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MATRICIAL APPROXIMATIONS OF HIGHER DIMENSIONAL MASTER
FIELDS

NICOLAS GILLIERS

Abstract. We study matricial approximations of master fields constructed in [6]. These ap-
proximations (in non-commutative distribution) are obtained by extracting blocks of a Brownian
unitary diffusion (with entries in R, C or K) and letting the dimension of these blocks to tend to
infinity. We divide our study into two parts: in the first one, we extract square blocks while in
the second one we allow rectangular blocks. In both cases, free probability theory appears as
the natural framework in which the limiting distributions are most accurately described.
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1. Introduction

In this work, we study convergence in non-commutative distribution of random matrices
extracted from a unitary Brownian motion in high dimensions. We consider three cases: Brow-
nian motions with real, complex and quaternionic entries and denote by U(K, N) the group of
unitary matrices with entries in the division algebra K. Brownian motion on U(N,K), as a non-
commutative process, is studied for quite a long time. We make a short and non-exhaustive list
of available results.

The story begins with the work of Wigner on Hermitian random matrices having, up to sym-
metries, independent and identically distributed entries. Under mild assumptions (satisfied for
Gaussian distributed entries with a variance that scales as the square root inverse of the dimen-
sion), Wigner proved the convergence of this random matrix’s moments (the non-commutative
distribution) as the dimension tends to infinity. Later, the question of the convergence in high
dimensions of not only one random matrix, but of a process of Hermitian random matrices,
the Hermitian Brownian motion was addressed. The result of Wigner implies convergence of
the one-dimensional marginals of this process. The convergence of multi-dimensional marginals
is most easily expressed and understood using non-commutative probability theory and a new
notion of independence between random variables, which is Voiculescu’s freeness. The notion of
freeness (within the framework of operators algebras) was introduced by Voiculescu, but aroused
probabilists’ interest with the work of Speicher. Freeness is a non-commutative counterpart of
classical independence between two random variables; it is a property of two non-commutative
random variables that allows computation of the joint distribution from the individual distri-
bution of the random variables. One significant result appearing in the work of Voiculescu (see
[11]) is the asymptotic freeness of two (classically) independent random matrices. This theorem
implies asymptotic freeness of a Hermitian Brownian motion’s increments, which leads in turn to
the convergence of multidimensional marginals of this process. The limiting process was named
semi-circular Brownian motion. In the 1980’s, Biane got interested in the stochastic exponential
of a Hermitian Brownian motion, the unitary Brownian motion. He proved a similar result for
this integrated version of Hermitian Brownian motion, namely the asymptotic freeness of the
increments and convergence of the one-dimensional marginals. The limiting non-commutative
process was named free unitary Brownian motion and is a solution of a free stochastic differential
equation.

In the sequel, we will see that the processes mentioned above can be considered as being one
dimensional, meaning that they can be seen to be members of a family of processes indexed by
integers that can be approximated, in distribution, by random matrices. These processes are
called higher dimensional version of the free unitary Brownian motion. Let us explain, with more
details, this point. An approach for the construction of these higher dimensional free unitary
Brownian motions is to extract square matrices and let the dimension tend to infinity while
maintaining the number of such extractions constant. In other words, the ratio between the
dimension of a block and the total dimension is kept constant. Our first result can be informally
stated as follows.

Theorem 1. As the dimension tends to infinity, the non-commutative distribution of square
blocks extracted from a unitary Brownian motion converges to the distribution of a free process.

See Theorem 28 for a more precise statement. The second part deals with a generalisation the
readers may have already guessed. Why settle for square extractions? The answer may be that
the framework of free non-commutative probability is not the good one to study asymptotics of
products of rectangular blocks. Going from the square case to the rectangular case corresponds
to an algebraic move, from the category of stellar algebras to the category of bi-module stellar
algebras. We will not develop this point at the moment; we only underline that for rectangular
extractions processes, the right framework for studying asymptotic as the dimension of the blocks
tend to infinity is amalgamated free probability theory or rectangular free probability theory.
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Theorem 2. Under the assumption that the ratios between the dimensions of the extracted blocks
and the total dimension of the matrix tend to positive real numbers, we prove that normalised
traces of product of rectangular extractions from an unitary Brownian motion at a fixed time
converge. In addition, the time parametrized family of distributions is an amalgamated free
semi-group.

We have been vague on a point: which products between these rectangular blocks are allowed?
Do we consider all products that have a meaning, regarding the dimensions of the blocks? At
this point, our work splits in two and the last theorem holds for the two possibilities.

We mention that the question related to the convergence of square extractions of a Brownian
motion has already been addressed by Michael Ulrich in [10]. The present work extends this
initial investigation in two directions. The first concerns the division algebras the matricial
coefficients belong to, considering the three cases: complex, real and quaternionic, while the
author in [10] focuses only on the complex case. The second direction of generalisation we
explored concerns convergence of rectangular extractions.

We end this introduction with an indication on the method we used. It a variation of the one
developed by Levy in [7] to study Browian motion on the orthogonal, unitary, and symplectic
compact group. We start from the algebra of Brauer diagrams and add colors to the vertices
of a diagram. We obtain a coloured Brauer algebra that proves helpful for the first part of our
work concerning square extractions. This coloured Brauer algebra is however too small for the
investigation we conduct in the second part: we need a central extension of this algebra.

1.1. Outline. In the first part of this work (Section 2), we make a brief reminder on unitary
groups U(N,K) with K a division algebra equal either to the field of real numbers, complex
numbers or to algebra of quaternions. We then introduce Brownian diffusions on such groups.
A multidimensional counterpart of the free Brownian motion is introduced in Section 3. Our
main combinatoric tool, the algebra of coloured Brauer diagram is introduced in Section 4. Con-
vergence in non-commutative distribution of square blocks extractions of a unitary, symmetric
and symplectic Brownian motion is studied in Section 5. The case were rectangular blocks are
allowed for extractions is exposed in Section 6.

2. Brownian diffusions on unitary matrices

2.1. Unitary matrices over the three finite dimensional division algebras. We let K be
one of the three associative algebras C,H and R. We denote by i, j and k the linear real basis of
H:

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.
The adjoint of element x ∈ K is denoted x? and the adjoint of a matrix M = (Mij)1≤i,j≤N ∈
MN (K), N ≥ 1 is M? =

(
M?
ij

)
1≤i,j≤N

=
(
M?
ji

)
1≤i,j≤N

. The group of unitary matrices with
entries in K is the connected subgroup of MN (K), which depends on an integer N ≥ 1 and
defined by

U(N,K) = {M ∈MN (K) , MM? = M?M = 1}0.
where the exponent 0 means that we take the connected component of the identity (it is needed
for the real case). If K = R the group U(N,R) is the group of special orthogonal matrices
SO(N,R) and for K = C, U(N,C) is the group of unitary matrices. The Lie algebra u(N,K) is
given by

u(N,K) = {H ∈MN (K) : H? +H = 0}.
The real Lie algebra of skew-symmetric matrices of size N × N is denoted aN and the vector
space of symmetric matrices of size N × N is denoted sN . As real Lie algebras, one has the
decompositions:

(1) soN = aN , uN = aN + isN , spN = aN + isN + jsN + ksN , N ≥ 1.
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It follows that, with β = dimR(K),

dim(uN (K)) = N(N − 1)
2 + (β − 1)N(N + 1)

2 , N ≥ 1.

Amongst the groups U(N,K), K = R,C or H, only U(N,C) has a non trivial center and is thus
non simple. We shall add to the list the group of special unitary matrices SU(N) defined as
the subgroup of unitary matrices with complex entries with trace equal to one. The Lie algebra
su(N,C) is the subalgebra ofMN (C) of anti-Hermitian matrices with null trace. Let N ≥ 1. To
define a Brownian motion on the group U(N,K) one needs to pick first a scalar product on the
Lie algebra u (N,K). Since U (N,K) is simple, there exists up to a multiplication by a positive
scalar only one scalar product on u (N,K) which is invariant by the adjoint action of U(N,K) on
its Lie algebra

As the group U(N,K) is compact, the negative of the Killing form is an invariant scalar
product. Since we are going to let the dimension N tend to +∞, we care about the normalization
of the Killing form. Let 〈·, ·〉N be the scalar product

〈X,Y 〉N = βN

2 Re(Tr(X?Y )), X, Y ∈ u (N,K)

The direct sums in the equations (1) are decompositions into mutually orthogonal summands for
〈·, ·〉N . Let {HN

k } be an orthonormal basis of u (N,K), the Casimir element CuN (K) is a bivector
in uN (K)⊗R uN (K) defined by the formula:

CuN (K) =
β∑
k=1

Hk ⊗Hk.

We can cast the last formula for the Casimir element into a more concrete form by setting first
P =

∑
ab

Eab ⊗ Eab ∈MN (K)⊗MN (K) T =
∑
a,b

Eab ⊗ Eba ∈MN (K)⊗MN (K),

then a simple calculation we shall not reproduce here for brevity shows that:
CaN = −T + P CsN = T + P.

The letters T and P stand for transposition and projection. Eventually, put I(K) = {1, i, j, k} ∩K
and for the needs of the quaternionic case, define

ReK =
∑
γ∈I(K)

γ ⊗ γ−1 ∈ K⊗R K, CoK =
∑
γ∈I(K)

γ ⊗ γ ∈ K⊗R K.

For the complex case, formulae for ReC and CoC are given below if these quantities are seen in
the tensor product over the complex field ofMN (C) with itself, not over the real field as stated
in the last equation.

Lemma 3. The Casimir element of the real Lie algebra uN (K) is given by

CuN (K) = 1
βN

(
−T⊗R ReK + P⊗R CoK

)
We agree with the author in [7], for the complex case it is more natural to take tensor products
over the complex field, not over the real field. In the sequel, the symbol ⊗ stands for the
symbol ⊗C if taking the tensor product of complex vector spaces and ⊗R otherwise. With this
convention, we can give simple formulae for Cu(N,C) and Cu(N,R):

CuN = − 1
N
T ∈MN (C)⊗MN (C), CsoN = − 1

N
(T − P ) ∈MN (R)⊗MN (R).

Let m :MN (K)⊗MN (K)→MN (K) be the multiplication map and let cuN (K) = m(CuN (K)).

Lemma 4. If g is one of the three Lie algebras at hand, then:

cuN (K) = −1 + 2− β
βN

IN .
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2.2. Brownian motion on unitary groups. Let N ≥ 1 be an integer and K one of the
three division algebra R,C and H. Let (Bk)k≤dim(uN (K)) be a dimR(uN (K)) dimensional Brownian
motion and let

(
HN
k

)
1≤k≤N

an orthonormal basis for u(N,K), a Brownian motionK = (K(t))t≥0

with values in the Lie algebra u(N,K) is

(2) K(t) =
dimR(u(N,K))∑

k=1
Bk(t)HN

k , t ≥ 0.

If d ≤ 1 and n ≥ 1 are two integers such that N = nd, a matrix A ∈ MN (K) is seen as an
element ofMN (K)⊗R (K) through the identification M 7→ Eij ⊗M(i, j) if M(i, j) is the matrix
of size d×d in place i, j in the matrix M , 1 ≤ i, j ≤ N . The Brownian motion UK

N = (UK
N (t))t≥0

on the unitary group U(N,K) is the solution of the following stochastic differential equation with
values in the tracial algebra (MN (K), tr):

(3)
{

dUK
N (t) = UK

N (t)dK(t) + cuN (K)
2 UK

N (t)dt
UK
N (0) = IN .

For all t ≥ 0, UK
N (t) is an unitary matrix, a random variable with values in the dual Voiculescu

group O〈n〉 is defined by:

UK
n,d(t) :


O〈nd〉 → L∞ (Ω,A,Md(C),P⊗ tr)
uij 7→ UK

N (t)(i, j)
u?ij 7→

(
UK
N (t)(i, j)

)?
.

In Section 5, we study the convergence in non-commutative distribution of UK
n,d as the dimension

d→ +∞ to the free unitary Brownian motion. A crucial step toward this goal is to give formulae
for mean of polynomials in the matrix UK

N (t), t ≥ 0.
In the following proposition, let i, j, k be three integers such that i, j ≤ k, to a tensor A ∈

MN (K)⊗MN (K) we associate the endomorphism ιij(A) ∈MN (K)⊗k that acts as: ιij(A)(v1⊗
vi ⊗ · · · ⊗ vj ⊗ vk) = v1 ⊗ · · ·A(1)(vi)⊗ · · · ⊗ A(2)(vj)⊗ · · · ⊗ vk, v1 · · · ⊗ vk ∈ (RN )⊗k if we use
the Sweedler notation. For the complex case, mean of tensor product of UC

N and its conjugate
are also needed. We denote by M̄1 the free monoid generated by x1 and x̄1. If A ∈MN (C) and
w ∈ M̄1, then w⊗(A) denotes the monomial inMN (C)⊗k obtained via the substitution x1 → A
and x̄1 → Ā.

Proposition 5 ([7]). Let K be one the three division algebra R,C or H. Let k ≥ 1 be an integer
and t ≥ 0 a time. We have

E
[(

UK
N (t)

)⊗k]
= exp

ktcg2 + t
∑

1≤i<j≤n
ιij(Cg)

 .
For the complex case, let w ∈ M̄2, then:

(4) E
[
w⊗

(
UC
N

)
(t)
]

= exp

−kt2 +
∑

1≤i,j≤k,
wi 6=wj

ιi,j (P)−
∑

1≤i,j≤k,
wi=wj

ιi,j (T)

 .
3. Higher dimensional free Brownian motion

Let n be an integer greater than one. Let (wi
ij)1≤i<j≤n, {wi, i ≤ n} with i ∈ {1, 2} be three

mutually free families of free Brownian motions on a tracial von Neumann algebra (A, τ). We de-
fine the algebraH〈n〉 as the real unital algebra freely generated by n(n+1) elements (hij)1≤i≤j≤n
and (h?ij)1≤i≤j≤n. We turn H〈n〉 into a ? algebra by defining the involutive antimorphism ? as
(hij)? = h?ij . The complexification of H〈n〉 is denoted HC〈n〉. The involution ? is extended
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as an anti-linear anti-morphism of HC〈n〉. We prefer to work with the real algebra H〈n〉 since
the random variables we are interested in are valued into real algebras (and we do not want
to complexify those algebras). For each time t ≥ 0, we define a free noise process, that is a
quantum process W by setting for each time t ≥ 0, the random variable W(t) : H〈n〉 → (A, τ)
equal to:

Wii(t) = wi(t), Wij(t) = 1√
2

(
w1
ij(t) + iw2

ij(t)
)
,Wji(t) = (Wij(t))? i < j,

where Wij(t) = W(t)(hij). We refer to the matrix with non-commutative entries W as the freen-
dimensional Hermitian Brownian motion. We define further the dual unitary group O〈n〉, in
the sense of Voiculescu. As a real algebra O〈n〉 is generated by 2n2 variables (oij)1≤i,j≤n and
(o?ij)1≤i,j≤N subject to the relations:

(5)
n∑
k=1

oiko
?
jk =

n∑
k=1

o?kiokj = δij , 1 ≤ i, j ≤ n.

To define morphisms on O〈n〉, it is convenient to introduce the matrix O with entries in O〈n〉
and defined by Oij = oij , i, j ≤ n. With the help of these notations, the dual Voiculescu group
is turned into a free bialgebra by defining a coproduct ∆ that takes values into the free product
O〈n〉 t O〈n〉 and satisfies the equation:

∆(O) = O|1O|2.

The associated counit ε : O〈n〉 → R is subsequently defined by ε(O) = In ∈ O〈n〉 ⊗Mn(R). In
addition, the morphism S of O that takes the values S(oij) = o?ji on the generators of O〈n〉 is
an antipode for the free bi-algebra O〈n〉 : (S t 1)(oij) = (1 t S)(oij) = oij for all i, j ≤ n. The
tuple (O〈n〉,∆, ε, S) is a Zhang algebra in the category of involutive algebra.

Our goal now is to define the higher dimensional analog of the free unitary Brownian motion.
This process is a one parameter family of random variables on the Voiculescu dual unitary group
denoted by U 〈n〉 which values Uij(t) = U(t)(oij) i, j ≤ n on the generators of O〈n〉 satisfy the
following free stochastic differential system:

(6)
{

dU〈n〉(t)(i, j) = i√
n

∑n
k=1(dWt(i, k))U〈n〉(t)(k, j)− 1

2U〈n〉(t)(i, j)dt
U〈n〉(0) = In

The following lemma states that for each time t ≥ 0, the entries of the matrix U〈n〉 satisfy
the defining relations of O〈n〉. In the next lemma, we use the fact the algebra A ⊗Mn(R) is
an involutive algebra if endowed with the tensor product of the star anti-morphisms of A and
Mn(R) (the transposition).

Lemma 6. For each time t ≥ 0, the matrix U〈n〉 =
(
U〈n〉(t)(i, j)

)
1≤i,j≤n

is an unitary element
of A⊗Mn(C).

Proof. The defining relations of the algebra O〈n〉 admit the following compact form : OO? =
O?O = In. We compute the derivative of t 7→ U〈n〉U〈n〉?(t). Let t ≥ 0 be a time and i, j ≤ n
integers.

d
(
U〈n〉(t)U〈n〉(t)?

)
(i, j) = −

(
dU〈n〉(t)U〈n〉(t)?

)
(i, j) +

(
U〈n〉(t)dU〈n〉(t)?

)
(i, j)

= −
(
U〈n〉(t)U〈n〉(t)?

)
(i, j)dt

+ 1
n

∑
k,l,q

dWt(i, k)U〈n〉(t)(k, q)U〈n〉(t)?(q, l)dWt(l, j)

= −U〈n〉(t)U〈n〉(t)? + tr(U〈n〉(t)?U〈n〉(t))In.

(?)
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By applying the linear form tr on the left and right hand sides of equation (?),we prove that
tr(U〈n〉(t)?U〈n〉(t))
= 1 for all time t ≥ 0. Inserting this last relation in equation (?) gives

dU〈n〉(t)U〈n〉(t)? = −U〈n〉(t)?U〈n〉(t) + In, U〈n〉0 = 1.

By using unicity of the solution of equation (?), we prove that U〈n〉(t)U〈n〉?t = 1. A similar
argument shows that the relation U〈n〉?tU〈n〉(t) = In also holds. �

We use the symbol U 〈n〉 for the process on the dual Voiculescu group which values on the
generators of O〈n〉 are given by U〈n〉. It is not gard to prove, by using equation (6), that U 〈n〉
is actually a free Levy process on O〈n〉. We compute the derivative of the non cmmutative-
distribution at time t = 0 of U 〈n〉. We define an operator Ln acting on O〈n〉, that will be called
the generator of U 〈n〉, such that

d

dt

∣∣∣∣
t=0

τ ◦ U 〈n〉(t)(u) = Ln(u).

We define in the next section what a generator on a bi-algebra is in the next Section and
compute an associated Schürmann triple. We will not say that much on what a SchÃĳrmann
triple is, we only indicate that it is a non-commutative analogue of the famous Lévy triple
that is associated to every classical Lévy process. As such, Schürmann triples classify laws
of non-commutative Lévy processes and allow for the definition of what Gaussian, Poisson or
pure drift quantum processes are. We provide, to put it informally, a combinatorial formula for
Ln by using the algebra of coloured Brauer diagrams we introduced in the last Section. This
formula is important because it will allow for a comparison between the limiting distribution of
Brownian motions on unitary groups in high dimension and the free process U 〈n〉. We fix an
element u = ui1,j1 · · ·uip,jp ∈ O〈n〉 in the Voiculescu dual group and compute the derivative of
t 7→ τ(U 〈n〉t(u)) at time t = 0. By using the free Itô formula, we find

d
(
Ut(uε(1)

i1j1
) · · ·Ut(uε(p)ipjp

)
)

=
p∑

k=1
Ut(uε(1)

i1j1
) · · · d(Ut(uε(k)

ikjk
))Ut(uε(p)ipjp

)

+
∑

1≤k<l≤p
Ut(uε(1)

i1j1
) · · · dUt(uε(k)

ikjk
) · · · dUt(uε(l)iljl

) · · ·Ut(uε(p)ipjp
)

(7)

We insert in the last equation the stochastic differential equation 6 that is satisfied by the matrix
U〈n〉 and U〈n〉? and apply the trace τ to both side of the resulting equation, note that:

dU〈n〉?t = -i√
n
dWt U〈n〉?t −

1
2U〈n〉?t .

We obtain for the derivative of t 7→ τ(U 〈n〉t(u)):

dτ
(
Ut(uε(1)

i1j1
) · · ·Ut(uε(p)ipjp

)
)

= −p2τ(Ut(uε(1)
i1j1

) · · ·Ut(uε(k)
ikjk

)Ut(uε(p)ipjp
))dt

+
∑

1≤k<l≤p
τ
(
Ut(uε(1)

i1j1
) · · · dUt(uε(k)

ikjk
) · · · dUt(uε(l)iljl

) · · ·Ut(uε(p)ipjp
)
)
.

(8)

We divide the second sum in (7) according to the values of (ε(k), ε(l)), k, l ≤ n. First, if
ε(k) = ε(l) we obtain:

τ
(
Ut(uε(1)

i1j1
) · · · dUt(uikjk) · · · dUt(uiljl) · · ·Ut(u

ε(p)
ipjp

)
)

= − 1
n
τ
(
Ut(uε(1)

i1j1
) · · · τ(Ut(uiljk) · · · )Ut(uikjl) · · ·Ut(u

ε(p)
ipjp

)
)(91)

τ
(
Ut(uε(1)

i1j1
) · · · dUt(u?ikjk) · · · dUt(u?iljl) · · ·Ut(u

ε(p)
ipjp

)
)

= − 1
n
τ
(
Ut(uε(1)

i1j1
) · · ·Ut(u?ikjl)τ(· · ·Ut(u?iljk)) · · ·Ut(uε(p)ipjp

)
)(92)
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Secondly, if ε(k) 6= ε(l):

τ
(
Ut(uε(1)

i1j1
) · · · dUt(uikjk) · · · dUt(u?iljl) · · ·Ut(u

ε(p)
ipjp

)
)

= 1
n
τ
(
δikjlUt(u

ε(1)
i1j1

) · · · τ(Ut(uikil) · · ·Ut(u
?
jkjl

)) · · ·Ut(uε(p)ipjp
)
)(93)

τ
(
Ut(uε(1)

i1j1
) · · · dUt(uikjk) · · · dUt(u?iljl) · · ·Ut(u

ε(p)
ipjp

)
)

= 1
n
τ
(
δjljkUt(u

ε(1)
i1j1

) · · ·Ut(u?ikjk)τ(· · · )Ut(uilik) · · ·Ut(uε(p)ipjp
)
)(94)

In the sequel, we use the coloured Brauer algebra Bk(1, . . . , 1︸ ︷︷ ︸
n

) and its representation ρ(1,...,1) to

write formulae (91)-(94). We set cp = (1, . . . , p) and consider cp alternatively as a permutation
or as a non-coloured Brauer diagram. The non-coloured diagram b•ε is obtained by twisting cp
at positions i′s such that ε(i) = ?:

b•ε =
( n∏
i:ε(i)=?

