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Submitted to the Annals of Probability

CAPACITY OF THE RANGE IN DIMENSION 5

By Bruno Schapira

We prove a Central limit theorem for the capacity of the range
of a symmetric random walk on Z5, under only a moment condition
on the step distribution. The result is analogous to the central limit
theorem for the size of the range in dimension three, obtained by
Jain and Pruitt in 1971. In particular an atypical logarithmic cor-
rection appears in the scaling of the variance. The proof is based on
new asymptotic estimates, which hold in any dimension d ≥ 5, for
the probability that the ranges of two independent random walks in-
tersect. The latter are then used for computing covariances of some
intersection events, at the leading order.

1. Introduction. Consider a random walk (Sn)n≥0 on Zd, that is a
process of the form Sn = S0 + X1 + · · · + Xn, where the (Xi)i≥1 are inde-
pendent and identically distributed. A general question is to understand the
geometric properties of its range, that is the random set Rn := {S0, . . . , Sn},
and more specifically to analyze its large scale limiting behavior as the time
n is growing. In their pioneering work, Dvoretzky and Erdós [DE51] proved
a strong law of large numbers for the number of distinct sites in Rn, in
any dimension d ≥ 1. Later a central limit theorem was obtained first by
Jain and Orey [JO69] in dimensions d ≥ 5, then by Jain and Pruitt [JP71]
in dimension 3 and higher, and finally by Le Gall [LG86] in dimension 2,
under fairly general hypotheses on the common law of the (Xi)i≥1. Further-
more, a lot of activity has been focused on analyzing the large and moderate
deviations, which we will not discuss here.

More recently some papers were concerned with other functionals of the
range, including its entropy [BKYY10], and its boundary [AS17, BKYY10,
BY19, DGK18, Ok16]. Here we will be interested in another natural way
to measure the size of the range, which also captures some properties of its
shape. Namely we will consider its Newtonian capacity, defined for a finite
subset A ⊂ Zd, as

(1.1) Cap(A) :=
∑
x∈A

Px[H+
A =∞],

where Px is the law of the walk starting from x, and H+
A denotes the first
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return time to A (see (2.1) below). Actually the first study of the capacity
of the range goes back to the earlier work by Jain and Orey [JO69], who
proved a law of large numbers in any dimension d ≥ 3; and more precisely
that almost surely, as n→∞,

(1.2)
1

n
Cap(Rn)→ γd,

for some constant γd, which is nonzero if and only if d ≥ 5 – the latter obser-
vation being actually directly related to the fact that it is only in dimension
5 and higher that two independent ranges have a positive probability not
to intersect each other. However, until very recently to our knowledge there
were no other work on the capacity of the range, even though the results
of Lawler on the intersection of random walks incidentally gave a sharp
asymptotic behavior of the mean in dimension four, see [Law91].

In a series of recent papers [C17, ASS18, ASS19], the central limit theorem
has been established for the simple random walk in any dimension d ≥ 3,
except for the case of dimension 5, which remained unsolved so far. The
main goal of this paper is to fill this gap, but in the mean time we obtain
general results on the probability that the ranges of two independent walks
intersect, which might be of independent interest. We furthermore obtain
estimates for the covariances between such events, which is arguably one of
the main novelty of our work; but we shall come back on this point a bit
later.

Our hypotheses on the random walk are quite general: we only require that
the distribution of the (Xi)i≥1 is a symmetric and irreducible probability
measure on Zd, which has a finite d-th moment. Under these hypotheses our
first result is the following.

Theorem A. Assume d = 5. There exists a constant σ > 0, such that
as n→∞,

Var(Cap(Rn)) ∼ σ2 n log n.

We then deduce a central limit theorem.

Theorem B. Assume d = 5. Then,

Cap(Rn)− γ5n

σ
√
n log n

(L)
=⇒
n→∞

N (0, 1).

As already mentioned, along the proof we also obtain a precise asymptotic
estimate for the probability that the ranges of two independent walks start-
ing from far away intersect. Previously to our knowledge only the order of
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magnitude up to multiplicative constants had been established, see [Law91].
Since our proof works the same in any dimension d ≥ 5, we state our result
in this general setting. Recall that to each random walk one can associate
a norm (see below for a formal definition), which we denote here by J (·)
(in particular in the case of the simple random walk it coincides with the
Euclidean norm).

Theorem C. Assume d ≥ 5. Let S and S̃ be two independent random
walks starting from the origin (with the same distribution). There exists a
constant c > 0, such that as ‖x‖ → ∞,

P
[
R∞ ∩ (x+ R̃∞) 6= ∅

]
∼ c

J (x)d−4
.

