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Abstract

Global sensitivity analysis often accompanies computer modeling to
understand what are the important factors of a model of interest. In
particular, Sobol indices, naturally estimated by Monte-Carlo methods,
permit to quantify the contribution of the inputs to the variability of the
output. However, stochastic computer models raise difficulties. There
is no unique definition of Sobol indices and their estimation is difficult
because a good balance between repetitions of the computer code and
explorations of the input space must be found. The problem of finding
an optimal tradeoff between explorations and repetitions is addressed.
Two Sobol indices are considered, their estimators constructed and their
asymptotic properties established. To find an optimal tradeoff between
repetitions and explorations, a tractable error criterion, which is small
when the inputs of the model are ranked correctly, is built and minimized
under a fixed computing budget. Then, Sobol estimates based on the
balance found beforehand are produced. Convergence rates are given and
it is shown that this method is asymptotically oracle. Numerical tests and
a sensitivity analysis of a Susceptible-Infectious-Recovered (SIR) model
are performed.

Keywords: Explorations, repetitions, Sobol, estimation, sensitivity, stochas-
tic, random, model.
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1 Introduction

Sensitivity analysis often accompanies computer modeling to understand what
are the important factors of a model of interest [17, 18]. In particular, Sobol
indices [20, 21] permit to quantify the contribution of the inputs to the variability
of the output. The Sobol index Sj is defined as

(1) Sj =
Var E(f(X)|Xj)

Var f(X)
, j = 1, . . . , p,

where Y = f(X) is the output of the computer model f evaluated at the input
X = (X1, . . . , Xp). The larger Sj , the more Xj is important in the following
sense: if Xj = xj were fixed, VarY would be reduced by at least Sj×100%. As
a consequence, the Sobol indices satisfy S1 + · · ·+ Sp ≤ 1, with equality in the
absence of interaction effects, which we shall not account for in this paper.

The estimation of Sobol indices is naturally performed by Monte-Carlo meth-
ods [7, 15, 20, 21], which permit to build estimators with statistical guaran-
tees [5, 12]. Sobol indices for multivariate, functional outputs [4, 13] or func-
tional inputs [10] have been proposed as well.

Computer models employed to simulate physical systems/natural phenom-
ena are increasingly stochastic. That is, two runs of the computer with the same
input may lead to two different outputs. Examples can be found in epidemiol-
ogy [1, 3, 16, 19] or ecology [22].

It is still unclear how sensitivity analysis should be performed when the
models are stochastic. First, there is no unique definition of Sobol indices [6].
Second, it is unclear how to account for noise in the inference. Monte-Carlo
sampling with repetitions is natural, but what is a good balance between the
number of repetitions of the model and the number of explorations of the input
space [22]? Having efficient estimators would permit to achieve the same level of
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precision but with less computations, an important practical issue. An approach
based on meta-models has been proposed [14], but it is difficult to control the
induced bias and the construction of the meta-model itself can be challenging.

The problem of finding an optimal balance between explorations and rep-
etitions to estimate Sobol indices in stochastic computer models is addressed.
Two definitions of Sobol indices are given. Their estimators, based on Monte-
Carlo sampling with repetitions, are built and their asymptotic properties are
established. To find an optimal tradeoff between repetitions and explorations, a
tractable error criterion, which is small when the inputs of the model are ranked
correctly, is built and minimized under a fixed computing budget. A two-stage
procedure is given for estimating the Sobol indices, the first stage serving to
find the optimal number of repetitions that should be used in the Monte-Carlo
experiment of the second stage.

This paper is organized as follows. The sensitivity indices and their estima-
tors are defined in Section 2. The optimal number of repetitions is defined in
Section 3, where an estimator is also given. In Section 4, a two-stage procedure
is proposed that permit to efficiently estimate the sensitivity indices by exploit-
ing the results of Section 2 and Section 3. Numerical experiments are provided
in Section 5 to test the theory. In Section 6, a sensitivity analysis of a SIR
model is performed to illustrate the proposed method. A discussion closes the
paper. The proofs are given in Appendix A.

2 Stochastic sensitivity analysis

2.1 Definition of the sensitivity indices

In the case of a stochastic computer model, the output is

Y = f(X,Z),

where Z is an unobserved random element that represents the “noise” of the
model. That is to say, even if X = x is fixed, the output, distributed as f(x, Z),
exhibits a residual variability due to the randomness of Z. In all this paper,
we assume that X and Z are independent. Note that f does not represent the
computer model, as seen by the user. For the user, the computer model is not
even a mapping, since to runs of the computer at the same input can lead to
two different outputs. Here, f is any mapping that, together with X and Z,
produces the output Y . The existence of Z and f such that Y = f(X,Z) is
assumed.

Two kinds of Sobol indices can be built.

Definition 1. The Sobol indices of the first kind are defined as

S′j =
Var E(f(X,Z)|Xj)

Var f(X,Z)

for j = 1, . . . , p.

Definition 2. The Sobol indices of the second kind are defined as

S′′j =
Var E(E[f(X,Z)|X]|Xj)

Var E[f(X,Z)|X]

for j = 1, . . . , p.
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The first index is built by substituting f(X,Z) for f(X) in (1). The second
by substituting E[f(X,Z)|X]. Thus, the index of the first kind is a direct
application of (1): one does as if Z were another input, even though it is not
observable. The index of the second kind is also an application of (1) but to
the function x 7→ E[f(x, Z)|X = x] with the noise smoothed out.

For estimation purposes, it is convenient to rewrite the indices as

(2) S′j =
E E[f(X,Z)|X] E[f(X̃−j , Z)|X̃−j ]− (E E[f(X,Z)|X])

2

E E[f(X,Z)2|X]− (E E[f(X,Z)|X])
2

and

(3) S′′j =
E E[f(X,Z)|X] E[f(X̃−j , Z)|X̃−j ]− (E E[f(X,Z)|X])

2

E E[f(X,Z)|X]2 − (E E[f(X,Z)|X])
2 ,

where X̃ = (X̃1, . . . , X̃p) is an independent copy of X and

X̃−j = (X̃1, . . . , X̃j−1, Xj , X̃j+1, . . . , X̃p),

for j = 1, . . . , p. Note that S′j and S′′j differ only by the lower left term. In
particular, the upper left term is the same in both formula and is the only term
that depends on j, and hence the only term that permits to discriminate between
any two indices of the same kind. For this reason, it is called the discriminator
and is denoted by Dj . Notice that S′j ≤ S′′j .

Example 1. Let Y = aX1 + cX2h(Z), where X1, X2, Z are independent stan-
dard normal variables, a, c are real coefficients and h is a function such that
Eh(Z) = 0. Then

S′1 =
a2

a2 + c2 Eh(Z)2
, S′2 = 0, S′′1 = 1 and S′′2 = 0.

Example 1 illustrates that the two kinds of sensitivity indices measure differ-
ent aspects of the sensitivity of a computer model. While the sensitivity indices
of the first kind depend on the coefficients of the model, those of the second
kind do not.

Example 2. Let f(X1, X2, Z) = sin(X1) + a sin(X2)2 + bZ4 sin(X1), where
X1, X2, Z are independent uniform random variables on (−π, π) and a, b are
real coefficients. The Sobol indices of the first kind are given by

S′1 =
bπ4/5 + b2π8/50 + 1/2

a2/8 + bπ4/5 + b2π8/18 + 1/2

and

S′2 =
a2/8

a2/8 + bπ4/5 + b2π8/18 + 1/2
.

The Sobol indices of the second kind are given by

S′′1 =
bπ4/5 + b2π8/50 + 1/2

(1 + bπ4/5)2/2 + a2/8

and

S′′2 =
a2/8

(1 + bπ4/5)2/2 + a2/8
.
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The model in Example 2 with a = 7 and b = 0.1 was used to test sensitivity
analysis methods based on meta-models [14]. When Z = X3 is a controllable
input, this model is a standard benchmark for deterministic models [7, 11].
Although, in the examples above, Z is a scalar, it is easy to build other examples
in which Z is a random vector.

2.2 Estimation of the sensitivity indices

Estimation is based on Monte-Carlo sampling. The sampling scheme is given
in Algorithm 1. The input space is explored n times and, for each exploration,
the computer is run m times to smooth out the noise. Thus, the total number
of calls to the computer is proportional to mn. Denote by T = mn(p + 1) the
total number of calls.

Algorithm 1 Generate a Monte-Carlo sample

for i = 1 to n do
draw two independent copies X(i), X̃(i)

for j = 0, 1, . . . , p do
for k = 1 to m do

run the computer model at X̃
(i)
−j to get an output Y

(i,k)
j

end for
end for

end for

The data generated by the algorithm are

(Y
(i,k)
j , X̃

(i)
−j),

for j = 0, 1, . . . , p, i = 1, . . . , n and k = 1, . . . ,m, with the convention X̃
(i)
−0 =

X(i). By assumption, there are independent random elements (Z
(i,k)
j ) such that

(4) Y
(i,k)
j = f(X̃

(i)
−j , Z

(i,k)
j ).

The estimators of the sensitivity indices are built by substituting empirical av-
erages for expectations in (2) and (3), that is,
(5)

Ŝ′j;n,m =

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

1
m

∑m
k′=1 Y

(i,k′)
j −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)2
0 −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2
and
(6)

Ŝ′′j;n,m =

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

1
m

∑m
k′=1 Y

(i,k′)
j −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2
1
n

∑n
i=1

(
1
m

∑m
k=1 Y

(i,k)
0

)2
−
(

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2 .

To our knowledge (personal communication), when faced with stochastic
computer models, practitioners tend to use softwares for deterministic sensitiv-
ity analysis in which an average over repetitions is given to the program as a
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substitute for the value of the output. Thus, the second estimator is used in
practice, albeit implicitly. The first estimator, to the best of our knowledge,
was not formally defined. The second estimator appeared in [8, 9], where it was
studied only in the case m = n (to the best of our understanding).

