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The aim of this study is to optimize sensor networks for fast deployment in order

to reconstruct an unknown source of intentional or accidental release in local urban

topography. In such emergency circumstances, only the meteorological conditions

are available in real time and the network deployed must be efficient enough regard-

less of a source’s position and intensity. To determine the optimal positions to be

instrumented by the sensors, an adequate cost function is defined based on the renor-

malization inversion method. This function, named the entropic criterion, quantifies

the amount of information contained in a network of the sensors to estimate the

intensity and the location of an unknown source. The optimal design is approached

as combinatorial optimization (NP-Hard) and a stochastic algorithm (simulated

annealing, SA) is employed to solve this problem. The computation is performed

by coupling the CFD adjoint fields in an urban environment, the renormalization

algorithm and the SA. The optimization is evaluated with 20 trials of the Mock

Urban Setting Test (MUST) tracer field experiment for the reconstruction of a con-

tinuous point release in an idealized urban geometry using optimal networks of sizes

10 and 13 sensors. The process is achieved successfully and the results showed that

the reduction of an original network of 40 sensors to one third (13) and one quarter

(10) does not degrade the performance of this network. Also, a comparison of the

optimal design efficiency based on a priori information and without a priori infor-

mation about the source showed that the present entropic criterion leads to network

design and performance that can accurately retrieve an unknown emission source in

an urban environment.
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sion; simulated annealing

1 INTRODUCTION

Reconstruction of the air contamination origin at local scale

is an important operational issue for local authorities, pub-

lic health professionals, industrial sites, security and defence

authorities, etc. In fact, a source (leak, terrorist attack, etc.)

identification can provide on-site assistance for managing the

emergency, supporting the decisions, neutralize the danger

and refurbishment of the installations. As the issue is cru-

cial, estimation of the source parameters (i.e. intensity and

position) must be precise. To ensure that, an established mon-

itoring network plan must be optimal and the sensor locations

must be well chosen to address the situation.

In the case of an emergency, only meteorological condi-

tions can be known in real time from the available observa-

tions or from numerical weather forecasting models; a priori

information about the pollutant source is generally not avail-

able. However, in this study each meteorological situation is

assumed as stationary and described by regional wind speed

and direction and stability class. Here a great challenge is
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to design an optimal sensor network for an unknown source

estimation but without any information from the source. This

context of emergency responses concerns an optimal strategy

for sensor deployment for a specific meteorological condition.

An example of networks concerned by this kind of optimiza-

tion study is the sensor networks carried by mobile systems

(e.g. robots or drones) deployed only in emergency situations.

In this context, the optimization of the network can be per-

formed:

(a) In real time if the area of interest is not complex and the

calculation can be conducted quickly in a very short time,

using for example, the Gaussian dispersion model and an opti-

mization algorithm (Ma et al., 2013).

(b) In upstream off-line if the domain is complex (i.e. contains

several obstacles), a computational fluid dynamics (CFD)

model can be used to include the effect of the obstacles.

Several studies have been conducted for the optimization of

the monitoring networks using optimization algorithms (Ko

et al., 1995; Jiang et al., 2007; Abida et al., 2008; Abida

and Bocquet, 2009; Saunier et al., 2009; Ma et al., 2013;

Efthimiou et al., 2017; Kouichi, 2017). Recently, Ma et al.

(2013) and Kouichi et al. (2018) described the optimization

methodologies for designing optimal monitoring networks

in homogeneous and urban regions, respectively. In these

studies, concentration measurements were utilized in the opti-

mization process to determine the optimal configurations of

the networks. However, a priori information about the source

is generally not available for the deployment of the sensors

in an optimal way, since in some scenarios the source infor-

mation is unknown before an accident happens. Therefore,

these methods may have limitations since they depend on both

source information and meteorological conditions. Thus, it is

essential to develop methodologies for an optimal sensor net-

work using only the available meteorological conditions and

which do not require the a priori source information.

The optimality criterion can be based on the characteristics

of the networks. For examples, Caselton et al. (1992), Le and

Zidek (1994), and Zidek et al. (2000) used information con-

tained in the sensor networks. The optimal design of networks

by Nychka and Saltzman (1998), Dhillon and Chakrabarty

(2003), Altinel et al. (2008), Wu et al. (2008), and Mini et al.

(2011) were based on the spatial distribution of the sensors in

the domain. Mason and Bohlin (1995) and Hourdin and Issar-

tel (2000) used the probability of detection to design the mon-

itoring networks. In the present study, the cost function for the

optimization of a monitoring network is inspired by the con-

cept of information theory (Shannon and Weaver, 1998) and it

is defined from the renormalization inversion method (Issar-

tel, 2005). This entropic criterion can quantify the amount

of information contained in a network and is useful for the

source reconstruction. A great advantage of this method for

designing the optimal networks is that it is purely based on

the meteorological conditions and a priori information on

the source is not required. The concentration measurements

from an optimal network obtained from this methodology

are utilized for the reconstruction of an unknown continuous

point source in an urban-like environment.

The reconstruction of an unknown release from a finite

set of measurements is the topic of great importance for

the Source Term Estimation (STE) problem. Rao (2007) and

more recently Hutchinson et al. (2017) provided a detailed

overview of the different methods. These methods can be clas-

sified in three major categories: the probabilistic, the deter-

ministic and the hybrid. The probabilistic category treats the

source parameters as random variables associated with prob-

ability distributions. This includes the Bayes Estimation The-

ory (Monache et al., 2008; Luhar et al., 2014), Monte Carlo

algorithms using Markov chains (MCMC; Keats, 2009; Yee et

al., 2014) and various stochastic sampling algorithms (Zhang

et al., 2015). Deterministic methods and other data assimi-

lation techniques use cost functions to assess the difference

between the observations and the modelled measurements

and are based on the iterative processes to minimize this gap

(Seibert, 2001; Kaminski and Heimann, 2001; Davoine and

Bocquet, 2007; Sharan et al., 2009; Kovalets et al., 2011). In

this study, the renormalization inversion technique (Issartel,

2005) is utilized to develop an algorithm for the optimization

of sensor networks and also for the source reconstruction pro-

cess. This inversion method is operational and efficient for

the source estimation at local and continental scale and also

in different terrain topography (i.e. domains with and with-

out obstacles) (Issartel, 2005; Sharan et al., 2009); Kumar et

al. 2015b; 2016). Recently, the renormalization technique was

coupled with optimization algorithms (simulated annealing

and genetic algorithm) for the optimal design of networks and

the results were satisfactory (Kouichi et al., 2016; Kouichi,

2017).