In fact we obtain a stronger and more general result. Indeed, first we get
some control on the second order term, and show that it is O(‖x‖4−d−ν),
for some constant ν > 0. Moreover, we also consider some functionals of
the position of one of the two walks at its hitting time of the other range.
More precisely, we obtain asymptotic estimates for quantities of the form
E[F (Sτ )1{τ <∞}], with τ the hitting time of the range x+ R̃∞, for func-
tions F satisfying some regularity property, see (7.1). In particular, it applies
to functions of the form F (x) = 1/J (x)α, for any α ∈ [0, 1], for which we
obtain that for some constants ν > 0, and c > 0,

E
[
1{τ <∞}
1 + J (Sτ )α

]
=

c

J (x)d−4+α
+O

(
‖x‖4−α−d−ν

)
.

Moreover, the same kind of estimates is obtained when one considers rather
τ as the hitting time of x+ R̃[0, `], with ` a finite integer. These results are
then used to derive asymptotic estimates for covariances of hitting events
in the following four situations: let S, S1, S2, and S3, be four independent
random walks on Z5, all starting from the origin and consider either

(i) A = {R1
∞ ∩R[k,∞) 6= ∅}, and B = {R2

∞ ∩ (Sk +R3
∞) 6= ∅},

(ii) A = {R1
∞ ∩R[k,∞) 6= ∅}, and B = {(Sk +R2

∞)∩R[k+ 1,∞) 6= ∅},
(iii) A = {R1

∞ ∩R[k,∞) 6= ∅}, and B = {(Sk +R2
∞) ∩R[0, k − 1] 6= ∅},

(iv) A = {R1
∞ ∩R[1, k] 6= ∅}, and B = {(Sk +R2

∞) ∩R[0, k − 1] 6= ∅}.

In all these cases, we show that for some constant c > 0, as k →∞,

Cov(A,B) ∼ c

k
.

Case (i) is the easiest, and follows directly from Theorem C, since actually
one can see that in this case both P[A∩B] and P[A] ·P[B] are asymptotically
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equivalent to a constant times the inverse of k. However, the other cases are
more intricate, partly due to some cancellations that occur between the two
terms, which, if estimated separately, are both of order 1/

√
k in cases (ii) and

(iii), or even of order 1 in case (iv). In these cases, we rely on the extensions
of Theorem C, that we just mentioned above. More precisely in case (ii) we
rely on the general result applied with the functions F (x) = 1/‖x‖, and its
convolution with the distribution of Sk, while in cases (iii) and (iv) we use
the extension to hitting times of finite windows of the range. We stress also
that showing the positivity of the constants c here is a delicate part of the
proof, especially in case (iv), where it relies on the following inequality:∫

0≤s≤t≤1

(
E
[

1

‖βs − β1‖3 · ‖βt‖3

]
− E

[
1

‖βs − β1‖3

]
E
[

1

‖βt‖3

])
ds dt > 0,

with (βu)u≥0 a standard Brownian motion in R5.
The paper is organized as follows. The next section is devoted to prelim-

inaries, in particular we fix the main notation, recall known results on the
transition kernel and the Green’s function, and derive some basic estimates.
In Section 3 we give the plan of the proof of Theorem A, which is cut into
a number of intermediate results: Propositions 3.3–3.7. Propositions 3.3–3.6
are then proved in Sections 4–6. The last one, which is also the most delicate
one, requires Theorem C and its extensions. Its proof is therefore postponed
to Section 8, while we first prove our general results on the intersection of
two independent ranges in Section 7, which is written in the general setting
of random walks on Zd, for any d ≥ 5, and can be read independently of
the rest of the paper. Finally Section 9 is devoted to the proof of Theorem
B, which is done by following a relatively well-established general scheme,
based on the Lindeberg-Feller theorem for triangular arrays.

2. Preliminaries.

2.1. Notation. We recall that we assume the law of the (Xi)i≥1 to be a
symmetric and irreducible probability measure1 on Zd, d ≥ 5, with a finite
d-th moment2. The walk is called aperiodic if the probability to be at the
origin at time n is nonzero for all n large enough, and it is called bipartite
if this probability is nonzero only when n is even. Note that only these two
cases may appear for a symmetric random walk.

1symmetric means that for all x ∈ Zd, P[X1 = x] = P[X1 = −x], and irreducible means
that for all x, P[Sn = x] > 0, for some n ≥ 1.

2this means that E[‖X1‖d] <∞, with ‖ · ‖ the Euclidean norm.
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Recall also that for x ∈ Zd, we denote by Px the law of the walk starting
from S0 = x. When x = 0, we simply write it as P. We denote its total range
as R∞ := {Sk}k≥0, and for 0 ≤ k ≤ n ≤ +∞, set R[k, n] := {Sk, . . . , Sn}.

For an integer k ≥ 2, the law of k independent random walks (with the
same step distribution) starting from some x1, . . . , xk ∈ Z5, is denoted by
Px1,...,xk , or simply by P when they all start from the origin.