In (5) and (6), take m = 1 and assume Y
(i,1)
j = f(X̃

(i)
−j) instead of (4). Then

the estimators reduce to those of Sobol [20, 21] in the deterministic case. In the
later case, these estimators are sometimes called pick-freeze estimators [5].

In the rest of this paper, we assume that, for all x and all z,

(7) f(x, z) ≤ F (x)

for some F with EF (X)8 < ∞. The existence of the bound F to control the
stochastic part of the model is needed to apply Lindeberg-Feller’s central limit
theorem. The condition EF (X)8 <∞ is the weakest moment condition needed
to be able to apply classical central limit theorems to all of the estimators in
this paper.

These conditions are verified for the model in Example 2. Indeed we have

f(X1, X2, Z) ≤ sin(X1)(1 + |b|π4) + a sin(X2)2.

For the model in Example 1, it suffices to take

h(Z) =

 −t if Z ≤ −t,
Z if − t ≤ Z ≤ t,
t otherwise

for some threshold t > 0.
We now establish asymptotic properties of the sensitivity estimators as the

number of explorations goes to infinity. The number of repetitions can be fixed
or go to infinity as well. In the later, m = mn is assumed to be a sequence
growing with n. Denote by S′ (resp. S′′) the (column) vector with coordinates

S′j (resp. S′′j ), j = 1, . . . , p, and denote by Ŝ′n,m (resp. Ŝ′′n,m) the vector with

coordinates Ŝ′j;n,m (resp. Ŝ′′j;n,m).

Theorem 1. Assume (7) holds and let n→∞. Then

√
n

(
Ŝ′n,m − S′

Ŝ′′n,m − S′′
[
1− EVar[f(X,Z)|X]

EVar[f(X,Z)|X]+mVarE[f(X,Z)|X]

]) d→ N(0,Ξm),

for some nonnegative matrix Ξm of size 2p × 2p. If m = mn → ∞ as n →
∞, then, elementwise, Ξm → Ξ for some Ξ. Moreover, the convergence in
distribution above still holds with Ξ in place of Ξm.

The result of Theorem 1 suggests that, when the number of explorations is
large enough,

Ŝ′n,m
d
≈ N(S′,

1

n
Ξ1m)

and

Ŝ′′n,m
d
≈ N

(
S′′
[
1− E Var[f(X,Z)|X]

E Var[f(X,Z)|X] +mVar E[f(X,Z)|X]

]
,

1

n
Ξ2m

)
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for some variance-covariance matrices Ξ1m, Ξ2m of size p×p and for anym. Since
Ξm has a limit, these approximations hold for m large as well. This permits to
draw inferences about the Sobol indices for any number of repetitions.

When the number of repetitions is much smaller than the number of explo-
rations, the sensitivity estimators of the second kind underestimate the corre-
sponding Sobol indices. Fortunately, the bias is explicit and can be estimated
in practice. Note that the bias is proportional to E Var[f(X,Z)|X], which is
zero whenever f actually does not depend on Z. This term is a noise term: it is
expected to be large whenever the computer model is highly stochastic. When
m grows, the bias diminishes but it could be that the sensitivity estimator is
arbitrarily tightly concentrated around the wrong target. This phenomenon is
avoided by choosing a number of repetitions much larger than the square root
of the number of explorations, as stated in Corollary 1.

Corollary 1. Let
√
n/m→ 0. Then, under the assumptions of Theorem 1,

√
n

(
Ŝ′n,m − S′

Ŝ′′n,m − S′′

)
d→ N(0,Ξ).

3 Balancing explorations and repetitions

Clearly, to get the best estimators, one should do as many explorations and
repetitions as possible. However, in practice, each call to the computer model
is costly and the budget is limited. Denote the total available budget by T and
remember from Section 2 that T = mn(p+1). Which, among all couples (m,n)
that satisfy T = mn(p + 1), yields the best performance? The criterion often
used to optimize statistical methods, the mean squared error, is intractable for
Sobol estimators.

We propose to consider a more convenient criterion, given by

MRE = E

p∑
j=1

|R̂j;n,m −Rj |,

where Rj is the rank of Dj among D1, . . . , Dp, that is, Rj =
∑p
i=1 1(Di ≤ Dj),

and R̂j;n,m is an estimator of Rj . Recall that D1, . . . , Dp, the upper-left terms
in (2) and (3), determine the ranks of the sensitivity indices and that the ranks
of the sensitivity indices of the first and of the second kind are the same. Thus,
the MRE permits to find a unique solution to the balance problem for both
kinds of sensitivity indices. The MRE is an error which is small when one
succeeds in ranking the inputs of the computer model from the most to the
least important. That is, one seeks the input which, if fixed, would lead to the
greatest reduction of the output variance; then the second, etc. This is called
Factors Prioritisation in [18, p. 52].

The MRE is more tractable than the MSE because it depends only on the
discriminators, but it is still difficult to minimize it directly. Therefore, it is a
bound of the MRE that is used to find an optimal balance between explorations
and repetitions.
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3.1 Defining an optimal number of repetitions

In what follows, the vector (X, X̃) of size 2p is denoted by X. Denote by D̂j;n,m

the upper-left term in (5) and (6), the estimator of Dj . Let Yj be a shorthand

for Y
(1,1)
j = f(X̃

(1)
−j , Z

(1,1)
j ), j = 0, 1, . . . , p and recall that X̃

(1)
−0 = X(1).

Proposition 1. Let R̂j;n,m =
∑p
i=1 1(D̂i;n,m ≤ D̂j;n,m). Then

E

p∑
j=1

|R̂j;n,m −Rj | ≤
2(p− 1)(p+ 1)2

min
j<j′

(|Dj −Dj′ |2)T

×
p∑
j=1

(mVar E[Y0Yj |X]

+ E(Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X])

+
1

m
E Var[Y0|X] Var[Yj |X]).

This bound provides us with some insights. It is small when the Sobol indices
are well separated and increases as the cube of the number of inputs. Denote∑
j Var E[Y0Yj |X] by ζ1,

∑
j E(Var[Y0Yj |X] − Var[Y0|X] Var[Yj |X]) by ζ2 and∑

j E Var[Y0|X] Var[Yj |X] by ζ3. Then ζl ≥ 0 for l = 1, 2, 3 and the bound is

proportional to n−1(ζ1 +m−1ζ2 +m−2ζ3), which decreases as n increases or m
increases. The function T−1(mζ1 + ζ2 +m−1ζ3) is a convex function of m and,
forgetting at the moment that m is an integer, it is minimized at

m∗ :=

√∑p
j=1 E Var[Y0|X] Var[Yj |X]∑p

j=1 Var E[Y0Yj |X]
.(8)

The number m∗ is called the optimal continuous number of repetitions and
can be interpreted as a noise-to-signal ratio for ranking the Sobol indices. In-
deed, recall that a variance can be decomposed into a variance of a conditional
expectation and an expectation of a conditional variance, where the last rep-
resents a noise term and the former a signal term [18, p. 12]. The numerator
in (8) is the noise term: if the computer model is deterministic, then the func-
tion f(X,Z) does not in fact depend on Z, and the numerator is zero. The
denominator is the signal term.

The optimal number of repetitions is naturally defined as the integer m† that
minimizes the upper bound in Proposition 1 over all compatible integers, that
is, over all integers m such that T = mn(p+ 1). For instance, for T = 300 and
p = 2, the set of compatible integers is {1, 2, 4, 5, 10, 20, 25, 50}. By convexity of
the bound, the optimal number of repetitions is either the greatest compatible
integer less than or equal to m∗, denoted by xmy∗, or the smallest compatible
integer greater than or equal to m∗, denoted by pmq∗.

Proposition 2. The optimal number of repetitions m† is given according to the
following three cases.

(i) If m∗ ≤ 1 then m† = 1.

(ii) If m∗ ≥ T/(p+ 1) then m† = T/(p+ 1).
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(iii) If 1 < m∗ < T/(p+ 1) then

m† =

{
pmq∗ if xmy∗pmq∗ ≤ m∗2
xmy∗ if xmy∗pmq∗ ≥ m∗2.

Moreover, if xmy∗ = pmq∗ = m∗, then m∗ = m†.

Provided that the Monte-Carlo experiment is large enough so that m∗ <
T/(p + 1), the optimal continuous number of repetitions m∗ and hence the
optimal number of repetitions m†, do not depend on the size of the experiment.
For instance, if it happens that m∗ < 50, then the optimal number of repetitions
will be the same whether the size of the experiment is T = 300 or T = 3000000.

In the sequel, by an abuse of language, both m∗ and m† shall be referred to
as the optimal number of repetitions.

3.2 Estimation

The goal of this section is to build an estimator of the optimal number of
repetitions (8) based on the same outputs as those produced in Algorithm 1. In
view of Proposition 2, this will yield immediately an estimator for the optimal
number of repetitions.

Denote Var E[Y0Yj |X] by ζ1,j , E(Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X]) by ζ2,j

and E Var[Y0|X] Var[Yj |X] by ζ3,j , j = 1, . . . , p. Thenm∗ =
√∑p

j=1 ζ3,j/
∑p
j=1 ζ1,j

and natural estimators for ζ1,j and ζ3,j can be built using the same principles
as those that were used to build the sensitivity estimators. Thus, let

ζ̂3,j;n,m =

1

n

n∑
i=1

1

m

m∑
k1=1

f(X(i), Z
(i,k1)
0 )2

1

m

m∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )2(9)

+
1

n

n∑
i=1

(
1

m

m∑
k1=1

f(X(i), Z
(i,k1)
0 )

)2(
1

m

m∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )

)2

(10)

− 1

n

n∑
i=1

(
1

m

m∑
k1=1

f(X(i), Z
(i,k1)
0 )

)2
1

m

m∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )2(11)

− 1

n

n∑
i=1

1

m

m∑
k1=1

f(X(i), Z
(i,k1)
0 )2

(
1

m

m∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )

)2

,(12)

and

ζ̂1,j;n,m =

1

n

n∑
i=1

(
1

m

m∑
k=1

f(X(i), Z
(i,k)
0 )f(X̃

(i)
−j , Z

(i,k)
j )

)2

(13)

−

(
1

n

n∑
i=1

1

m

m∑
k=1

f(X(i), Z
(i,k)
0 )f(X̃

(i)
−j , Z

(i,k)
j )

)2

(14)
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so that m∗ is estimated by

(15) m̂∗n,m :=

√√√√ p∑
j=1

ζ̂3,j;n,m/

p∑
j=1

ζ̂1,j;n,m.