The objective of this study is to present a methodology to

optimize sensor networks for emergency situations and for

mobile network deployment (Lepley and Lloyd, 2010; Lep-

ley et al., 2011) in order to reconstruct an unknown emission

source at local scale and in urban environments. The pre-

sented methodology does not require any information from

the source for the optimization process. The optimization is

performed by coupling CFD adjoint fields that evaluate the

sensitivity of the sensors in an urban domain, the renormaliza-

tion algorithm and the SA algorithm. To evaluate this method-

ology, the data from the Mock Urban Setting Test (MUST)

tracer field experiment (Biltoft, 2001; Yee and Biltoft, 2004)

is utilized. This dataset represents the results of an experimen-

tal campaign using a point release in a urban-like environment

in various atmospheric stability conditions.

2 METHODOLOGY: OPTIMAL DESIGN OF

THE SENSOR NETWORK

As the measurements can only be performed at a limited

number of locations in space, the optimal design of a sensor

network consists in finding the “best” subset of m positions
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in the implementation area where p candidate positions are

dispersed. Here, the possible numbers of m combinations

from a given set of all p positions are C
p
m. It is obvious

that if p is large, the problem is NP-Hard (Non-deterministic

Polynomial-time hardness) as shown by Ko et al. (1995). If

a set of the potential positions of sensors is given by Xr =

(xr
i
, yr

i
)i=1,..p at a fixed vertical height above the ground sur-

face in two-dimensional Cartesian coordinates x = (x, y),

a network N can be defined by the set X = (xi, yi)i=1,..m

of m positions. The “best” network No defined by a set

Xo = (xo
i
, yo

i
)i=1,..m of m positions among the possible subsets

X is the optimal network. Finding No is named a Com-

binatorial Optimization Problem. The search for No was

performed by the minimization (or maximization) of a cost

function which describes quantitatively the quality of the

network.

In a case when the p candidate positions are not prede-

fined, the optimization of sensor networks is part of the “first

deployment” problem. This problem is more complex than

updating the arrangement of a set of sensors already placed or

reducing or increasing the size of an existing network where

a priori information is available. The first deployment can be

solved by two main steps:

(a) Definition of the different studied areas (the danger area

where a source can be located, the vulnerable area that needs

to be protected against contamination and the instrumented

area where the sensors will be implanted), and

(b) Definition of the potential positions for sensor implanta-

tion; this step can be solved by assigning a weight of danger

to each point in the areas of interest and by using as addi-

tional information the sensor detection threshold, the thresh-

old exposure limits (e.g. National Research Council, 2010 on

acute exposure guidelines for selected airborne chemicals),

and the time limits of exposure.

If a priori information of the optimal networks sizes is

not available, defining m is also a part of the optimization

problem and it can be declared as a variable that changes

(increases or decreases) randomly during the optimization

process. This increases considerably the search space and

the time of optimization. Also this means that the selected

optimization algorithm must be independent of the scale of

the cost function because the comparison will be for net-

works of different sizes, thus of different cost scales. This

can also increase the complexity of the parametrization of the

optimization algorithms. A second methodology consists of

performing an initial optimization for the networks of differ-

ent sizes (as example from 3 to p∕2) in order to determining

the optimal size (Kouichi, 2017).

2.1 Cost function

In order to obtain the optimal network, an appropriate cost

function is required. This cost function is defined according

to the objective of the “network design”, and it quantifies the

quality of a specific network. As in this study the optimization

is for the reconstruction of the origin of atmospheric releases

without using a priori information on the source, the cost

function is defined based on the concept of illumination

introduced by Issartel (2005). This concept was originally

proposed to develop a deterministic inversion technique

based on the adjoint approach and allows us to evaluate the

resolution in a monitored area by quantifying which part of a

domain is well, poorly or not at all seen (Issartel, 2005). The

retroplumes (i.e. adjoint fields) calculated from the sensors,

assign to each point in the monitored area a level of illumina-

tion that can be interpreted as the probability of detection. For

ordinary adjoint fields, the illumination is excessive close to

the sensors and the inversion artifacts (i.e. the artificial infor-

mation included in the inversion methodology) are corrected

by attributing for each point of the domain an optimal weight.

This correction is realized by a weight function, f (x), that

prevents any overestimation in interpretation of the observa-

tions that would lead to the artifacts. The computation of f (x)

is based on the adjoint functions, ai(x) (Pudykiewicz, 1998;

Issartel, 2005) which evaluate the sensitivity of the ith recep-

tor in a domain Ω. The adjoint functions (or fields), called

retroplumes, are obtained by an atmospheric dispersion

model in the backward mode and by considering the detec-

tor as a pseudo-point source of unit intensity (Issartel and

Baverel, 2003; Hourdin and Talagrand, 2006). For m recep-

tor locations in a domain, a(x) = [a1(x), a2(x), ..., am(x)]
T. In

the renormalization inversion method, the adjoint fields are

optimally weighted by introducing a suitable positive weight

function 𝜙(x), which is computed as the converged value

of a function fk(x) using the following iterative algorithm

(Issartel, 2005):

fk+1(x) = fk(x)
√

aT
fk
(x)H−1

fk
afk

(x), f0 = 1, (1)

where, for an iteration number k, afi
(x) = ai(x)∕fk(x) is the

transformed weighted adjoint functions and thus afk(x) =

a(x)∕fk(x). Hf is the weighted Gram matrix defined by:

Hf = ∫Ω

aT
f
(x)af (x)f (x) dx (2)

The visibility function 𝜙(x) (i.e. converged value of f (x) )

satisfies the following three conditions (Issartel, 2005):

(i) 𝜙(x) > 0, (ii) ∫Ω

𝜙(x)dx = m, (iii) aT
𝜙
(x)H−1

𝜙
a𝜙(x) ≡ 1.

(3)

The condition (iii) is often named the renormalization

condition and presents a stopping criterion of the iterative

process.