We define

(2.1) HA := inf{n ≥ 0 : Sn ∈ A}, and H+
A := inf{n ≥ 1 : Sn ∈ A},

respectively for the hitting time and first return time to a subset A ⊂ Zd,
that we abbreviate respectively as Hx and H+

x when A is a singleton {x}.
We let ‖x‖ be the Euclidean norm of x ∈ Zd. If X1 has covariance matrix

Γ = ΛΛt, we define its associated norm as

J ∗(x) := |x · Γ−1x|1/2 = ‖Λ−1x‖,

and set J (x) = d−1/2J ∗(x) (see [LL10] p.4 for more details).
For a and b some nonnegative reals, we let a ∧ b := min(a, b) and a ∨

b := max(a, b). We use the letters c and C to denote constants (which
could depend on the covariance matrix of the walk), whose values might
change from line to line. We also use standard notation for the comparison
of functions: we write f = O(g), or sometimes f . g, if there exists a
constant C > 0, such that f(x) ≤ Cg(x), for all x. Likewise, f = o(g) means
that f/g → 0, and f ∼ g means that f and g are equivalent, that is if
|f − g| = o(f). Finally we write f � g, when both f = O(g), and g = O(f).

2.2. Transition kernel and Green’s function. We denote by pn(x) the
probability that a random walk starting from the origin ends up at position
x ∈ Zd after n steps, that is pn(x) := P[Sn = x], and note that for any
x, y ∈ Zd, one has Px[Sn = y] = pn(y − x). Recall the definitions of Γ and
J ∗ from the previous subsection, and define

(2.2) pn(x) :=
1

(2πn)d/2
√

det Γ
· e−

J∗(x)2

2n .

The first tool we shall need is a local central limit theorem, roughly saying
that pn(x) is well approximated by pn(x), under appropriate hypotheses.
Such result has a long history, see in particular the standard books by Feller
[Fe71] and Spitzer [Spi76]. We refer here to the more recent book of Lawler
and Limic [LL10], and more precisely to their Theorem 2.3.5 in the case
of an aperiodic random walk, and to (the proof of) their Theorem 2.1.3 in
the case of bipartite walks, which provide the result we need under minimal
hypotheses (in particular it only requires a finite fourth-moment for ‖X1‖).
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Theorem 2.1 (Local Central Limit Theorem). There exists a con-
stant C > 0, such that for all n ≥ 1, and all x ∈ Zd,

|pn(x)− pn(x)| ≤ C

n(d+2)/2
,

in the case of an aperiodic walk, and for bipartite walks,

|pn(x) + pn+1(x)− 2pn(x)| ≤ C

n(d+2)/2
.

In addition, under our hypotheses (in particular assuming E[‖X1‖d] <∞),
there exists a constant C > 0, such that for any n ≥ 1 and any x ∈ Zd (see
Proposition 2.4.6 in [LL10]),

(2.3) pn(x) ≤ C ·
{
n−d/2 if ‖x‖ ≤

√
n,

‖x‖−d if ‖x‖ >
√
n.

It is also known (see the proof of Proposition 2.4.6 in [LL10]) that

(2.4) E[‖Sn‖d] = O(nd/2).

Together with the reflection principle (see Proposition 1.6.2 in [LL10]), and
Markov’s inequality, this gives that for any n ≥ 1 and r ≥ 1,

(2.5) P
[

max
0≤k≤n

‖Sk‖ ≥ r
]
≤ C ·

(√
n

r

)d
.

Now we define for ` ≥ 0, G`(x) :=
∑

n≥` pn(x). The Green’s function is
the function G := G0. A union bound gives

(2.6) P[x ∈ R[`,∞)] ≤ G`(x).

By (2.3) there exists a constant C > 0, such that for any x ∈ Zd, and ` ≥ 0,

(2.7) G`(x) ≤ C

‖x‖d−2 + `
d−2

2 + 1
.

It follows from this bound (together with the corresponding lower bound
G(x) ≥ c‖x‖2−d, which can be deduced from Theorem 2.1), and the fact
that G is harmonic on Zd \ {0}, that the hitting probability of a ball is
bounded as follows (see the proof of [LL10, Proposition 6.4.2]):
(2.8)

Px [ηr <∞] = O
(

rd−2

1 + ‖x‖d−2

)
, with ηr := inf{n ≥ 0 : ‖Sn‖ ≤ r}.

We shall need as well some control on the overshoot. We state the result we
need as a lemma and provide a short proof for the sake of completeness.
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Lemma 2.2 (Overshoot Lemma). There exists a constant C > 0, such
that for all r ≥ 1, and all x ∈ Zd, with ‖x‖ ≥ r,

Px[ηr <∞, ‖Sηr‖ ≤ r/2] ≤ C

1 + ‖x‖d−2
.