It is easy to check that ζ̂1,j;n,m ≥ 0 and ζ̂3,j;n,m ≥ 0 so that m̂∗n,m ≥ 0. Also,

notice that for m = 1, we have ζ̂3,j;n,1 = 0, so that m̂∗n,1 = 0. Asymptotic
properties are given in Theorem 2.

Theorem 2. Assume (7) holds and let n→∞ and m→∞. Then

√
n

(
m̂∗n,m −

[
m∗ +

C + o (1)

m

])
→ N(0, σ2),

for some constant C and variance σ2.

The term o(1) is a sequence of constants indexed by m that goes to zero
as m → ∞. The bias is subjected to the same phenomenon observed for the
sensitivity estimators of the second kind: as shown in Corollary 2, it can be
annihilated when the number of repetitions grow faster than the square root of
the number of explorations.

Corollary 2. Let n→∞ and m→∞ such that
√
n/m→ 0. Then, under the

assumptions of Theorem 2,
√
n(m̂∗n,m −m∗)→ N(0, σ2).

Theorem 2 is useful to study the statistical performance of the procedure
proposed in Section 4.

4 A two-stage procedure to estimate sensitivity
indices

The goal is to estimate the sensitivity indices of Section 2 by using the results
of Section 3. It is assumed that the total budget available is T . To estimate the
sensitivity indices, the following procedure is natural.

1. Generate a Monte-Carlo sample to get an estimate of the optimal number
of repetitions.

2. Use that estimate to generate another Monte-Carlo sample with which the
sensitivity estimators are built.

Although simple, the above procedure raises some questions. The sum of
the sizes of the two Monte-Carlo experiments must be T . Thus, the size of the
second Monte-Carlo sample is smaller than it could have been if no share of the
budget was spent to estimate the optimal number of repetitions. To what extent
is the performance affected? How to calibrate the procedure? How should the
budget be split? These questions are addressed.

10



Algorithm 2 Estimate the sensitivity indices in a two-stage procedure

Stage 1. Generate a Monte-Carlo sample with K runs of the computer model,
n0 explorations and m0 repetitions to get an estimate m̂†K,m0

of m†. If K = 0,
simply return m0.
Stage 2. Generate a Monte-Carlo sample with T −K runs and m̂†K,m0

repe-
titions to estimate the sensitivity indices.

4.1 The procedure

Assume that only T = mn(p + 1) runs of the computer model are allowed.
Choose integers K,m0, n0 such that m0n0(p+ 1) = K < T . Algorithm 2 gives
the details of the procedure.

The integer K is the share of the total budget T dedicated to the estimation
of the optimal number of repetitions, which is performed in the first stage. The
estimator is (15) with m = m0 and n = n0. In the second stage, the sensitivity
indices are estimated with the remaining budget T −K. The estimators are (5)

and (6) with m = m̂†K,m0
and n the integer satisfying T −K = m̂†K,m0

n(p+ 1).

(If this equation has no solution, take m near m̂†K,m0
such that the equation has

a solution.) We allow for the case K = 0. That is, the sensitivity indices are
estimated directly with m = m0 based on the whole budget T . If, moreover,
it happens accidentally that m0 = m†, then the best performance is to be
expected.

4.2 Theoretical analysis

As in Section 3, the statistical performance of the two-stage procedure is as-

sessed with respect to the MRE. Remember that X(1) = (X(1), X̃(1,1)), Y
(1,1)
0 =

f(X(1), Z
(1,1)
0 ) and Y

(1,1)
j = f(X̃

(1)
−j , Z

(1,1)
j ), j = 1, . . . , p, and the superscripts

are dropped for convenience. Put

v(m) =
2(p− 1)(p+ 1)2

min
j<j′

(|Dj −Dj′ |2)

×
p∑
j=1

(mVar E[Y0Yj |X]

+ E(Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X])

+
1

m
E Var[Y0|X] Var[Yj |X])

so that the MRE in Proposition 1 is v(m)/T . The function v is convex and, over
all compatible integers m, attains a minimum at m = m†. Over the nonnegative
reals, it attains minimum at m = m∗ and v′′(m∗), the second derivative, is
positive.

Conditionally on Stage 1, the MRE obeys

MRE ≤ 1

T −K
v(m̂†K,m0

).

11



This bound shall be compared to the least possible bound, given by v(m†)/T ,
which would be obtained by a hypothetical “oracle” who would know the true
value of the optimal number of repetitions.

For the sake of simplicity, we shall work with the noise-to-signal ratio. This
permits to avoid issues related to the fact that m† must be a compatible integer,
while still providing useful insights.

Define the excess-of-variance by

ÊK,m0
=

1
T−K v(m̂∗K,m0

)− 1
T v(m∗)

1
T v(m∗)

,

where m̂∗K,m0
is the optimal number of repetitions produced by Stage 1. The

excess-of-variance, which is greater or equal to zero, is literally the excess of
variance incurred by our ignorance about m∗. Thus, if K = 0 and m0 =
m∗, then Ê0,m∗ = 0. The budget K is subject to a compromise: on the one
hand it must be large enough to get a good estimate of the optimal number of
repetitions, but on the other hand it must be small enough to keep the remaining
budget T−K large enough. The excess-of-variance has an asymptotic expansion
given in Lemma 1.

Lemma 1. Assume that K/T → c/(c + 1) for some c ≥ 0 as m0 → ∞ and
n0 → ∞. Take σ > 0, C and the o(1) term from Theorem 2 and put VK =
√
n0(m̂∗K,m0

− [m∗ + {C + o(1)}/m0])/σ, so that VK
d→ N(0, 1). Then

ÊK,m0
=

(c+ 1)v′′(m∗)

2v(m∗)

(
C

m0
+
σVK√
n0

)2

+
K

T −K
+ oP

(
1

m2
0

)
+ oP

(
1

m0
√
n0

)
+ oP

(
1

n0

)
.

At the first order of approximation, that is, when n0 → ∞ and m0 → ∞,
the behavior of the excess-of-variance is controlled by the growth rate of K/T .
Indeed, all terms in the asymptotic expansion vanish except possibly K/(T −
K) = (K/T )(1−K/T )−1. Since K/(T −K)→ c, it holds that ÊK,m0

P→ c. The
case c = 0, which demands that K/T → 0, is called the oracle property and is
formally stated in Corollary 3.

Corollary 3. Assume that K/T → 0. Then, under the assumptions of Lemma 1,

ÊK,m0

P→ 0.

At the second order of approximation, that is, removing all the oP (·) terms,
we see that the error increases with the curvature of v at m∗. A high curvature
means that even a small deviation of the optimal number of repetitions estimate
from its target can lead to a large error. It is also seen that the error depends on
the asymptotic bias and variance of the optimal number of repetitions estimator,
the former being controlled by m0 and the later by

√
n0. Since m0 and

√
n0 are

related by the equation K = m0n0(p+ 1), this means that there is a tradeoff to
find. It turns out that it is exactly when

√
n0 and m0 are proportional that the

best rate of convergence can be achieved for the excess-of-variance.

To see this, take the term (Cm−10 +σVKn
−1/2
0 )2 in the asymptotic expansion

of Lemma 1. Assume m0 = n
1/2+β
0 , −1/2 < β < ∞, so that

√
n0/m0 goes to

12



∞, 0 or 1 whether β < 0, β > 0 or β = 0. Since m0n0(p + 1) = K, the taken
term is written, up to a multiplicative constant,{

K−2/(3+2β)
(
CK−2β/(3+2β) + σVK

)2
if β ≥ 0,

K−2(1+2β)/(3+2β)
(
C + σVKK

2β/(3+2β)
)2

if β ≤ 0.

In both cases, the fastest rate of decrease toward zero is K−2/3, attained for
β = 0, meaning that m0 is proportional to

√
n0.

The above argument carries over to get the optimal rate for K. Let K = Tα,
0 < α ≤ 1. The rate K−2/3 is then T−2α/3 and must be balanced with the term
K/(T −K) ∼ Tα−1 in the asymptotic expansion. The sum of those two terms
is {

T−2α/3(1 + T 5α/3−1) if 5α/3 ≤ 1,
Tα−1(T−5α/3+1 + 1) if 5α/3 ≥ 1.

In both cases, the fastest rate of decrease is T−2/5, attained for α = 3/5.
These results are stated in Theorem 3, for which a formal proof is given in

Appendix A.

Theorem 3. Take K = T 3/5, m0 = T 1/5(p+ 1)−1/3 and n0 = T 2/5(p+ 1)−2/3.
Then, under the assumptions of Lemma 1,

T 2/5ÊK,m0

d→ v′′(m∗)(p+ 1)2/3(C + σW )2

2v(m∗)
,

where W ∼ N(0, 1). Moreover, if |C| > 0, then the rate T 2/5 is optimal: there
exist no δ > 0, 0 < α ≤ 1, −1/2 < β <∞ such that

T 2/5+δÊK,m0 = OP (1)

with K proportional to Tα and m0 proportional to n
1/2+β
0 .

