p(x V) 702y _
m
019 (vi)  Cov(¢h,, &nth) = Ef(X(l) ZzO0p(x), Z0)
950 " L( LB f(x®, 200)2p(x D, 202) f(X1), 200)
m3
951 4 mim = 1)3(m ~2g F(XD, 20Dy p(x V)] 7012))
m
= 1,1
952 FXW, 209) p(R0), 20
953 ~Ef(xW, 200 p(x), Z(.l’l))
. { Ef(x®, 700y 1 M= L gy 7000) p(x D), Z(sz))}
955 m
956
957 Proof. The proof follows from direct calculations. 0
958 Appendix D. Calculations for the linear model.
959 LeEMMA D.1. Suppose that f(X,Z) = Bo + Bp1Z + >5_, BjX; where X =

960 (Xl,...,Xp),Zk,Zik are independent, EX; =EZ =0, EX]2 =EZ%2=1, EX]3 =0,
961 EX;l = 3. Then the squared optimal number of repetitions is given by

4
962 (m})? = Pl

(Bo + B:)* — 285 + (XG0 7)?
963 and the discriminator (the upper-left term in (2.8) and (2.9)) is
964 B8+ B2

965
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Proof. We have
A+ B+ Ci+ D
i E'L ’

with
A =B f(X, 202 f(X_4, Zin)?

B; =B (X, Z1) f(X_i, Zo) f(X, Za) [ (X_i, Zin)
C;i = —Ef(X, 21 f(X_i, Zon) [ (X_s, Zia)
Di=-Ef(X_i,Zi )f( Z 2)

(X_

)f (X, Z
Zn)P?

where X = (Xl,...,Xp),Zk,Zik are independent, EX; =EZ =0, EXJ2 =EZ?=1,
EX? =0, EX} = 3. We deal with the case

Ei=B-[Ef(X,2Z1)f

p
F(X,Z)=Bo+ BprZ +Y_ B X

j=1
We calculate the terms one by one as follows. We have
2 2
p ~
A =E B+ > BiX;| [Bo+BXi+ D BX;

Jj=1 J1<j#i
2

P

+ | Bo+ Zﬂij BoZh + 5§+1Z122i21

2
+BonZE | Bo+BiXi+ Y. BiX;
J<ji
= Aj1 + Aja + Ajs,

where E (A2) = 8,1 + 671 2.7 87, E(A3) = 87,1 >¥_ 33. Elementary but some-
what tedious calculations yield

2
E (A1) =83 +36} + 68387 +283+87) Y. B+ D 8
Ji1<j#i Ji1<j#i
Similar calculations show that B; = Aji1, C; = —Aj1 — Ajz, Dj = —Aj — Ajs,
E; = Aj — (B2 + 8?)2. Thus,
(mik)Q — /Bg-‘rl )
' (Bo + B:)? = 265 + (25— B)? 0
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