Proof. We closely follow the proof of Lemma 5.1.9 in [LL10]. Note first
that one can alway assume that r is large enough, for otherwise the result
follows from (2.8). Then define for k ≥ 0,

Yk :=

ηr∑
n=0

1{r + k ≤ ‖Sn‖ < r + (k + 1)}.

Let

g(x, k) = Ex[Yk] =
∞∑
n=0

Px[r + k ≤ ‖Sn‖ ≤ r + k + 1, n < ηr].

One has

Px[ηr <∞, ‖Sηr‖ ≤ r/2] =
∞∑
n=0

Px[ηr = n+ 1, ‖Sηr‖ ≤ r/2]

=
∞∑
n=0

∞∑
k=0

Px[ηr = n+ 1, ‖Sηr‖ ≤ r/2, r + k ≤ ‖Sn‖ < r + k + 1]

≤
∞∑
k=0

∞∑
n=0

Px
[
ηr > n, r + k ≤ ‖Sn‖ ≤ r + k + 1, ‖Sn+1 − Sn‖ ≥

r

2
+ k
]

=
∞∑
k=0

g(x, k)P
[
‖X1‖ ≥

r

2
+ k
]

=
∞∑
k=0

g(x, k)
∞∑
`=k

P
[r

2
+ ` ≤ ‖X1‖ <

r

2
+ `+ 1

]
=

∞∑
`=0

P
[r

2
+ ` ≤ ‖X1‖ <

r

2
+ `+ 1

]∑̀
k=0

g(x, k).

Now Theorem 2.1 shows that one has Pz[‖S`2‖ ≤ r] ≥ ρ, for some constant
ρ > 0, uniformly in r (large enough), ` ≥ 1, and r ≤ ‖z‖ ≤ r + `. It follows,
exactly as in the proof of Lemma 5.1.9 from [LL10], that for any ` ≥ 1,

max
‖z‖≤r+`

∑
0≤k<`

g(z, k) ≤ `2

ρ
.

Using in addition (2.8), we get with the Markov property,∑
0≤k<`

g(x, k) ≤ C (r + `)d−2

1 + ‖x‖d−2
· `2,
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for some constant C > 0. As a consequence one has

Px[ηr <∞, ‖Sηr‖ ≤ r/2]

≤ C

1 + ‖x‖d−2

∞∑
`=0

P
[r

2
+ ` ≤ ‖X1‖ <

r

2
+ `+ 1

]
(r + `)d−2(`+ 1)2

≤ C

1 + ‖x‖d−2
E
[
‖X1‖d−2(‖X1‖ − r/2)21{‖X1‖ ≥ r/2}

]
≤ C

1 + ‖x‖d−2
,

since by hypothesis, the d-th moment of X1 is finite.

2.3. Basic tools. We prove here some elementary facts, which will be
needed throughout the paper, and which are immediate consequences of the
results from the previous subsection.

Lemma 2.3. There exists C > 0, such that for all x ∈ Zd, and ` ≥ 0,∑
z∈Zd

G`(z)G(z − x) ≤ C

‖x‖d−4 + `
d−4

2 + 1
.

Proof. Assume first that ` = 0. Then by (2.7),

∑
z∈Zd

G(z)G(z − x) .
1

1 + ‖x‖d−2

 ∑
‖z‖≤2‖x‖

1

1 + ‖z‖d−2
+

∑
‖z−x‖≤ ‖x‖

2

1

1 + ‖z − x‖d−2


+

∑
‖z‖≥2‖x‖

1

1 + ‖z‖2(d−2)
.

1

1 + ‖x‖d−4
.

Assume next that ` ≥ 1. We distinguish two cases: if ‖x‖ ≤
√
`, then by

using (2.7) again we deduce,∑
z∈Zd

G`(z)G(z−x) .
1

`d/2
·
∑

‖z‖≤2
√
`

1

1 + ‖z − x‖d−2
+

∑
‖z‖≥2

√
`

1

‖z‖2(d−2)
.

1

`
d−4

2

.

When ‖x‖ >
√
`, the result follows from case ` = 0, since G`(z) ≤ G(z).

Lemma 2.4. One has,

(2.9) sup
x∈Zd

E[G(Sn − x)] = O
(

1

n
d−2

2

)
,
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and for any α ∈ [0, d),

(2.10) sup
n≥0

E
[

1

1 + ‖Sn − x‖α

]
= O

(
1

1 + ‖x‖α

)
.

Moreover, when d = 5,

(2.11) E

(∑
n≥k

G(Sn)
)2

 = O
(

1

k

)
.