Theorem 3 give the answers to the questions raised at the beginning of
this section, albeit in an asymptotic framework. Asymptotically, to get the best
performance, the share of the budget to be spent in the first stage of Algorithm 2
should be of order T 3/5 and the number of repetitions of order T 1/5. This way,
the excess-of-variance is guaranteed to vanish at the rate T 2/5, which is the
optimal one.

Remark 1. The coefficients α and β are not equally important. For instance, if
β ≥ 0 and α ≥ 3/5, the logarithm of the rate is of order log(T )(−2α/(3 + 2β) +
α−1). The gradient with respect to (α, β) at (3/5, 0) is about (1.67,−0.27). This
means that a change in α is likely to have a greater effect on the performance
than a change in β. In practice, this means that the choice of m0 may not be
important.

5 Numerical tests

The effect of the number of repetitions on the sensitivity indices estimators and
the effect of the calibration in the two-stage procedure are examined in two kinds
of experiments: the “direct” experiments and the “calibration” experiments.

13



In the direct experiments, the sensitivity indices are estimated directly with
the given number of repetitions. Increasing numbers of repetitions m are tested.
(Since the budget is fixed, this goes with decreasing numbers of explorations.)

For eachm, the mean squared errors (MSEs), given by E(Ŝ′1;n,m−S′1)2+(Ŝ′2;n,m−
S′2)2 and E(Ŝ′′1;n,m−S′′1 )2+(Ŝ′′2;n,m−S′′2 )2, are estimated with replications. They
are also split into the sum of the squared biases and the sum of the variances
to get further insight about the behavior of the estimators. The MREs are
estimated as well. A normalized version is considered: it is the MRE divided by
the number of variables. For models with two inputs, the normalized MRE is
interpreted directly as the probability that the two inputs are ranked incorrectly.

In the calibration experiments, the sensitivity indices are estimated with the
two-stage procedure, the results of which depend on the calibration parameters
K and m0. Various calibration parameters are tested to see their effect on the
MRE. The budgets for the direct experiments and the calibration experiments
are the same so that the numbers can be compared. In particular, the direct
experiments correspond to the case K = 0 in the calibration experiments.

Two models have been considered: the linear model and a randomized
Ishigami model. These models have been chosen because the sensitivity in-
dices are explicit and hence the performance of the estimators can be evaluated
easily. For the linear model, the optimal continuous number of repetitions is
explicit, too. The formula is given in given in Appendix D.

5.1 Linear model

The model is of the form Y = X1 + βX2 + σZ, where X1, X2, Z, are standard
normal random variables and β, σ are real coefficients.

5.1.1 High noise context

The coefficients are β = 1.2 and σ = 4. The sensitivity indices are S′1 = 0.05,
S′2 = 0.08, S′′1 = 0.41 and S′′2 = 0.59. The optimal continuous number of
repetitions is m∗ = 5.8. The total budget is T/(p + 1) = 500 and hence the
compatible numbers of repetitions are 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500.
Thus, the optimal number of repetitions is either 5 or 10. The test given in
Proposition 2 reveals that it is 5. Since the budget is kept fixed, the numbers
of explorations are, respectively, 500, 250, 125, 100, 50, 25, 20, 10, 5, 4, 2, 1. The
number of replications is 1500.

The results of the direct experiment are given in Figure 1 form = 1, 2, 4, 5, 10, 20, 25.
The MSE of first kind does not vary with the number of repetitions and is much
lower than the MSE of second kind, see (c). The estimators of the second kind
are highly biased for small numbers of repetitions (a) and they have a higher
variance for larger numbers of repetitions (b). The fact that the bias is high
for small numbers of repetitions agrees with the theory, according to which the
bias should vanish as m goes to infinity. Overall, the sensitivity indices of the
second kind seem to be much harder to estimate than the indices of the first
kind, the estimators of which have a negligible bias and a very small variance
whatever the number of repetitions.

According to Figure 1(c), the normalized MRE curve has a banana shape
with a minimum of about slightly less than 30% reached around m ∈ {5, 10} and
endpoints with a value of about 35%. A value of 30% means that the probability
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m0 n0
K/3 2 5 10 20 20 10 5 2
400 0.43 0.42 0.42 - - 0.42 0.39 0.40
200 0.38 0.39 0.37 - - 0.35 0.35 0.34
100 0.36 0.37 - - - - 0.32 0.30
50 0.39 0.33 - - - - 0.33 0.31

Table 1: Normalized MRE in the linear model with high noise for various
calibrations: K/(p + 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For in-
stance, for K/(p + 1) = 200 = m0n0, the normalized MRE is available for
m0 = 2, 5, 10, 20, 40, 100.

of ranking the inputs correctly is about 70%. The region of observed optimal
performance m ∈ {5, 10} agrees with the optimal number of repetitions m = 5
predicted by the theory, although the last is, in fact, the minimizer of only a
bound of the MRE.

The results of the calibration experiment is given in Table 1 for the normal-
ized MRE. The lowest MREs are reached at the bottom right of the table, with
values corresponding to 2 ≤ m ≤ 10 in Figure 1 (c). Optimal performance is
reached with very few explorations in the first stage of the two-stage procedure.
This corresponds to an estimator of the optimal number of repetitions that has a
small bias but a high variance. Such an estimator seems to perform better than
an estimator with a small variance but a large bias. This might be explained
by the low curvature of the MRE curve.

5.1.2 Low noise context

The coefficients are β = 1.2 and σ = 0.9. The sensitivity indices are S′1 = 0.31,
S′2 = 0.44, S′′1 = 0.41 and S′′2 = 0.59. The optimal continuous number of
repetitions is m∗ = 0.30 and hence the optimal number of repetitions is m† = 1.
As expected, the optimal number of repetition is smaller than the one found in
the high noise context. The total budget is T/(p + 1) = 500. The number of
replications is 500.

The results for the direct experiment are given in Figure 2. The MSE of
first kind increases with the number of repetitions, see (c): this is due to the
increase of the variance (b), while the bias is negligible (a). As in the high
noise context, the estimators of the second kind have a decreasing bias and an
increasing variance, although the decrease of the bias is of much less magnitude.
This agrees with the theory, where we have seen that, for the sensitivity indices
of the second kind, the biases of the estimators are small when the noise of the
model is low.

In Figure 2 (c), the normalized MRE varies a lot. It increases from about
2% at m = 1 to 30% at m = 25. Thus, unlike in the high noise setting, choosing
a good number of repetitions is important. The best performance is achieved
at m = 1, which corresponds to the predicted optimal number of repetitions.

The results of the calibration experiment for the normalized MRE is given
in Table 2. The best performance is reached at the bottom left of the table with
numbers that correspond to the optimal performance in Figure 2 (c). Moreover,
notice that a large spectrum of calibration parameters (K,m0) yield low errors.
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(c) Errors

Figure 1: Sum of squared biases (a), sum of variances (b) and errors (c) of
the sensitivity indices estimators for the linear model in the high noise setting.
Confidence intervals of level 95% are added in (c).

m0 n0
K/3 2 5 10 20 20 10 5 2
400 0.18 0.15 0.17 - - 0.16 0.18 0.20
200 0.05 0.04 0.04 - - 0.06 0.05 0.07
100 0.02 0.04 - - - - 0.04 0.04
50 0.03 0.02 - - - - 0.02 0.04

Table 2: Normalized MRE in the linear model with low noise for various
calibrations: K/(p + 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For in-
stance, for K/(p + 1) = 200 = m0n0, the normalized MRE is available for
m0 = 2, 5, 10, 20, 40, 100.
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Figure 2: Sum of squared biases (a), sum of variances (b) and errors (c) of
the sensitivity indices estimators for the linear model in the low noise context.
Confidence intervals of level 95% are added in (c).
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m0 n0
K/3 2 5 10 20 20 10 5 2
400 0.22 0.27 0.22 - - 0.21 0.27 0.24
200 0.11 0.12 0.10 - - 0.10 0.08 0.10
100 0.08 0.08 - - - - 0.08 0.11
50 0.10 0.08 - - - - 0.07 0.06

Table 3: Normalized MRE in the Ishigami model for various calibrations:
K/(p+ 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For instance, for K/(p+
1) = 200 = m0n0, the normalized MRE is available for m0 = 2, 5, 10, 20, 40, 100.

5.2 The Ishigami model

The Ishigami model, a benchmark model in the sensitivity analysis literature [7,
14], is Y = sin(X1) + β sin(X2)2 + σZ4 sin(X1), where β = 7, σ = 0.1 and
X1, X2, Z ∼ U(−π, π). The sensitivity indices are S′1 = 0.31, S′2 = 0.44, S′′1 =
0.42 and S′′2 = 0.58. The total budget is T/(p + 1) = 500. The number of
replications is 500.

The results of the direct experiment are given in Figure 3. The plots are
quite similar to the linear model with low noise.

The results of the calibration experiment for the normalized MRE are given
in Table 3. The lowest values are reached at the bottom of the table and
correspond to optimal performance in Figure 3 (c).

6 Sensitivity analysis for a SIR model

The Susceptible-Infectious-Recovered (aka SIR) model underpins many of epi-
demics models. A closed population of size N is followed at each time event,
where an infection or a recovery occurs. At each time step i = 0, 1, . . . , it holds
N = Si + Ii +Ri, where Si, Ii and Ri are the number of susceptible, infectious
and recovered individuals, respectively. In case of an infection, the number of
infectious is increased by one unit and the number of susceptible is decreased by
the same amount. In case of a recovery, the number of infectious is decreased
by one unit and the number of recovered is incremented. Recovered individuals
cannot be sick again. The time between two consecutive events T i−1 and T i

is an exponential random variable depending on parameters R0, τ , Ii−1, Si−1

and N . The probability according to which an infection or a recovery happens
also depends on those parameters. The parameters S0, I0 and N are assumed
to be known and fixed, so that the SIR model can be seen as a model with
two parameters: R0 = X1 and τ = X2. For the sake of illustration, we shall
be interested in the output S0 − Si∗ = Y , where i∗ is the smallest value of i
such that Si = 0 or Ii = 0, which represents the end of the epidemic. The
SIR model is stochastic: even if the values of R0 and τ are fixed, the output is
still a random variable. The larger the population, the more the SIR model is
deterministic. This is because the SIR model converges to a deterministic model
when N → ∞. For more details about SIR models, see, e.g., [3]. For the sake
of completeness, the SIR model used in this section is given in Algorithm 3.