Issartel (2005) noticed that 𝜙(x) corresponds to an entropic

criterion that quantifies the optimal amount of information

contained in a network for the inversion process. Based on

the concept of information theory (Shannon and Weaver,

1998) and by interpreting the weighted Gram matrix H𝜙

(Equation 2) as a covariance matrix of the Gaussian distribu-

tion for m measurements, Issartel (2005) defined the entropy
3



Sf associated with an ordinary weight function f as:

Sf =
m

2
log(2𝜋) +

1

2
log(det Hf ). (4)

By selecting a unique optimal weight function 𝜙(x) and in

order to not overestimate the observations, this quantity Sf

of information added to the inverse process should be min-

imized. The entropy-based cost function is a characteristic

of a given network and evaluates the amount of information

contained in the network in order to reconstruct an unknown

release in a region. Since m is a constant, the first term in

Equation 4 can be neglected and thus the minimum of Sf

corresponds to the minimum of log(det Hf ). Consequently,

the optimal entropic criterion that verifies the optimal weight

function 𝜙(x) (Equation 3) for source reconstruction, can be

evaluated as:

S𝜙 =
1

2
log(det H𝜙). (5)

S𝜙 in Equation 5 is a scalar that depends only on the mete-

orological conditions and the sensors’ sensitivity in the mon-

itored area. Since 𝜙(x) is unique, the optimal weighted Gram

matrix H𝜙 is also unique and described for a given network

of the sensors distribution in a domain. As in some emer-

gency situations after an intentional or accidental release, only

the meteorological conditions are available (i.e. average wind

speed and direction, stability class), the entropic criterion

(Equation 5) is selected for designing the optimal monitoring

network. This cost function is independent from the concen-

tration measurements and does not require any information on

the source. It is clear that if the source to be located in a large

domain without a priori information about it, the amount

of information contained in the monitoring network defined

according to a given meteorological situation must be maxi-

mized in order to cover a potentially large space. Therefore,

the optimal network No in a search space (I) formed by all

the possible combinations C
p
m, is obtained by maximizing S𝜙

(Equation 5) and it verifies:

(a) S𝜙(N
0) = max

N⊂I
S𝜙(N), (b) N0 = arg max

N⊂I
S𝜙(N).

(6)

2.2 Optimization algorithm

Regardless of the optimality criterion, the feasibility of the

computations is an important challenge in a network opti-

mization problem. The computation time to find an optimal

solution by exhaustive search becomes forbiddingly large

when the size of the instances grows (depending on the time

for the calculation of the cost function and the number of

the possible combinations). To solve such problem, stochastic

algorithms are efficient and among them simulated anneal-

ing (SA) is recommended in the literature (Jiang et al., 2007;

Abida et al., 2008; Abida and Bocquet, 2009; Saunier et

al., 2009). This probabilistic algorithm explores stochasti-

cally the search space and converges iteratively to the solution

(Metropolis et al., 1953). For the SA algorithm, each network

of m sensors is considered as a state of a virtual physical sys-

tem, and the objective function is interpreted as the internal

energy of this system in a given state. According to statistical

thermodynamics, the probability of a physical system being

in a state 𝛽 follows the Boltzmann distribution

P𝛽 =
1

Z
exp

(
−
ΔE𝛽

K𝛽T

)
,

where Z is the partition function, E𝛽 is the internal energy,

T is the temperature at the state 𝛽, and K𝛽 is the Boltzmann

constant. Using an analogy, during the minimization process

in SA, the probabilistic treatment consists of accepting a new

network selected in the neighbourhood of the current net-

work following the probability P = exp(−ΔJ∕T), where ΔJ

is the cost difference between the new and the current con-

figurations. At high temperature, the SA performs a coarse

search of the space of global states, avoids local minima and

finds a good minimum. As the temperature is lowered, the

search becomes fine in the neighbourhood of the already

determined minimum and the SA reaches a better minimum.

It is useful to note that there is no certainty in convergence

of the SA (Cohn and Fielding, 1999), however it is likely

that a “near-optimal” network configuration can be reached

(Altinel et al., 2008).

Implementation of SA requires a careful parametrization

operation. The best cooling schedule (i.e. the temperature

decay law) follows the Exponential Cooling Scheme (ECS;

Nourani and Andresen, 1998) as Ti+1 = 𝜃Ti, where Ti and

Ti+1 and are respectively the temperatures at iterations i and

i + 1. Here, 𝜃 is often named as the decay factor and it deter-

mines the cooling rate (i.e. the convergence rate of the SA).

It is therefore important that this value be close to 1 for giv-

ing time to the algorithm to exploring a large search space

and to avoid a premature convergence to a local minimum

(Kirkpatrick et al., 1983; Abida et al., 2008; Siarry, 2014;

Du and Swamy, 2016). To give more chance to converge to

the global optimum, a large number of iterations at each tem-

perature must be performed (Hajek, 1987). A proposition for

the number of iterations at a given temperature level is given

in Siarry (2014). The initial temperature T0 can be fixed for

acceptance probability P0 of about 0.8 as suggested by Kirk-

patrick et al. (1983). T0 clearly depends on the scaling of S𝜙,

therefore it can be fixed by conducting an initial search for a

sample of random network configurations. A suggestion for

the sample size of the random network configurations was

described in Siarry (2014). T0 is obtained by the Metropolis

law:

T0 = −
ΔS𝜙

log(P0)
,

where ΔS𝜙 is an average of the difference of cost functions

calculated for a large number of cases. For fixing the stop-

ping temperature Tstop, no general rule is available. Therefore,

calculation can be stopped when no improvement in the cost

function is observed.
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3 SOURCE RECONSTRUCTION

APPROACH

In order to validate the performance of the optimal networks

obtained from the described methodology in section 2, the

renormalization inversion approach coupled with a CFD mod-

elling approach (Sharan et al., 2009; Kumar et al., 2015b) is

utilized to estimate an unknown continuous point release in

an urban environment. The methodology is briefly described

as follows.

3.1 Renormalization inversion theory

The renormalization approach is based on a linear

source–receptor relationship that describes the effect of a

polluting source of a given strength at one location on the

species concentrations at the receptors at different locations

(Marchuk, 1995). In the case of a continuous release of the

passive tracer, the concentration measurement 𝜇i, sampled

by the ith detector can be modelled by:

𝜇i = ∫Ω

s(x)ai(x) dx, (7)

where s(x) is the source function that represents the rate

of contaminant release per unit area and time.To solve the

inverse problem is to estimate the source s(x) from Equation 7.

This problem is ill-posed and has an infinite number of solu-

tions (i.e. the unknown number is greater than the number of

measurements). In order to obtain a unique solution, Sharan

et al. (2009) proposed a decomposition s(x) = s∥(x) + s⟂(x)

of the source function s(x) into two components which are

parallel (s∥) and orthogonal (s⟂) to the adjoint fields. The

orthogonal component s⟂(x) verifies ⟨s⟂(x), ai(x)⟩ = 0, and

does not contribute in the reconstruction of the measurements.

Thus, only the observable parallel component s∥(x) to the

adjoint fields is considered. Therefore, if the concentration

measurements 𝝁 = (𝜇1, 𝜇2, ...., 𝜇m)
T ∈ Rm are available from

m sensors, a solution to the inverse problem can be formulated

as (Sharan et al., 2009)

s∥(x) = aT(x)H−1
𝝁, (8)

where H is the Gram matrix with elements Hij =

∫
Ω

ai(x)aj(x) dx.