Proof. For (2.9), we proceed similarly as in the proof of Lemma 2.3. If
‖x‖ ≤

√
n, one has using (2.3) and (2.7),

E[G(Sn − x)] =
∑
z∈Zd

pn(z)G(z − x)

.
1

nd/2

∑
‖z‖≤2

√
n

1

1 + ‖z − x‖d−2
+

∑
‖z‖>2

√
n

1

‖z‖2d−2
. n

2−d
2 ,

while if ‖x‖ >
√
n, we get as well

E[G(Sn−x)] .
1

nd/2

∑
‖z‖≤

√
n/2

1

‖x‖d−2
+

∑
‖z‖>

√
n/2

1

‖z‖d(1 + ‖z − x‖)d−2
. n

2−d
2 .

Considering now (2.10), we write

E
[

1

1 + ‖Sn − x‖α

]
≤ C

1 + ‖x‖α
+

∑
‖z−x‖≤‖x‖/2

pn(z)

1 + ‖z − x‖α

(2.3)

.
1

1 + ‖x‖α
+

1

1 + ‖x‖d
∑

‖z−x‖≤‖x‖/2

1

1 + ‖z − x‖α
.

1

1 + ‖x‖α
.

Finally for (2.11), one has using the Markov property at the second line,

E

(∑
n≥k

G(Sn)
)2

 =
∑
x,y

G(x)G(y)E

 ∑
n,m≥k

1{Sn = x, Sm = y}


≤ 2

∑
x,y

G(x)G(y)
∑
n≥k

∑
`≥0

pn(x)p`(y − x) = 2
∑
x,y

G(x)G(y)Gk(x)G(y − x)

Lemma 2.3

.
∑
x

1

‖x‖4
Gk(x)

(2.7)

.
1

k
.
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The next result deals with the probability that two independent ranges
intersect. Despite its proof is a rather straightforward consequence of the
previous results, it already provides upper bounds of the right order (only
off by a multiplicative constant).

Lemma 2.5. Let S and S̃ be two independent walks starting respectively
from the origin and some x ∈ Zd. Let also ` and m be two given nonnegative
integers (possibly infinite for m). Define

τ := inf{n ≥ 0 : S̃n ∈ R[`, `+m]}.

Then, for any function F : Zd → R+,

(2.12) E0,x[1{τ <∞}F (S̃τ )] ≤
`+m∑
i=`

E[G(Si − x)F (Si)].

In particular, uniformly in ` and m,

(2.13) P0,x[τ <∞] = O
(

1

1 + ‖x‖d−4

)
.

Moreover, uniformly in x ∈ Zd,

(2.14) P0,x[τ <∞] =

 O
(
m · `

2−d
2

)
if m <∞

O
(
`

4−d
2

)
if m =∞.

Proof. The first statement follows from (2.6). Indeed using this, and the
independence between S and S̃, we deduce that

E0,x[1{τ <∞}F (S̃τ )] ≤
`+m∑
i=`

E0,x[1{Si ∈ R̃∞}F (Si)]
(2.6)

≤
`+m∑
i=`

E[G(Si − x)F (Si)].

For (2.13), note first that it suffices to consider the case when ` = 0 and
m = ∞, as otherwise the probability is just smaller. Taking now F ≡ 1
in (2.12), and using Lemma 2.3 gives the result. Similarly (2.14) directly
follows from (2.12) and (2.9).

3. Scheme of proof of Theorem A.
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3.1. A last passage decomposition for the capacity of the range. We pro-
vide here a last passage decomposition for the capacity of the range, in the
same fashion as the well-known decomposition for the size of the range,
which goes back to the seminal paper by Dvoretzky and Erdós [DE51], and
which was also used by Jain and Pruitt [JP71] for their proof of the central
limit theorem. We note that Jain and Orey [JO69] used as well a similar
decomposition in their analysis of the capacity of the range (in fact they
used instead a first passage decomposition).

So let (Sn)n≥0 be some random walk starting from the origin, and set

ϕnk := PSk [H+
Rn =∞ | Rn], and Znk := 1{S` 6= Sk, for all ` = k + 1, . . . , n},

for all 0 ≤ k ≤ n, By definition of the capacity (1.1), one can write by
recording the sites of Rn according to their last visit,

Cap(Rn) =
n∑
k=0

Znk · ϕnk .

A first simplification is to remove the dependance in n in each of the terms in
the sum. To do this, we need some additional notation: we consider (Sn)n∈Z
a two-sided random walk starting from the origin (that is (Sn)n≥0 and
(S−n)n≥0 are two independent walks starting from the origin), and denote
its total range by R∞ := {Sn}n∈Z. Then for k ≥ 0, let

ϕ(k) := PSk [H+
R∞

=∞ | (Sn)n∈Z], and Z(k) := 1{S` 6= Sk, for all ` ≥ k+1}.

We note that ϕ(k) can be zero with nonzero probability, but that E[ϕ(k)] 6= 0
(see the proof of Theorem 6.5.10 in [LL10]). We then define

Cn :=
n∑
k=0

Z(k)ϕ(k), and Wn := Cap(Rn)− Cn.