Twi
)
(cp).

We colourize b•ε with the colourization c defined by : c(k) = ik, c(k′) = jk if ε(k) = 1 and
c(k) = jk, c(k′) = ik if ε(k) = ? to obtain a coloured Brauer diagram denoted b•ε. We claim that
each of the equations (91)− (94) can be put in the following form:

τ
(
Ut(uε(1)

i1j1
) · · · dUt(uε(k)

ikjk
) · · · dUt(uε(l)iljl

) · · ·Ut(uε(p)ipjp
)
)

= −1
n

(
τ ⊗ Tr⊗n

) [
ρ(1...,1)(τ •kl ◦ bε,i,j) ◦ U〈n〉(t)⊗k

]
dt, if ε(k) = ε(l)

τ
(
Ut(uε(1)

i1j1
) · · · dUt(uε(k)

ikjk
) · · · dUt(uε(l)iljl

) · · ·Ut(uε(p)ipjp
)
)

= 1
n

(
τ ⊗ Tr⊗n

) [
ρ(1,...,1)(e•kl ◦ bε,i,j) ◦ U〈n〉(t)⊗k

]
dt, if ε(k) 6= ε(l).

A combinatorial formula for the generator of the process U 〈n〉 follows readily from this last four
formulae. In fact, by using equation (8) and the characterisation of the sets T+

k (bε) and W+
k (bε)

we gave in Section 4, we get:

d

dt

∣∣∣∣
t=0

τ
(
Ut(uε(1)

i1j1
) · · ·Ut(uε(p)ipjp

)
)

= −p2δi,j −
1
n

∑
τ•∈T+

k
(bε,i,j)

δ∆(τ • ◦ bε,i,j) + 1
n

∑
e•∈W+

k
(bε,i,j)

δ∆(e• ◦ bε,i,j)

= Ln(uε(1)
i1j1
· · ·uε(p)ipjp

),(10)
with δ∆ the support function of the set of diagonally coloured Brauer diagrams: δ∆(b) = 1 ⇔
cb(i) = cb(i′).

3.1. Schürmann triple for the higher dimensional free unitary Brownian motion. For
a detailed introduction to the theory of quantum stochastic calculus and Schürmann triple, the
reader is directed to [5] and [8].

Definition 7. Let B be a unital associative complex free bi-algebra. A generator is a complex
linear functional L : B → C satisfying the properties:

1. L(1B) = 0, L(b?) = L(b), for all b ∈ B,
2. L(b?b) ≥ 0 for all b ∈ B with ε(b) = 0.

Generators show up naturally if differentiating a convolution semi-group of states. In the
present work, we are interested in two types of (convolution) semi-groups, which are tensor
semi-groups and free semi-groups (see [5]):

(11) αs+t = αs ⊗̂αt = (αs ⊗ αt) ◦∆ (tensor), αs+t(αs t̂αt) = (αs t αt) ◦∆ (free) ,
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and the continuity condition,
lim
s→0+

αs = ε

where s, t ≥ 0 are two times. The word convolution is used to indicate the similitude of the
products ⊗̂ and t̂ with the usual convolution product of functions on a group. If j is a free
Lévy process on a bi-algebra B, its one dimensional marginals, (τ ◦ jt)t≥0 constitute a free semi-
group. Let B be a free bi-algebra. Below we state the Schoenberg correspondence, that relates
precisely some type semi-groups to generators. In Proposition 8, we use the symbol exp? to
denote the exponentiation with respect to a convolution product on B? denoted ?, equal either
to the tensor convolution product or the free convolution product? The correspondence holds
also for what is called the boolean convolution product, obtained by replacing the free product
of states in equation (11) by boolean product of states (see [6]).

Proposition 8 (Schoenberg correspondence). Let ? be a convolution product on B?.
(1) Let ψ : B → C be a linear functional on B, then the series:

exp?(ψ)(b) =
∞∑
k=1

ψ?n

n! (b)

converges for all b ∈ B.
(2) Let (φt)t≥0 be a convolution semi-groups, with respect to the product ? on B?, then

L(b) lim
t→0

1
t

(φt(b)− ε(b)) exists

for all b ∈ B. Furthermore, exp?(tL)(b) = φt(b) and the two following statements are
equivalent:

a. L is a generator,
b. φt is a state for all t ≥ 0: φt(bb?) ≥ 0 and φt(bb?) = 0⇔ b = 0, b ∈ B.

In the next definition, we introduce the central object of this section, the Schürmann triple.
Let (D, 〈 · | · 〉) be a pre-Hilbert space, we denote by L(D) the vector space of all linear operators
on D that have an adjoint defined everywhere on D:

L(D) = {A : D → D : ∃A? : D → D, 〈A(v), w〉 = 〈v,A?(w)〉, v, w ∈ D} .

Definition 9 (Schürmann triple). A Schürmann triple on (B,∆, ε) is triple (π, η, L) with
1. a unital ?-representation π : B → L(D) on a pre-Hilbert space D,
2. a linear map η : B → D verifying

(1CC) η(ab) = π(a)η(b) + η(a)ε(b),
3. a generator L such that:

(2CB) − 〈η(a?), η(b)〉 = ε(a)L(b)− L(ab) + L(a)ε(b).

A map η : B → D satisfying (1CC) is called a π-ε cocyle and a map L : B → C satisfying
condition (2CB) is called a ε-ε coboundary. A schurman triple is said to be surjective if the
cocycle η is a surjective map.

Proposition 10. With the notation introduced so far, there is a one-to-one correspondence
between surjective Schürmann triples, generators and convolution semi-groups {φt, t ≥ 0}.

Gaussian and drift generators can be classified using Schürmann triples. In particular, the
next definition introduces the notion of Gaussian processes on O〈n〉

Definition 11. Let (jt)t≥0 be a quantum Lévy process on O〈n〉. Let (π, η, L) be a Schürmann
triple associated with j. The process j is said to be Gaussian if one of the following equivalent
conditions hold:

1. For each a, b, c ∈ Ker(ε), we have L(abc) = 0,
2. For each a, b, c ∈ Ker(ε), we have L(b?a?ab) = 0,
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3. For each a, b, c ∈ O〈n〉, the following formula holds
L(abc) = L(ab)ε(c) + L(ac)ε(b) + ε(a)L(bc)− ε(a)ε(b)L(c)

− ε(a)ε(c)L(b)− L(a)ε(b)ε(c)
4. The representation π is zero on Ker(ε),
5. For each a ∈ O〈n〉, π(a) = ε(a)1
6. For each a, b ∈ Ker(ε), we have η(ab) = 0
7. For each a, b ∈ O〈n〉, η(ab) = ε(a)η(b) + η(a)ε(b)

Proposition 12 ([10]). Take D =MN (C). We define a Schürmann triple for U 〈n〉 by setting
η(uij) = εij , η(u?ij) = εij ,

π(uij) = δij1,

Ln(uij) = −1
2δij = 1

2

n∑
r=1
〈η(u?ij), η(uij)〉

(12)

In the last equation, 〈 · , · 〉 = tr( ·? · )

Proof. Let n ≥ 1 an integer. The operator Ln is denoted L. First we prove that the three
operators (π, η, L) defined by their values given in equation (12) on the generators of O〈n〉 exist.
This is trivial for the representation π. For η and L we have to check that (12) is compatible with
the defining relations of the algebra O〈n〉. Denote by F(n2) the free algebra with n2 generators.
Let η : F(n2) → D be the extension of the values (12) by using the cocycle property (1CC).
Denote also by L : F(n2) → C the operator extending the values (12) by using point (2CB) in
definition 9. For the maps η and L to descend to the quotient of the free algebras F(n2) by the
defining relations of O〈n〉, we have to check

η(
∑
r

u?riurj) = 0, L(
∑
r

u?riurj) = 0.

First, let 1 ≤ i, j, r ≤ n,
L(u?riurj) = 〈η(uri), η(urj)〉+ ε(u?ri)L(urj) + L(u?rj)ε(urj)

= 〈ε(ri), ε(rj)〉+ ε(u?ri)L(urj) + L(u?ri)ε(urj)

= 1
n
δirδrj −

1
2δriδrj −

1
2δriδrj .

By summing the last equation over 1 ≤ r ≤ n, we obtain L(
∑n
r=1 u

?
riurj) = 0. Also, using

property (1CC),

η(
n∑
r=1

u?riurj) = −
n∑
r=1

δriεrj +
∑
r

εirδrj = 0

By construction, (L, η, π) is a Schürmann triple. It is easy to show by induction the following
formula for the cocycle η, εi ∈ {1, ?}, 1 ≤ ai, bi ≤ n, 1 ≤ i ≤ p,

(?) η
(
uε1
a1,b1
· · ·uεpap,bp

)
=
∑
k≤p

δa1,b1 · · · (−1)(εk = ?)δakbk · · · δap,bp

On the generators, the linear functional L and Ln agree: L(uεij) = Ln(uεij), i, j ≤ n. We prove
by induction on length of words on generators of O〈n〉, that L and Ln agree. Assume that L and
Ln agree on words of length less than m and let w a word on the alphabet {ui,j , u?i,j 1 ≤ i, j ≤ n}
of length m+ 1, w = w̃u

εm+1
im+1jm+1

with w̃ a word of length m.

Ln(w) = L(w̃)ε(uεm+1
im+1jm+1

)− 1
n

∑
τi,p+1∈T+

k
(bεi,j)

δ∆(τi,p+1 ◦ bεi,j) + 1
n

∑
ei,p+1∈W+

k
(bεi,j))

δ∆(ei,p+1 ◦ bεi,j).

We compute next the remaining two sums. Let 1 ≤ k ≤ p be an integer, owing to:
δ∆(τk,p+1 ◦ bεi,j) = δi1,j1 · · · δikjp+1 · · · δip+1,jk , δ∆(ek,p+1 ◦ bεi,j) = δi1,j1 · · · δjkjp+1 · · · δip+1,ik ,
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we can write the last formula for Ln(w) in a more explicit form as:

Ln(w) = L(w̃)ε(uεm+1
im+1jm+1

)+ 1
n

∑
k

(−1)1+(εp+1 =εkδi1,j1 · · ·
{
εp+1 = εk δip+1,ikδjp+1,jk
εp+1 6= εk δip+1,jkδjp+1,ik

}
· · · δip,jp .

On the other hand, formula (?) implies:

〈η(u¬εp+1
ip+1,jp+1

), η(uε1
i1,j1 · · ·u

εp
ip,jp)〉 = 1

n

p∑
k=1

(−1)1+(εp+1=εk)δi1,j1 · · ·Tr
(
ε
¬εp+1
ip+1,jp+1

εεkikjk

)
· · · δip,jp

= 1
n

p∑
k=1

(−1)1+(εp+1=εk)δi1,j1 · · ·
{
εp+1 = εk δip+1,ikδjp+1,jk
εp+1 6= εk δip+1,jkδjp+1,ik

}
δip,jp

This achieves the proof of Proposition 12. �

3.2. Some cumulants of higher dimensional free Brownian motions. In this section
we compute some cumulants functions of higher dimensional Brownian motion’s distribution.
Our main result is contained in Proposition 15. Computing mixed cumulants of {U 〈n〉, U 〈n〉?} is
rather difficult task, see for example [3] in which formulae for only two types of mixed cumulants
{U 〈n〉, U 〈n〉?} are proved. We will not address this question for the process U 〈n〉, although it
would be interesting to.

3.2.1. Free cumulants. Let n ≥ 1, we consider the set NC({1, . . . , n}) = NC(n) of all non-
crossing partitions of {1, . . . , n}. A generic partition in NC(n) will be denoted π (sometimes ρ).
A notation for π = {V1, . . . , Vk} where V1, . . . , Vk are called the blocks of π.

On NC(n), we consider the partial order given by reversed refinement, where for π, ρ ∈ NC(n)
we have π ≤ ρ if and only if every blocks of ρ is a union of blocks of π. The minimal partition
for the order ≤ is the non crossing partitions having n blocks (denoted 0n and the maximal
element is the partition having only one block (denoted 1n). The Möbius function on NC(n)
will be denoted µ. This function is defined on {(π, ρ) | π, ρ ∈ NC(n), π ≤ ρ}. We will use only
the Moebius function restricted to set of pairs (0n, π) with π ∈ NC(n) for which we have

µ(0n, π) = πW∈π(−1)]WC]W−1

where for k ∈ N,

Ck = (2k)!
k!(k + 1)!

is the kth Catalan number.
Let (A, φ) be a non commutative probability space. The nth moment functional of (A, φ) is

the multilinear functional φn : An → C defined by φn(a1, . . . , an) = φ(a1 · · · an), a1, . . . , an ∈ A.
The nrh cumulant functional of (A, φ) is the multilinear functional kn : An → C defined by

(13) kn(a1, . . . , an) =
∑

π∈NC(n)
µ(π,1n) · π{i1<...<ik}∈πφk(ai1 , . . . , aik)

We refer to the equation (13) as the moment-cumulant formula. The cumulants functionals
satisfy some important properties:

1. Invariance under cyclic permutations of the entries

kn(a1, . . . , an) = kn(am, . . . an, a1, . . . , a1), ∀1 ≤ m ≤ n and a1, . . . , an ∈ A,

2. If C ⊂ A is a commutative algebra, then

kn(c1, . . . , cn) = kn(cn, . . . , c2, c1), ∀n ≥ 1 and c1, . . . , cn ∈ C.

3. kn(a1, . . . , an) = kn(a?n, . . . , a?1).
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3.3. Computations of cumulants of the higher dimensional free Brownian motion.
Let p, n ≥ 1 two integers. We use the symbol C2p for the set comprising all sequences of the form
((i1, j1), . . . , (ip, jp)) with il, jl ∈ {1, . . . , n} and refer to an element of C2p as a colourization. For
each time t ≥ 0, we denote by φt ∈ O〈n〉? the distribution of the process U 〈n〉. Let p ≥ 1 an
integer, π a non-crossing partition in NCp and define φt(π) : O〈n〉p → C, φt(π) : C2p → C by

(14) φt(π)(a1, . . . , ap) =
∏
b∈π

φt
( →∏
k∈b
ak
)
, φt(π)(i, j) = φπt (ui1,j1 , . . . , uip,jp).

The function φ(pi) taking as argument a colourization is introduced for easing exposition. The
group Sp of permutations acts on a finite sequence i ∈ {1, . . . , n}p in a canonical way:

s · σ = (sσ(1), . . . , sσ(p)), s ∈ {1, . . . , n}p, σ ∈ Sp.

The following lemma is a downward consequence of equation (10) for the derivative of φ.

Lemma 13. With the notation above, for each time t ≥ 0, non crossing partition π and colour-
ization (i, j) ∈ C2p,

(15) d

dt
φπt (i, j) = −p2φ

π
t (i, j)− 1

n

∑
τ∈T+(σπ)

φ
πσπ◦τ
t (i · τ, j).

We fix once for all a non-crossing partition π and a colourization (i, j) ∈ C. We solve the
differential equation (15). We introduce the normalized function:

L(i, j, π)(s) = e
ps
2 φπs (i, j), s ∈ R+.

For each integer k ∈ {0, . . . , p − 1}, we denote by P k(i, j, π) ∈ C kth coefficient of the Taylor
expansion of R+ 3 s 7→ L(i, j, π)(s) (we prove in a moment this function is polynomial in its
time variable). Owing to formula (15),

d

ds
L(i, j, π)(s) = − 1

n

∑
τ∈T+

k
(σπ)

L(τ · i, j, πσπ◦τ )(s), s ∈ R+.(16)

Frm the definition of φ(π, i, j)(s) as a product over the blocks of π, we prove that:

(17) Lπi,j(s) =
∏
V ∈π

L
1]V
i|V ,j|V (s), s ≥ 0, (i, j) ∈ Cp, π ∈ NC(p)

We gave now the argument to prove that s 7→ Lπi,j(s) is polynomial. Let N be the operator
acting on functions of non-crossing partition and colourizations such that

d

ds
L(π, i, j) = N(L(s, ·, ·))(π, i, j).

The operator N is a nilpotent operator of order p. In fact, if 1 is the constant function equals to
1 on NC(p)× C2p, then Ls(1)((p . . . , 1), i, j) is the number of minimal factorisations of the cycle
(p . . . 1) of length s. Thus Lp−1(1) 6= 0 and for all s ≥ p, Ls(1) = 0. Since L(f) ≤ L(1) sup(f),
we have Ls(f) = 0, ∀s ≥ p. Hence L is nilpotent of order p which implies that the exponential
of L is a finite sum and the function s 7→ Lπi,j(s) is indeed a polynomial of degree stricly less than
p.

Owing to equation (16), the following inductive relationship for the Taylor coefficients holds:

P π,ki,j = 1
n

∑
τ∈T+(σ)

P
πσπ◦τ ,k−1
τ ·i,j ,

P π,0i,j = Li,σ(0) =
n∏
i=1

δii,ji , k ≤ p− 1, π ∈ NCp, (i, j) ∈ Cp.
(R)

In particular, the coefficients P π,0i,j are independent of the non-crossing partition π. Recall that
the type of a permutation σ ∈ Sp is a sequence t(σ) = (ni)1≤i≤p of p integers with ni the number
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of cycles of σ of length i, 1 ≤ i ≤ p. The geodesic distance d(σ) of a permutation σ ∈ Sp to
the identity id ∈ Sp is the minimal numbers of transpositions needed to write σ as a product of
transpositions:

d(σ) = min{` ≥ 0 : σ = τ1 · · · τ`, τi ∈ Tp, 1 ≤ i ≤ p}.
The geodesic distance can be computed as d(σ) = p− ](σ) with ](σ) the number of cycles of σ,
σ ∈ Sp.

Lemma 14. Let (i, j) ∈ C2p be a colourization and π ∈ NC(p) a non-crossing partition, it holds
that:

(18) P π,ki,j = 1
nk

∑
τ1,...,τk∈Tk+(σπ)

δi·τ1...τk,j, ∀k ≥ 1.

The set Tk+(σπ) is defined by:

Tk+(σπ) =
{
τ1, . . . , τk ∈ T×kp : σπ ◦ τ1 ◦ · · · ◦ τk has exactly k + ]σπ + 1 cycles

}
.

In particular if the type t(σπ) of σπ is (n1, · · · , np), then

P
π,d(σπ)
i,j =

(
p−

∑p
i=1 ni

0!n1 . . . (p− 1)np
p∏
i=1

ini(i−2)
)
δi
σ−1
π (1), j1

· · · δi
σ−1
π (p), jp

.

Before we prove the last proposition, a simple consequence of the relation (20) is the nullity of
the Taylor coefficients P k(π, i, j of order k larger than the geodesic distance of σπ to the identity
in Sp:

∀k ∈ N, k > d(σπ)⇒ P π,ki,j = 0.
We can be more precise. If σ is a non-crossing permutation in Sp, define S(σ, i, j) ⊂ Sp as the
set comprising all permutations ρ lying on a geodesic between the identity permutation and σ
and satisfying i · ρ = j. The last proposition implies:

k > max{d(ρ), ρ ∈ S(σπ, i, j)} =⇒ P π,ki,j = 0.

Proof. Let k ≥ 1 be an integer, let π a non-crossing partition of size p ≥ 1, and (i, j) ∈ C2p a
colourization. A simple application of the recurrence relation (R) shows that:

P π,ki,j = 1
nk

∑
τ1,...,τk∈T

τi∈T+(σπ◦τ1...τi−1)

P σπ◦τ1···τk,0
i·τ1...τk, j .

The sum runs over k-tuple (τ1, · · · , τk) such that τi ∈ T+(σπ ◦ τ1 · · · ◦ τi−1) for all i ≤ k. By
definition such a k-tuple of transpositions belongs to Tk+(σπ). The first relation is proved. A
minimal factorisation of a permutation π is a tuple (τ1, . . . , τq) such that π = τ1 · · · τq. Such a
tuple is of length p− ]π. A result of Dénes (see [4]) on the number of minimal factorisations of a
cycle of length s assesses that there are ss−2 such factorisations. Hence the number of minimal
factorisations of a permutation σ of type n1, · · · , np is

(19) p−
∑p
i=1 ni

0!n1 · · · (p− 1)np
p∏
i=1

ini(i−2)

where the factor p−
∑p

i=1 ni
0!n1 ···(p−1)!np accounts for the number of shuffling of a given minimal factorisa-

tions of σπ. �

We use the notation mf(σ) for the number of minimal factorisation of a non-crossing partition
σ, see equation (19). Before going further into the analysis of the sum (18), in Lemma 14, there
are other simple consequences of Lemma 14. First, for the coefficient P k,πi,j , the sequences i and
j must contain the same number of different colours with same number of occurences:
(20) φt((i, j), π) 6= 0⇒ (∀i ∈ {1, · · · , p}, ]{k ∈ {1, · · · , p} : ik = i} = ]{k ∈ {1, · · · , p} : ik = i})



14 NICOLAS GILLIERS

Given two sequences i and j in {1, . . . , n}p, it seems a rather difficult task to decide whether
there exists a non-crossing permutation σ such that σ(i) = j. Related questions have drawn our
interest but we did not succeed to make progress on them:

(1) Give sufficient conditions on the sequence j such that there exists a non-crossing permu-
tation σ satisfying i · σ = j,

(2) if such a permutation exists, give a way to construct all of them (or at least one), and
finally

(3) compute the maximal distance and minimal distance to the identity of such permuta-
tions.