To perform the sensitivity analysis, the parameters are drawn independently
as R0 ∼ Unif(2−εR0

, 2+εR0
) and τ ∼ Unif(4−ετ , 4+ετ ). By default, εR0

= 0.9
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Figure 3: Sum of squared biases (a), sum of variances (b) and errors (c) of the
sensitivity indices estimators for the randomized Ishigami model. Confidence
intervals of level 95% are added in (c).
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Algorithm 3 A SIR model

Require: R0, τ,N, S
0, I0

i = 0
while Si > 0 and Ii > 0 do
i = i+ 1
draw T i ∼ Exp(mean = τ/[R0S

i−1Ii−1/N + Ii−1])
draw u ∼ Unif(0, 1)
if u ≤ [R0S

i−1Ii−1/N ]/[R0S
i−1Ii−1/N + Ii−1] then

Ii = Ii−1 + 1
Si = Si−1 − 1

else
Ii = Ii−1 − 1
Ri = Ri−1 + 1

end if
end while
return S0 − Si

and ετ = 2. The total budget is set to T/3 = 1000, the share dedicated to the
estimation of the optimal number of repetition is set to K/3 = 100 and m0 = 10.
To get insight about the variability of the estimators, the sensitivity analyses
are replicated. The number of replications is 100. The proportion of infectious
at start is 10%. The population size is 100, unless stated otherwise.

Since no closed form expression of the sensitivity indices exist for the SIR
model, our goal is to recover characteristics of sensitivity indices and/or SIR
models. Since the model becomes more and more deterministic as the population
size increases, we expect the optimal number of repetition to decrease along the
way. The estimated sensitivity indices of the first kind should increase because
the variance of the noise Z should vanish. (This is not true for the indices of
the second kind.) Finally, when εR0

or ετ increase, the corresponding sensitivity
indices are expected to increase as well. (In fact, this is true only under certain
conditions, see [2])

The results are shown in Figure 4 and Figure 5. In Figure 4 (a), we see that
the optimal number of repetitions (in fact, its continuous version m̂∗) decreases
from one to zero as the population size decreases from 10 to 500. Thus, it seems
that, even for a very small population size, repeating the SIR model more than
once is suboptimal. Remember that when there is no repetition (m = 1), the
sensitivity estimators of the first and the second kind coincide. This is why,
in Figure 4 (b), there is only two curves. The one which stays at zero are the
sensitivity indices corresponding to τ , which does not seem to influence the
output. The curve that goes up represents the sensitivity indices for R0. When
the population is small, there are about zero, indicating that the variability of
the output essentially stems from the noise of the model. As the population
gets larger, R0 gets more and more influential (and hence the noise is less and
less influential).

In Figure 5, the sensitivity indices are displayed with respect to a change in
εR0

or ετ . The sensitivity indices for R0 increase with εR0
but this is not so for

τ . Thus, it appears that the parameter τ hardly influences the output our SIR
model, even when it is drawn on a wider interval.
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Figure 4: Optimal (continuous) number of repetitions estimates and sensitivity
indices estimates in terms of population size. The vertical bars, of length four
standard deviations divided by the square root of the number of replications,
represent the variability of the estimates.
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7 Discussion

We have considered two sensitivity indices for stochastic models. Asymptotic
normality of the estimators, which depend both on the number of explorations
and the number of repetitions, has been established, and it was noticed that the
second kind, that which arises from smoothing out the computer model, suffers
from a bias term which vanishes only when the number of repetitions goes to
infinity.

Assuming a fixed computing budget, a definition of the optimal number
of repetitions has been proposed and an estimator has been built. The opti-
mal number of repetitions minimizes an upper-bound of the missranking error
(MRE), an error which is small when the inputs of the model are ranked cor-
rectly. This approach has been exploited in a two-stage procedure to efficiently
estimate the sensitivity indices. The procedure is simple: in the first stage
the optimal number of repetitions is estimated and plugged into the sensitivity
estimators in the second stage.

Although a share of the total budget must be sacrificed in the first stage,
we have shown that the proposed procedure is asymptotically oracle, that is,
performs as well as the hypothetical procedure in which the optimal number of
repetitions would be known. The optimal convergence rates have been given.

To test the procedure, simulation experiments were conducted, where the
bias of the sensitivity estimator of the second kind was confirmed. Optimal com-
promises between repetitions and explorations have been identified to which the
two-stage procedure was compared for different values of the tuning parameters
(among which the share of the budget spent in the first stage).

Sensitivity analysis of a SIR model has been carried out and it has been
found that the τ parameters almost has no influence on the considered output.
Most of the variability is due to the parameter R0 for large populations. For
small populations, it is the noise that contributes the most. The optimal number
of repetitions was found be one. That is, doing repetitions in the considered
SIR model appears suboptimal for estimating the sensitivity indices: it is best
to explore as much as possible the input space.

Research questions remain open. First, the sensitivity estimators of the two
stages could be aggregated to build estimators with a lower variance. Second,
higher-order Sobol indices could be studied in the light of the theory introduced
in this paper. Third, it would be interesting to look for other optimality cri-
teria or Monte-Carlo sampling schemes. Finally, the obtained results could be
extended to the multivariate case, that in which the output is a multivariate
vector.
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A Proofs

Proof of Theorem 1

The proof is based on the results in Appendix B. The Sobol estimators in (5)
and (6) are made of empirical averages of the form (20) and (21) with L = 2
and coefficients

ξUL
1;m,i '

(
1 0 · · · 0
0 1 · · · 0

)
, · · · , ξUL

p;m,i '
(

1 0 · · · 0
0 0 · · · 1

)
for the upper left (UL) terms,

ξUR
m,i '

(
1 0 · · · 0
0 0 · · · 0

)
for the upper right (UR) term,

ξ′LLm,i '
(

2 0 · · · 0
0 0 · · · 0

)
for the lower left (LL) term of Ŝ′j;n,m and

ξ′′LLm,i '
(

1 0 · · · 0
1 0 · · · 0

)
for the lower left (LL) term of Ŝ′′j;n,m (see Appendix B). Therefore, denoting by

ξm,i := (ξUL
1;m,i, . . . , ξ

UL
p;m,i, ξ

UR
m,i, ξ

′LL
m,i , ξ

′′LL
m,i )

the corresponding summands, Lemma 3 in Appendix B yields

√
n

(
1

n

n∑
i=1

ξm,i − E ξm,1

)
d→ N(0,Σm),

for some nonnegative matrix Σm of size p+3, where the expectation is given by

E ξm,1 =



E E[f(X,Z)|X] E[f(X̃−1, Z)|X̃−1]
...

E E[f(X,Z)|X] E[f(X̃−p, Z)|X̃−p]
E f(X,Z)
E f(X,Z)2

E E[f(X,Z)|X]2 + EVar[f(X,Z)|X]
m


.

(Some calculations are carried out in Appendix C.) Define the function

s(x1, . . . , xp, xp+1, xp+2, xp+3)

=

(
x1 − x2p+1

xp+2 − x2p+1

, . . . ,
xp − x2p+1

xp+2 − x2p+1

,
x1 − x2p+1

xp+3 − x2p+1

, . . . ,
xp − x2p+1

xp+3 − x2p+1

)
.
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Then clearly

s(n−1
n∑
i=1

ξm,i) =

(
Ŝ′m,n
Ŝ′′m,n

)
and

s(E ξm,1) =

(
S′

S′′
[
1− EVar[f(X,Z)|X]

EVar[f(X,Z)|X]+mVarE[f(X,Z)|X]

])
.

The result follows by the delta-method.
If m = mn → ∞, Lemma 3 still holds with the variance-covariance matrix

replaced by its limit.

Proof of Proposition 1

Assume without loss of generality that D1 < · · · < Dp. We first prove the
following Lemma. For convenience, the subscripts n and m are left out.

Lemma 2. Let i < j. Then

P (D̂i − D̂j ≥ 0) ≤ Var D̂i + Var D̂j
1
2 |Di −Dj |2

.

Proof. We have

P (D̂i − D̂j ≥ 0) ≤P (|D̂i −Di|+ |D̂j −Dj | ≥ Dj −Di)

≤P (|D̂i −Di|2 + |D̂j −Dj |2 ≥
1

2
|Dj −Di|2)

and the claim follows from Markov’s inequality.

We now prove Proposition 1. Recall that D1 < · · · < Dp. We have

p∑
i=1

E |R̂i −Ri| ≤
p∑
i=1

p∑
j=1

E |1(D̂j ≤ D̂i)− 1(Dj ≤ Di)|

≤
p∑
i=1

∑
j 6=i

Var D̂i + Var D̂j
1
2 |Di −Dj |2

≤ 2(p− 1)(p+ 1)

min
j<j′
|Dj −Dj′ |2

p∑
i=1

Var D̂i,

where the second inequality holds by Lemma 2 and because

E |1(D̂j ≤ D̂i)− 1(Dj ≤ Di)| =

 E |1(D̂j > D̂i)| if j < i,
0 if j = i,

E |1(D̂j ≤ D̂i)| if j > i.