We will prove in a moment the following estimate.

Lemma 3.1. One has
E[W 2

n ] = O(n).

Given this result, Theorem A reduces to an estimate of the variance of
Cn. To this end, we first observe that

Var(Cn) = 2
∑

0≤`<k≤n
Cov(Z(`)ϕ(`), Z(k)ϕ(k)) +O(n).
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Furthermore, by translation invariance, for any ` < k,

Cov(Z(`)ϕ(`), Z(k)ϕ(k)) = Cov(Z(0)ϕ(0), Z(k − `)ϕ(k − `)),

so that in fact

Var(Cn) = 2
n∑
`=1

∑̀
k=1

Cov(Z(0)ϕ(0), Z(k)ϕ(k)) +O(n).

Thus Theorem A is a direct consequence of the following theorem.

Theorem 3.2. There exists a constant σ > 0, such that

Cov(Z(0)ϕ(0), Z(k)ϕ(k)) ∼ σ2

2k
.

This result is the core of the paper, and uses in particular Theorem C
(in fact some more general statement, see Theorem 7.1). More details about
its proof will be given in the next subsection, but first we show that Wn is
negligible by giving the proof of Lemma 3.1.

Proof of Lemma 3.1. Note that Wn = Wn,1 +Wn,2, with

Wn,1 =

n∑
k=0

(Znk − Z(k))ϕnk , and Wn,2 =

n∑
k=0

(ϕnk − ϕ(k))Z(k).

Consider first the term Wn,1 which is easier. Observe that Znk − Z(k) is
nonnegative and bounded by the indicator function of the event {Sk ∈ R[n+
1,∞)}. Bounding also ϕnk by one, we get

E[W 2
n,1] ≤

n∑
`=0

n∑
k=0

E[(Zn` − Z(`))(Znk − Z(k))]

≤
n∑
`=0

n∑
k=0

P [S` ∈ R[n+ 1,∞), Sk ∈ R[n+ 1,∞)] .

Then noting that (Sn+1−k − Sn+1)k≥0 and (Sn+1+k − Sn+1)k≥0 are two in-
dependent random walks starting from the origin, we obtain

E[W 2
n,1] ≤

n+1∑
`=1

n+1∑
k=1

P[HS` <∞, HSk <∞] ≤ 2
n+1∑
`=1

n+1∑
k=1

P[HS` ≤ HSk <∞]

≤ 2
∑

1≤`≤k≤n+1

P[HS` ≤ HSk <∞] + P[HSk ≤ HS` <∞].
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Using next the Markov property and (2.6), we get with S and S̃ two inde-
pendent random walks starting from the origin,

E[W 2
n,1] ≤ 2

∑
1≤`≤k≤n+1

E[G(S`)G(Sk − S`)] + E[G(Sk)G(Sk − S`)]

≤ 2
n+1∑
`=1

n∑
k=0

E[G(S`)] · E[G(Sk)] + E[G(S` + S̃k)G(S̃k)]

≤ 4

 sup
x∈Z5

∑
`≥0

E[G(x+ S`)]

2

(2.9)
= O(1).

We proceed similarly with Wn,2. Observe first that for any k ≥ 0,

0 ≤ ϕnk − ϕ(k) ≤ PSk [HR(−∞,0] <∞ | S] + PSk [HR[n,∞) <∞ | S].

Furthermore, for any 0 ≤ ` ≤ k ≤ n, the two terms PS` [HR(−∞,0] < ∞ | S]
and PSk [HR[n,∞) <∞ | S] are independent. Therefore,

E[W 2
n,2] ≤

n∑
`=0

n∑
k=0

E[(ϕn` − ϕ(`))(ϕnk − ϕ(k))] ≤ 2

(
n∑
`=0

P
[
HR[`,∞) <∞

])2

+ 4
∑

0≤`≤k≤n
P
[
R3
∞ ∩ (S` +R1

∞) 6= ∅, R3
∞ ∩ (Sk +R2

∞) 6= ∅
]
,(3.1)

where in the last term R1
∞, R2

∞ and R3
∞ are the ranges of three (one-

sided) independent walks, independent of (Sn)n≥0, starting from the origin
(denoting here (S−n)n≥0 as another walk (S3

n)n≥0). Now (2.14) already shows
that the first term on the right hand side of (3.1) is O(n). For the second
one, note that for any 0 ≤ ` ≤ k ≤ n, one has

P
[
R3
∞ ∩ (S` +R1

∞) 6= ∅, R3
∞ ∩ (Sk +R2

∞) 6= ∅
]

≤ E
[
|R3
∞ ∩ (S` +R1

∞)| · |R3
∞ ∩ (Sk +R2

∞)|
]