This last relation implies in turn that for all pairs of integers 1 ≤ i 6= j ≤ p and all integers
n ≥ 1 that φt((uij)n) = 0. One should emphasize that the last relation does not imply uij = 0,
because uij is not self-adjoint and thus φt(uij (uij)?) 6= φt(u2

ij). Let σ be a permutation of
{1, · · ·n}. An other simple consequence of Lemma 14 is independence of the state φt with
respect to permutations of blocks:

P π,kσ·i,σ·j = P π,ki,j , ∀k ≥ 0, σ ∈ Sp and φt(i, j, π) = φt(σ · i, σ · j, π).

This last property is related to an invariance of the non-commutative distribution of the driving
noise W of equation (6). In fact, the group of permutations S is injected into the group of
unitary elements of A⊗Mn(C) by setting for the matrix [σ] corresponding to a permutation σ,
[σ]ij = δi,σ(j), 1 ≤ i, j ≤ n. With this definition, because we chose for the entries of W circular
brownian motion with same covariance:

[σ] W(t) [σ]−1 nc. dist.= W(t), for all time t ≥ 0.

We reformulate equation (18) of Lemma 14 by rewriting the right hand side as a sum over
non-crossing partitions. In fact, for a pair of non-crossing partitions ρ, π in NCp, we denote by
[ρ, . . . , π] the set of all non-crossing partitions that are greater than ρ and smaller than π. It is
a simple fact that

γ ∈ [0̂[1,...,p], π]⇔ ∃k > 0, ∃τ1 · · · τk ∈ T+(σπ) : σγ = τ1 · · · τk ◦ σπ,

Thus,

(21) P π,ki,j = 1
nk

∑
γ≤π

∑
τ1,...,τk=γ

δγ·i,j = 1
nk

∑
γ≤π

mf(σγ)δσγ ·i,j, ∀k ≥ 1.

Let (ut)t be a unitary Brownian motion in a tracial algebra (A, τ). For each time t ≥ 0, let
νt ∈ C[u, u?]? be the non commutative distribution of ut. A formula due to Nica (see for example
[3]) for some of the cumulants kpt , p ≤ 1 of the distribution νt is the following:

κqt (u, . . . , u) = e−
qt
2

(−qt)q−1

q! , q ≥ 1,

We briefly recall how this formula can be obtained. It can be shown (see [2]) that:

φt(upt ) = e−
pt
2

n−1∑
k=0

(−t)k

k! Pk.

with Pk = ]{(τ1, · · · , τk) ∈ Tp : τ1 · · · τk ≤ (1, · · · , n), ]πτ1...τk = p − k}. According to a result
of Denes, there are ``−2 minimal factorisations of a cycle of length `. Thus, if the partitions
pπ ∈ NC(p, p − k) of a non-crossing permutation define a partition (s1, · · · , sp) of the integer
p, taking into account all the shuffles of a minimal factorisation leads to the following formula
for the number mf(π) of minimal factorisations of π: This leads to the desired formula for the
cumulants κqt , q ≥ 1. The next proposition is downright implication of equations (19) and (21).
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Proposition 15. Let p ≥ 1 an integer and t ≥ 0 a time. Denote by kpt the pth cumulant function
of the distribution of U 〈n〉(t). With the notation introduced so far, if ui1,j1 . . . , uip,jp are elements
of O〈n〉 taken amongst the generators,

κpt (ui1,j1 , . . . , uip,jp) = e−
pt
2

(−t
n

)p−1 pp−2

(p− 1)!δcp·i,j.

4. Coloured Brauer diagrams and Schur–Weyl dualities

4.1. Coloured Brauer diagrams. In that section, we introduce the set of coloured Brauer
diagrams and the algebra they generate. We take the opportunity to make a brief reminder
on Brauer diagrams, see [1] for a detailed review on these combinatorial objects. We strive
to motivate all definitions that are introduced. However, we are aware that the combinatoric
developed here may seem to be quite raw but is absolutely fundamental for our work. Let k ≥ 1
an integer. We use the notation i′ = 2k+ i for 1 ≤ i ≤ k and denote by {1, . . . , k, 1′, . . . , k′} the
interval of integers J1, 2kK.

Definition 16. A Brauer diagram of size k is a fixed point free involution of the set of cardinal
2k, {1, . . . , k, 1′, . . . , k′}.

We denote by Bk• the set of all Brauer diagrams. (The superscript • is used to make clear
the difference between Brauer diagrams and the notion of coloured Brauer diagram we intro-
duce below). A Brauer diagram of size k may alternatively be seen as a partition of the set
{1, . . . , k, 1′, . . . , k′}: two integers i, j are related if and only if i = σ(j). Such a partition asso-
ciated with a Brauer diagram is depicted as follows. We draw first k vertices on a line labelled
by the integers in 1′, . . . , k′ from left to right and k other vertices on an other line under the
first one and labelled by the integers in {1, . . . , k}. We add strands that connect two integers if
one is the other image by the Brauer diagram (in the same block for the associated partition).
In the sequel, we make the identification without mentioning it between a Brauer diagram, a
partition which has blocks of cardinal two, and the picture that depicts it. We perform oper-
ations on Brauer diagrams which are naturally defined on the set Pk of all partitions of the
set {1, . . . , k, 1′, . . . , k′}. These operations are the following ones and are related to the lattice
structure of the set Pk. Let p1 and p2 be two partitions. We write p1 ≺ p2 and say that p1 is
a refinement of p2 if each block of p1 is included in a block of p2. We denote by p1 ∨ p2 the
smallest partition which is greater than p1 and p2:

(22) p1 ∨ p2 = ∪V ∈p1 ∪W∈p2:V ∩W 6=∅ V ∪W.

The greatest partition which is smaller than p1 and p2 is denoted p1 ∧ p2:

p1 ∧ p2 = ∪V ∈p1,W∈p2V ∩W.

The block number of a partition p is denoted nc(p). Of course, the function nc is constant on
the set B•k and equal to k. We denote by the symbol 1k the Brauer diagram that is pictured as
in Fig. 1. A cycle of a Brauer diagram b• is a block of the partition b• ∨ 1.

1′ 2′ 3′ k′

1 2 3 k

Figure 1. The identity element of the algebra of coloured Brauer diagram

Let n ≥ 1 an integer and let d = (d1, . . . , dn) a finite sequence of positive integers.
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A colouring of {1, . . . , k, 1′, . . . , k′} is a function c : {1, . . . , k, 1′, . . . , k′} → J1, nK. We use
the symbol Cn2k to denote the set of colourings. The dimension function dc associated with a
colouration c and the finite sequence d is defined by:

dc : {1, . . . , k, 1′, . . . , k′} −→ {d1, . . . , dn}
i 7→ dci

.

We define the object of interest for this section. For the rest of this section, we fix a dimension
function d.

Definition 17 (Coloured Brauer diagrams). A coloured Brauer diagram is a pair (b•, c) with b•
a Brauer diagram and c a colouring which dimension function dc satisfies b• ◦ dc = dc.

A coloured Brauer diagram is conveniently depicted as in Fig. 2. The set of all coloured Brauer
diagrams is denoted by Bd

k. If there is no risk of misunderstanding, we drop the superscript d,
that indicates the dependence of the set of Brauer diagrams toward the sequence d. This
sequence is also named dimension function in the following. The set of coloured Brauer diagram
Bd
k depends solely on the partition Ker(d) of J1, nK that is the set of all level sets of d. We would

thus write for a partition π of J1, nK Bπk for the set of Brauer diagrams which links are coloured
by two integers in the same blocks of π. If π′ is a partition finer than π then Bπ′k ⊂ Bπk .

Let K the field of real numbers or the field of complex numbers. We use K [Bk] for the K
vector space with basis Bd

k. If b is a coloured Brauer diagram, b• stands for its underlying
Brauer diagram and cb is the colouring.

1′• 2′• 3′• 4′•

1• 2• 3• 4•

Figure 2. A coloured Brauer diagram with n = 3, and d• = d• 6= d•.

We define on the vector space R
[
Bd
k

]
an algebra structure. Let b1, b2 ∈ Bk two coloured

Brauer diagrams.
We begin with reviewing the definition of the composition law on the real span of B•k. Let b•1

and b•2 be two Brauer diagrams. We stack b•1 over b2• to obtain a third diagram that may contain
closed connected components. If so, we remove these components to obtain the concatenation
b•1 ◦ b•2 of b•1 and b•2. Let K(b•1, b•2) be the number of components that were removed. The product
b•1b

•
2 is defined by the formula:

b•1b
•
2 = nK(b•1,b•2)b•1 ◦ b•2.

The unit is the Brauer diagram 1k = {{i, i′, i ≤ k}. To define the product of b1 and b2, we
define first the composition b1 ◦ b2. We stack b1 over b2 to obtain a diagram c which contains,
eventually, closed connected components. The diagram c contains links that may be coloured
with two different colours; if it happens we set the Brauer diagram b1 ◦b2 to 0. Otherwise, b1 ◦b2
is the diagram c with the closed components removed. If b1 ◦ b1 6= 0, for each d ∈ {d}, we let
Kd(b1, b2) be the number of closed connected components coloured with an integer 1 ≤ i ≤ n
such that di = d that were removed of c to obtain b1 ◦ b2. Finally, The product b1b2 is defined
by the formula

b1b2 =
∏
d∈d

dKd(b1,b2)b1 ◦ b2.

Endowed with this composition law, R
[
Bd
k

]
is an associative complex unital algebra with unit

(23) e =
∑
c∈Cn2k

c(i)=c(i′)

(1k, (c, c′)).
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The product we just defined on R
[
Bd
k

]
is relevant for studying distribution of square blocks

1′ 2′ 3′ 4′

1 2 3 4

◦

1′ 2′ 3′ 4′

1 2 3 4

=

1′ 2′ 3′ 4′

1 2 3 4

Figure 3. Concatenation of two Brauer diagrams.

extracted from an unitary Brownian motion in high dimension. However, in Section 6 we consider
the more general problem of rectangular extractions. To tackle this question, we need a central
extension of R

[
Bd
k

]
that allows us to track the loops, and the dimension of their colourings

that are possibly created if two Brauer diagrams are multiplied together. In short, this central
extension is constructed by considering diagrams that may have closed connected components.
We should make an intensive use of the following fundamental relation, which is easily proved
by a drawing:

(24) nc((b•1 ◦ b•2) ∨ 1) = nc(b1 ∨ b2) +K(b•1, b•2).

If b• is a non-coloured Brauer diagram, C(b) is the set of all colourizations of b• so as to (b•, c)
is a coloured Brauer diagram which each block is coloured with only one integer. We end this
section by defining an injection of the algebra of non-coloured Brauer diagram Bk (

∑n
i=1 d(i))

into the algebra of coloured Brauer diagram Bk(d) that will be used, without mentioning it, in
computations,

∆ : Bk(
∑n
i=1 d(i)) → Bk(d)
b• 7→

∑
c∈C(b)

(b•, c).

4.2. Representation. Let k ≥ 1 an integer, if i = (ij)1≤j≤k is a k-tuple of integers, we denote
by ker(i) the partition of {1, . . . , k} equal to the set of all level sets of i. Also, if i, j are two
integer sequences of length k, ker(i, j) is the partition equal to the set of all level sets of the
function defined on {1, . . . , k, 1′, . . . , k′} equal to i on {1, . . . , k} and j on {1′, . . . , k′}.

Let N ≥ 1 an integer. A representation ρ•N of the algebra B•k(N) is defined by setting:

ρ•N : B•k(N) → End(RN )
b• →

∑
i,j∈{1,...,p+q}k,

ker(i,j)≥b

Ei1,j1 ⊗ · · · ⊗ Eik,jk .

If N ≥ 1 is sufficiently large, it can be shown that ρ•N is injective.
Let n ≥ 1 an integer and d = (d1, . . . , dn) a sequence of positive integers of length n, set

N = d1 + . . . + dn. A representation ρd of the algebra R
[
Bd
k

]
on the k-fold tensor product(

RN
)⊗k

is defined by setting:

ρd : Bk(d) → End(RN )
(b•, cb) 7→

∑
i,j∈{1,...,p+q}k,

ker(i,j)≥b

E
c(1′),c(1)
i1,j1

⊗ · · · ⊗ Ec(k
′),c(k)

ik,jk .

With the definition of the injection ∆ we gave in the previous section, simple computations show
that ρd ◦∆ = ρ•N if N =

∑n
i=1 di.

We turn our attention to the definition of three real representations, ρR
d , ρ

C
d and ρH

d that will
be used later to define statistics of the unitary Brownian motions. For the real and complex
case, we set ρR

d = ρC
d = ρd.
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The representation ρC
p,q of the real algebra Bk(d) defines a representation, denoted by the

same symbol, of the complex algebra Bk(d)⊗ C. A real linear representation ρH of the algebra
of Brauer diagrams B•k(−2N) on (Hn)⊗k is defined in [7], equation (36) as a convolution of
two representations: the representation ρ•N of B•k(N) and a representation γ of B•k(−2) which
commutes with ρ•N . Let us explain how a representation of the coloured Brauer algebra Bk(−2d)
is defined similarly as a convolution product of two representations.

Let m be the multiplication map of endomorphisms in End(Hn)⊗k) and let s, t > 0 be two
positive real numbers. The key observation is the existence of a morphism ∆s,t

st : B•k(st) →
B•k(s) × B•k(t) which is the real linear extension of a function defined on the set of Brauer
diagrams B•k by ∆s,t

st (b) = b⊗ b, b ∈ B•k.
The representation ρH

N of the algebra B•k(−2N) defined by Lévy in [7] is the convolution
product:

ρH
N = m ◦

(
ρR ⊗ γ

)
◦∆N,−2

−2N .

The definition of a coloured version of the representation ρH
N is ensured by the existence of

coloured version ∆d,−2
−2d : Bk(−2d)→ Bk(d)× B•k(−2) of ∆N,−2

−2N , namely, for b ∈ Bk:

∆d,−2
−2d (b) = b⊗ b•.

There are no difficulties in checking that the map ∆d,−2
−2d is a morphism from Bk(−2d) to Bk(d)⊗

B•k(−2). Finally, the representation ρH
p,q is defined by the equation:

(25) ρH
p,q = m ◦

(
ρR
p,q ⊗ γ

)
◦∆−2p,−2q

−2(p+q).

4.3. Orienting and cutting a Brauer diagram. Let b = (b•, cb) a coloured Brauer diagram.
To the partition b• we associate a graph Γb: the vertices are the points {1, . . . , k, 1′, . . . , k′}

and the edges are the links of the partition b• together with the vertical edges {x, x′}, x ≤ k.
Each of the connected components of this graph is a loop and we pick an orientation of these
loops. To that orientation of Γb, we associate a function s : {1, . . . , k} → {−1, 1} defined as
follows. Let i ∈ {1, . . . , k} an integer, we set s(i) = 1 if the edge that belongs to b which contains
i is incoming at i in the chosen orientation of Γb and −1 otherwise. Of course an orientation of
Γb is completely known through its associated sign function s, thus we will in the sequel freely
identify these last two objects.

We use the notation bs = (b, s) for an oriented Brauer diagram with sign function s and
the set of oriented Brauer diagrams is denoted OBd

k. To each oriented Brauer diagram (b, s)
there are two associated permutations Σ(b,s) and σ(b,s) defined as follows. An oriented Brauer
diagram (b, s) is naturally a permutation Σ(b,s) of the set {1, . . . , k, 1′, . . . , k′}. The cycles of the
permutation σ(b,s) are the traces on {1, . . . , k} of the cycles of Σ(b,s).

1′ 2′ 3′ 4′

1 2 3 4

1′ 2′ 3′ 4′

1 2 3 4

Figure 4. Two orientations of the same Brauer diagram.

We denote by OBk the set of oriented uncoloured Brauer diagrams. We were not able to
endow the real vector space with basis OBd

k with an algebra structure that would turn the
canonical projection from R

[
OBd

k

]
into a morphism. Also, we introduce Brauer algebras and

related for two reasons : to represent quantities that are of interest for us in Section 6 and
to define operators that will ease computations. As we should see, these operators act on the
Brauer component of a oriented Brauer diagram by multiplication, hence we need, somehow, to
associate to an unoriented coloured Brauer diagram and to an oriented Brauer diagram a third
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Brauer diagram. There is no canonical way in doing that. We may just simply pick a section
Bd
k → OBd

k and use it to give orientation to a Brauer diagram if needed. Such a section can be
defined, for example, by choosing for the orientation of a diagram the sign function that is equal
to one on the minimum of each cycle. We prefer, given an oriented Brauer (b1, s) diagram and
a Brauer diagram b, to define a orientation of b ◦ b1 in the following way. We choose for sb1◦b2
the sign function that is equal to sb1 on the minimum of each cycle of b1 ◦ b. We denote by b � b1
the oriented Brauer diagram obtained in this way.

The subset of permutations Sk ⊂ Bk is defined as the subset of Brauer diagrams that represent
a permutation. In symbols, the Brauer diagram bσ associated with a permutation σ is equal
to {{i, σ(i)′}, i ≤ k}. It is easily seen that a Brauer diagram b is a permutation diagram if
and only if any orientation of b is constant on the cycles, meaning that the vertical edges of Σb

belonging to the same cycle have the same orientation. We denote by s•b the orientation of a
Brauer diagram that is equal to one on the minimum of each cycle of b.

For i ∈ {1, . . . , k, 1′, . . . , k′}, denote by ik the integer i + k if i ≤ k and i − k if i > k. The
transposition of a diagram b = (b•, cb) is the diagram bt =

(
bt
•
, cbt

)
defined by the equation

bt
• = ∪l∈b•{i?, i ∈ l}, cbt(t) = c(i mod k).

See Figure 5.

1′ 2′ 3′ 4′

1 2 3 4

1′ 2′ 3′ 4′

1 2 3 4

Figure 5. Transposition of a non-coloured Brauer diagram.

We define now the twist operators Tw•i, i ≤ k that act on (non-coloured) partitions of
{1, . . . , k, 1′ , . . . , k′}. The set of (non-coloured partitions) of {1, . . . , k, 1′, . . . , k′} is denoted
Pk.

Definition 18 (Twist operators). Let i ≤ k. The twist operator Tw•i : Pk → Pk is the complex
linear extension to C [Pk] of the set function defined on Pk by the equation

Tw•i(p) = ∪l∈p{i?, j, j ∈ l\i}

To put it in words, the twist operator Tw•i exchanges the integer i and i? in their own blocks.
The subset of Brauer diagrams is stable by the Twists operators Tw•i, i ≤ k.

Let us recall that the set Pk is a lattice. The minimum p1 ∧ p2 of two partitions p1 and p2 is
the partition which blocks are the intersection of the blocks of p1 and p2. The maximum p1 ∨ p1
of two partitions is the partition which blocks are union of blocks of p1 and p2 that have a non
empty intersection.

Lemma 19. The twist operator is a morphism of the lattice (Pk,∧,∨). In addition, nc(p) =
nc(Tw•(p)), p ∈ Pk. In particular, the number of cycles of a Brauer diagram is preserved by
twisting.

Proof. A simple drawing of the diagrams does the proof. Let’s nevertheless do the proof. Let
p1, p2 two partitions. Let S be a block of Tw•i(p) ∨ Tw•i(q). The set S enjoys the maximality
property:
(26) U ∈ Tw•i(p1) ∪ Tw•i(p2), U ∩ S 6= ∅ ⇒ U ⊂ S.

Define the set S̃ by
• S̃ = S if i, i′ ∈ S or i, i′ 6∈ S,
• S̃ = S\{i} ∪ {i′} if i ∈ S, i′ 6∈ S,
• S̃ = S\{i′} ∪ {i} if i′ ∈ S, i 6∈ S.
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In order to prove that S is a block of the partition Tw•i(p1 ∨ p2), we prove that S̃ enjoys the
maximality property:
(27) U ∈ p1 ∪ p2, U ∩ S̃ 6= ∅ ⇒ U ⊂ S̃.

Assume that S does not contain nor i nor i′ then S = S̃, S is an union of blocks of p1 and
p2, and further S ∈ Tw•i(p1 ∨ p2).

Assume that i ∈ S, i′ 6∈ S. Then S̃ = S\{i}∪{i′}. Let U ∈ p1∪p2, U ∩S 6= ∅. We distinguish
four cases:

• i ∈ U, i′ 6∈ U , then U\{i} ∪ {i′} ∩ S 6= ∅, U\{i} ∪ {i′} ∈ Tw•i(p1) ∪ Tw•i(p2) implies
U\{i} ∪ {i′} = S and then S̃ = U .

• i′ ∈ U, i ∈ U then U ∈ Tw•i(p1) ∪ Tw•i(p2) thus S̃ = U .
• i 6∈ U, i′ 6∈ U then U ∈ Tw•i(p1) ∪ Tw•i(p2) thus S̃ = U .
• i ∈ U, i′ ∈ U , then U\{i′} ∪ {i} ∩ S 6= ∅, U\{i′} ∪ {i} ∈ Tw•i(p1) ∪ Tw•i(p2) implies
U\{i′} ∪ {i} = S and then S̃ = U .

We conclude that S̃ has the maximal property (27), moreover S̃ is an union of blocks of p1 and
p2, it follows that S ∈ p1 ∨ p2.

Assume now that i ∈ S, i′ ∈ S. Let U ∈ p1 ∪ p2 such that U ∩ S 6= ∅. We prove that S
has the maximality property (27). If U ∈ Tw•(p1) ∪ Tw•i(p2), then U = S so let us assume that
U 6∈ Tw•(p1)∪Tw•i(p2). Either i, either i′ belongs to U but not both, we can make the hypothesis
that i ∈ U and i′ 6∈ U . We have U\{i} ∪ {i′} ∩ S 6= ∅ and U\{i} ∪ {i′} ∈ Tw•i(p1) ∪ Tw•i(p2).
It follows that U\{i} ∪ {i′} = S and U = S. Since S is an union of sets in p1 and p2, one has
S ∈ p1 ∨ p2. �

1′ 2′ 3′ 4′

1 2 3 4

1′ 2′ 3′ 4′

1 2 3 4

1′ 2′ 3′ 4′

1 2 3 4

Figure 6. The second diagram is the twist at 1 of the first one. The third
diagram is the twist at 2 of the first one.