It remains to calculate the variances. But this is done in Lemma 6 in Ap-
pendix C, where it is found that

Var D̂j =
1

n
{Var E[Y0Yj |X] +

1

m
(E Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X])

+
1

m2
E Var[Y0|X] Var[Yj |X]}.

26



Proof of Proposition 2

Denote by f(m) the upper-bound in Proposition 1. By convexity of the function
f , if m∗ ≤ 1, then f(1) ≤ f(m) for all (compatible) integers m and hence
m† = 1. Likewise, if m∗ ≥ T/(p + 1), then f(T/(p + 1)) ≤ f(m) for all m and
hence m† = T/(p + 1). For (iii), note that m† must be either xmy∗ or pmq∗.
Since xmy∗ ≤ pmq∗, f(xmy∗) ≥ f(pmq∗) is equivalent to xmy∗pmq∗ ≤ m∗2.

Proof of Theorem 2

We want to show

√
n


√√√√∑p

j=1 ζ̂3,j∑p
j=1 ζ̂1,j

−
[
m∗ +

C

m
+ o

(
1

m

)]→ N(0, σ2),

for some C and σ ≥ 0, as n → ∞, m = mn → ∞. In view of (9)–(14), the

estimators ζ̂3,j and ζ̂1,j can be expressed in terms of estimators of the form (20)
and (21), namely,

ζ̂3,j =
1

n

n∑
i=1

ξ
(9)
j;m,i + ξ

(10)
j;m,i − ξ

(11)
j;m,i − ξ

(12)
j;m,i, and,

ζ̂1,j =
1

n

n∑
i=1

ξ
(13)
j;m,i −

(
1

n

n∑
i=1

ξ
(14)
j;m,i

)2

,

where ξ
(e)
j;m,i, j = 1, . . . , p, e = 9, . . . , 14, are all of the form (21), that is, they

are all elements of the set Em,i(4), introduced in Appendix B. Their coefficients
are given by

ξ̂
(9)
j;m,i '


2 0
0 2
0 0
0 0

 , ξ̂
(10)
j;m,i '


1 0
1 0
0 1
0 1

 , ξ̂
(11)
j;m,i '


1 0
1 0
0 2
0 0

 , ξ̂
(12)
j;m,i '


2 0
0 1
0 1
0 0

 ,

and

ξ̂
(13)
j;m,i '


1 1
1 1
0 0
0 0

 , ξ̂
(14)
j;m,i '


1 1
0 0
0 0
0 0

 .

Stack all the estimators in a vector ξm,i of size 6p, that is, ξm,i = (ξ>1;m,i, . . . , ξ
>
p;m,i)

>,

where ξj;m,i = (ξ
(9)
j;m,i, . . . , ξ

(14)
j;m,i)

> for j = 1, . . . , p. Let ξ = n−1
∑n
i=1 ξm,i.

Since, for each element of Em,i(4), the sum of the coefficients is less than
four, the condition in Lemma 3 in Appendix B is fulfilled because we assumed
f(X,Z) ≤ F (X) with EF (X)8 <∞. Therefore,

√
n(ξ − E ξm,1)→ N(0,Σ),
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for some variance-covariance matrix Σ of size 6p×6p. A delta-method will yield

the result. Let xj = (x
(9)
j , . . . , x

(14)
j ), j = 1, . . . , p, and

s(x1, . . . ,xp) =

√√√√∑p
j=1 x

(9)
j + x

(10)
j − x(11)j − x(12)j∑p

j=1 x
(13)
j − x(14)2j

,

so that s(ξ) = m̂∗. Denote E ξm,1 by θm for simplicity. A Taylor expansion of
s around E ξm,1 yields

√
n(m̂∗ − s(θm)) =

√
n(ξ − θm)>ṡ(θm) +

1

2
(ξ − θm)>s̈n,m

√
n(ξ − θm),

where s̈n,m is the Hessian matrix of s at a point between ξ and θm. The second
order term is oP (1) by Cauchy-Schwartz’s inequality, the continuity of s̈, and
the fact that

√
n(ξ − θm) = OP (1). By Proposition 3 in Appendix B, there

exists θ such that θm → θ and hence the first order term goes to N(0, ṡ>Σṡ),
where ṡ is the gradient of s at θ.

The image of θm by s is not m∗ but the discrepancy can be controlled when
m→∞. Elementary calculations show that

E ξj;m,1 = E



Y
(1,1)2
0 Y

(1,1)2
j

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)
j Y

(1,2)
j

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)2
j

Y
(1,1)
j Y

(1,2)
j Y

(1,1)2
0

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)
j Y

(1,2)
j

Y
(1,1)
j Y

(1,1)
0


︸ ︷︷ ︸

θj

+
Cj

m
+ o

(
1

m

)

for some constant Cj ∈ Rp. It can be checked that s(θ1, . . . ,θp) = m∗. Thus,
for some constant C,

√
n(m̂∗ − s(θm)) =

√
n(m̂∗ − s(θ)− (θm − θ)>ṡ+ o(‖θm − θ‖))

=
√
n(m̂∗ − [m∗ + C/m+ o(1/m)]),

and hence the proof is complete with σ2 = ṡ>Σṡ.

Proof of Corollary 2

With the same notations as those of the proof of Theorem 2, if
√
n/m → 0,

then
√
n(m̂∗ −m∗) =

√
n(m̂∗ − s(θm)) + O(

√
n/m) → N(0, σ2). The proof is

complete.

Proof of Lemma 1

Denote m∗ + (C + o(1))/m0 by m∗K . We have the following Taylor expansions:

v(m∗K) = v(m∗) +
1

2
(m∗K −m∗)2v′′(m∗K),(16)

v(m̂∗K) = v(m∗K) + (m̂∗K −m∗K)v′(m∗K) +
1

2
(m̂∗K −m∗K)2v′′(m̃∗K),(17)
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where m̃∗K is between m̂∗K and m∗K , m∗K is between m∗K and m∗. By using (17),
we get

ÊK = EK +
(m̂∗K −m∗K)v′(m∗K)T

(T −K)v(m∗)
+

(m̂∗K −m∗K)2v′′(m̃∗K)T

2(T −K)v(m∗)
,(18)

where

EK =
1

T−K v(m∗K)− 1
T v(m∗)

1
T v(m∗)

.

Let us find asymptotic expansions for the three terms in the right-hand side
of (18). Since v′′ is continuous, m̃∗K goes to m∗ in probability and T/(T −K)→
c+ 1 as n0 →∞ and m0 →∞, the third term satisfies

(m̂∗K −m∗K)2v′′(m̃∗K)T

2(T −K)v(m∗)
=

(c+ 1)σ2V 2
Kv
′′(m∗)

2v(m∗)n0
+ oP

(
1

n0

)
.

For the second term, use Taylor’s expansion of v′ at m∗ to get

(m̂∗K −m∗K)v′(m∗K)T

(T −K)v(m∗)
=

(c+ 1)Cv′′(m∗)σVK
v(m∗)m0

√
n0

+ oP

(
1

m0
√
n0

)
.

Finally, using (16), we get

EK =
T [v(m∗K)− v(m∗)] +Kv(m∗)

(T −K)v(m∗)

=
Tv′′(mK)(m∗K −m∗)2

2(T −K)v(m∗)
+

K

T −K

=
(c+ 1)v′′(m∗)C2

2v(m∗)m2
0

+
K

T −K
+ oP

(
1

m2
0

)
.

The proof is complete.

Proof of Theorem 3

With the given choice for K, m0 and n0, the rates m−20 , m−10 n
−1/2
0 and n−10 are

all equal to T−2/5(p+ 1)2/3. The formula in Lemma 1 simplifies to

T 2/5ÊK,m0
=
v′′(m∗)(p+ 1)2/3(C + σVK)2

2v(m∗)
+ oP (1)

d→ v′′(m∗)(p+ 1)2/3(C + σW )2

2v(m∗)
,

where W ∼ N(0, 1). The proof of the first statement is complete.
Let us prove by contradiction that the rate T 2/5 is optimal. Suppose there

are δ > 0, 0 < α ≤ 1 and −1/2 < β <∞ such that

T 2/5+δÊK,m0
= OP (1)

with K ∝ Tα and m0 ∝ n
1/2+β
0 , where ∝ denotes proportionality. There are

three cases to consider:
√
n0/m0 → c′ > 0,

√
n0/m0 → 0 or

√
n0/m0 → ∞.
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Note that K/T must converge, and recall that the limit is denoted by c/(c+1) ≥
0. Note also that

m2
0 ∝ T

2α(1+2β)
3+2β ,m0

√
n0 ∝ T 2α(1+β)/(3+2β) and n0 ∝ T 2α/(3+2β).

Put A = (c+ 1)v′′(m∗)/v(m∗).
If
√
n0/m0 → c′ > 0 then β = 0 and, by Lemma 1, we have

(19) T 2/5+δÊK,m0
=
T 2/5+δ

m0
√
n0
U2
K +

T 2/5+δK

T −K
,

where (U2
K) is sequence of random variables such that

U2
K

d→ A

2

(√
c′C +

1√
c′
σW

)2

,

for some W ∼ N(0, 1). Since both terms in the right hand side of (19) are
positive and U2

K goes to a positive random variable, we must have

2

5
+ δ − 2α(1 + β)

3 + 2β
≤ 0 and

2

5
+ δ + α− 1 ≤ 0.

But this leads to a contradiction because the first inequality implies that the
second is false.

If
√
n0/m0 → 0, then β > 0 and

T 2/5+δÊK,m0
=
T 2/5+δ

n0
U2
K + T 2/5+δ K

T −K

with

U2
K

d→ Aσ2W 2

2
.

We proceed as before. We must have

2

5
+ δ − 2α

3 + 2β
≤ 0 and

2

5
+ δ + α− 1 ≤ 0.