= E
[
E[|R3

∞ ∩ (S` +R1
∞)| | S, S3] · E[|R3

∞ ∩ (Sk +R2
∞)| | S, S3]

]
(2.6)

≤ E

(∑
m≥0

G(S3
m − S`)

)(∑
m≥0

G(S3
m − Sk)

) = E

(∑
m≥k

G(Sm − Sk−`)
)(∑

m≥k
G(Sm)

)
≤ E

(∑
m≥`

G(Sm)
)2

1/2

· E

(∑
m≥k

G(Sm)
)2

1/2

(2.11)
= O

(
1

1 +
√
k`

)
,

using invariance by time reversal at the penultimate line, and Cauchy-
Schwarz at the last one. This concludes the proof of the lemma.
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3.2. Scheme of proof of Theorem 3.2. We provide here some decompo-
sition of ϕ(0) and ϕ(k) into a sum of terms involving intersection and non-
intersection probabilities of different parts of the path (Sn)n∈Z. For this, we
consider some sequence of integers (εk)k≥1 satisfying k > 2εk, for all k ≥ 3,
and whose value will be fixed later. A first step in our analysis is to reduce
the influence of the random variables Z(0) and Z(k), which play a very
minor role in the whole proof. Thus we define

Z0 := 1{S` 6= 0, ∀` = 1, . . . , εk}, and Zk := 1{S` 6= Sk, ∀` = k+1, . . . , k+εk}.

Note that these notation are slightly misleading (as in fact Z0 and Zk depend
on εk, but this shall hopefully not cause any confusion). One has

E[|Z(0)− Z0|] = P[0 ∈ R[εk + 1,∞)]
(2.6)

≤ Gεk(0)
(2.7)
= O(ε

−3/2
k ),

and the same estimate holds for E[|Z(k) − Zk|], by the Markov property.
Therefore,

Cov(Z(0)ϕ(0), Z(k)ϕ(k)) = Cov(Z0ϕ(0), Zkϕ(k)) +O(ε
−3/2
k ).

Then recall that we consider a two-sided walk (Sn)n∈Z, and that ϕ(0) =
P[H+

R(−∞,∞) =∞ | S]. Thus one can decompose ϕ(0) as follows:

ϕ(0) = ϕ0 − ϕ1 − ϕ2 − ϕ3 + ϕ1,2 + ϕ1,3 + ϕ2,3 − ϕ1,2,3,

with

ϕ0 := P[H+
R[−εk,εk] =∞ | S], ϕ1 := P[H+

R(−∞,−εk−1] <∞, H
+
R[−εk,εk] =∞ | S],

ϕ2 := P[H+
R[εk+1,k] <∞, H

+
R[−εk,εk] =∞ | S], ϕ3 := P[H+

R[k+1,∞) <∞, H
+
R[−εk,εk] =∞ | S],

ϕ1,2 := P[H+
R(−∞,−εk−1] <∞, H

+
R[εk+1,k] <∞, H

+
R[−εk,εk] =∞ | S],

ϕ1,3 := P[H+
R(−∞,−εk−1] <∞, H

+
R[k+1,∞) <∞, H

+
R[−εk,εk] =∞ | S],

ϕ2,3 := P[H+
R[εk+1,k] <∞, H

+
R[k+1,∞) <∞, H

+
R[−εk,εk] =∞ | S],

ϕ1,2,3 := P[H+
R(−∞,−εk−1] <∞, H

+
R[εk+1,k] <∞, H

+
R[k+1,∞) <∞, H

+
R[−εk,εk] =∞ | S].

We decompose similarly

ϕ(k) = ψ0 − ψ1 − ψ2 − ψ3 + ψ1,2 + ψ1,3 + ψ2,3 − ψ1,2,3,

where index 0 refers to the event of avoiding R[k−εk, k+εk], index 1 to the
event of hitting R(−∞,−1], index 2 to the event of hitting R[0, k − εk − 1]
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and index 3 to the event of hitting R[k+εk+1,∞) (for a walk starting from
Sk this time). Note that ϕ0 and ψ0 are independent. Then write

Cov(Z0ϕ(0), Zkϕ(k)) = −
3∑
i=1

(Cov(Z0ϕi, Zkψ0) + Cov(Z0ϕ0, Zkψi))

(3.2)

+
3∑

i,j=1

Cov(Z0ϕi, Zkψj) +
∑

1≤i<j≤3

(Cov(Z0ϕi,j , Zkψ0) + Cov(Z0ϕ0, Zkψi,j)) +R0,k,

where R0,k is an error term. Our first task will be to show that it is negligible.

Proposition 3.3. One has |R0,k| = O
(
ε
−3/2
k

)
.

The second step is the following.