Lemma 20. Let i ≤ k an integer. Let (b, s) be an oriented Brauer diagram. For any orientation
u of the diagram Tw•i(b•), we have

u(i)u(j) = −u(i)u(j), i 6= j, i ∼b•∨1, and u(i)u(j) = −u(i)u(j), i 6= j, i 6∼b•∨1 j

Proof. We use the notations introduced in Lemma 20. For any k, l ≤ k integers the products
u(k)u(l) does not depend on the orientation we pick to orient the twist at i of the diagram b.
Define an orientation u of Tw•(b•) by setting

u(j) = s(j) if j 6= i, and u(i) = −s(i).
To prove that u does indeed define an orientation of b•, a simple drawing is, once again, sufficient.
In fact, twisting at i the diagram b• reverses the orientation of the vertical edge that connects
the vertices i, and i+ k.

�

In the previous proof, we defined an orientation of the twist of a non-coloured Brauer diagram
given an orientation of the diagram. This suggests that the twist operator can be lifted to the
set of non-coloured oriented Brauer diagrams.

Also, extending the twist operator to the set of coloured Brauer diagrams is straightforward;
if a coloured Brauer diagram is twisted at a site i, the colours the integers i and i′ are coloured
with are exchanged. In the following lemma we denote by 〈Tw•i, i ≤ k〉 the algebra generated
by the twist operators {Tw•i, i ≤ k}. For an ordered set {i1 ≤ i2 ≤ . . . ≤ iq}, we use sometimes
the notation Tw•S = Tw•s1 · · ·Tw•sq .
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Lemma 21. Let b ∈ B•k be an irreducible Brauer diagram (nc(b)) = 1). There are exactly two
permutation diagrams in the orbit {Tw•(b), Tw• ∈ 〈Tw•i, i ≤ k〉}. In addition, two permutations
in the orbit {Tw•(b), Tw• ∈ 〈Tw•i, i ≤ k〉} are related by transposition.

Proof. There are exactly two possible orientations for an irreducible Brauer diagram. We pick
one and denote it by s (the other is −s). Define Tw•s =

∏
i:s(i)=−1

Tw•i. As in the proof of Lemma

20, an orientation u of Tw•s(b•) is defined by setting
u(i) = 1 if s(i) = −1 and u(i) = 1 if s(i) = 1.

Hence, u = 1 and the diagram Tw•s(b•) is a permutation diagram. Let σ an other permutation
diagram in the orbit of b•. There exists a set S ⊂ {1, . . . , k} such that Tw•s(b•) = (

∏
i∈S Tw•i) (σ).

Once again, the diagram
(∏
i∈S

Tw•i
)
(σ) is oriented by mean of the sign function v:

v(i) = −1 if i ∈ S, v(i) = 1 if i 6∈ S.
Unless S = {1, . . . , k}, v is not constant. This achieves the proof. �

We defined the twist operators to prove the following Proposition, which is needed in Section
5 to prove that the free unitary Brownian of dimension n motion is the limit of the process
extracting square blocks of a Brownian unitary matrix.. We recall the following formula which
is used extensively in Section 5 and is needed for the proof of the forthcoming proposition:
(28) nc(b•1 ◦ b•2 ∨ 1) +K(b•1, b•2) = nc(b•1 ∨ b•2).

Proposition 22. Let b• ∈ B•k an irreducible Brauer diagram and e• a projector. Then nc(e• ∨
b•) − nc(b• ∨ 1) ∈ {0, 1} and nc(e• ∨ b•) = nc(b• ∨ 1) + 1 if and only if s(i)s(j) = −1 for any
orientation s of b•.

Proof. First, pick T ∈ 〈Tw•i, i ≤ k〉 such that T (b) is a permutation diagram (see Lemma
21). Let i, j ≤ k be two integers. Then nc(e•ij ∨ b) = nc(T (e•ij ∨ b)) = nc(T (e•ij) ∨ T (b)). The
diagram T (e•ij) is equal either to the projector e•ij if s(i)s(j) = 1 either to the transposition
τij if s(i)s(j) = −1. It is easily checked that no loops nor cycles are created if multiplying an
irreducible permutation diagram by a projector, thus from equation 28 nc(b• ∨ e•ij) = nc(b•) if
s(i)s(j) = 1. If s(i)s(j) = −1, we multiply by a transposition an irreducible permutation (a
permutation with only one cycle). A direct calculation shows that nc (τijT (b•)) = nc (T (b•)) + 1,
hence nc(b• ∨ e•ij)− nc(b• ∨ 1) = 1. �

Proposition 23. Let k ≥ 1. Denote by c the cycle (1, . . . , k). Let S ⊂ {1, . . . , k} a set of
integers. Define the Brauer diagram b• as b• =

∏
s∈S

(Tw•s) (c). Let i 6= j be two integers, then

• if i ∈ S, j ∈ S, (τ •ij ◦ b• ∨ 1 = {{1, . . . , i− 1, j, . . . , k}, {i, i+ 1, . . . , j − 1}},
• if i 6∈ S, j 6∈ S, (τ •ij ◦ b•) ∨ 1 = {{1, . . . , i, j + 1, . . . , k}, {i+ 1, i+ 1, . . . , j}}.

In addition, for any orientation s of b• and u of τij ◦ b, we have u(x)u(y) = s(x)s(y), 1 ≤ x, y ≤
k, x ∼τij◦b y.

• if i ∈ S, j 6∈ S, (e•ij ◦ b•) ∨ 1 = {{1, . . . , i− 1, j + 1, . . . , k}, {i, i+ 2, . . . , j}},
• if i 6∈ S, j ∈ S, (e•ij ◦ b•) ∨ 1 = {{1, . . . , i− 1, j, . . . , k}, {i+ 1, . . . , j − 1}}.

In addition, for any orientation s of b• and u of eij ◦ b, we have u(x)u(y) = s(x)s(y), 1 ≤ x, y ≤
k, x ∼eij◦b y.

Proof. Let S and b be as in Proposition 22. As shown in Lemma 20, an orientation s of b is
defined by setting

s(i) = −1 if i ∈ S, s(i) = 1 if i 6∈ S.
Let i, j ≤ k be two integers. Assume that i ∈ S and j ∈ S. Easy computations show that

(τij ◦ b)(i′) = b(j), (τij ◦ b)(j′) = b(i), (τij ◦ b)(k) = b(k), k 6= i′, j′.
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By using Proposition 22, we prove that nc(τij ◦ b ∨ 1) = 2. Recall that b is involution of
{1, . . . , k, 1′, . . . , k′}, for each i ∈ {1, . . . , k, 1′, . . . , k′}, b(i) is the integer that lies in the same
block of b as i. Recall that ?(x) denotes x′ if x ≤ k and i− k if x > k. As shown, the partition
τij ◦ b∨ 1 has two blocks and if x is in one of this block, so is x?. The block that contains {i, i′}
is equal to the set of alternate products of b ◦ τij and ? applied to i:

{i, ?(i), ((b ◦ τij) ◦ ?) (i), (? ◦ (b ◦ τij) ◦ ?) (i), ((b ◦ τij) ◦ ? ◦ (b ◦ τij) ◦ ?) (i), ...}
which is equal to {i, i′, b(j), ?(b(j)), (b ◦ τij)(?(b(j)), ...}. We have ?(b(j))[k] = j − 1 (from the
definition of b). Thus if i 6= j−1, we have (τij ◦ b)(?(b(j))) = b(?(b(j))). Continuing in the same
manner, we find
{i, i′, b(j), ?(b(j)), b(?(b(j)), ?(b(?(b(j))), ?(b(?(b(j)))...i, (?)i} = {i, i′, j−1, j′−1, j−2, j′−2, ..., i, i′}.
We do the same for the case i ∈ S and j 6∈ S, the details are left to the reader. Assume now that
i ∈ S and j 6∈ S. The partition eij ◦ b∨ 1 has two blocs (this follows from Proposition 22). Since
(eij ◦ b)(i′) = j′, the set {i′, j′} is contained within a block of (eij ◦ b). Once again to compute
the blocks that contains the set {i′, j′}, we have to compute the set
(29) {i′, i, (eij ◦ b)(i), (? ◦ (eij ◦ b))(i), ((eij ◦ b) ◦ ? ◦ (eij ◦ b))(i), . . . , }
We remark that for any integer x in the interval Ji, j − 1K, {(eij ◦ b)(x), ?((eij ◦ b)(x)} = {x +
1, x′ + 1}. We have (eij ◦ b)(i)[k] = i+ 1, thus we find the set 29 is equal to:

{i′, i, i+ 1, i′ + 1, i′ + 2, i+ 2, . . . , ...j − 1, j − 1, j, j′}
The case i 6∈ S and j ∈ S is left to the reader. �

Conjugation of a Brauer diagram by a permutation α results in a Brauer diagram that has
the same number of cycles, and

α ◦ b ◦ α−1 =
⋃
l∈b
{α(i), α(j), i, j ∈ l}.

Hence, α ◦ eij ◦ α−1 = eα(i),α(j) and α ◦ τij ◦ α−1 = τα(i),α(j) with i, j ≤ k two integers. In
addition, orientation and conjugation enjoy a remarkable property. For any oriented Brauer
diagram (b, sb) and permutation α, the sign function sα◦b◦α−1 = sb ◦ α−1 defines orientation of
α ◦ b ◦ α−1.

The twists operators are also equivariant with respect to conjugation action:

Tw•S
(
α ◦ b ◦ α−1

)
= α ◦ Tw•α−1(S)(b) ◦ α

−1, S ⊂ {1, . . . , k}, Tw•S =
∏
s∈S

Tw•s, α ∈ Sk.

Let S ⊂ {1, . . . , k}. Let α a permutation in Sk. The proposition is easily generalised to
twists of the cycle α ◦ c ◦ α−1 = (α(1), . . . , α(k)). Define b = Tw•S((α(1), . . . , α(k))). In fact,
(α(1), . . . , α(k)) = α ◦ (1, . . . , k) ◦ α−1 and(

eij ◦ Tw•S(α ◦ c ◦ α−1)
)
∨ 1 = α ◦

((
eα−1(i),α−1(j) ◦ Tw•α−1(S)(c)

)
∨ 1
)
◦ α−1

We apply Proposition 23 to find
• if i ∈ S, j ∈ S, (τij ◦ b) ∨ 1 = {{α(1), . . . , α(α−1(i)− 1), j, α(α−1(j + 1), . . . , α(k)},
{α−1(i), α(α−1(i) + 1), . . . , α(α−1(j)− 1)}},

• if i 6∈ S, j 6∈ S, (τij ◦ b) ∨ 1 = {{α(1), . . . , α(α−1(i)− 1), α(α−1(j) + 1), . . . , α(k)},
{α(α−1(i)), α(α−1(i) + 1), . . . , α(α−1(j)− 1), j}}.

In addition, or any orientation s of b• and u of τij ◦ b, we have u(x)u(y) = s(x)s(y), 1 ≤ x, y ≤
k, x ∼τij◦b y.

• if i ∈ S, j 6∈ S, (eij ◦ b) ∨ 1 = {{α(1), . . . , α(α−1(i)− 1), α(α−1(j) + 1, . . . , α(k)},
{i, α(α−1(i) + 1), . . . , j}},

• if i 6∈ S, j ∈ S, (eij ◦ b) ∨ 1 = {{α(1), . . . , α(α−1(i)− 1), j, α(j + 1), . . . , α(k)},
{α(α−1(i) + 1), . . . , α(α−1(j)− 1)}}.
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In the same way, for any orientation s of b• and u of eij ◦ b, we have u(x)u(y) = s(x)s(y),
1 ≤ x, y ≤ k, x ∼eij◦b y.

We have seen in Proposition 22 that multiplication of an irreducible Brauer diagram by a
transposition or a projector produces at most one cycle. Given a non-necessarily irreducible
Brauer diagram b•, the following proposition specifies how many cycles are deleted or created if
we multiply b• by a transposition or a projector.

Proposition 24. Let b be a non-coloured Brauer diagram. Let i 6= j ∈ {1, . . . , k} two integers.
If i, j do not lie in the same cycle of b• (i 6∼b•∨1 j) then nc(e•ij ∨ b•) = nc(eij ∨ 1)− 1. If i and j
are in the same cycle of b•, we have for any orientation s of b•:

if s(i)s(j) = −1, nc(b• ∨ e•ij) = nc(b• ∨ 1) + 1,
if s(i)s(j) = 1, nc(b• ∨ τ •ij) = nc(b• ∨ 1) + 1.

(30)

4.4. Central extension of the algebra of coloured Brauer diagrams. As it will appear
in Section 6, it will be necessary to keep track of the colouration of the loops that are created
if two Brauer diagrams are multiplied together. In fact, as of now, it is not possible to do so:
from the definition of the algebra structure on Bk(d), a loop that is produced by multiplication
of two diagrams multiply by a positive scalar the concatenation of the two diagrams. It there
are least two loops that are created, it not possible to find back the colourizations from this
multiplication factor. That is the reason why we introduce a central extension.

The central extension
◦
Bk(d) is, as a vector space, equal to the direct sum of vector spaces

R
[
Bd
k

]
⊕ R [{od, d ∈ {d}}]. The set o = {od, d ∈ {d}} of commuting variables is referred to as

the set of loops variables or ghost variables. Two elements b⊕ P (o) and b′ ⊕Q(o) in Bd
k ⊕ R [o]

are multiplied as follows:

(b⊕ P (o)) · (b′ ⊕Q(o)) =
(
b ◦ b′, PQ×

∏
d

oKd(b,b′)
d

)
.

We indexed the loops variable by the set {d}, we could have equivalently indexed it by the
blocks of the partition ker(d). In the the sequel, we will mainly deal with operators that are
defined on a subalgebra of

◦
Bk(d). If (αi)i∈d is a multi-index, we denote by oα{d} the monomial

oαd1
d1
· · · oαdpdp

if {d} = {d1, . . . , dp}. We set
◦
Bd
k = {b⊕ oα{d}, b ∈ B

d
k, α ∈ N{d}}. An element of

◦
Bd
k

is named a diagram with loops and is pictured as in Fig. 7. Let π a partition of J1, nK that is

1′• 2′• 3′• 4′•

1• 2• 3• 4•

Figure 7. A diagram with loops.

greater than ker(d). As mentioned, the set Bd
k of coloured Brauer diagram is injected into the

set Bπk . There is no injection of the vector space R
[
Bd
k

]
⊕R [{od, d ∈ {d}}] into the vector space

R [Bπk ]⊕ R [{oV , V ∈ {π}}]. The only canonical map from R [{od, d ∈ {d}}] to R [{oV , V ∈ {π}}]
is the projection induced by the change of variable oV → oW , V ∈ ker(d), W ∈ π with V ⊂W .

The space
◦
Bd
k projects onto the algebra of coloured Brauer diagrams. The projection ◦

π :
◦
Bk(d)→ Bk(d) specializes a loop variable od to the corresponding dimension d:

π((b, P (od, d ∈ {d}))) = P (d, d ∈ {d})b.
We draw in Fig. 8 the short exact sequence.
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0 R

[
◦
Bd
k

]
R
[
Bd
k

]
0.π

Figure 8. A central extension of the algebra of coloured Brauer diagrams.

If b ∈ Bd
k is a Brauer diagram, we denote by

◦
b the element (b, 1) in the

◦
Bd
k. In this way we

define a section from Bd
k to

◦
Bd
k which is not a algebra morphism.

We finish with the definition of the functions that justify alone the introduction of this central
extension. In the last section, we gave orientation to Brauer diagrams. We will do the same for
Brauer diagrams with loops in a consistent way. We recall that we denote by OBk(d) the vector
space with basis the set OBd

k of all oriented coloured Brauer diagrams. We denote by O
◦
Bk(d)

the vector space OBk(d)⊕ R [od, d ∈ {d}].
Let d ∈ {d} and b̃ = ((b, s),

∏
d∈{dN} ondd ) ∈ O

◦
Bk(d), the function fncd counts the number of

loops variables od and the number of cycles of b whose minimum m or minimum m′ is coloured
with the dimension d, depending on the orientation of the cycle. More formally:

fncd
(
b̃
)

= nd + ]
{
{i1 < . . . < ik} ∈ b• ∨ 1 : dcb(i1) = d and s(m) = 1

}
+ ]

{
{i1 < . . . < ik} ∈ b• ∨ 1 : dcb(i′1) = d and s(m) = −1

}
.

In the last section, given an oriented Brauer diagram (b1, s) and a Brauer diagram b, we defined
the oriented Brauer diagram b � (b1, s). This operation can be lifted to O

◦
Bk(d):

((b, P ) � ((b1, s), Q) =

b � (b1, s), PQ×
∏
d∈{d}

oKd(b,b1)
d

 , (b, P ) ∈
◦
Bk(d), ((b1, s), Q) ∈ O

◦
Bk(d).

4.5. Special subsets of coloured Brauer diagrams. We introduce subsets of Brauer dia-
grams that will be used in Sections 5 and 6 to express generators of differential systems satisfied
by statistics of the unitary Brownians motions.

The first of these sets is the set of non-mixing Brauer diagrams, which we denote Bk,n, that
is defined as a set of coloured Brauer diagrams which blocks are coloured by a single integer
1 ≤ i ≤ n.

We denote by ∆k,n the subset of Bk,n of diagonally coloured Brauer diagrams: diagrams b
that have a colouring cb satisfying cb(i) = cb(i′) for all integers 1 ≤ i ≤ n.

Let i, j ≤ k − 1. The projector e•ij ∈ B•k and the transposition τ •ij are non-coloured Brauer
diagrams that are defined by

(31)
e•ij =

{
{i, j} ,

{
i′, j′

}
} ∪ {

{
x, x′

}
, x 6= i, j, 1 ≤ x ≤ k

}
τ •ij =

{{
i, j′

}
,
{
j, i′

}
} ∪ {

{
x, x′

}
, x 6= i, j, 1 ≤ x ≤ k

}
.

The set of non-coloured Brauer diagrams comprising all non-coloured transpositions, respectively
all non-coloured projectors, is denoted T•k and W•

k. The subset of coloured Brauer diagrams in
Bd
k which non-coloured component is a projector, respectively a transposition, is denoted Wk,d,

respectively Tk,d. The set of non-mixing transpositions, respectively projectors is denoted Tk,n,
respectively Wk,n. We will frequently drop the subscript n if the numbers of colours is clear
from the context or the subscript d if the partition is clear from the context. Elements of the
set Tk ∪Wk are called elementary diagrams.

We also define the sets of exclusive transpositions T 6=k,d and the set of exclusive projectors W6=k,d
by setting

T 6=k,d = {(τ •ij , cτij ) ∈ Tk : c(i) 6= c(j)}, W 6=k,d = {(e•ij , ceij ) ∈Wk : c(i) 6= c(i′)}.
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The sets of diagonal transpositions and diagonal projectors are defined by
T=
k,d = {(τ •ij , c) ∈ Tk,d : c(i) = c(j)}, W=

k,d = {(e•ij , c) ∈Wk,d : c(i) = c(i′)}.
In Fig. 9, we draw examples of elements of the subsets defined above.

1′• 2′• 3′• 4′•

1• 2• 3• 4•

Figure 9. Example of an exclusive transposition, n = 2.

1′• 2′• 3′• 4′•

1• 2• 3• 4•

Figure 10. Example of a diagonal transposition, n = 2.

Let b• be a non coloured Brauer diagram. The sets T+,•
k (b•) and W+,•

k (b•) of elementary
non-coloured Brauer diagrams that create a cycle if concatenated with b are defined as

T+,•
k (b•) = {τ • ∈ T•k : nc(b• ∨ τ •) = nc(b• ∨ 1) + 1},

W+,•
k (b•) = {e• ∈W•

k : nc(b• ∨ e•) = nc(b• ∨ 1) + 1}.
We end this section by defining four more subsets. Let b ∈ Bk, we define the subsets

T 6=,+k (b) = {τ ∈ T 6=k : τb 6= 0, nc(b• ∨ τ •) = nc(b• ∨ 1) + 1},

W6=,+k (b) = {e ∈W 6=k : eb 6= 0, nc(b• ∨ e•) = nc(b• ∨ 1) + 1}.
and

T=,+
k (b) = {τ ∈ T=

k : τb 6= 0, nc(b• ∨ τ •) = nc(b• ∨ 1) + 1},

T=,+
k (b) = {e ∈W=

k : eb 6= 0, nc(b• ∨ e•) = nc(b• ∨ 1) + 1}.

4.6. Invariant polynomials and Brauer diagrams. Let k ≥ 1 and d = (d1, . . . , dn) a parti-
tion of N and {d} = {d1, . . . , dn}. Let K be one ot the three division algebras R, C or H. We
introduce the two following compact Lie groups:

U(d,K) = Ud1(K)× · · · × Udn(K) and U ](d,K) = Ud1(K)× . . .× Udp(K),
with {d1, . . . , dn} = {d1 < . . . < dp}. The group U ](d,K) is injected into U(d,K) using the
diagonal injection of each factor U(di) into the product U(d,K).

An U(d,K)-invariant polynomial onMN (K)k is a polynomial function p :MN (K)k → K and
invariant by the diagonal conjugacy action conjkd of the group U(d,K) onMN (K)×k,

p
(
conjkd(U) (A1, . . . , Ak)

)
= f(UA1U

−1, . . . , UAkU
−1) = f(A1, . . . , Ak), ∀U ∈ U ](d,K).

The U ](d,K) invariant polynomial functions are defined similarly. We denote by P (k,K, d) (resp.
P ](k,K, d)) the set of all U(d,K) (resp. U ](d,K)) (real if K = R and complex if K = C or H)
invariant polynomials on MN (K)×k. The set of invariant tensors Inv(k,K, d) is the set of all
elements inMN (K)⊗k fixed by the k folded conjugacy action conjkd of U(d,K) onMN (K)⊗k:

Z ∈ invkd ⇔ conjkd(Z) = Z.
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In the sequel, we denote by Tr⊗kK the k folded tensor product of the matricial trace onMN (K)⊗k
if K = R or C and Tr⊗kH = Re(Tr)⊗k. The trace Tr⊗k defines a non degenerate bilinear pairing,
〈A,B〉 = Tr⊗k(AB) for A,B ∈MN (K) which is an U(d,K) invariant polynomial of (MN (K)⊗k⊗
MN (K)⊗k)?. Hence, any U(d,K)-invariant tensor Z defines an invariant polynomial fZ :
(32) fZ(A1, . . . , Ak) = 〈Z,A1 ⊗ . . .⊗Ak〉, A1, . . . , Ak ∈MN (K).
We denote by K [X1, . . . , Xk, X

?
1 , . . . , X

?
k ] the algebra of polynomials in k non commutating

indeterminates. Any invariant polynomial is of the form 32. A set of generators for the U(d,K)
invariant polynomials with K = R or C, can be set equal to

Tr(P (A1, . . . , Ak)), with P ∈ K[X1, · · · , Xk, X
?
1 , . . . , X

?
k ]}

with A? equal to the transpose of A for the case K = R and A? equal to the Hermitian conjugated
matrix A for the case K = C. For the compact symplectic group U(N,H) = Sp(N), the complex
algebra generated by the set

Tr(P (A,A?)), P ∈ C[X1, · · · , Xk]}
with ? the quaternionic conjugation being a proper subalgebra of P (H, k, d). Simple results of
invariant theory we recall below lead us to the determination of the U ](d,K) and U(d,K) tensor
invariants inMN (K)⊗k.