Issartel (2005) showed that the source estimated from

Equation 8 is concentrated at the sensors’ locations and jus-

tified this property by the singular values of the retroplumes

close to the sensors. In order to eliminate the singularities

at the detector locations and to minimize the inversion arti-

facts, the renormalization theory was proposed and justified

by Issartel (2005). The renormalization approach is based on

the introduction of a renormalized weight function f (x) and

accordingly, Equation 7 becomes

𝜇i = ∫Ω

s(x)afi(x)f (x) dx. (9)

FIGURE 1 A schematic diagram of the MUST geometry showing 120

containers and source (stars) and receptor (black filled circles) locations. In

a given trial, only one source was operational

Accordingly, the new estimated source function

(Equation 8) is given by

s∥f (x) = aT
f
(x)H−1

f
𝝁, (10)

where af and H−1
f

were defined in section 2.1. The visibility

function 𝜙(x) (i.e. converged value of f (x) ) was calculated

using the iterative algorithm described in Equation 3. Then,

the source estimate function s∥𝜙(x) is calculated with this

converged value 𝜙(x) of f (x).

3.2 Point source estimation

The renormalization theory allows estimation of distributed

and point releases. For distributed source, the estimation of

s∥𝜙(x) is defined at every point of the domain and, as a par-

ticular case, the maximum of the estimation, i.e. max(s∥𝜙(x)),

corresponds to the location of a point source. Indeed, for a

point release from x0 with intensity Q0, the source can be

expressed by s(x) = Q0𝛿(x−x0) and associated ideal measure-

ments by 𝝁 = Q0a(x0)𝜙(x0) (from Equation 9). By replacing

the measurement term in Equation 10, the estimation of a

point source can be obtained as

s∥𝜙(x) = Q0𝜙(x0)a
T
𝜙
(x)H−1

𝜙
a𝜙(x0). (11)

Using the Cauchy–Schwartz inequality and the renormal-

ization condition (iii) (Equation 3) in Equation 11, s∥𝜙(x)

reaches its maximum only at a position x = x0 and thus, the

intensity is obtained as

Q0 = s∥𝜙(x0)∕𝜙(x0). (12)

4 MOCK URBAN SETTING TEST (MUST)

FIELD EXPERIMENT

In the framework of the Mock Urban Setting Test (MUST;

Biltoft, 2001), a standard urban network was formed in order
5



TABLE 1 Source details and meteorological conditions in 20 selected trials of the MUST field experiment (Biltoft, 2001; Yee and
Biltoft, 2004)

Trial Trial name qs ts zs S04 𝛼04 u∗ L k

no. (JJJhhmm) (l/min) (min) (m) (m/s) (deg) (m/s) (m) (m2/s2)

1 2640138 175 21 0.15 2.35 17 0.26 91 0.359

2 2640246 200 15 0.15 2.01 30 0.25 62 0.306

3 2671852 200 22 0.15 3.06 −49 0.32 330 0.436

4 2671934 200 15 1.8 1.63 −48 0.08 5.8 0.148

5 2672033 200 15 1.8 2.69 −26 0.17 4.8 0.251

6 2672101 200 14 0.15 1.89 −10 0.16 7.7 0.218

7 2672150 200 16 0.15 2.30 36 0.35 150 0.409

8 2672213 200 15 1.8 2.68 30 0.35 150 0.428

9 2672235 200 15 2.6 2.32 36 0.26 48 0.387

10 2672303 200 19 1.8 2.56 17 0.25 74 0.367

11 2681829 225 15 1.8 7.93 −41 1.10 28000 1.46

12 2681849 225 16 0.15 7.26 −50 0.76 2500 0.877

13 2682256 225 15 0.15 5.02 −42 0.66 240 0.877

14 2682320 225 15 2.6 4.55 −39 0.50 170 0.718

15 2682353 225 15 5.2 4.49 −47 0.44 120 0.727

16 2692054 225 22 1.3 3.34 39 0.36 170 0.362

17 2692131 225 17 1.3 4.00 39 0.42 220 0.582

18 2692157 225 15 2.6 2.98 43 0.39 130 0.505

19 2692223 225 15 1.3 2.63 26 0.35 120 0.484

20 2692250 225 17 1.3 3.38 36 0.37 130 0.537

Here, Trial nos. 1–20 are assigned for simplicity and do not correspond to original assigned trial numbers in the MUST experiment.

Source parameters are release rate qs, release duration ts, and source height zs.

S04 and 𝛼04 are wind speed and direction at the 4 m level at mast S.

u∗, L and k are the friction velocity, Obukhov length and turbulent kinetic energy at the 4 m level at tower T.

to improve the characterization of plume transport and dis-

persion around buildings. This field campaign was organized

by the Defense Threat Reduction Agency (DTRA) and was

conducted in September 2001 at Dugway Proving Ground in

western Utah, USA. The experiment presented a comprehen-

sive dataset for the modellers and provided an opportunity for

fine analysis of the physical transport mechanisms around the

urban canopy. The MUST experiment consisted of releases

of the propylene gas (C3H6) into the atmosphere. The disper-

sion of the released gas was measured in an idealized urban

geometry of dimensions 200 × 200 m2. The urban canopy

is represented by a grid of containers arranged in 10 rows

and 12 columns on the ground surface as shown in Figure 1.

Each container has dimensions 2.54 m height, 12.2 m length

and 2.42 m width. The spacing between the lines is 12.9 m

and the columns are separated by a distance of 7.9 m. In this

study, 20 trials of continuous releases under stable and neutral

meteorological conditions are considered. For these trials, the

sources were located at different positions inside and outside

the canopy and at different heights above the ground surface

(Biltoft, 2001).

In a given trial of the MUST experiment, the gas was

continuously released over ≈15 min and concentration mea-

surements were made using a standard network of 48 pho-

toionization detectors (PIDs). Forty sensors were positioned

on four horizontal lines at 1.6 m height above the ground

surface and eight additional detectors were placed at vari-

ous altitudes (from 1 to 16 m) approximately at the centre

of the domain. For characterizing the wind and turbulence,

eight anemometers were distributed on four masts at differ-

ent altitudes. The values of the meteorological and turbulence

variables and source parameters in all selected trials are taken

from Biltoft (2001) and Yee and Biltoft (2004) and presented

in Table 1.