But the first inequality implies that the second is false.
If
√
n0/m0 →∞, then −1/2 < β < 0 and

T 2/5+δÊK,m0
=
T 2/5+δ

m2
0

U2
K + T 2/5+δ K

T −K

with

U2
K

d→ AC2

2
.

Again, we must have

2

5
+ δ − 2α(1 + 2β)

(3 + 2β)
≤ 0 and

2

5
+ δ + α− 1 ≤ 0,

where the first inequality implies the second is false. The proof of the second
statement is complete.

30



B A unified treatment of the asymptotics

All estimators in this paper have a common form, given by

(20)
1

n

n∑
i=1

ξm,i,

with

ξm,i =

L∏
l=1

1

m

m∑
k=1

p∏
j=0

Y
(i,k)bj;l
j ,(21)

where Y
(i,k)
0 = Y (i,k) = f(X(i), Z

(i,k)
0 ), Y

(i,k)
j = f(X̃

(i)
−j , Z

(i,k)
j ) for j = 1, . . . , p,

and bj;l, j = 0, . . . , p, l = 1, . . . , L, are nonnegative coefficients. The coefficients
are arranged in a matrix (bj;l) with L rows and p+ 1 columns, where bj;l is the
element in the lth row and (j + 1)th column. This way, all estimators of the
form (20) and (21), or, equivalently, all summands (21), can be identified with
a matrix. For instance, we have

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0

1

m

m∑
k′=1

Y
(i,k′)
j '

(
1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0

)
,

where the non-null columns are the first and the (j + 1)th ones. This identity
is reduced to

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0

1

m

m∑
k′=1

Y
(i,k′)
j '

(
1 0
0 1

)
,

where it is implicitly understood that we have taken the first and (j + 1)th
columns only, the remaining columns being zero. Note that the identification of
an estimator to a matrix is done up to permutations between the rows. Thus,
we also have

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0

1

m

m∑
k′=1

Y
(i,k′)
j '

(
0 1
1 0

)
'
(

1 0
0 1

)
.

Proceeding the same way, we get

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0 '

(
1 0
0 0

)
,

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)2
0 '

(
2 0
0 0

)
and

1

n

n∑
i=1

(
1

m

m∑
k=1

Y
(i,k)
0

)2

'
(

1 0
1 0

)
.

The above matrices can always be completed with rows full of zeros whenever
the dimensions of the matrices need to match (mainly for comparison purposes).

For each n, the random variables ξm,1, . . . , ξm,n are independent and iden-
tically distributed. Denote by Em,i(L) the set of all summands (21). In other
words, Em,i(L) is the set of all nonnegative matrices of size L × (p + 1). This
set has useful properties, gathered in Proposition 3 for subsequent use.
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Proposition 3. Let L ≥ 0 and take (bj;l) ' ξ ∈ Em,i(L). The following
statements are true.

(i) If (b′j;l) ' ξ′ ∈ Em,i(L), then

ξξ′ '



b0;1 · · · bp;1
...

...
b0;L · · · bp;L
b′0;1 · · · b′p;1

...
...

b′0;L · · · b′p;L


belongs to Em,i(2L).

(ii) There exists a real θ such that E ξ → θ whenever m = mn →∞ as n→∞.

(iii) Under the assumption f(X,Z) ≤ F (X) for all X and Z, it holds that

|ξ| ≤

 p∨
j=0

Fj(X
(i))


∑p
j=0

∑L
l=1 bj;l

,

where Fj(X
(i)) is F (X(i)) ∨ 1 if j = 0 and F (X̃

(i)
−j) ∨ 1 if j ≥ 1.

Proof. The proof of (i) is trivial. Let us prove (ii). Put

a(k1, . . . , kL) = E

L∏
l=1

p∏
j=0

Y
(1,kl)bj;l
j .

Then

E ξ =
1

mL

∑
(k1,...,kL)∈{1,...,m}L

a(k1, . . . , kL).(22)

This sum can be decomposed into a finite number of sub-sums such that each
sub-sum has a polynomial number of equal terms. The first sub-sum is built as
follows. Take (k1, . . . , kL) all distinct and m ≥ L. Let X(1) = (X(1), X̃(1)) and

Z(1,k) = (Z
(1,k)
0 , Z

(1,k)
1 , . . . , Z

(1,k)
p ) for k = 1, . . . ,m. Since X(1) and {Z(1,k), k =

1, . . . ,m} are independent, and since the law of (Z(1,k1), . . . ,Z(1,kL)) is invari-
ant through any permutation of (k1, . . . , kL), the corresponding coefficients
a(k1, . . . , kL) are all equal. Thus, by summing over all permutations of (k1, . . . , kL)
for distinct k1, . . . , kL, we get that the sub-sum is

m(m− 1) · · · (m− L+ 1)a(1, . . . , L).

For the second sub-sum, take (k1, . . . , kL) such that exactly two of the indices
are equal. The same arguments can be used to get a polynomial in m with
degree at most L. Go on until all the sub-sums are calculated. An example is
given in the proof of Lemma 5 in Appendix C. The result is a polynomial in m
with degree at most L, and hence, divided by mL, the expectation in (22) must
converge to some constant (possibly zero).

To prove (iii), simply remember that, by assumption, |Y (1,k)| ≤ F (X(1)) and

|Y (1,k)
j | ≤ F (X̃

(1)
−j ) for all k and all j.
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Lemma 3. Take ξ
(I)
m,i ' (b

(I)
j;l ), I = 1, . . . , N in Em,i(L) for i = 1, 2, . . . and

m = 1, 2, . . . Assume

EF (X(1))2
∑p
j=0

∑L
l=1 b

(I)
j;l <∞

for all I = 1, . . . , N . Let n→∞. Then

√
n

[
1

n

n∑
i=1

ξ
(1)
m,i − E ξ

(1)
m,1, . . . ,

1

n

n∑
i=1

ξ
(N)
m,i − E ξ

(N)
m,1

]>
d→ N(0,Σm),

where Σm is the variance-covariance matrix of ξm,i = (ξ
(1)
m,i, . . . , ξ

(N)
m,i ). If m =

mn → ∞, then Σm → Σ elementwise for some variance-covariance matrix Σ
and the convergence in distribution still holds with Σ in place of Σm.

Proof. For any I = 1, . . . , N , by Proposition 3 (i), ξ
(I)2
m,i belongs to Em,i(2L) and

has coefficients

ξ
(I)2
m,i '



b0;1 · · · bp;1
...

...
b0;L · · · bp;L
b0;1 · · · bp;1

...
...

b0;L · · · bp;L


.

Thus, denoting
∑p
j=0

∑L
l=1 bj;l by β, Proposition 3 (iii) yields

E ξ
(I)2
m,1 = E

p∨
j=0

Fj(X
(1))2β ≤ (p+ 1) E

(
1 ∨ F (X(1))

)2β
,

which is finite by assumption. Therefore, Σm exists and we can apply the central
limit theorem, which concludes the proof for m fixed.

Let m = mn → ∞. According to Lindeberg-Feller’s central limit theorem
(see e.g. [23]), it suffices to show

(i) for all ε > 0,

n∑
i=1

E

∥∥∥∥ 1√
n
ξmn,i

∥∥∥∥2 1

{∥∥∥∥ 1√
n
ξmn,i

∥∥∥∥ > ε

}
→ 0,

and

(ii) there exists Σ such that

n∑
i=1

Cov

(
1√
n
ξmn,i

)
→ Σ.

Let us show (i). We have

n∑
i=1

E

∥∥∥∥ξmn,i√
n

∥∥∥∥2 1
{∥∥ξmn,i∥∥ > √nε} = E ‖ξmn,1‖

21{‖ξmn,1‖ >
√
nε}

= E

N∑
I=1

ξ
(I)2
mn,1

1{‖ξmn,1‖ >
√
nε}.

33



Write X = (X(1), X̃(1)). By Proposition 3 (iii), there exists an integrable func-
tion G(X) such that

E
(
ξ
(I)2
mn,1

1{‖ξmn,1‖ >
√
nε}|X

)
≤G(X)P

(∥∥ξmn,1∥∥ > √nε|X) .
By Proposition 3 (ii) and Chebyshev’s inequality, the upper bound goes to
zero and is dominated by G(X), which is integrable. Thus, we can apply the
dominated convergence theorem to complete the proof.

Let us show that (ii) holds. We have
∑n
i=1 Cov(ξmn,i/

√
n) = Cov(ξmn,1).

The element (I, J) in this matrix is given by E ξ
(I)
mn,1

ξ
(J)
mn,1
−E ξ

(I)
mn,1

E ξ
(J)
mn,1

. But

since ξ
(I)
mn,1

ξ
(J)
mn,1

∈ E , the limit of Cov ξmn,1 exists and is finite. The proof is
complete.

C Explicit moment calculations

Explicit moment calculations are given for the summands in the proof of The-
orem 1. In this section, E f(X,Z) and E E[f(X,Z)|X]2 are denoted by µ and
D, respectively. Recall that the upper-left term in (2) and (3) is denoted by
Dj . The moments are given in Lemma 4 and Lemma 5. The variances and

covariances are given in Lemma 6. Let X = (X(1), X̃(1)). Whenever there is a
superscript X added to the expectation symbol E or the variance symbol Var,
this means that these operators are to be understood conditionally on X. An
integral with respect to P (dx) means that we integrate with respect to the law
of X.

Lemma 4 (Moments of order 1). The moments of order 1 are given by

E ξUL
m1 = Dj ,

E ξUR
m1 = µ,

E ξ′′LLm1 =
1

m
E VarX f(X(1), Z(1,1)) +D.