In fact, let d ≥ 1 an integer and ρid, 1 ≤ i ≤ 2 two representations of U(d,K) on Kd. The
space invariants of the sum ρ1 ⊕ ρ2 of the two representations is the sum of the invariants of ρ1
and ρ2 since

∀U ∈ U(d,K), Z1, Z2 ∈ Kd,
(
ρ1 ⊕ ρ2

)
(U)(Z1+Z2) = Z1+Z2,⇔ ρ1(U)(Z1) = Z1 and ρ2(Z2) = Z2.

Hence the space of invariants of (natd ⊕ natd) ⊗ (nat?d ⊕ nat?d) is the sum of four spaces. Each
of these spaces is isomorphic to a space of endomorphisms End(V1, V2) invariant by natd ⊗ nat?d
with Vi, i ≤ 2 one of the two copies of Kd in Kd ⊕ Kd. A straightforward generalization of
this argument for the k-folded action (natd ⊕ natd) ⊗ nat?d ⊕ nat?d proves that the polynomials
invariants P (k,K, d) with d1 = . . . = dn = d admit as a set of generators

Tr
(
P

(
Ai1j1 , A

i2
j2
, · · · , Aipjp ,

(
Ai1j1

)t
, · · · ,

(
A
ip
jp

)t))
with P a non-commutative polynomial and Aij a square block in position (i, j) in the matrix A.
For the group Ud1 × Ud2 that acts by ρ1 × ρ2 on Kd1 ⊕ Kd2 defined as

(ρ1 × ρ2) (U1 × U2)(Z1 + Z2) = ρ1(U1)(Z1) + ρ2(U2)(Z2)
the space of invariant is also the sum of the spaces of invariants for ρ1 and ρ2. Using the
expression

natd1 × natd2 = (natd1 × 1)⊕ (1× natd2) ,

we find that the space of tensor invariants for the k-folded action
(
(natd1 × natd2)⊗

(
nat?d1

× nat?d2

))⊗k
is a sum of spaces and each term is the space of invariants for a representation of the form
(33) natdi1 ⊗ nat?dj1 ⊗ · · · ⊗ natdik ⊗ nat?djk ,

where we have written natd1 = natd1 × 1 and natd2 = 1 × natd2 for brevity. We write a repre-
sentation (33) as the tensor products of two representations a and b of respectively U(d1) and
U(d2)

natdi1 ⊗ nat?dj1 ⊗ · · · ⊗ natdik ⊗ nat?djk = (a⊗ b) ,
by setting a to be equal to the tensor product (33) in which natd2 and nat?d2

have been replaced
by the trivial representation. The representation b is defined similarly. The space of invariant of
(33) is the tensor product of the space of invariants of a and b. One must have an equal number
of the representation natdi and of its contragredient representation for the space of invariants of
the representation (33) to be non trivial. Let A ∈Mn and 1 ≤ i, j ≤ n two integers. We denote
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by A(i, j) the block of A of dimension di × dj in position (i, j). We denote by Ãij the matrix
of dimension (d1 + d2) × (d1 + d2) having the block A(i, j) in position (i, j) and the remaining
coefficient equal to 0. A set of generators for the polynomials invariant for the representation
U(d1)× U(d2) is given by

(34) Tr
(
P

((
Ãij ,

(
Ãkl

)t
, i, j, k, l ≤ n

)))
with P a non commutative polynomial in 2n indeterminates. Having discussed what are the
polynomials invariants of natd1 ×natd2 and natd1 ⊕natd2 , it is now straightforward to prove that
a set of generators for the polynomial invariants of U(d)] is given by

Tr
(
P
(
Aij , i, j, k, l ≤ n

))
with P a polynomial in the non commutative indeterminates Xi

j , i, j ≤ n and (Xt)kl , k, l ≤ n that
satisfies the following condition. A monomial X is in P is for two consecutive indeterminates in
X, say Xi

j and X l
k in this order, we have dj = dl. The same condition holds for two consecutives

indeterminates Xi
j and Xtl

k.
We state three lemmas that justify the introduction of the algebra of coloured Brauer dia-

grams. We use the following convention: for a matrix A ∈ MN (R) or in MN (C), we set the
expression [A]−1 equal to the transpose of A and we set [A]1 equal to A. If A is a matrix with
quaternionic entries, we set [A]−1 equal to A? (the quaternionic transpose of A).

Lemma 25 ([7]). Let N ≥ 1 an integer and A1, . . . , Ak ∈ Mn(R). Let b be a non-coloured
oriented Brauer diagram, then

Tr⊗k ((A1 ⊗ . . .⊗Ak) ◦ ρ•n(b)) =
∏

(i1,...,ik)∈σ(b,s)

Tr
(
[Ai1 ]s(i1) · · · [Aik ]s(ik)

)
,

where we have denoted by (i1, . . . , ik) a cycle of σ(b,s).

With the coloured version of the representation ρd we defined in the previous section, the
following lemma is a simple consequence of Lemma 25.

Lemma 26. Let N ≥ 1 an integer, and d = (d1, . . . , dn) a partition of N into n parts. Let
A1, . . . , Ak ∈Mn(R). Let b be a coloured oriented Brauer diagram, then

Tr⊗k ((A1 ⊗ . . .⊗Ak) ◦ ρd((b, s))) =
∏

(i1,...,ik)
∈σ(b,s)

Tr
([
Ai1(cb(i1), cb(i′1))

]s(i1) · · ·
[
Aik(cb(ik), cb(i′k)

]s(ik)
)
.

We also defined a coloured version of the representation ρH defined in [7] to study large
Brownian quaternionic matrices. The following lemma is a straightforward corollary of the
lemma 2.6 in [7].

Lemma 27. Let A1, . . . , An ∈Mn(K), (b, s) an oriented coloured Brauer diagram, then

Re(Tr⊗k)
((
A1 ⊗ · · · ⊗Ak ◦ ρH(b)

))
=

∏
(i1,...,ik)
∈σ(b,s)

ReTr
([
Ai1(cb(i1), cb(i′1))

]s(i1) · · ·
[
Aik(cb(ik), cb(i′k)

]s(ik)
)

5. Square extractions of an unitary Brownian motion

Let K = R,C or H. If n, d ≥ 1 are two integers, we denote by UK
n,d the quantum process on

the dual Voiculescu group O〈n〉 extracting blocks of size d× d from a unitary Brownian motion
of dimension nd:

(35) UK
n,d(t) : O〈n〉 → Md(L∞−(Ω,F ,P))

uij 7→ UK
N (t)(i, j)
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The quantum process UC
n,d and UR

n,d are seen as valued in the algebraic probability spaces
MN (R),E ⊗ 1

dTr, respectively MN (C),E ⊗ 1
dTr while for the quaternionic case, it is manda-

tory to take the real part of the trace, UH
n,d is valued into the algebraic probabilit space

MN (H),E ⊗ 1
dRe ◦ Tr. This section is devoted to the proof of our main theorem stated be-

low.

Theorem 28. Let n ≥ 1 an integer. Each of the three processes UK
n,d K = R,C or H, converges

in non-commutative distribution as d→ +∞ to the free n-dimensional Brownian motion U 〈n〉.

Let t ≥ 0, K be one of the three divisions algebra in 28 and n ≥ 1 an integer, that stands
for the number of blocks the random matrices will be cut into and d ≥ 1 an other integer that
is the dimension of each of these blocks. Set N = nd. The proof of 28 proceeds as follows.
First, we focus on the one dimensional marginals. We begin by showing that a suitable set of
statistics of the process which comprises its distribution satisfies a differential system. Secondly,
the convergence of the generator as the dimension d → +∞ of that system is proved and we
give a formula for the limit. Finally, we draw a comparison between the generator of the limit
of the process UK

n,d and the generator of the free n−dimensional Brownian motion U 〈n〉. Our
proof of the convergence of the multidimensional marginals of the process UK

n,d, heavily rely on
Theorem 31 and conjugation invariance of the law of the Browian motions on unitary groups.

This method has already been applied by Levy in [7] to prove the convergence in non com-
mutative distribution of the unitary Brownian motion, this corresponds to the case n = 1 in
our setting. Introducing of the algebra of coloured Brauer diagrams makes the computations for
the case n = 1 and n > 1 very similar, which is obviously an argument in favor of the lengthy
exposition made in Section 4.

Concerning the outline, the complex, real and quaternionic cases are treated separately to
prove the convergence of the one dimensional marginals.

We use the shorter notation ρK for one the three representations of the algebra of coloured
Brauer diagrams Bk((d, . . . , d)︸ ︷︷ ︸

n

) we defined in the last section. We use the injection ∆ of the

algebra B•k(nd) of uncoloured Brauer diagrams without making mention of it.

5.1. Convergence of the one-dimensional marginals, the complex case. Let t ≥ 0, the
convergence in distribution of the one dimensional marginals of the quantum process UK

n,d is
implied by the following proposition.

Proposition 29. Let t ≥ 0, r ≥ 0 and α, β ∈ {1, . . . , n}r. The mixed moments of the family{
UC
N (t)(αi, βi),

(
UC
N (t)(αi, βi)

)t
,UC

N (t)(αi, βi),
(
UC
N (t)(αi, βi)

)?
, i ≤ r

}
in the tracial algebraMd(L∞(Ω,F ,P,C),E⊗ Tr) converge as d→ +∞.

Remark. The last proposition does not only imply the convergence of the distribution of UK
n,d(t).

In fact, the convergence stated in Proposition 29 is much more general and holds also for words
on the matrix transpose UK

N
t and on the complex conjugate UK

N (t) (without transposition).

Owing to equation 4 of Proposition 5, mean of polynomials of the matrix UC
N (t) admits the

following combinatorial formula:

(36) E
[
w⊗(UC

N (t))
]

= exp

−kt2 − 1
N

∑
1≤i,j≤k,
wi=wj

ρC(τ •ij) + 1
N

∑
1≤i,j≤k,
wi 6=wj

ρC(e•ij)

 , w ∈ M̄2(k).

As explained previously, we are looking for a linear space of statistics that are polynomial
functionals in the coefficients of a matrix (and its conjugate), which is manifestly invariant by
the generator of the unitary Brownian motion and contains traces of matrix powers. To define
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such statistics, we use the algebra of coloured Brauer diagrams defined in Section 4. The symbol
M1 stands for the free monoids generated by two letters {x1, x1}. If w ∈ M1 is a word of length
k and A ∈ Mnd(C) a complex matrix, w⊗(A) stands for the monomial in Mnd(C)⊗ that is
obtained by the substitutions rules: x1 → A, x1 → A. Let k ≥ 1 an integer. The subset of words
in M1 of length k is denoted M1(k). Let w ∈ M1(k) a word and b a (coloured) Brauer diagram
in Bk. We set

(37) mC
d (w, b,A) = Tr(ρC(b) ◦ w⊗(A)), A ∈MN (C).

We are now concerned with the derivative of the normalized statistic mR
s defined by

mC
d (w, b, t) = d−nc(b•∨1k)mC

d (w, b,E
[
UC
N

]
)

The statistic mC
d is extended as a linear function on the space Bk⊗M2(k) = Bk(nd)⊗R

[
M2(k)

]
.

Note that owing to 24, the range of b→ mC
d (b, t) comprises the distribution of UC

n,d(t). By using
formula (36), we prove the existence of an operator LC

d : F
(
Bk ⊗ M̄2(k)

)
→ F

(
Bk ⊗ M̄2(k)

)
such that

d

dt
mC
d (b⊗ w, t) = LC

d

(
mC
d (t)

)
(b⊗ w), mC

d (b⊗ w, 0) = δ∆k
(b), b⊗ w ∈ Bk ×M2(k).

In the last formula, we use the notation ∆k for the support function of the set ∆k ⊂ Bk,n of
Brauer diagrams that are diagonally coloured: (b•, cb) ∈ Bk ⇔ cb(i) = cb(i′), ∀1 ≤ i ≤ k. An
explicit expression for the operator LC

d is given by

LC
d (g)(w, b) = k

2g(w, b)− 1
nd

∑
1≤i,j≤k
wi=wj

dnc(b•∨τ•ij)−nc(b•∨1)g(w, τ •ij ◦ b)

+ 1
nd

∑
1≤i,j≤k
wi 6=wj

dnc(b•∨e•ij)−nc(b•∨1)g(w, e•ij ◦ b).
(38)

The coefficients dnc(b•∨r•ij)−nc(b•∨1k) are obtained by using the fundamental equality dnc(b•∨r•) =
nc(rb• ∨ 1k) + Kd(b, r) = nc(b ∨ r), with r an elementary diagram and b a coloured Brauer
diagram. Note that the symbol r• stands for two different objects in the last equation. If
acting by multiplication on a coloured Brauer diagram, r• is to be seen as an element of Bk as
described in the introduction of the present section. On the other hand, in the expression r• ∨b•,
the symbol r• stands for an elementary uncoloured Brauer diagram in B•k.

Proposition 24 implies that nc(b• ∨ τ •ij)− nc(b• ∨ 1) ∈ {−1, 0, 1} and nc(b• ∨ e•ij)− nc(b• ∨ 1) ∈
{−1, 0, 1}. Hence, the two sums in the right hand side of equation (38), as d → +∞, converge
to two sums over elementary diagrams r such that r ◦ b has one more cycle than b, or rb has a
loop (which means rb = d(r• ◦ b)). With the notation introduced in Section 4,

LC
d (g)(b⊗ w) = k

2 b⊗ w −
1
n

∑
1≤i<j≤k
wi=wj ,

τ•ij∈T+,•
k

(b•)

g(τ •ij ◦ b⊗ w) + 1
n

∑
1≤i<j≤k
wi 6=wj

e•ij∈W+,•
k

(b)

g(e•ij ◦ b⊗ w) + od,∞(1
d

)

= L̄n(g)(b⊗ w) + od,∞(1
d

)

(39)

for any function g ∈ F
(
Bk ⊗M2(k)

)
. Note that the range of the two sums in the last equation

does not exhaust the sets T+
k (b) or W+

k (b) since the elementary diagrams r•, r ∈ {e, τ} are,
by definition, in the range of the injection ∆ of the algebra of uncoloured Brauer diagrams,
non mixing. The differential system satisfied by the functional t → mC

d (t) is linear and finite
dimensional. Its solutions can be expressed as the (matrix) exponential of its generator LC

d .
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Since the matrix exponential is a continuous map, convergence of the generator LC
d implies the

convergence of mC
d to the solution mn of:

d

dt
mn(t) = L̄n(mn(t)), mn(0) = δ∆k

.

We end this section by stating the convergence of the one dimensional marginal of the process
UK
n,d. In fact, for each word u on the generators of the dual Voiculescu group, there exists a

Brauer diagram bu and a word wu such that mC
d (bw, uw, t) = 1

dTr(UK
n,d(t)(w)). The point-wise

convergence of mC
d implies the convergence of 1

dTr(UK
n,d(t)(w)) as d → +∞ . Later, we should

exploit a property satisfied by the pair (bu, wu) to draw a comparison between Ln and the
generator of the free n-dimensional unitary Brownian motion.

5.2. Convergence of the one-dimensional marginals, the real case. Let t ≥ 0 a time and
k ≥ 0 an integer, that will be the size of the diagrams and length of words that are considered.
To treat the real case, we define the real counterpart of the statistics mC

d that were defined in
the previous section. We are more brief in this section to expose the convergence of the one
dimensional marginals of UR

n,d since the method used for the complex case is applied here too.
The representation ρR is defined in Section 4.For each real matrix A ∈ MN (R), we define the
function mR

d (t) on the set of coloured brauer diagram Bk by the equation

mR
d (b, t) = Tr

(
E
[
A⊗k

]
◦ ρR(b)

)
, b ∈ Bk

and extend it linearly to R [Bk]. The normalized statistics mR
d (b, t) of the real unitary Brownian

diffusion is
mR
d (b, t) = d−nc(b•∨1)Tr

(
E
[
UR
N (t)⊗k

]
◦ ρR(b)

)
, b ∈ Bk.

By using the representation ρR, the mean E
[
UR
N (t)⊗k

]
can be expressed as:

(40) E
[
UR
N (t)⊗k

]
= exp

−kt(N − 1)
2N + t

− 1
N

∑
1≤i,j≤k

ρR(τ •ij) + 1
N

∑
1≤i<j≤k

ρR(e•ij)

 .
Once again the range of mR

d (t) comprises the distribution of UR
n,d. We compute the derivative of

mR
d . We apply formula (40) to get:

d

dt
mR
d (b, t) = LR

d (mR
d ), mR

d (0) = δ∆k
.

where the operator LR
d acting on linear forms R [Bk] is defined by the formula:

LR
d (g)(b) = −k(N−1)

2N g(b)− 1
nd

 ∑
τ•∈T•k

dnc(τ•∨b•)−nc(b•∨1)g(τ • ◦ b) +
∑

e•∈W•k

dnc(e•∨b•)−nc(b•∨1)g(e• ◦ b)

.
with g ∈ R [Bk]?. Again, as for the complex case, the last two sums localize to sums over
diagrams in, respectively T+

k (b) and W+
k (b) if we let d → +∞. If we define the operator Ln

acting on functions of Brauer diagrams, by

(41) Ln(g) = −k2g(b)− 1
n

∑
τ•∈T+,•

k
(b)

g(τ • ◦ b) + 1
n

∑
e•∈W+,•

k
(b)

g(e• ◦ b),

with g ∈ R [Bk]?, we get LR
d = Ln + od,∞(d). Again, as for the complex case, the convergence of

the generator of the system satisfied by the statistics mR
d implies the convergence of the solution

to the function mn that satisfies the differential system:
d

dt
mn(t) = Ln(mn(t)), mn(0) = δ∆k

.
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5.3. Convergence of the one-dimensional marginals, the quaternionic case. Let t ≥ 0
a time. As we did for the complex and real cases, we use the representation ρH to define, for
any matrix of size N × N with quaternionic entries, a function on the set of coloured Brauer
diagrams Bkk of size k (we recall that the dimension function used to defined Bkk is the constant
dimension function on J1, . . . , nK equal to d),

mH
d (A, b) = −2ReTr

(
A ◦ ρH(b)

)
, A ∈MN (H)

Further, we normalize these statistics using a slighlty different normalization factor that was
used for the real and the complex case, the main reason being that ρH is a representation of the
algebra Bk(−2N):

mH
d (t, b) = 1

(−2d)nc(b•∨1k) mH
d (b,E

[
UH
N

]
).

For the third time, the range of mH
d (t) comprises the distribution of UH

n,d. Owing to Proposition
5, the mean of tensor monomials of UH

n,d(t) is expressed as:

(42) E
[
UH
N (t)⊗k

]
= exp

− tk2
(2N − 1

2N

)
− 1
N

∑
e•∈W•k

ρH(e•) + 1
N

∑
τ•∈T•k

ρH(τ •)

 .
Similar computations as done for the real and complex case lead to a differential system satisfied
by the statistics mH

d . Note that, contrary to the complex case, we do not need an extra parameter
(a word in M2), even if the conjugation is not trivial on H. Let b ∈ Bk a Brauer diagram, there
exists an on operator LH

d acting on the space of functions on Bk such that:

d

dt
mH
d (b, t) = LH

d (mH
d (t))(b), mH

d (0) = δ∆.

The operator LH
d is given by the formula

LH
d (g)(b) = −k(2N + 1)

4N g(b)− 1
n

∑
τ•∈Tk

(−2d)nc(b•∨τ•)−nc(b•∨1)−1 g(τ • ◦ b)

+ 1
n

∑
e•∈W•k

(−2d)nc(b•∨e•)−nc(b•∨1)−1 g(e• ◦ b)

where g ∈ R [Bk]?. As d tends to infinity the generator LH
d converges to Ln defined in equation

(41). This is sufficient to prove the convergence of the one dimensional marginals of UR
n,d. In

addition, UR
n,d and UH

n,d converge in non-commutative distribution to the same limit.

5.4. Convergence of the one-dimensional marginals: conclusion. Let K be one of the
three division algebras R,C or H. In the last section we proved the convergence of the one
dimensional marginals of the process UK

n,d. We exhibit differential system the limiting distribu-
tions are solution of and saw that limiting non-commutative distributions of the one dimensional
marginals of the real and quaternionic processes are equal, we prove now that it also holds for
the complex one dimensional marginals.

To that end, we define first the notion of compatible pairs in Bk×M1(k). Let b ∈ Bk a Brauer
diagram. Recall s•b denotes the orientation of b that is positive on the minimum of the cycles
of b. Define the subset S(b) of {−1, 1}k by S(b) = {s ∈ {−1, 1}k : s•b(i)s•b(j) = sisj ∀ i, j ≤
k, i ∼b•∨1 j} and the set of compatible words and diagrams by C = {(b, ws), b ∈ Bk, s ∈ S(b)}.
If w ∈ M1(k) is a word, w is obtained by substituting x1 in place of x1 and vice-versa. The
operator Ln,respectively Ln, acts on the space of linear forms on R [Bk], respectively on the
space of linear forms on R

[
M1
]
⊗ R [Bk]. To state the next proposition, we find convenient to

consider the dual operators L?n and L̄?n acting, respectively, on R [Bk] and R
[
M1(k)

]
⊗ R [Bk].
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Lemma 30. Let b ∈ Bk a Brauer diagram and w ∈ M2(k) a word. For any time t ≥ 0, one
has mn(b, w, t) = mn(b, w, t). The real vector space generated by tensors of compatible words and
diagrams is stable by the action L?n. In addition, L̄?n(b⊗w) = (L?n(b)⊗w) for any pair (b, w) ∈ C.