5 CFD ADJOINT FIELDS

In a study by Kumar et al. (2015b), which aimed to couple and

evaluate the renormalization method with a CFD modelling

approach for the reconstruction of a continuous point source

in an urban environment, a CFD model fluidyn-PANACHE

(Fluidyn-Panache, 2010) was used to calculate the retro-

plumes. These retroplumes were calculated for the standard

network of 40 sensors deployed at 1.6 m above the ground sur-

face in each trial of the MUST field experiment. This CFD

model is able to represent the geometric and flow complex-

ity inherent in the urban regions. The computation of the

retroplumes was performed in two steps. In the first step, sim-

ulations of the CFD model for the converged flow-fields in

each trial were performed by solving the three-dimensional

(3D) Reynolds-averaged Navier–Stokes equations using a
6



finite-volume numerical scheme. Secondly, the flow-field was

reversed (i.e. the direction of the computed steady state flow

field is reversed 180◦ by simply changing the wind field

sign) and used in the standard advection–diffusion equation

to compute the retroplumes. A receptor is considered as a vir-

tual point source of unit strength in the advection–diffusion

equation for computation of a retroplume.

For CFD simulations and other calculations, the compu-

tation domain was decomposed into two domains: the inner

domain is defined (250 m × 225 m × 100 m) to refine meshes

around the obstacles, and an outer one (800 m × 800 m ×

200 m) was defined to have a smooth flow at the inner domain

boundary and also to reduce the direct effect of inflow bound-

ary conditions imposed at the inlet of the outer domain. A

3D unstructured mesh was generated in both domains. The

mesh was further refined near the obstacles and at locations

of the receptors. Both outer and inner computational domains

were discretized respectively in 61 and 56 vertical levels with

minimum vertical grid spacing of 0.25 m near the ground sur-

face. The lowest 40 vertical levels in both domains were set

to a uniform 0.25 m grid spacing to cover the lowest 10 m

(approximately four times the obstacle height of 2.54 m) of the

vertical domains. The computational domain contains a total

of 2,849,276 grid cells in the embedded mesh. A grid sensitiv-

ity analysis with other mesh resolutions was also performed

to adapt the defined mesh for the numerical simulation. A

two-equation k–𝜖 turbulence model was used derived from the

standard high-Reynolds-number (Re) form with corrections

for buoyancy and compressibility (Launder, 2004; Hanjalic,

2005). The details about the inflow profiles (wind, tempera-

ture and turbulence), the prediction errors of the forward CFD

model, the duality verification, and the sources reconstruc-

tion using the original network, are available in Kumar et al.

(2015a; 2015b) . The boundary conditions are now briefly

presented.

Based on the direction of the mean wind with respect to the

domain boundary, the lateral boundaries of the computational

domain were considered as inflow and outflow boundaries.

The top boundary was treated as an outflow boundary. The

bottom boundary condition at the ground surface was defined

by a no-slip condition. Standard wall functions (Hanjalic,

2005) were used to compute the drag forces on solid walls

in a turbulent boundary layer. The velocity, temperature, and

turbulence variables at the inflow boundary were specified as

follows:

1. Wind profile. The wind profiles proposed by Gryning

et al. (2007) in stable and neutral conditions were used

for inflow condition which are applicable in the entire

atmospheric boundary layer (ABL) and are composed

of the three different length-scales in surface, middle,

and upper layers of the ABL. As the Gryning et al.

(2007) wind profile is not suitable for very stable atmo-

spheric conditions, a wind profile based on a similarity

function proposed by Beljaars and Holtslag (1991) and

applicable for extremely stable conditions (Sharan and

Kumar, 2010) was used.

2. Temperature profile. The logarithmic temperature profile

based on the Monin–Obukhov similarity theory was used

to describe the temperature vertical variation in neutral

and stable conditions.

3. Turbulence profiles. The profiles of k and 𝜖 based on an

approximate analytical solution of the one-dimensional

k–𝜖 prognostic equation (Yang et al., 2009) were used

for inflow boundary conditions. Coefficients in these pro-

files of k and 𝜖 are estimated based on the observations

of k.

6 DESCRIPTION OF THE NUMERICAL

COMPUTATIONS

For the optimal design of the sensor networks in an urban

environment by the methodology described above, the calcu-

lations were performed by coupling (a) the renormalization

inversion algorithm, (b) the stochastic algorithm (SA) and (iii)

the CFD adjoint fields. The objective is to find the best set of

m = 10 and 13 among the p = 40 potential locations (standard

network) in order to reconstruct the sources in 20 selected tri-

als of the MUST field experiment. For this study, the numbers

of sensors were not fixed arbitrarily. In fact, it was observed

that an acceptable estimation of the source in the majority of

the trials was enabled by using a minimum of eight sensors

in the defined domain (Kouichi, 2017). Also, using more than

13 sensors in an optimal network, the errors in source parame-

ter estimation are stable and do not improve significantly. For

this reason, the optimal network designs were constructed and

evaluated for sizes m = 10 and 13 (one quarter and one third

of the original network of 40 sensors).

The calculations can be described by following three main

steps:

1. For a given initial network and the meteorological con-

ditions in each trial of the MUST experiment, the con-

verged flow-field and then the adjoint fields were cal-

culated (at one time for all the sensors) using the CFD

model fluidyn-PANACHE (Fluidyn-Panache, 2010). The

meteorological and turbulence variables to simulate the

flow-field by fluidyn-PANACHE includes (a) wind speed

and direction, (b) temperature, (c) friction velocity, (d)

surface heat flux, and (e) turbulent kinetic energy. The

measurements of these meteorological and turbulence

variables were also used to specify the inflow boundary

conditions. A retroplume was calculated by reversing the

wind direction and considering a sensor as a virtual point

source of unit intensity. The obtained retroplumes that rep-

resent the sensitivity of the sensors in the computational

domain were archived as new data files.

2. When the archived retroplumes for a MUST trial were

available from Step 1, the optimization process was
7



performed. The parameters of the SA algorithm were set

according to their properties described in section 2.2.

The implemented algorithm follows a decay by level

(i.e. the temperature remains constant in each level for

LT iterations). Before starting the iterative process, a

first network Nbest was randomly selected in the search

space I (Equation 5). Considering the sensor locations

of Nbest, the optimal weighting function 𝜙(x) and H𝜙

(Equations 3 and 4) were computed iteratively and then

the entropy S𝜙(Nbest) (Equation 5). In these computa-

tions, firstly the renormalization algorithm was used to

compute 𝜙(x) iteratively (Equation 1) and the optimal

weighted Gram matrix H𝜙 (Equation 2). The calculation

of the renormalized weights required about 20 iterations

in the renormalization algorithm. Then the cost function

S𝜙(Nbest) was calculated from Equation 5. It is interesting

to note that Nbest corresponds to a set of m = 10 or m = 13

sensors for the MUST experiment’s network. For each

temperature level, LT iterations were performed during

which a new network (Nnew) was randomly selected and

the following operations iteratively repeated:

Compute the entropy S𝜙(Nnew) and the difference

ΔS𝜙 = S𝜙(Nbest) − S𝜙(Nnew).

(a) if ΔS𝜙 < 0, the entropy has increased and Nnew

becomes Nbest.