Proof. One has

E ξUL
m1 =

1

m2

∑
k,k′

E f(X(1), Z(1,k))f(X̃
(1)
−j , Z

(1,k′)
j )

=
1

m2

∑
k,k′

∫
E f(x, Z(1,k))f(x̃−j , Z

(1,k′)
j )P (dx)

= E f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )

=Dj ,

where the integral is taken with respect to the law of x = (x, x̃), and,

E ξ′′LLm1 =
1

m2

∑
k,k′

E f(X(1), Z(1,k))f(X(1), Z(1,k′))

=
1

m
E VarX f(X,Z) + E(EX f(X,Z))2

=
1

m
E VarX f(X,Z) +D.
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The proof for ξUR
m1 is similar.

Lemma 5 (Moments of order 2). The moments of order 2 are given by

E ξ
(UL)2
m1 = Var EX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j ) +D2

j

+
1

m
[E VarX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )

−VarX f(X(1), Z(1,1)) VarX f(X̃
(1)
−j , Z

(1,1)
j )]

+
1

m2
E VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j ),

E ξ
(UR)2
m1 =

1

m
E VarX f(X(1), Z(1,1)) + E(EX f(X(1), Z(1,1)))2,

E ξ
′′(LL)2
m1 =

m(m− 1)(m− 2)(m− 3)

m4

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X(1), Z(1,3))f(X(1), Z(1,4))

+

(
4
2

)
m(m− 1)(m− 2)

m4
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X(1), Z(1,3))

+

(
4
3

)
m(m− 1)

m4
E f(X(1), Z(1,1))3f(X(1), Z(1,2))

+
m

m4
E f(X(1), Z(1,1))4

+

(
4
2

)
m(m− 1)/2

m4
E f(X(1), Z(1,1))2f(X(1), Z(1,2))2

Proof. Let us first deal with ξUL
m1. We have

E ξ
(UL)2
m1 =

1

m4

∑
k1,k2,k3,k4

E f(X(1), Z(1,k1))f(X(1), Z(1,k2))f(X̃
(1)
−j , Z

(1,k3)
j )f(X̃

(1)
−j , Z

(1,k4)
j )

where, in the sum, the indices run over 1, . . . ,m. We split the sum into four
parts. The first contains the m2(m−1)2 terms that satisfy k1 6= k3 and k2 6= k4.
In this part, all the terms are equal to

E
(

EX f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )

)2
.(term 1)

The second part contains the m2(m− 1) terms that satisfy k1 6= k3 and k2 = k4
and that are equal to

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X̃
(1)
−j , Z

(1,1)
j )2.(term 2)

The third part contains the m2(m− 1) terms that satisfy k1 = k3 and k2 6= k4
and that are equal to

E f(X(1), Z(1,1))2f(X̃
(1)
−j , Z

(1,1)
j )f(X̃

(1)
−j , Z

(1,2)
j ).(term 3)

Finally, the fourth part contains the m2 terms that satisfy k1 = k4 and k2 = k4
and are equal to

E f(X(1), Z(1,1))2f(X̃
(1)
−j , Z

(1,1)
j )2.(term 4)
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(One can see that the number of terms is m4.) Thus,

E ξ
(UL)2
m1 =(term 1)

+
1

m
[(term 2) + (term 3)− 2(term 1)]

+
1

m2
[(term 1)− (term 2)− (term 3) + (term 4)].

Furthermore, [(term 1) - (term 2) - (term 3) + (term 4)] is equal to∫ (
EX f(x, Z)f(x̃−j , Zj)

)2
− EX f(x, Z(1,1))f(x, Z(1,2))f(x̃−j , Z

(1,1)
j )2

− EX f(x, Z(1,1))2f(x̃−j , Z
(1,1)
j )f(x̃−j , Z

(1,2)
j )

+ EX f(x, Z(1,1))2f(x̃−j , Z
(1,1)
j )2 dP (x)

=

∫ (
EX f(x, Z)

)2 (
EX f(x̃−j , Zj)

)2
−
(

EX f(x, Z)
)2

EX f(x̃−j , Zj)
2

− EX f(x, Z)2
(

EX f(x̃−j , Zj)
)2

+ EX f(x, Z)2 EX f(x̃−j , Zj)
2 dP (x)

=

∫
VarX f(X,Z) VarX f(X̃−j , Zj) dP (x).

Likewise, we find that [(term 2)+(term 3)-2(term 1)] is equal to

E VarX f(X,Z)f(X̃−j , Zj)−VarX f(X,Z) VarX f(X̃−j , Zj),

and term 1 is Var EX f(X,Z)f(X̃−j , Z̃) +D2
j .

We now deal with ξ′′LLm1 . We have

E ξ
′′(LL)2
m1 =

1

m4

∑
k1,k2,k3,k4

E f(X(1), Z(1,k1))f(X(1), Z(1,k2))f(X(1), Z(1,k3))f(X(1), Z(1,k4)).

The sum is split into five parts. The first part consists of the m(m − 1)(m −
2)(m− 3) terms with different indices; those terms are equal to

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X(1), Z(1,3))f(X(1), Z(1,4)).

The second part consists of the
(
4
2

)
m(m − 1)(m − 2) terms with exactly two

equal indices; those terms are equal to

E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X(1), Z(1,3)).

The third part consists of the
(
4
3

)
m(m−1) terms with exactly three equal indices;

those terms are equal to

E f(X(1), Z(1,1))3f(X(1), Z(1,2)).
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The fourth part consists of the m terms with exactly four equal indices; those
terms are equal to

E f(X(1), Z(1,1))4.

The fifth and last part consists of the
(
4
2

)
m(m − 1)/2 terms with exactly two

pairs of equal indices; those terms are equal to

E f(X(1), Z(1,1))2f(X(1), Z(1,2))2.

(One can check that the total number of terms is m4.)

Lemma 6 (Variances and covariances).

Var ξUL
m1 = Var EX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )

(i)

+
1

m
[E VarX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )−VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j )]

+
1

m2
E VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j ),

Cov(ξUL
m1 , ξ

UR
m1 ) =

m− 1

m
E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )

(ii)

+
1

m
E f(X(1), Z(1,1))2f(X̃

(1)
−j , Z

(1,1)
j )−Djµ

Cov(ξUL
m1 , f(X,Z)2) =

1

m
E f(X(1), Z(1,1))3f(X̃

(1)
−j , Z

(1,1)
j )

(iii)

+
m− 1

m
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )−Djκ

(iii)

Var ξUR
m1 =

1

m
Var f(X,Z)

(iv)

Cov(ξUR
m1 , f(X,Z)2) =

1

m
f(X,Z)3

(v)

+
m− 1

m
E f(X(1), Z(1,1))2f(X(1), Z(1,2))− µκ

Cov(ξUL
mn1, ξ

′′LL
mn1) =

m

m3
E f(X(1), Z(1,1))3f(X̃

(1)
−j , Z

(1,1)
j )

(vi)

+
3m(m− 1)

m3
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )

+
m(m− 1)(m− 2)

m3
E f(X(1), Z(1,1))f(X(1), Z(1,2))

f(X(1), Z(1,3))f(X̃
(1)
−j , Z

(1,1)
j )

− E f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j ){

1

m
E f(X(1), Z(1,1))2 +

m− 1

m
E f(X(1), Z(1,1))f(X(1), Z(1,2))

}
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Proof. The proof follows from direct calculations.

D Calculations for the linear model

Lemma 7. Suppose that f(X,Z) = β0 + βp+1Z +
∑p
j=1 βjXj where X =

(X1, . . . , Xp), Zk, Z̃ik are independent, EXj = EZ = 0, EX2
j = EZ2 = 1,

EX3
j = 0, EX4

j = 3. Then the squared optimal number of repetitions is given
by

(m∗i )
2 =

β4
p+1

(β0 + βi)2 − 2β4
0 + (

∑p
j=0 β

2
j )2

and the discriminator (the upper-left term in (2) and (3)) is

β2
0 + β2

i .

Proof. We have

m∗i =
Ai +Bi + Ci +Di

Ei
,

with

Ai = E f(X,Z1)2f(X̃−i, Z̃i1)2

Bi = E f(X,Z1)f(X̃−i, Z̃i1)f(X,Z2)f(X̃−i, Z̃i2)

Ci = −E f(X,Z1)2f(X̃−i, Z̃i1)f(X̃−i, Z̃i2)

Di = −E f(X̃−i, Z̃i1)2f(X,Z1)f(X,Z2)

Ei = B − [E f(X,Z1)f(X̃−i, Z̃i1)]2

where X = (X1, . . . , Xp), Zk, Z̃ik are independent, EXj = EZ = 0, EX2
j =

EZ2 = 1, EX3
j = 0, EX4

j = 3. We deal with the case

f(X,Z) = β0 + βp+1Z +

p∑
j=1

βjXj .

We calculate the terms one by one as follows. We have

Aj = E

β0 +

p∑
j=1

βjXj

2β0 + βiXi +
∑

j:1≤j 6=i

βjX̃j

2

(Aj1)

+

β0 +

p∑
j=1

βjXj

2

β2
p+1Z̃

2
i1 + β4

p+1Z
2
1 Z̃

2
i1(Aj2)

+ β2
p+1Z

2
1

β0 + βiXi +
∑

j:1≤j 6=i

βjX̃j

2

,(Aj3)

where E (A2) = β4
p+1 + β2

p+1

∑p
j=0 β

2
j , E (A3) = β2

p+1

∑p
j=0 β

2
j . Elementary but

somewhat tedious calculations yield

E (A1) = β4
0 + 3β4

i + 6β2
0β

2
i + 2(β2

0 + β2
i )

∑
j:1≤j 6=i

β2
j +

 ∑
j:1≤j 6=i

β2
j

2

.
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Similar calculations show that Bj = Aj1, Cj = −Aj1 −Aj3, Dj = −Aj1 −Aj3,
Ej = Aj1 − (β2

0 + β2
i )2. Thus,

(m∗i )
2 =

β4
p+1

(β0 + βi)2 − 2β4
0 + (

∑p
j=0 β

2
j )2

.
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