Proof. The first assertion of Lemma 30 is trivial. Let r ∈W+
k (b) ∪ T+

k (b), then s•rij◦b(i)
s•rij◦b(j) = s•b(i)s•b(j) whenever i ∼rb•∨1 j. It follows that C is stable by L̄n. Let b a Brauer
diagram. Let (b, ws) ∈ C with s ∈ S(b). From Proposition 24, Section 4, e•ij ∈ W+

k (b) if and
only if s•b(i)s•b(j) = −1 = s(i)s(j) and τ •ij ∈ T+

k (b) if and only if s•b(i)s•b(j) = 1 = s(i)s(j). Since
wsi = ws(j)⇔ s(i)s(j) = −1 and wsi = ws(j)⇔ s(i)s(j) = 1 we get L̄?n(b, w) = (L?n(b), w). �

If b and w are compatible diagrams and word, with b having only one cycle, Lemma 30 implies
the equalities:

mn(b, w, t) = mn(b, w, t), and mn(b, w) = mn(b),
if the diagram b has more than one cycle, the word w in the first of the last two inequalities can
partially conjugated: we can swap exchange all letters xi and xi which positions in the word w
are two integers belonging to the same cycle of b and leave the other letters untouched.

Now, to each word u ∈ O〈n〉 is associated a pair (bu, wu) of compatible word and diagram
(we are simply requiring that transposition and conjugation occur both at a time on the ma-
trix UC

N (t)) such that 1
dETr(UC

n,d(t)(u)) = mC
d (bu, wu, t). As the dimension tends to infinity,

1
dE
[
Tr(UC

n,d(t)(u))
]
→ mn(bu, wu, t) = mn(bu, t).

Now owing to the formula (10) for the generator of the pseudo-unitary diffusion, Ln(u) =
δ∆k

(Ln(bu)). This last inequalities implies

(43) UK
n,d(t)

dist.nc.→ U 〈n〉(t).

5.5. Convergence of the multidimensional marginals. To finish the proof of Theorem
28, we prove convergence of the multidimensional marginals of UK

n,d by using Theorem 31,
which in turn relies on conjugation invariant property of the process’s distribution; for any
unitary matrix in U(d,K) and words u1, . . . , uq ∈ O〈n〉 in the dual Voiculescu group, the family
{UUK

n,d(t1)U−1, . . . , UUK
n,d(tq)U−1} has the same non-commutative distribution as the family

{UK
n,d(t1), . . . , UK

n,d(tq)}.

Theorem 31 (Voiculescu; Collins,Sniady). Choose K ∈ {R,C,H}. Let (AN,1, . . . , AN,n)N≥1
and (BN,1, . . . , BN,n) be two sequences of families of random matrices with coefficients in K.
Let a1, . . . , an and b1, . . . , bn be two families of elements of a non commutative probability space
(A, τ). Assume that the convergence in non-commutative distribution

(AN,1, . . . , AN,n)→ (a1, . . . , an) and (B1,N , . . . , BN,n)→ (b1, . . . , bn)
hold. Assume also that for all N , given a random matrix U distributed according to the
Haar measure on U(N,K) and independent of (AN,1, . . . , AN,n, BN,1, . . . , BN,n), the two fam-
ilies (AN,1, . . . ,
AN,n, BN,1, . . . , BN,n) and

(
UAN,1U

−1, . . . , UAN,nU
−1, BN,1, . . . , BN,n

)
have the same distribu-

tion. Then the families {a1, . . . , an} and {b1, . . . , bn} are free.

Recall that we endowed the Dual Voiculescu group O〈n〉 with a coproduct ∆ with value in
the free product O〈n〉, a counit ε and an antipode S that makes O〈n〉 into a Zhang’s algebra
(see [6]). The two parameters family

(
UK
n,d(s, t)

)
s,t≥0

of increments of the process
(
UK
n,d(t)

)
t≥0

is defined as
UK
n,d(s, t) =

(
UK
n,d(t) t

(
UK
n,d(s) ◦ S

))
◦∆.

and the increments
(
U 〈n〉(s, t)

)
0≤s≤t≤+∞

of the free n dimensional unitary Brownian motion
satisfy

U 〈n〉(s, t) =
(
U 〈n〉(t) t

(
U 〈n〉(t) ◦ S

))
◦∆.
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The U(d) invariance of the finite dimensional marginals of UK
n,d(s, t) combined with the following

result of asymptotic freeness stated in Theorem 31 are the last two ingredients that end the proof
of Theorem 28. In fact, we show by recurrence that as d→ +∞, for any tuples s1 < t1 ≤ s2 <
t2 · · · sp < tp, the random variables

UK
n,d(s1, t1), . . . , UK

n,d(sp, tp) are asymptotically free.

Let s0 < s1, then UK
n,d(s0, s1) has the same non-commutative distribution as UK

n,d(s1 − s0).
Thus, UK

n,d(s0, s1) converges to Un(s0, s1). Pick a two tuples of time such that 0 < s0 < s2 <

· · · < sp. Assume that the family {UK
n,d(s0, s1), . . . , UK

n,d(sp−2, sp−1)} converges to {U 〈n〉(s0, s1),
. . . , U 〈n〉(sp−2, sp−1)} in non-commutative distribution. We proved that UK

n,d(sp−1, sp) converges
to U 〈n〉(sp−1, sp). Besides, the law of UK

n,d(sp−1, sp) is invariant by conjugation by any element of
U(d) and UK

n,d(sp−1, sp) is independent from the random variables {UK
n,d(s0, s1), . . . , UK

n,d(sp−2, sp−1)}
thus an application of Theorem 31 shows that

{UK
n,d(s0, s1), . . . , UK

n,d(sp−1, sp)}
n.c→

d→+∞
{{U 〈n〉(s0, s1), . . . , U 〈n〉(sp−1, sp)}.

6. Rectangular extractions of an unitary Brownian motion

In that section, we extend the result we proved in the last section stating the convergence
in non-commutative distribution of square blocks extracted from an unitary matrix by allowing
these blocks to be rectangular. But first, we briefly expose amalgamated non-commutative
probability theory.

6.1. Operator valued probability theory. In this section, we make an overview of operator
valued probability theory. Categorical notions are used without recalling them, for brevity. The
reader can refer to the first chapter in which he will find a detailed exposition on Zhang algebras,
categorical independance, categorical coproduct and comodule algebras.

6.1.1. Involutive bimodule Zhang algebras. In the sequel, algebras are complex or real unital
algebras. Let A and B two algebras. Let R be a third algebra and assume that A and B are
R-bi-modules; there exists a left and a right action commuting which each other such that:

(rr′)a = r(r′a), a(rr′) = ar(r′), 1a = a, r(ar′) = (ra)r′, r ∈ R, a ∈ A
In this work, we mainly deal with involutive algebras. An involutive algebra C is endowed with
an involutive anti-morphism ?A : C → C that is linear if C is a real algebra, anti-linear if
C is complex. We assume the three algebras A, B and R to be involutive and the following
compatibility condition between the bi-module structure and the anti-morphisms ?R and ?A:

?A(r · a) = ?A(a) · ?R(r), ?A(a · r) = ?R(r) · ?A(a), r ∈ R, a ∈ A,
A significant construction is the amalgamated free product of A and B over R, denoted by

A tR B. This amalgamated free product turns the category of involutive bi-module algebras
into an algebraic category, more on this is explained at the end of the paragraph and in [6].

The amalgamated free product is, to put it in words, the free product of A and B in which
we forget from which algebra the letters that belong to R comes from. For instance, if a ∈ A,
b ∈ B and r ∈ R: a(rb) = (ar)b ∈ A tR B. In symbols, the amalgamated free product is the
quotient:

A tR B = (R⊕
⊕
n≥1

Tn(A⊕B))/(ar ⊗ r′a′ − arr′a′, br ⊗ r′b′ − brr′b′, ar ⊗ b− a⊗ rb,

br ⊗ a− b⊗ ra, r1Ar′ − rr′, r1Br′ − rr′ : a, a′ ∈ A, b, b′ ∈ B, r, r′ ∈ R).
The free product A tR B is endowed in a canonical way with a R-bi-module structure, since

R ⊂ A tR B so that R acts by left and right multiplication on A tR B. In addition, the two
star morphisms ?A and ?B induce a morphism ?AtRB on the amalgamated free product AtRB
which makes the diagram Fig.11 commutative.
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A A

A tR B A tR B

B B

?A

?AtB

?B

Figure 11. The amalgamated free product as an involutive algebra.

The category of involutive bi-modules algebras over R is algebraic, with R as initial object.
It is therefore meaningful to define Zhang algebras in this category (see [6]) and subsequently
the notion of quantum processes in this category. Let us put this discussion into a more formal
way by writing the definition of an involutive R-bi-module Zhang algebra.

Definition 32. Let R be a unital algebra. A involutive B-bi-module Zhang algebra is a quadru-
plet (H,∆, S, ε) with H an involutive unital algebra that is also an involutive R-bi-module andv
three structural maps:

∆ : H → H tR H, ε : H → B, S : H → H.

Each of the maps ∆, S, ε is a morphism of unital algebra and R-bi-module maps. They are
subject to the relations:

1. ∆(∆ t idH) = (idH t idH)∆,
2. S t idH = idH t S = η ◦ ε,
3. (ε t 1)∆ = (idH t ε)∆.

We end this section with a remark on amalgamated tensor product A⊗RB of two R bimodules.
The space A⊗R B is the quotient:

A⊗R B = (A⊗B)/{a⊗ (r · b) = (a · r)⊗ b, a ∈ A, b ∈ B, r ∈ R}
The projection in A ⊗R B of a tensor a ⊗ b ∈ A ⊗R B will be denoted a ⊗R b. It is trivial to
define a R-bi-module structure on A ⊗R B, r · (a ⊗R b)r′ = (ra) ⊗R (br′). However, even if A
and B are algebras R-bimodules, the product (a1⊗R b1)(a2⊗R b2) = a1a2⊗R b1b2 is, in general,
not associative. In fact,

a1(rb)a2 = a1a2 ⊗R rb 6= a1ra2 ⊗R b = (a1r)ba2, a1, a2 ∈ A, b ∈ B.

Since A⊗RB is not a R bi-module algebra, we cannot define an R bi-module algebra morphism
from the amalgamated free product A tR B to A⊗RB equal to identity on A and onB as solution
of an universal problem. Assume that R is commutative and denote by comBiModAlg(R) the
category of commutative R-bimodule algebras which left and right module structures are equal.
If A,B ∈ comBiModAlg(R), the aforementioned issue disappears: the natural product on A⊗RB
turns this space into an R-bimodule structure.

A probabilistic implication of the last discussion needs to be clarified. Amalgamated ten-
sor independence, as an amalgamated counterpart of classical (from the point of view of non-
commutative probability with R = 1) tensor independence cannot be defined in the category of
operator valued probability spaces (see below for the definition of such spaces).

6.1.2. Operator valued probability spaces, rectangular probability spaces. Let R be an unital in-
volutive algebra. If A and B are two involutive R bimodule that are R-valued probability space,
an R-valued random variable from A to B is a morphism of the category of bi-module involutive
algebras. Having introduced the notion of amalgamated Zhang algebra in the last section, its
now meaningful to talk about amalgamated quantum processes. However, to define the notion
on non-commutative distribution, we need an appropriate definition of expectation on bimodule
algebras.
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Definition 33. Let A a bi-module algebra over R. A conditional expectation E on A is a
positive involutive R-bi-module map E : A→ R:

1. E(bab′) = bE(a)b′ (R-bi-module map),
2. E(a?) = E(a)? (involutive map),
3. E(aa?) ≥ 0 (positivity).

An R-valued probability space is the data of a bimodule algebra A and a conditional expecta-
tion E on A. We introduce as of now the class of R valued probability spaces we are interested
in, the rectangular probability spaces. Let A a bi-module algebra and assume from now that A
contains a set of complete, mutually orthogonal projectors {p1, . . . , pn}:∑

p∈{p1,...,pn}
p = idA, p? = p, p2 = p, pq = 0, p 6= q ∈ {p1, . . . , pn}.

and that R = 〈{p1, . . . , pn}〉, the commutative algebra generated by the projectors. Each el-
ement x of A can be written as a matrix, since x =

∑n
i,j=1 pixpj , we adopt the notation:

x = (pixpj)i,j≤n ∈ Mn(A). We use the terminology compressed spaces for the vector spaces
Aij = piApj , 1 ≤ i, j ≤ n. To construct a conditional expectation on A, we assume further that
each the diagonal compressed algebras Aii, i ≤ n is a (usual) probability space and denote by
φi the expectation on Aii. A conditional expectation E on A is defined by the formula:

E(x) =
n∑
i=1

φi(xii)pi, x ∈ A.

Having introduced the analogue notion of mean for R-valued probability space, we focus now
on cumulants. Recall that the set of non-crossing partitions of an interval J1, . . . , kK is denoted
NC(k). In the sequel, we are handling multilinear bimodule maps over A, these maps are defined
naturally on tensor products of the algebra A with itself over R, for which we use the symbol
A⊗R · · · ⊗R A. By definition: a⊗R (ra′) = (ar)⊗R a′, a, a′ ∈ A, r ∈ R. For n ≥ 1 an integer,
define the map En : A⊗Rn → A, by En(a1 ⊗R · · · ⊗R an) = E(a1 · · · an), a1, . . . , an ∈ A⊗Rn.

Let π ∈ NC(k) a non-crossing partition. The map Eπ from A⊗R · · ·⊗RA is defined recursively
as follows. For two blocks V and W of π, we write V < W if there exists two integers i, j in W
such that V ⊂ [i, j]. Denote by V1, . . . , Vp blocks of π that are maximal for π. Let m ≤ p an
integer and write Vm = {im1 < · · · < imkm}, the partition π restricts to a non-crossing partition πml
of the interval Kil, il+1J. The family of functions (Eπ)π∈NC is defined recursively by the equation

Eπ(a1 · · · ak) = E]V1

(
ai11
Eπ1

1

(
aKi11,i

1
k1J

)
· · ·Eπ1

k1−1

(
aKi1

k1−1
,i1
k1J

)
ai1
k1

)
· · ·

E]Vp

(
aip1Eπ

p
1

(
aKip1,i

p
2J

)
· · ·Eπp

kp−1

(
aKip

kp−1,i
p
kp

J

)
aip
kp

)
and the initial condition E∅ = 1. Recall that we use the notation µ for the Möebius function
of NC(k). The R-valued cumulants (cπ : A ⊗R · · · ⊗R A → R)π∈NC(k) are obtained by Möebius
transformation:

cπ =
∑
γ≤π

µ(γ, π)Eγ , Eπ =
∑
γ≤π

cγ .

As we shall see below, amalgamated freeness (defined below) is most efficiently seen on cumu-
lants, which is the main reason for introducing them. Since cumulants and conditional expecta-
tions are obtained from each others by a linear transformation, they share a lot of properties.

First, for any non-crossing partition π, cπ is a R-bi-module map. Secondly, let k ≥ 1 an
integer and i1, . . . , ik, j1, . . . , jk two k-tuples of integers in J1, nK. The conditional expectation
Ek is equal to zero on the space Ai1,j1 ⊗R · · · ⊗R Aik,jk if there exists a pair (il, jl+1), l ≤ n
such that il 6= jl+1. It can be proved, by induction, that for any non-crossing partition π, Eπ
evaluates to zero on Ai1,j1 ⊗R · · · ⊗R Aik,jk if there exists a block {l1, . . . , lp} ∈ π such that
il1−1 6= ilp . This property of the conditional expectation is shared with the cumulants.

Finally, ck(a1 ⊗R · · · ⊗R ak) = 0 if there exists an integer i ≤ k and r ∈ R such that ai = r1.
Let us prove this property. To ease the exposition, we assume that a1 = r1 for some r ∈ R.
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Define c̃π(a1 ⊗R · · · ⊗R ak) = cπ(a1 ⊗R · · · ⊗R ak) if {1} ∈ π and set c̃π(a1 ⊗R · · · ⊗R ak) = 0
otherwise. We claim that

Eπ(a1 ⊗R · · · ⊗R ak) =
∑
γ≤π

c̃γ(a1 ⊗R · · · ⊗R ak)

This last relation, obviously, holds if {1} ∈ π. Let V = {1 < i1 · · · < ip} ∈ π the block of π
containing 1. Using R linearity, Eπ(a1⊗R · · · ⊗R ak) = Eπ̃(a1⊗R · · · ⊗R ak) with p̃ the partition
obtained from π by splitting the block V of π into the two blocks {1}, {i1 < · · · < ip}. Hence,

Eπ(a1 ⊗R · · · ⊗R ak) = Eπ̃(a1 ⊗R · · · ⊗R ak)

=
∑
γ≤π̃

cγ(a1 ⊗R · · · ⊗ ak) =
∑
γ≤π

c̃γ(a1 ⊗R · · ·R ⊗ ak).

From which if follows that c̃π(a1⊗R · · ·⊗R ak) = cπ(a1⊗R · · ·⊗R ak) and finally c̃k(a1⊗R · · ·⊗R
ak) = 0 if k ≥ 2.

Proposition 34 (see [9]). Let A be an involutive algebra endowed with a bimodule action of an
algebra R. Let x1 and x2 two elements in A. The two R-bimodule algebras R [a] and R [b] are
free from each other if and only if for all n ≥ 1 the cumulants cn(xi1 , . . . , xin) are null if there
exists two integers 1 ≤ k, q ≤ n with ik 6= iq.

6.1.3. Amalgamated semi-groups and Lévy processes. Let R a unital associative algebra. Equiva-
lent notions for tensor semi-groups and free semi-groups on involutive bi-algebras can be defined
in the context of amalgamated bi-algebras. Let C be either the algebraic category of R-bimodule
algebras, (biModAlg(R),tR, R), either the algebraic category of commutative R-bimodule alge-
bras (comBiModAlg(R),⊗R, B) and recall that these two categories are algebraic if endowed,
respectively, with the amalgamated free product or the amalamated tensor product. The notion
of bi-algebra in comBiModAlg(R) (in the case R is commutative) is obtained by replacing the
free amalgamated product by the tensor product in the definition of a free amalamated Zhang
algebra and removing the antipode S from the set of structural morphism.

Let (B,∆, ε) be an associative bi-algebra in biModAlg(R), and α : B → R, β : B → R two
R-bimodule linear maps. The free product α tR β ∈ (B tR B)? of α and β is the unique
R-bimodule map satisfying the condition: for any alternating word s1s2 · · · sm ∈ B tR B,

(α tR β)(s1s2 · · · sm) = 0, α(si) = 0 if si ∈ B|1 or β(si) = 0 if si ∈ B|2, 1 ≤ i ≤ m.
On the commutative side, if B is an object of the category comBiModAlg(R), the tensor

product of α and β is an R-bimodule map on the amalgamated tensor product A⊗R B defined
by:

(α ⊗̂R β)(b1 ⊗R b2) = α(b1)β(b2), b1 ⊗ b2 ∈ B ⊗R B.
The free convolution product α t̂R β of α and β is an R-bimodule map on B and is defined

by (α t̂R β) = (α tR β) ◦∆. Again, in case B is an object of comBiModAlg(R), we can define
the tensor convolution product α⊗̂β of α and β by setting: α ⊗̂R β = (α⊗R β) ◦∆.

An amalgamated free semi-group is a time parametrized family (Et)t≥0 of R-bimodule maps
on B satisfying:

Et+s = Et t̂REs, t, s ≥ 0.
The notion of amalgmated tensor semi-group is obtained be replacing the amalamated free
convolution product in the last equation by the tensor amalgamated product. We now expose
the amalmagmated counterpart of free independence. Let (A,E) a R valued probability space.
Let B1 and B2 two R-bimodule sub-algebras of A. We say that B1 and B2 are freely independent
with amalgamation if:
(44) E(b11b12...b

p
1b
p
2) = 0, with bi1 ∈ B1, b

i
2 ∈ B2 and, E(bi1) = E(bi2) = 0, 1 ≤ i ≤ p.

Working in the category biModAlg(R),we say that two sub-R-bimodule algebras B1 and B2 of
commutative operator valued probability space (A,E) are amalgamated tensor independent if

E(b1b2) = E(b1)E(b2).
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Let a ∈ A an element of A, we denote by R[a] the R bimodule algebra generated by a. By
definition R[a] is the set of all linear combinations of monomials in the element a with coefficients
in the algebra R:

R[a] = K [{r0a
n1r1a

n2 · · · anprp, r0, . . . , rp ∈ R, p ≥ 1}] ⊂ A.

We say that two elements a ∈ A and b ∈ B are free with amalgamation over R if R[a] and R[b]
are free sub-modules of A.

The restriction of E to the algebra generated by two mutually free with amalgamation algebras
B1 and B2 is entirely determined by the restriction of E to B1 and to B2 and is equal to the
amalgamated free product of the restrictions of E to these algebras; with ι1 and ι2 the injections
of, respectively, B1 into B and B2 into B:(

B1 tR B2, E|B1t̂RE|B2

) ιB1 ṫ ιB2−→ (B,E).

We are now in position to give the definition of an amalgamated free Lévy process. Let (H,∆, ε, S)
be anR-amalgamated free Zhang algebra, that is, a Zhang algebra in biModAlg(R) and (A,E) an
R-valued probability space. An amalamated free Lévy process j = (jt)t≥0 is a time parametrized
collection of homomorphisms of biModAlgR with values in A that satisfy the following three
conditions, with jst = jt ṫ js ◦ s:

1. for all times s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sp < tp, {js1t1 , . . . , jsptp} is a mutually free with
amalgamation family, meaning that the algebras js1t1(H), . . . , jsptp(H) are mutually free
in A.

2. For all times t > s, the distribution E ◦ jst depends only on the difference t− s,
In addition, if R is naturally endowed with a norm, we require also the continuity condition:

lim
s→t

jst(h) = ε(h), h ∈ H.

To be complete, if considering the category comBiModAlg(R), the defintion of a tensor amal-
gamated Lévy process is obtained by requiring amalagmated tensor independence of the incre-
ments in the last definition. With the notation of the definition, the one dimensional marginals
t 7→ E ◦ jt of a free amalgamated Lévy process is a free semi-group (the same holds if working
with tensor amalgamated tensor Lévy process). We do not know if an amalgamated version of
the Schoenberg correspondance for free or tensor amalgamated Lévy process holds.