(b) if the entropy decreases (ΔS𝜙 > 0), but crosses the

acceptance probability (P ≤ exp(−ΔS𝜙∕T)), Nnew is nev-

ertheless retained and becomes Nbest, so the SA can avoid

local maxima.

After LT iterations, the temperature was lowered until the

stop temperature Tstop was reached.

3. At the stop temperature, the Nbest network became the

optimal network No containing the maximum information.

The source term parameters were then calculated using

the renormalization inversion algorithm (Equations 11

and 12)

This process of the optimization was performed iteratively

and stochastically according to the SA algorithm until the

optimal network No that verified the conditions (a) and (b)

described in Equation 6 were obtained. The parameters for

SA were chosen carefully according to the literature recom-

mendations, the scale of the cost function S𝜙 and according to

the number of possible combinations C
p
m. Setting parameters

for the SA algorithm are given in Table 2. The optimization

calculations were performed on a computer of characteristics:

Intel® CoreTM i7-4790 CPU @ 3.60 GHz and 16 GB RAM.

The average time elapsed in the optimization of one network

for a single trial was ≈ 2.5 hr for 10 sensors and ≈ 8.5 hr for

13 sensors.

7 RESULTS AND DISCUSSIONS

The coupling of the renormalization algorithm, the CFD

adjoint fields and the optimization algorithm SA was

TABLE 2 Setting parameters for the SA algorithm

m T0 Tstop LT 𝜃 NC

10 15 10−11 100 0.9 8.5 × 108

13 15 10−11 200 0.9 1.2 × 1010

T0 and Tstop are respectively the initial and final temperatures, LT is the number

of iterations performed at a temperature level T , 𝜃 is the decay factor, NC is the

number of possible combinations and m is the detector number.

successfully achieved and the optimal networks of 10 and

13 sensors were obtained for all 20 trials of the MUST field

experiment. Representative results of the optimal networks

of 10 and 13 sensors and their corresponding source esti-

mation results in the form of contour plots of the visibility

function 𝜙(x) and the normalized source estimate function

sn
∥𝜙
(x) = s∥𝜙(x)∕max(s∥𝜙(x)) are shown in Figures 2 and 3 for

different MUST tracer releases by source position in trials 3

(Wide Alley), 7 (Upwind Face), 10 (Intersection), 15 (Conex

Roof), and 20 (Outside Array). The source reconstruction in

each trial was performed by taking the measurements only

from the sensors in the optimal networks. The optimal net-

works of sizes m = 10 and m = 13 for all selected 20 MUST

trials are shown in Supporting Information Figures S1.1 and

S1.2 and the respective isopleths of the renormalized weight

function 𝜙(x) and the normalized source estimate function

sn
∥𝜙
(x) = s∥𝜙(x)∕max(s∥𝜙(x)) are shown in Figure S2.

The first analysis concerns the optimal network structures

in the urban space of the MUST experiment. Qualitatively, a

widely dispersed distribution of the sensors was noted for all

network sizes and for all selected MUST trials. This shows

that for a given wind direction (opposite direction to the vis-

ibility fields orientation), no specific region in the monitored

area is privileged. In this distribution, a larger area is cov-

ered by significantly higher values of the visibility function.

Accordingly, it allows us to monitor an important region for

the source reconstruction. In isopleths of the visibility func-

tions (Figures 2, 3 and S2), the unseen regions are represented

by black, whereas the zones seen by the optimal network are

illustrated by white and grey shades.

In order to evaluate the performance of the optimal net-

works based on the entropic criterion, the source reconstruc-

tions were first compared with results computed from the

original MUST network formed by 40 sensors. This compari-

son study permits us to analyze the impact of the reduction of

the size of the original network in various meteorological and

source conditions. Secondly, the performances of the optimal

networks based on the entropic criterion were also compared

with source reconstruction results computed from the optimal

networks based on the normalized errors between the mod-

elled and observed concentration measurements (Kouichi et

al., 2018). This permits us to analyze the efficiency of the

optimal networks design at local scale in an urban domain

based on a priori information of the source (i.e. using the

measurements from a specific source) and based on the char-

acteristics of the networks without any prior information of

the source (i.e. using the information contained in a network

from the present entropic criterion).
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FIGURE 2 The 10-sensor optimal networks (first row), corresponding contour plots of the visibility function 𝜙(x) (second row) and the normalized source

estimate function sn
∥𝜙
(x) = s∥𝜙(x)∕max(s∥𝜙(x)) (third row) for different MUST tracer releases by position in trials (from left to right) 3 (Wide Alley), 7

(Upwind Face), 10 (Intersection), 15 (Conex Roof), and 20 (Outside Array). The black and white filled circles in the third row respectively represent the true

and estimated source locations

7.1 Optimal design by reduction of an original

network size

Source estimation results from the different optimal networks

are shown in Table 3 for all 20 trials of the MUST experi-

ment and the respective isopleths of the normalized source

estimate function sn
∥𝜙
(x) are shown in Figure S2. These results

are presented in terms of the location error (El), which is the

Euclidean distance between the estimated and the true source

locations, and (Eq) a ratio of the estimated to true source

intensity. The networks are presented by the superscript m

representing the sizes of a network (i.e. number of sensors)

on Em
l

and Em
q .

Using the measurements from the original network of 40

sensors in all 20 trials, the location error varies from 1.10

to 42.90 m (Table 3). This give rises to an average location

error of 14.62 m for all 20 trials. Note that these location

errors occur in a 200 m × 200 m computational domain of

the MUST field experiment. The source intensities were esti-

mated between an overestimation by a factor of 4.01 and an

underestimation of 0.27. In 75% of the trials, source intensi-

ties were estimated within a factor of two to the true release

rate.

Using the concentration measurements from the optimal

networks of 13 sensors in each MUST trial, the location errors

were estimated between 3.84 m (trial 6) and 48.62 m (trial 3)

and the average location error for all 20 trials was 21.49 m

(Table 3). Concerning E13
q , ratios of the estimated to the true

source release rates varied between 0.63 and 2.15 (Table 3).

In 80% of the trials, the source intensity was estimated within

a factor of two to the true release rates, and a consistent esti-

mation of these intensities was observed from these networks

of 13 sensors.