6.2. Extraction processes and their statistics in high dimensions. In the Section 5, we
proved the convergence in non-commutative distribution of the process on the dual Voiculescu
group O〈n〉 that extracts square blocks from a unitary Brownian motion in the limit for which
the dimensions of these blcks tend to infinity. A natural extension of this result is investigated
here; square blocks are replaced by rectangular ones. Our main results are stated in Theorem
37 and Theorem 39. Given a partition d of the dimension, we construct for each time t ≥ 0
two quantum processes on two amalgamated Zhang algebras (defined below in Section 6.2.1 and
6.2.2) that extract rectangular blocks in the matrix UK

N (t). For one of these processes, product
of blocks, even if the dimensions match, may be equal to zero while it is never the case for the
other process. More on this point is explained below. The method we use in this section for
proving the convergence of the one dimensional marginals of these processes is similar to the
one used in Section 5. However, to prove the convergence of the multi-dimensional marginals,
Theorem 31 can not be applied. We fix an integer n ≥ 1. Let N ≥ 1 an integer and let d be a
partition of N into n parts. The algebraMN (R) can be endowed with a structure of operator
valued probability space. In fact, denote by Dd generated by the projectors:

pi(k, l) =
{
δk,l if k, l ∈ [d1 + · · ·+ di−1, d1 + · · ·+ di]
0 otherwise , i ≤ n.
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and define the complex linear form Ed :MN (R)→ Dd by

Ed [A] =
n∑
i=1

1
di

Tr(piApi)pi.

The algebraMN (R) is a Dd bimodule and Ed is a positive bimodule map: (MN (R), Ed) is an
operator valued probability space.

If considering matrices with entries in C, the conditional expectation we choose onMN (C) is
the same as for the real case. If we consider matrices with entries in the quaternionic division
algebra, we choose for the conditional expectation Ed[A] =

∑n
i=1

1
di
ReTr (piApi) pi, A ∈MN (H).

For K = R,C or H, we denote byMd(K) the operator valued probability space we just defined.
Considering matrices with random entries in a L∞−(Ω,F ,P), a rectangular probability space
amalgamated over Dd is obtained by taking the mean of the conditional expectation Ed. Set
Ed = E ◦ Ed. The rectangular probability space

(
Md,Ed,

d
N

)
) is denoted (Md(L∞−(K)).

Put n′ =
∑
d∈d d. The two sections 6.2.1 and 6.2.2 are devoted to the definition of the two

processes we are interested in and their structure algebras. These two processes depend on a
partition d. The first one takes its values in Mn′(K), extracts blocks of dimensions prescribed
by the partition d and puts blocks of same size at the same place into a matrix of dimension
n′×n′. The second one extracts blocks but holds them in place in the matrix, meaning that all
the other blocks are set to zero.

6.2.1. Dimension cluster algebra. Let N ≥ 1 an integer and pick a partition d of N into n parts.
We use the short notation {d} for the set {d, d ∈ d}. If d ∈ {d}, we denote by nd the number of
occurrences of d in d and we set n′ =

∑
d∈{d} d. We define the first process which asymptotics

in high dimensions is the object of study.
Pick two integers d, d′ ∈ {d}. To that pair of dimensions (d, d′) we associate formal variables

xd,d′(i, j), x?d′,d(j, i) i ≤ nd, j ≤ nd′ and define the matrix X of size n with entries in the free
algebra generated by the variables xd,d′(i, j) by
(45) X(k, l) = xdk,dl (]{1 ≤ i ≤ k : di = dk}, ]{1 ≤ i ≤ l : di = dl}) .
Definition 35 (Cluster Rectangular Unitary algebra). Cluster Rectangular Unitary algebra is
the involutive unital associative algebra, denoted CRO〈d〉, that is generated by all the variables
xdd′(i, j) and projectors pd, d ∈ {d} subject to the relations:

XX? = X?X = 1, p?d = pd, pdpd′ = δdd′pd,

pd1xd2d3(i, j)pd4 = δd1d2δd3d4xd2d3(i, j), pd1x
?
d2d3(i, j)pd4 = δd1d3δd4d2xd2d3(i, j).

As a consequence of the set of relations 35, the family of projectors {pd, d ∈ {d} for a complete
set of projectors: ∑

d∈{d}
pd = 1 ∈ CRO〈d〉.

To a pair of dimensions (d, d′) we associate the sub-algebra CRO〈d〉d,d′ generated by the set of
variables {xd,d′(i, j), x?d′,d(j, i), i ≤ nd, j ≤ nd′}. The unital algebra generated by the projectors
{pd, d ∈ {d}} is denoted Dd. Finally, we define a Dd-amalgamated Zhang algebra structure on
CRO〈d〉 by setting for the structural morphisms S,∆, ε:

∆ : CRO〈d〉 → CRO〈d〉 tDd CRO〈d〉, ∆(X) = X|1X|2,

S : CRO〈d〉 → CRO〈d〉, S(X) = X?,

ε : CRO〈d〉 → Dd, ε(X) = 1.
We denote by d′ the partition of n′ obtained by sorting {d} = {d1, . . . , dp} in ascending order.

As we should see below, this choice for the partition d′ is quite arbitrary and is, somehow,
maximal.

To a matrix A ∈ Mn(K), we associate a random variable jA : CRO〈d〉 → Md′(K) defined
as follows. For d, d′ ∈ {d}, i ≤ nd, j ≤ nd′ : jA(xd,d′(i, j)) is the block of dimensions d × d′ at
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position (i, j) in the matrix of size ndd × nd′d′ obtained by extracting all blocks of size d × d′
(and keeping them at their relative position) of A.

We make few remarks regarding the way we chose to define the algebra cluster and the
random variables jd

A, with obvious notations. We indexed the generators of CRO〈d〉 by using,
in particular, the set {d}. It is important to notice that the algebra CRO〈d〉 depends solely
on the kernel of d, if another sequence d2 of integers of length n has the same kernel as d then
CRO〈d〉 = CRO〈d2〉. Only the random variabl jd

A depends on the sequence d.
If V = {i1 < . . . < ip} and V ′ = {i′1 < . . . < i′p′} are two blocks of Ker(d), we denote by

xV,V ′(ik, i′l) the element xd(V )(k, l), and accordingly pd(V ) = pV . The constitutive relations of
CRO〈d〉 can thus be written:

XX? = X?X = 1, pV pV ′ = δV,V ′pV , p
?
V = pV(46)

pV1xV,V ′(i, j)pV2 = δV1,V δV2,V ′xV,V ′(i, j), i ∈ V, j ∈ V ′(47)

If π is a partition of J1, nK, we denote by CRO〈π〉 the algebra generated by the random variables
{xV,V ′(i, j), V, V ′ ∈ π, i ∈ V, j ∈ V ′} subject to the relations (46).

Let A be a matrix of size N and d a partition of N into n parts which kernel is coarser than π.
Set p equal to the number of blocks of π and pick σ a permutation of Sp. Using the lexicographic
order on the block of π, we write π = {V1 < . . . < Vp} and define jd,π,σ

A the random variable
that takes it values in the rectangular probability spaceM(d(Vσ(1)),...d(Vσ(p)))) and defined in the
same way as jd

A. It is clear that the random variable jd
A we defined previously corresponds to the

choice π = Ker(d) for some permutation σ. We settle quite a level of generalities, in the sequel
we use only the random varirable jπ,d,1pA for which we use the shorter notation jπ,d. After all all
these defintions, we can now define the process which asymptotic asymptotic in high dimensions
is studied:
(48) UK

{d},π(t) = jd,π
UK
N (t), for all times t ≥ 0.

Figure 12. This figure pictures the action of the morphism jd,π,id4
A , with d =

(1, 3, 1, 3) and π = {{1}, {2, 4}, {3}} on a matrix A, drawn on the left hand side
of the figure. Blocks of A coloured in the same way are sent by jd,π,id4

A on the
block in the matrix on the right hand side coloured with their common colour.

6.2.2. Rectangular unitary algebra. Let N,n ≥ 1 integers and d a partition of N into n parts.
In that section, we define the rectangular unitary algebra RO〈n〉 that is nothing more but the
dual Voiculescu group augmented with auto-adjoint projectors. Hence, as an unital algebra,
RO〈n〉 is generated by n auto-adjoint mutually orthogonal idempotent elements (pi, i ≤ n) and
an unitary element u subject to the relations:
(49) pkpl = 0, k 6= l, p?k = pk, p2

k = pk, k, l ≤ n, and u? = u−1.
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Denote by Dn the algebra generated by the projectors pi, i ≤ n. The algebra RO〈n〉 is an
involutive Dn bimodule algebra. Let π be a partition finer than Ker(d). At that point, let us draw
comparisons between the algebra CRO(π) we introduced in the last section and the rectangular
unitary algebra. We claim that there exists a surjective morphism φ : CRO(π)→ RO〈n〉 taking
the following values on the generators:

φ(xV,V ′(i, j)) = piupj , d, d
′ ∈ {d}, φ(pV ) =

]V∑
q=1

pq.

with i ∈ V, j ∈ V ′, V, V ′ ∈ π. For each time t ≥ 0, the random variable UK
d (t) : RO〈n〉 →

L∞−(Ω,A,P,R)⊗MN (K) that extract blocks from UK
N but hold them in place, is defined by:

(50)
UK

d (t) : RO〈n〉 → MN (L∞ (Ω,F ,P,K))
u 7→ UK

N (t)
pi 7→ pi

.

The algebra RO〈n〉 is an involutive Dn-bimodule and is endowed with a Zhang algebra
structure. We define three bi-module morphisms ∆, ε, and S by specifying their values on
the generators of RO〈n〉 and show that (RO〈n〉,∆, ε, S) is a Zhang algebra. We claim that
there exist involutive algebra morphisms S,∆, ε, defined on the free real algebra generated by
{u, u?, p1, . . . , pn} satisfying:

∆ : R [u, u?, p1, . . . , pn]→ RO〈n〉 tR RO〈n〉, ∆(u) = u|1u|2, ∆(pi) = pi, 1 ≤ i ≤ n
S : R [u, u?, p1, . . . , pn]→ RO〈n〉, S(u) = u?, S(pi) = pi, 1 ≤ i ≤ n(51)
ε : R [u, u?, p1, . . . , pn]→ B, ε(u) = 1, ε(pi) = pi, i ≤ n

The algebra RO〈n〉 is a quotient of R [u, u?, p1, . . . , pn] by the relations (49). Hence, the three
maps in (51) descend to morphisms on RO〈n〉 if the images of the generator {u, u?, p1, . . . , pn}
by these maps satisfy the same relations (49). This verification shows no difficulties and we
omit it for brevity. With this definition, UK

d is non-commutative process on the Zhang algebra
H taking its values in the rectangular probability spaceMd(L∞−(Ω,F ,P,K)). The next sections
are devoted to the investigation of the convergence in non commutative distribution of UK

dN
as

the dimension N tends to infinity, with (dN )N≥1 a sequence of partitions of N into a fixed
number n of parts.

Figure 13. A picture standing for the action of the morphism jA that cuts a
matrix A(on the left) into 16 blocks which sizes exhaust the set {1, 3} × {1, 3}.

6.2.3. Statistics of the extractions processes. Let N ≥ 1 an integer and pick a partition dN
into n parts of N . The purpose of the forthcoming sections are to prove the convergence in
high dimensions, in non-commutative distribution, of the two processes UK

{dN} and UK
dN

. The
method we use has been expounded in Section 5 to prove the convergence in non-commutative
distribution of the process square blocks extraction from an unitary Brownian motion. We recall
some features of that method. If N = nd and dN = (d, . . . , d), we defined for each time t ≥ 0
a statistic mK

d (t) which is a function on the set of Brauer diagrams which range comprises the
distribution of UK

dN
. We proved next the convergence of this statistic by exhibiting a differential
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system mK
dN

is solution of. Hence, in order to apply this method, we need first to define the
statistic mK

d that is the rectangular counterpart of mK
d . After that, to normalize this statistic we

use the functions fncd, d ∈ {dN} we introduced in Section 4. To explain why the use of these
functions is needed, recall that for a matrix A ∈MN (R) and (b, s) ∈ Bk an oriented irreducible
Brauer diagram,

(?) Tr⊗k (ρdN (b) ◦ (A⊗ · · · ⊗A)) = Tr⊗k
(
A
(
cb(i′1)sb(1), cb(i1)

)
· · ·A

(
cb(i′k), cb(ik)sb(k)

))
with σb• = (i1, . . . , ik). Of course,the right hand side of (?) does only depend on the cyclic
order induced by σb• and truly independent of the orientation s. However, to normalize these
quantities (and retrieve the distribution of UK

dN
) we need first to choose which block sits at front,

this amongst to pick a linear order on (1′, . . . , k′). By doing this, we are able to associate a word
on the blocks of A to each Brauer diagram, not only a cyclic word. A second step is to choose
the dimension we use to normalize, either the number of lines, either the number of columns
of the blocks that sits at front. If this block is transposed, we normalized by the number of
columns, and it is not we normalize by the number of lines. By doing this we break an other
symmetry of the right hand side of (?), which is the invariance by transposition. Let’s draw an
example with three blocks and b = ((1, 2, 3), (1, 2)(1, 1)(1, 2)), one has

Tr (ρd ◦A⊗A⊗A) = Tr
(
A2

1A
1
1A

1
2

)
= Tr

(
A1

1A
1
2A

2
1

)
= Tr

(
A2

1A
1
1A

1
2

)
.

For each of three linear orders on (1, 2, 3), we get the normalizations
1
d2

Tr
(
A2

1A
1
1A

1
2

)
1 < 2 < 3, 1

d1
Tr
(
A1

1A
1
2A

2
1

)
1 < 3 < 2, 1

d2
Tr
(
A1

1A
1
2A

2
1

)
3 < 2 < 1.

The support of a cycle c of a Brauer diagram b• ∈ B•k is seen as being endowed with the linear
order that is left by putting the minimum, for the natural order, of the support of c out of the
cyclic order induced by c.

After this discussin, the definition of the rectangular extractions’ statistic will seem natural
for the reader. The function mR

dN
on the set of oriented Brauer diagrams OBk and valued in

the space of linear forms onMN (R)⊗k is defined by, for matrices A1, . . . , Ak ∈MN (K), and an
oriented Brauer diagram (b, s) ∈ OBk :

(52) mK
dN

((b, s))(A1 ⊗ · · · ⊗Ak) =

 ∏
d∈{dN}

d−fncd((b,s))

TrK(ρR
d (b) ◦A1 ⊗ · · · ⊗Ak)),

where K = R,C or H and TrR = TrC = Tr, TrH = Re◦Tr. In the following section, we are making
some hypothesis on the sequence of partitions (dN )N≥1 and study the convergence of:

mK
dN

(
E
[
mK
dN

(UK
N (s1, t1)⊗ · · · ⊗ UK

N (sq, tq)
)]

as the dimension N tends to infinity (see 36). To study the aforementioned convergence, we
let q ≥ 1 an integer and pick

[
UK
N

](1)
, . . . ,

[
UK
N

](q)
independent unitary Brownian motions. We

denote by Mq, respectively M q the free monoid generated by q letters {x1, . . . , xq}, respectively
2q letters {x1, . . . , xq, x̄1, . . . , x̄q} and the identity element ∅. If k ≥ 1 is an integer, we denote by
Mq(k), respectively Mq(k) the subset of Mq , respectively of Mq, comprising all words of length
k.

If K = R or H, we are now defining for a tuple of times t = (t1, . . . , tq) , a word w ∈ Mq(k)
and an oriented Brauer diagram (b, s):

mK
dN

((b, s), w, t)(u) = mK
dN

((b, s)
(

E
[
w⊗

([
UK
N (ut1)

](1)
⊗ · · · ⊗

[
UK
N (utq)

](q))])
, u ∈ [0, 1].

In the complex case, we need also to take component wise conjugation of the Brownian diffusion
in order for its non-commutative distribution to be in the range of the statistic mC(t), with w a
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word in Mq(k) and an oriented Brauer diagram (b, s), we set:

mC
dN

((b, s), w, t)(u) = mC
dN

((b, s))
(

E
[
w⊗

([
UC
N (ut1)

](1)
⊗ · · · ⊗

[
UC
N (utq)

](q))])
, u ∈ [0, 1].

For each time u ∈ [0, 1], the statistic mK
dN

(t)(u) extends linearly to the tensor product R [OBk]⊗
R [Mq(k)] (resp. to R [OBk]⊗ R

[
Mq(k)

]
), if K = R or H (resp. if K = C).

6.3. Convergence of the extraction processes’ statistics. We assume in this section that
as N tends to infinity, the ratio dN (i)

N converges for each integer 1 ≤ i ≤ n:

(∆) dN (i)
N

−→
N→+∞

ri ∈]0, 1], for all 1 ≤ i ≤ n.

Recall that we denote by Ker(dN ) the partition of J1, nK of all level sets of the function J1, nK 3
i 7→ dN (i)

N . As noticed in Section 4, if two dimensions functions f and f ′ satisfy Ker(f) = Ker(f ′)
then Bfk = Bf

′

k . This section is devoted to the proof of the following proposition, which main
corollary is Theorem 37. In the sequel we set r = (r1, . . . , rn). The sequence r is a sequence of
positive integers, we means that the dimensions of the blocks that are extracted grow linearly
compared to the total dimension N .

Proposition 36. As N → +∞, for each non-mixing oriented Brauer diagram (b, s) and word
w in Mq(k), mR

dN
((b, s), w, t) and mH

dN
((b, s), w, t) converge to the same limit.

As N → +∞, for each non-mixing Brauer diagram (b, s) and word w in Mq(k), mC
dN

((b, s), w, t)
converges.

In addition, if we assume that the sequence of Kernels (ker(dN ))N≥1 is bounded from below
by Ker(d1), Ker(d1) ≤ Ker(dN ), ∀N ≥ 1, the above convergence is extended to the whole set of
Brauer diagrams Bd1

k .

Let us explain with more details the hypothesis we made on the sequence of kernels, requiring
for each element of this sequence to be larger than d1 is the same as cutting a matrix into blocks,
letting each block growing while maintaining the dimensions of blocks that were equal initially,
equal. The kernel ker(r) is, in general, greater than the kernels ker(dN ), N ≥ 1. Note that
the sequence of algebras Bk(dN ) is a sequence of linearly isomorphic spaces, and each algebra
Bk(dN ) is injected canonically into the limit algebra Bk(r).

We denote by mr(t) and mr(t) the limit of mR
dN

(t), respectively, mC
dN

(t). In the course of proving
Proposition 36, we find two differential systems the functions mr(t) and mr are solutions of. The
generators of these systems are denoted Lr and L̄r and are defined below as operators acting
on R [OBk] ⊗ R [Mq(k)] for Lr and R [OBk] ⊗ R

[
Mq(k)

]
for Lr. To provide tractable formulae

for these operators, with a slight abuse of notation, we introduce for each positive dimension

function f , the function f on the set product O
◦
Bfk ×O

◦
Bfk by the equation:

(53) f(((b, s), o), ((b′, s′), o′)) =
∏
d∈{f}

dfncd((b,s),o)−fncd((b′,s′),o′),

with ((b, s), o), ((b′, s′), o′) ∈ O
◦
Bfk×O

◦
Bfk and remark that f is well defined owing to the positivity

of f . We set

cR
N = −1

2
N − 1
N

, cH
N = −1

2
N − 3
N

, cC
N = −1

2 .

We are now ready to compute the derivatives of the statistics mK
dN

. By using formulae (36),
(40) and (42) of Section 5 for the mean E

[
UK
N (ti)

]
, i ≤ q and obtain for each integer 1 ≤ i ≤ q

existence of an operator LK
i,N acting on the space R [OBk] ⊗ R [Mq(k)] for K = R or H and on
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R [OBk]⊗ R
[
Mq(k)

]
if K = C such that:

(54) d

du
mK
dN

(t)(u) =
q∑
i=1

mK
dN

(t)(u) ◦ LK
i,N = mK

dN
(t)(u) ◦ LK

N , for all u ∈ [0, 1],

with LK
N =

∑q
i=1 tiL

K
i,N .

The two sets of coloured Brauer diagrams BdNk and BrNk are equal, the operators LK
i,N may

thus be seen as acting on the linear span of the tensor product of R
[
OBrNk

]
with R

[
Mq(k)R

]
(or

R [Mq(k)] in the complex case). For 1 ≤ i ≤ n and a word in w ∈ Mq (resp. in Mq), we denote
by ni(w) the number of letters in the word w equal to xi (resp. to xi or xi). We recall that the
sets of non mixing coloured Brauer diagrams which underlying component is a transposition of
a projection is denoted, respectively, by Tk,n and Wk,n. Let b ∈ OBdNk a Brauer diagram and
w ∈ Mq(k), for K = R or H,

LK
i,N (b⊗ w) = cK

Nni(w)(b⊗ w) +
∑

eij∈Wk,n,
wi=wj=xi

Nnc(b•∨e•ij)−nc(b•∨1)−1rN
(◦
eij �

◦
b,
◦
b
)
(eij � b⊗ w)

−
∑

τij∈Tk,n,
wi=wj=xi

Nnc(b•∨τ•ij)−nc(b•∨1)−1rN
(◦
τ ij �

◦
b,
◦
b
)
(τij � b⊗ w).(55)

with the finite sequence rN defined by rN =
(
dN (1)
N , . . . , dN (n)

N

)
. For the the complex case, we

let w be a word in the monoid Mq(k),

LC
i,N (b⊗ w) = cC

Nni(w)(b⊗ w) +
∑

eij∈Wk,n,
wi,wj∈{xi,xi}

Nnc(b•∨e•ij)−nc(b•∨1)−1rN
(◦
eij �

◦
b,
◦
b
)
(eij � b⊗ w)

−
∑

τij∈Tk,n,
wi=wj∈{xi,xi}

Nnc(b•∨τ•ij)−nc(b•∨1)−1rN
(◦
τ ij �

◦
b,
◦
b
)
(τij � b⊗ w).(56)

Let us detail the computations for the real case. For an oriented Brauer diagram (b, s), set
DN (b, s) =

∏
d∈{dN} d

−fncd(b). By definition, we have

(57) d

du
mR
dN

(t, w, b)(u) = DN (b, s)Tr
(
d

du
E
[
w⊗([UR

N ]1(utq)⊗ · · · ⊗ [UR
N (utN ))]q

]
◦ ρR

dN (b)
)
.