Using the concentration measurements from the optimal

networks of 10 sensors, the best estimation of the source

location was 0.36 m (trial 15) and largest error observed was

47.63 m in trial 10 (Table 3). For all 20 trials, the average

location error was 18 m. For these optimal networks, E10
q var-

ied from 0.84 (trial 20) to 2.37 (trial 10) (Table 3) and in

70% of the trials, it was estimated within a factor of two of

the true release rate. It was also observed that the estimated

release rates in all 20 trials were within a factor of 2.37 and no

unusual over/underestimation was observed from these opti-

mal networks (Table 3). This shows a consistent estimation of

the unknown source intensities from the optimal networks of

10 sensors.
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FIGURE 3 As Figure 2, but for the 13-sensor optimal networks

From this quantitative analysis, it seems that the optimal

design based on the entropic criterion leads to the accept-

able optimal networks to estimate an unknown release in an

urban-like environment. The reduction in the number of sen-

sors from the original network to one quarter and one third

does not significantly degrade the performance of the source

term estimation. Also, the performance of the optimal net-

works is comparable to the original network in the majority

of the trials. The precision in source parameter reconstruc-

tion is also improved by using the information from optimal

networks in some of the trials.

7.2 Performance comparison of the optimal networks

with and without a priori source information

Recently, Kouichi et al. (2018) described a methodology

for the optimal design of a monitoring network based on

a priori information of the source by using the concentra-

tion measurements in the optimization process. However,

designing the optimal monitoring networks in this study is

purely based on available knowledge of meteorological con-

ditions and does not require any information of the pollutant

source and the associated concentrations at the receptors.

Thus, the efficiency of the present methodology for opti-

mization without a priori information of the source and

concentration measurements was compared with the optimal

networks designed with a priori measurements being used

in the optimization process. The performance of optimal net-

works (m = 10 and 13) based on the entropic criterion is

compared with performance of optimal networks based on the

normalized errors presented in Kouichi et al. (2018). Source

estimation results for the different optimal networks from both

approaches are shown in Table 3 for all 20 trials in the MUST

field experiment.

It was observed that the performance of the present opti-

mal networks in terms of source estimation are comparable

with those based on the normalized errors (Table 3). Using 10

and 13 sensors, the averaged location errors estimated from

the optimal networks from the entropic criterion for all 20 tri-

als are respectively 18 and 21.48 m. However, these averaged

location errors from optimal network of normalized errors

were 19.20 and 17.42 m respectively for 10 and 13 sensors

networks. In term of the estimation of the source intensity,

new optimal networks from the entropic criterion also have

comparable performances with Kouichi et al. (2018). Using

the measurements from 10- and 13-sensor optimal networks,

the present optimal networks from the entropic criterion esti-

mated the source intensities within a factor of two in 70 and

80% of the trials which is also comparable with 80% of the tri-

als from the optimal networks from the method of normalized

errors (Table 3). The results in Table 3 also show that the con-

cept of information (quantified by the entropic criterion) in

optimal design of the monitoring networks is a fine concept
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since, in most of the trials, increasing the number of sen-

sors improved the estimation of source parameters. However,

this is not observed in some MUST trials using the normal-

ized errors. It is also noted that the estimated intensities from

the present optimal networks are more consistent than the

normalized errors criterion over all the trials. The estimated

source intensities were not as consistent in some trials in

Kouichi et al. (2018); for example, in the 10-sensor networks,

the source intensities in trials 2 and 9 were highly overesti-

mated by factors of 5.12 and 7.55, respectively (Table 3). A

great advantage of the present methodology is that the opti-

mization of the sensor networks does not require a priori

information of the source which was essential in the optimiza-

tion methodology of Kouichi et al. (2018).

In order to evaluate the stabilties of the estimation of

the source parameters using the optimal networks, poste-

rior uncertainties on the source position and intensity are

calculated due to measurements errors. The renormaliza-

tion inversion technique does not require computation of the

weight function with the noisy measurements because the

computation of the weight function is independent of the con-

centration measurements. For quantifying the uncertainty, a

10% Gaussian noise was added at each measurement. Using

the obtained optimal networks, 50 simulations for the source

reconstruction were performed for each trial. The average

and the standard deviation of Eq and El were calculated and

the results presented in Table 3. For the optimal networks,

there is not an obvious trend and the uncertainties are in the

same order of magnitude as the original network (40 sensors)

and the optimal networks obtained based on the normalized

errors cost function. As 10% noise is rather a low value to

analyze the uncertainties, some additional computations were

also performed by adding 15 and 20% random error on the

observations. The results based on these computations with

15 and 20% are included in Table 3. From these values in

Table 3, it can be observed that the uncertainties in the esti-

mated source parameters increase with the increasing noise

on the measurements.

It is also useful to test how the renormalization inversion

algorithm performs if the measurements in each monitoring

network were taken from the CFD predictions rather that the

field experiment (i.e. if the error in the forward model is

removed). Accordingly, the source reconstruction for each set

of monitoring network was also performed from the renor-

malization inversion algorithm by using the data from CFD

prediction (i.e. synthetic data) rather that the field experiment

(i.e. real data). Synthetic data are sets of the concentration

measurements predicted by a forward dispersion or an adjoint

model for the known source parameters. The synthetic mea-

surements 𝝁 from the adjoint functions a(x0) are ideally

generated by 𝝁 = Q0a(x0) for the known location x0 and

intensity Q0 of a point source. Irrespective of the atmospheric

and source conditions, synthetic measurements are free from

any model and instrumental errors and are ideal for testing

the inversion techniques. In the case of the synthetic measure-

ments, the point source is estimated exactly at the same grid

cell as the true source in each trial of the MUST experiment.

Using the synthetic measurements from the sensors in each

monitoring network, the exact estimation of the source param-

eters was retrieved irrespective of the varying atmospheric

and source conditions in each trial of the MUST experiment.

When synthetic data are used, model error vanishes and the

technique was able to perfectly reconstruct the synthetic data

for that idealized case.

It should be noted here that the CFD are imprecise and

this implies errors associated with the predictions that are

non-uniform in the space investigated. As discussed by Chow

et al. (2008), the inversion procedure clearly relies heavily on

the accuracy of the sensor measurements as well as the accu-

racy of the forward model used for dispersion simulations

and computations of the adjoint functions. It is obvious that

the errors and uncertainties associated with the CFD model

prediction are concerned with the accuracy of the adjoint

functions that were prerequisite and used for establishment of

the optimal monitoring networks and source reconstructions

in an urban-like environment. Uncertainties in the inversion

procedure increase with the complexity of the domain, par-

alleling the errors in the adjoint model. Thus, these errors

may influence the sensor placement in a monitoring network,

source retrieval, etc. While the CFD code fluidyn-PANACHE

has been evaluated and tested for many urban flows, there

are several possible sources of error. In order to achieve a

good estimation of the source location and release rate, all

sources of the error must in theory be included a priori.