Owing to formulae in Section 5 we proved for the mean of tensor monomials of the unitary
Brownian diffusion and mutual independence of the family

{
[UK
N ]i, 1 ≤ i ≤ q

}
,

d

du
E
[
w⊗([UR

N ]1(utq)⊗ · · · ⊗ [UR
N (utN ))]q

]
= E

[
w⊗([UR

N ]1(utq)⊗ · · · ⊗ [UR
N (utq))]q

]
×

q∑
i=1

ti

(
cR
Nni(w) +

∑
eij∈Wk,n,
wi=wj=xi

1
N
eij −

∑
τij∈Tk,n,
wi=wj=xi

1
N
τij

)
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We insert this last equation into formula (57) to obtain:

d

du
mR
dN

(t, w, b)(u) =
∑
i

ti
(
ni(w)mR

dN
((b, s), w, t)(u)

1
N

∑
eij∈Wk,n,
wi=wj=xi

∏
d

dKd(eij ,b)DN (b, s)Tr
(
E
[
w⊗([UR

N ]1(utq)⊗ · · · ⊗ [UR
N (utq))]q

]
◦ ρR

dN
(eij ◦ b)

)

− 1
N

∑
τij∈Tk,n,
wi=wj=xi

∏
d

dKd(τij ,b)DN ((b, s))Tr
(
E
[
w⊗([UR

N ]1(utq)⊗ · · · ⊗ [UR
N (utq))]q

]
◦ ρR

dN
(τij ◦ b)

) )

We orient the coloured Brauer diagrams eij ◦b and τij ◦b using the � operator. We multiply each
terms in the first sum, respectively the second sum of the last equation by the normalization
factor DN (τij � (b, s)), respectively DN (eij � (b, s)) to get, with r ∈ {e, τ}:∏

d∈{dN}
dKd(rij ,b)DN (b,s)

NDN (rij�b) mR
dN

(rij � b, w, t) = Nnc(b•∨r•ij)−nc(b•∨1)−1rN
(
◦
rij �

◦
b,
◦
b

)
fdN (rij � (b, s), w, t).

The functional δ∆k
is the indicator function of the set of coloured oriented Brauer diagrams

in OBd1
k that are diagonally coloured,

δ∆k
((b, s)⊗ w) =

q∏
i=1

δcb(i)=cb(i′).

Since the family {LK
i,N , i ≤ N} is a commuting family of operators, we get the following formula

for mK
d(N)(t),

(58) mK
d(N)(t)(1) = δ∆k

◦
q∏
i=1

etiL
K
i,N = δ∆k

◦ exp
( q∑
i=1

tiL
K
i,N

)
.

We draw the reader’s attention on the fact that the domain of definition of the statistic mK
d(N)(t)

and the generators LK
i,N with i ≤ q rests on the kernel Ker(dN ) of the dimension function dN .

This prevents us to simply let N tends to infinity in the formulae (55) and (56) without further
assumption on the sequence dN . Nevertheless, under the assumption made in Proposition 36
on the sequence (dN )N≥1 the aforementioned issue does not show up; the generators LK

i,N are
defined on the real vector space R

[
Bd1
k

]
included in all the spaces R

[
Bker(dN )
k

]
, N ≥ 1.

Let 1 ≤ i, j ≤ k two integers. The quantities ◦τ ij �
◦
b and ◦eij �

◦
b are computed in the algebra

Bk(rN ). To make explicit this dependence we write instead for the next few lines ◦τ �rN
◦
b and

◦
eij �rN

◦
b. Since the limiting ratios ri are all positive,

rN
(
◦
eij �rN

◦
b,
◦
b

)
−→

N→+∞
r
(
◦
eij �r

◦
b,
◦
b

)
, rN

(
◦
τ ij �rN

◦
b,
◦
b

)
−→

N→+∞
r
(
◦
τ ij �r

◦
b,
◦
b

)
.

We repeat the discussion we made in Section 5 in which the convergence of the statistics
mK
d (t), t ≥ 0 was investigated as the dimension d tends to infinity: the sums over the elementary

non-mixing diagrams r in equation (55) and (56) localize over the set of diagrams that create a
cycle or a loop if multiplied with b: r ∈ T+

k (b) ∪W+
k (b).

We are non convinced that we can let N tends to infinity in equation (55) and (56). For each
Brauer diagram in Bd1

k , and word w in M2,

LR
i,N (b⊗ w) −→

N→+∞
Li,r(b⊗ w), LH

i,N (b⊗ w) −→
N→+∞

Li,r(b⊗ w),
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with the generator Li,r defined for b ∈ OBr
k:

Li,r(b⊗ w) = −1
2ni(w)(b, w)+

∑
eij∈W+

k,n
(b)

wi=wj=xi

r( ◦eij �
◦
b,
◦
b)(eij � b⊗ w) +

∑
τij∈T+

k,n
(b),

wi=wj=xi

r(◦τ ij �
◦
b,
◦
b)(τij � b⊗ w).

(59)

For the complex case, if w is a word in M2 and b ∈ OBd1
k , if we let N tends to infinity, we obtain

the convergence for each integer 1 ≤ i ≤ n of LC
i,N (b, w) to Li,r(b ⊗ w) with Li,r defined by the

equation

Li,r(b⊗ w) = −1
2ni(w)(b⊗ w)+

∑
eij∈W+

k,n
(b)

wi 6=wj
wi,wj∈{xi,x̄i}

r( ◦eij �
◦
b,
◦
b)(eij � b⊗ w) +

∑
τij∈T+

k,n
(b),

wi=wj
wi,wj∈{xi,x̄i}

r(◦τ ij �
◦
b,
◦
b)(τij � b⊗ w).

(60)

Set Lr =
∑q
i=1 tiLi,r and Lr =

∑q
i=1 tiLi,r. Since the generators LK

i,N , i ≤ q,K = R,C or H and
Li,r, L̄i,r act on finite dimensional spaces, we can let N tends to infinity in equation (58) and
get, for K = R or H

mK
dN

(b, w, t)(1) −→
N→+∞

δ∆k
◦ e
∑q

i=1 tiLi,r(b⊗w), mC
dN

(b⊗ w, t)(1) −→
N→+∞

δ∆k
◦ e
∑q

i=1 tiLi,r(b⊗w).

We want now to empasize an important feature of the generators Lr and Lr that is most easily
discussed in the case q = 1. If c1, . . . , cl are irreductible Brauer diagrams of sizes k1, . . . , kl we
denote by c1 ⊗ · · · ⊗ cl the coloured Brauer diagram of size k = k1 + · · · + kl which cycles are
the diagrams c1, . . . , cl (in this order):

c1 c2 c3 clb =

Owing to the definition of the operator Lr, for words wi ∈ Mq(ki), 1 ≤ i ≤ l,
Lr(b⊗ w) = Lr(c1 ⊗ w1)⊗ · · · ⊗ ck ⊗ wk + c1 ⊗ Lr(c2)⊗ · · · ⊗ ck + · · · c1 ⊗ c2 ⊗ · · · ⊗ Lr(ck).

This last equation implies mr(c1, w1) · · ·mr(cl, wl) = m(b⊗w1 · · ·wl). This factorization property
extends to general Brauer diagrams:
(61) mr(b, w) = mr(bV1 , wV1) · · ·mr(bVp , wVp)
where b•∨1 = {V1, . . . , Vp}, wV is the word w restricted to V , wV = wi1 · · ·wik if V = {i1, . . . , ik}
and bV is the part of b that is contained in V . Of course, the same property holds for mr.

6.4. Convergence in high dimensions of the rectangular extraction processes. In this
section, we prove that Proposition 36 implies the convergence in non-commutative distribution
of the quantum processes UK

dN
and UK

dN
toward free Lévy processes. Let N,n ≥ 1 be integers and

for each N ≥ 1, dN a partition of N into n parts. In this section, we interpret the convergence
proved in Section 6.2 of the statistics fK

dN
as N tends to infinity in term of convergence of the

rectangular extractions process UK
dN

and UK
{dN} in non-commutative distribution.

Theorem 37. Let n ≥ 1 an integer. For each integer N ≥ 1, pick a partition dN of N into
n parts. Let K be one of the three divisions algebras R, C or H. Assume that as N tends to
infinity, there exists positive real numbers ri ∈]0, 1], for 1 ≤ i ≤ n, such that

dN (i)
N

−→
N→+∞

ri, 1 ≤ i ≤ n.

As the dimension N tends to infinity, the non-commutative distribution of UK
dN

converges to a
Dn amalgamated free semi-group.
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Prior to proving Theorem 37, we first settle some notations. We use the symbol Er to denote
the amalgamated free semi-group which existence stated in Theorem 37 with r = (r1, . . . , rn).
Recall that Er is a free amalgamated semi-group means:

Er(t+ s) = Er(t) ṫDn Er(s).
Also a formula for the generator Lr of this semi-group can be read of the formula for the operator
L1,r. Let x = u

ε(1)
α1,α2 · · ·u

ε(k)
αk−1,αk , the Brauer diagram b in the following equation is defined as in

equation (67) and (69) below,

Lr(x) = −1
2kδ∆k

(b)+
∑

eij∈W+
k,n

(b)

r( ◦eij �
◦
b,
◦
b)δ∆k

(eij � b) +
∑

τij∈T+
k,n

(b)

r(◦τ ij �
◦
b,
◦
b)δ∆k

(τij � b).(62)

Let i, j ≤ k. The way we chose to orient eij ◦ b and τij ◦ b, using the operator � was quite
arbitrary. However, the generator Lr does no depend on such a choice, since δ∆k

is the support
function of diagonally coloured Brauer diagrams. We fix, once for all, a division algebra K and
to lighten the notation, we drop the symbol K in the notations introduced so far.

We focus on the cases K = R or H. In fact, the function mr is equal to the function mr on the
linear span of tensors (b, s)⊗w with ((b, s), w) a pair of compatible word and diagrams meaning
that:

mr((b, s), w) = m((b, s)⊗ w)
for any word w ∈ Mq(k) such that for all integer 1 ≤ i ≤ k, wi ∈ {wi, wi}. The joint distri-
bution of the random variables

[
UC
N

](1)
, . . . ,

[
UC
N

](q)
is contained in the range of the statistic

mC
dN

restricted to the linear span tensor of compatible words and diagrams, hence the limiting
distribution of the process UC

dN
is equal to the limiting distribution of UR

dN
(and equal to the

limiting distribution of UH
dN

). We continue with a small reminder. In Section 6.2, we introduced
MdN as the rectangular probability space

(
MN (L∞(Ω,F ,P,K)), EdN ,

dN
N

)
. For all couple of

integers α, β in the interval [1, . . . , n] we denote byMdN (α, β) the compressed space pαMdNpβ.
The conditional expectation EdN is a Dn-bimodule map and for each integer k ≥ 1, it defines

an other Dn-bimodule map EkdN :MdN ⊗Dn · · · ⊗DnMdN → Dn by the formula:

EkdN (M1 ⊗ · · · ⊗Mk) = EdN (M1 · · ·Mk) .

To the family of maps
(
EkdN

)
k≥1

is associated a multiplicative functional, also denoted EdN , on
the set of non crossing partitions (of any size). To study asymptotic amalgamated freeness, it
is more convenient to work with the cumulant functional {cdNπ :MdN ⊗Dn · · · ⊗DnMdN → Dn,
π ∈ NCk}. These cumulant functions are obtained by mean of a Möebius transformation, for
r1, . . . , rk ∈MdN ,

EπdN (r1 ⊗Dn · · · ⊗Dn rn) =
∑
α≤π

cαdN (r1 ⊗Dn · · · ⊗Dn rk), π ∈ NCk,

or equivalently:
cπdN (r1 ⊗ · · · ⊗ rk) =

∑
α≤π

µ(α, π)EαdN (r1 ⊗ · · · ⊗ rk).

Asymptotic freeness of the semi-group EdN is equivalent to asymptotic amalgamated freeness of
the increments of the process UK

d , which can be checked on the cumulants. Proof of Theorem
37 is thus divided into two (big) steps:

1. For each time t ≥ 0 and integer k ≥ 1, we prove the convergence of EdNk (t), as N tends to
infinity.

2. For all times s1 < t1 ≤ s2 < t2 . . . ≤ sq < tq, we prove that the cumulants

ckdN

([
UK
N (sj1 , tj1)

]ε(1)
⊗Dn · · · ⊗Dn

[
UK
N (sjk , tjk)

]ε(k)
)
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of increments of the process UK
d converges to 0 for any k-tuples ε(1), . . . , ε(k) ∈ {1, ?} if

there exists two non equal integers ja 6= jb in the sequence j1, . . . , jk ∈ {1, . . . , q}.
Point 1. shows no difficulties, it is a simple corollary of Proposition 36 we stated and proved in
Section 6.

The second point needs more precisions. Prior to expound the proof of point 2., we sketch it.
With the notations introduced in point 2., set t = (tj1 − stj1 , . . . , tjq − sjq).

Let α0, α1, . . . , αk a k-tuple of integers in [1, . . . , n] and ε(1), . . . , ε(k) ∈ {1, ?}. The first step
is about finding a Brauer diagram b ∈ Bk and a word w ∈ Mq(k) for which the asymptotic
(63)

mK
dN

(b, w, t)pα0 − EπdN

(
pα0

[
UK
N (sj1 , tj1)

]ε(1)
pα1 ⊗ · · · ⊗ pαk−1

[
UK
N (sjk , tjk)

]ε(k)
pαk

)
−→

N→+∞
0

holds.
Owing to the fact that UK

N is a Lévy process, we can substitute to the set of increments
of UK

N , {UK
N (s1, t1), . . . ,UK

N (sq, tq)}, a set of independent copies of the process UK
d evaluated at

times t1 − s1, . . . , tq − sq to compute the cumulants. This step leans on condensation property
of UK

dN
we exposed in at the end of the last section, see equation (63). We then write mr(b, w, t)

(respectively mr(b, w, t)) as a sum:

(64) mr(b, w, t) =
∑
γ≤π

cγ(α,w, t).

To that end we use the differential systems that are satisfied by the limiting statistic mr, and
formulae (55), (56) found in Section 6.2 for the generators to give an explicit formula for the
coefficients cγ(α, β, t), γ ∈ NCk. From equation (63) and (64), we infer that:
(65)

EπdN

(
pα0

[
UK
N (sj1 , tj1)

]ε(1)
pα1 ⊗Dn · · · ⊗Dn pαk−1

[
UK
N (sjk , tjk)

]ε(k)
pαk

)
−→

N→+∞

∑
γ≤π

cγ(α, t).

Since this last equality is valid for all non-crossing partitions π in NCk, we can apply Möebius
transformation to both side of (65) and deduce that:

(66) ckdN

([
UK
N (sj1 , tj1)

]ε(1)
⊗Dn · · · ⊗Dn

[
UK
N (sjk , tjk)

]ε(k)
)
−→

N→+∞
ck(α, β, t).

We begin, of course, with the first step. Let π ∈ NCk a non-crossing partition and write
π = {c1, . . . , cp}. The linear order on [1, . . . , k] along with the partition π define a permutation
σπ of [1, . . . , k]: the cycles of π are the blocks ci’s, i ≤ p, endowed with the natural cyclic order.
We define a non-coloured Brauer diagram by:

(67) b• =
∏

1≤i≤k:
ε(i)=?

Tw•(σπ).

The permutation σb associated with b and defined in Section 4 is, equal to σπ. We now define the
colourization of the non-coloured Brauer diagram b•. Set i′ = (α0, . . . , αk−1), j′ = (α1, . . . , αk).
By using i, j and ε, we define a colourization i of the bottom line of b• and an other one, which
we call j of the bottom line of b• by setting:
(68) ii = i′i, if εi = 1, ii = j′i if εi = ?, and ji = j′i, if εi = 1, ji = i′i if εi = ?.

Finally, define the colourization c in {1, . . . , k, 1′, . . . , k′} by c(i) = ji and c(i′) = ji for 1 ≤ i ≤ k.
We can not affirm that for all π, the colourization c is an admissible colourization of the non-
coloured Brauer diagram b• defined by equation (67). Hence, define the element b in R [Bk]
as:
(69) b = (b•, c) if c ∈ C(b•) and b = 0 if c 6∈ C(b•).
Let w be the word w = xj1 · · ·xjk . We now prove that asymptotic (63) holds. We recall
first basic properties of the maps EkdN , k ≥ 1. Let k ≥ 1 an integer and two finite sequences
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γ0, . . . , γk−1 and β1, . . . , βk of integers in the interval [1, . . . , n]. Since EkdN is a Dn-bi-module
map, EkdN (a1 ⊗Dn · · · ⊗Dn ak) = 0 with ai ∈ MdN (γi, βi) if there exists at least one integer
0 ≤ i ≤ k − 1 such that γi+1 6= βi (with the convention γk=1 = γ0) and Ekdn(a1 ⊗Dn · · · ⊗Dn) =
Ekdn(a1 ⊗Dn · · · ⊗Dn)pβ0 . Let β0, . . . , βk ∈ [1, . . . , n] a finite sequence of integers. A direct
induction proves that for any non-crossing partition γ ∈ NCk, the map Ednγ evaluates to zero on
all k-tuples of elements (a1, . . . , ak) with ai in the compressed algebraMdN (βi, βi+1), 0 ≤ i ≤ k,
if there exists a block V = {v1 < . . . < vs} of γ such that βv1−1 6= βvk . Focusing on the tuple
α and non-crossing partition π we chose, requiring that αv1−1 = αvk for all {v1 < · · · < vk}
of π is the same as demanding that the colourization c is in C(b•), which means (b•, c) ∈ Bk.
EπdN

(
pα0

[
UK
N (sj1 , tj1)

]ε(1)
pα1 ⊗Dn · · · ⊗Dn pαk−1

[
UK
N (sjk , tjk)

]ε(k)
pαk

)
= 0 for all integers N ≥

1 if, with the above notation, αv1−1 6= αvk for at least one block of π. We write m(b, w, t) as
a sum over non-crossing partitions. It cumbersome to introduce some new notations to give
explicit formulas for the coefficients cγ(α, t, w). First, we introduce

R+
s (b) = {(ri1,j1 , . . . , ris,js) ∈ (Rk)s : ril,jl ∈ T+ ∪W+(ril+1,jl+1 ◦ · · · ◦ ris,js ◦ b)}.

Let us give a geometric interpretation of the set R+
s (b). First, define a graph G that have as

vertices the set Bk and by considering two Brauer diagrams as adjacent in this graph if one is
obtained from this other by concatenation with a transposition or a projector. This graph have
loops, since e ◦ e = e. These loops can be broken if instead of considering as vertices the set Bk,
we replace it with the central extension Bk and requiring for two Brauer elements in Bk to be
neighbours if one is obtained from the other by multiplication with a transposition / projection.
For example, we would have ee = (e, o) for some loop o that belongs to G. A tuple r in R+

s (b) is
a path in G) that starts at (b, ∅) a visit successively Brauer elements that have one more loop
or cycle comparing to the last one visited. We insist on the fact that the set R+

s (b) is not solely
determined by the partition π but depends also on the sequence ε that was use to twist the
diagram (this twist are responsible for loops that may be created along a path). To be more
precise, we are interested in a subset of paths in R+

s (b) that have increments constrained by the
word w,

R+
s (b, w) = {(ri1,j1 , . . . , ris,js) ∈ R+

s (b) : wi1 = wj1 , · · · , wis = wjs}.

We are now splitting the set R+
s (b, w) according to the cycle partition of the end-point of a path,

and define for this the function:

γs ((ri1,j1 , . . . , ris,js)) =
(
(r•i1,j1 ◦ . . . ◦ r

•
is,js) ∨ 1k

)
∩ [1, . . . , k].

For β a partition of [1, . . . , k], set R+
s (b, w, β) = {γs = β} ∩ R+

s (b, w).

Lemma 38. Let b a Brauer diagram and denote by π the trace of the partition b•∨1 on [1, . . . , k].
Assume that π is non crossing, then, for all tuple r ∈ R+

s (b), the partition γs(r) is non-crossing
and γs(r) ≤ π. In addition for all words w ∈ Mq, R+

s (b, w, α) = ∅ if there at least one couple of
integers 1 ≤ i, j ≤ k with i ∼π j and wi 6= wj.

In the following, we set tr = ti1 · · · tis . By using formulae proved in the previous section for
the generators Li,r, we write as a sum over R+

s (b, w) the exponential exp (
∑q
i=1 tiLi,r) to obtain

the following expression:

exp
( q∑
i=1

tiLi,r

)
(b, w) = e

−1
2
∑q

i=1 tini(w)

×
∞∑
s=0

∑
r∈R+

s (b,w)

tr

s!

s∏
k=1

r(rik,jk � . . . � ris,js , rik+1,jk+1 � . . . � ris,js � b) · (ri1,j1 � . . . � ris,js � b, w)
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Next, we split the sum over R+
s (b) in the last equation into sums over the level sets of γs, each

of these sum defines an operator Lr(β, t), β ∈ NCk

Lr(β, t)(b, w) =
∞∑
s=0

tr

s!
∑

r∈R+
s (b,w,α)

s∏
k=1

r(rik,jk�. . .�ris,js , rik+1,jk+1�. . .�ris,js�b)(ri1,j1�. . .�ris,js�b, w).

Finally, we obtain the following expression for m(b, w, t):

m(b, w, t) = δ∆k

(
exp

( q∑
i=1

tiLi,r

)
(b, w)

)
= e−

1
2
∑q

i=1 tini(w) ∑
β≤π

δ∆k
(Lr(β, t)(b, w)).

It remains to show that for each non-crossing partition β less than π, δ∆k
(Lr(β, t)(b, w)) does not

depends on π. As a matter of fact, the set R+
s (b, w, β) does not depends on π and is determined

by ε and β. Furthermore, owing to its definition, δ∆k
(b) is a function of the colourization c

(which lies on α).
Set cβ(α,w, ε) = δ∆k

(Li,r(β, t)((0k, c), w)). Lemma 38 implies c1(α,w, ε) = 0 if the word w
contains to different letters. The method that was used to prove theorem 37 can be applied
verbatim to prove the following theorem, thus the proof is left to the reader.

Theorem 39. Let n ≥ 1 an integer and for each integer N greater than one, let dN be a
partition of N into n parts.

We assume that for all integer i ≤ n, the ratio rN (i) = dN (i)
N converges as N tends to infinity

to a positive value ri less than one. We assume further that the kernel of the partition d1 is finer
than the kernels Ker(dN ), N ≥ 1. Let K be one the three divisions algebras R,C or H.

As the dimension N tends to infinity, the non-commutative distribution of UK
{dN},ker(d1) con-

verges to a Dd1-amalgamated free semi-group.
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