As pointed out by Chow et al. (2008) for the source inver-

sion in a complex urban region, model errors are sometimes

difficult to control or isolate, and thus individual errors are

treated as described below. There are several reasons for the

mismatch in predicted and observed concentrations. Most

of the observed concentrations in the MUST field experi-

ment are averaged values from 15 to 20 min releases, whereas

the CFD model predicts the steady state conditions, effec-

tively ensemble-averaged dispersion. Thus, the shape of the

plume can be different from any single realization or plume

prediction, reflecting the uncertainty in the inversion proce-

dure (Chow et al., 2008). Describing the inflow boundary

profiles as the steady flow introduces uncertainties in the

inflow boundary conditions because in reality the wind at the

domain has fluctuations in space and time. Consideration of

the invariant wind direction throughout the simulation can

also greatly affect the dispersion and consequently the adjoint

functions for the source inversion procedure. Specification

of a point source in the discretized computational domain

is also a potential source of error. Errors associated with

different parametrizations for the boundary conditions and

turbulence model, grid resolution, etc. are also other sources

of uncertainty and errors.

Despite of the errors and uncertainties associated with

the CFD approach, the choice of the CFD technique in an
12



urban-like environment is obvious where simple analytical or

Gaussian dispersion models have limitations and cannot apply

to such complex environments. For homogeneous terrains,

the adjoint functions can analytically be computed based on

the Gaussian plume model or a simple solution of the diffu-

sion transport equation to estimate a continuous point release.

The flow-field in these models is generally considered con-

stant throughout the computational domain. However, the

flow-field in urban or industrial environments is quite com-

plex and the asymmetry of the flow and the dispersed plume

in urban regions is generated mainly by the presence of build-

ings and other structures. In general, the Gaussian models

are unable to capture the effects of complex urban geome-

tries on adjoint sensitivities between source and receptors.

Building-resolving CFD techniques have the potential to pro-

vide the precise and realistic simulations of the wind flow and

dispersion around and within the buildings and other com-

plex structures in urban regions. A better CFD approach might

lead to improvements that dominate those associated with the

optimization and inversion methods. However, the complex-

ity of the problem increases significantly by utilization of

more advanced CFD techniques.

8 CONCLUSIONS

In this study, a methodology of optimal design for fast sensor

and/or mobile network deployment in emergency situations

in an urban environment was presented. A cost function that

quantifies the quality of a network in terms of the information

for source reconstruction was defined for a particular meteo-

rological condition. This function presents characteristics of

a network using only the available meteorological measure-

ments and it was defined without a priori information about

the source. The space of the candidate positions for sensor

deployment was defined as a discrete set and the optimiza-

tion was performed to determine the best subset. This problem

named combinatorial optimization was solved using the sim-

ulated annealing (SA) stochastic algorithm. The calculations

were performed by coupling the CFD adjoint fields, the renor-

malization algorithm and the SA algorithm. The adjoint fields

were computed using the CFD model fluidyn-PANACHE for

the realistic wind flow around obstacles and to best describe

the sensitivity of sensors in an urban environment. The renor-

malization algorithm allowed us to calculate the optimal

weight function for the inverse process and to calculate the

entropic criterion for the corresponding networks. The cou-

pling is achieved successfully and optimal networks of 10 and

13 sensors based on a standard network of 40 sensors were

obtained and validated for 20 trials of the MUST tracer field

experiment. The results showed that the optimal networks

obtained by maximizing the entropic criterion have a widely

dispersed structure which leads to cover a large monitored

area by the visibility fields. The quantitative results showed

that the reconstruction of the source parameters for the 20 tri-

als of the MUST experiment using optimal networks of 10 and

13 sensors is acceptable and almost comparable to the original

network of 40 sensors. This confirms that the optimal design

by the reduction of network size in an urban environment

is possible using the entropic criterion derived from infor-

mation theory and therenormalization inverse method. The

comparison of the obtained optimal networks using a priori

information as the concentration measurements with the opti-

mal networks derived without a priori information of the

source has highlighted the efficiency of the entropic criterion.

This criterion leads to the optimal sensor networks able to

reconstruct an unknown source regardless of its position or

intensity according to a particular meteorological situation.

It is interesting to note that, in this study, the optimization

is conducted for stationary meteorological situations during

continuous releases. However, the optimal network design

would also depend on the change of wind direction/speed

which may increase or decrease the optimum number of sites

and may also change the best positions to be instrumented

by sensors. Also, the MUST array is very open (plan area

coverage of less than 10%) and may not quite represent a

real urban region in terms of scale, meteorological variability,

non-uniform terrain or roughness/canopy structure. However,

the methodology presented here is general in nature to apply

also to a real urban environment. The methodology involves

the utilization of the CFD model which generally can include

the effects of the urban geometry, meteorological variability,

non-uniform terrain or roughness/canopy structure in a real

urban environment. Indeed, this work can be extended fur-

ther to study the effect of the variability of the meteorological

conditions in more representative urban domains.
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SUPPORTING INFORMATION

Figure S1.1. The optimal networks of 10 sensors for all 20 tri-

als in the MUST field experiment. The blank and filled black

circles respectively represent the all (40) potential positions

and the optimal positions of sensors.

Figure S1.2. The optimal networks of 13 sensors for all 20 tri-

als in the MUST field experiment. The blank and filled black

circles respectively represent the all (40) potential positions

and the optimal positions of sensors.
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Figure S2.1. Isopleths of the renormalized weight function

(w(x)) (grey in first and third columns) and the normal-

ized source estimate function (sn
w(x = sw(x)= max{sw(x)});

coloured in second and fourth columns) for both optimal net-

work respectively of 10 and 13 sensors for trials 1, 2, 3, 4, 5.

The black and white filled circles respectively represent the

true and estimated source locations.

Figure S2.2. Isopleths of the renormalized weight function

(w(x)) (grey in first and third columns) and the normal-

ized source estimate function (sn
w(x = sw(x)= max{sw(x)});

coloured in second and fourth columns) for both optimal net-

work respectively of 10 and 13 sensors for trials 6, 7, 8, 9, 10.

The black and white filled circles respectively represent the

true and estimated source locations.

Figure S2.3. Isopleths of the renormalized weight function

(w(x)) (grey in first and third columns) and the normal-

ized source estimate function (sn
w(x = sw(x)= max{sw(x)});

coloured in second and fourth columns) for both optimal net-

work respectively of 10 and 13 sensors for trials 11, 12, 13, 14,

15. The black and white filled circles respectively represent

the true and estimated source locations.

Figure S2.4. Isopleths of the renormalized weight function

(w(x)) (grey in first and third columns) and the normal-

ized source estimate function (sn
w(x = sw(x)= max{sw(x)});

coloured in second and fourth columns) for both optimal net-

work respectively of 10 and 13 sensors for trials 16, 17, 18, 19,

20. The black and white filled circles respectively represent

the true and estimated source locations.
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