Proposition 3.4. One has

(i) |Cov(Z0ϕ1,2, Zkψ0)|+ |Cov(Z0ϕ0, Zkψ2,3)| = O
(√

εk
k3/2

)
,

(ii) |Cov(Z0ϕ1,3, Zkψ0)|+|Cov(Z0ϕ0, Zkψ1,3)| = O
(√

εk
k3/2 · log( kεk ) + 1

ε
3/4
k

√
k

)
,

(iii) |Cov(Z0ϕ2,3, Zkψ0)|+|Cov(Z0ϕ0, Zkψ1,2)| = O
(√

εk
k3/2 · log( kεk ) + 1

ε
3/4
k

√
k

)
.

In the same fashion as Part (i) of the previous proposition, we show:

Proposition 3.5. For any 1 ≤ i < j ≤ 3,

|Cov(Z0ϕi, Zkψj)| = O
(√

εk

k3/2

)
, |Cov(Z0ϕj , Zkψi)| = O

(
1

εk

)
.

The next step deals with the first sum in the right-hand side of (3.2).

Proposition 3.6. There exists a constant α ∈ (0, 1), such that

Cov(Z0ϕ1, Zkψ0) = Cov(Z0ϕ0, Zkψ3) = 0,

|Cov(Z0ϕ2, Zkψ0)|+ |Cov(Z0ϕ0, Zkψ2)| = O
(√

εk

k3/2

)
,

|Cov(Z0ϕ3, Zkψ0)|+ |Cov(Z0ϕ0, Zkψ1)| = O
(

εαk
k1+α

)
.
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At this point one can already deduce the bound Var(Cap(Rn)) = O(n log n),
just applying the previous propositions with say εk := bk/4c.

In order to obtain the finer asymptotic result stated in Theorem 3.2, it
remains to identify the leading terms in (3.2), which is the most delicate
part. The result reads as follows.

Proposition 3.7. There exists δ > 0, such that if εk ≥ k1−δ and εk =
o(k), then for some positive constants (σi,j)1≤i≤j≤3,

Cov(Z0ϕj , Zkψi) ∼ Cov(Z0ϕ4−i, Zkψ4−j) ∼
σi,j
k
.

Note that Theorem 3.2 is a direct consequence of (3.2) and Propositions
3.3–3.7, which we prove now in the following sections.

4. Proof of Proposition 3.3. We divide the proof into two lemmas.

Lemma 4.1. One has

E[ϕ1,2,3] = O
(

1

εk
√
k

)
, and E[ψ1,2,3] = O

(
1

εk
√
k

)
.

Lemma 4.2. For any 1 ≤ i < j ≤ 3, and any 1 ≤ ` ≤ 3,

E[ϕi,jψ`] = O
(
ε
−3/2
k

)
, and E[ϕi,j ] · E[ψ`] = O

(
ε
−3/2
k

)
.

Observe that the (ϕi,j)i,j and (ψi,j)i,j have the same law (up to reorder-
ing), and similarly for the (ϕi)i and (ψi)i. Furthermore, ϕi,j ≤ ϕi for any i, j.
Therefore by definition of R0,k the proof of Proposition 3.3 readily follows
from these two lemmas. For their proofs, we will use the following fact.

Lemma 4.3. There exists C > 0, such that for any x, y ∈ Z5, 0 ≤ ` ≤ m,

m∑
i=`

∑
z∈Z5

pi(z)G(z−y)pm−i(z−x) ≤ C

(1 + ‖x‖+
√
m)5

(
1

1 + ‖y − x‖
+

1

1 +
√
`+ ‖y‖

)
.

Proof. Consider first the case ‖x‖ ≤
√
m. By (2.3) and Lemma 2.3,

bm/2c∑
i=`

∑
z∈Z5

pi(z)G(z−y)pm−i(z−x) .
1

1 +m5/2

∑
z∈Z5

G`(z)G(z−y) .
(1 +m)−5/2

1 +
√
`+ ‖y‖

,
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with the convention that the first sum is zero when m < 2`, and

m∑
i=bm/2c

∑
z∈Z5

pi(z)G(z−y)pm−i(z−x) .
1

1 +m5/2

∑
z∈Z5

G(z−y)G(z−x) .
(1 +m)−5/2

1 + ‖y − x‖
.

Likewise, when ‖x‖ >
√
m, applying again (2.3) and Lemma 2.3, we get

m∑
i=`

∑
‖z−x‖≥ ‖x‖

2

pi(z)G(z − y)pm−i(z − x) .
1

‖x‖5
∑
z∈Z5

G`(z)G(z − y) .
‖x‖−5

1 +
√
`+ ‖y‖

,

m∑
i=`

∑
‖z−x‖≤ ‖x‖

2

pi(z)G(z − y)pm−i(z − x) .
1

‖x‖5
∑
z∈Z5

G(z − y)G(z − x) .
‖x‖−5

1 + ‖y − x‖
,

which concludes the proof of the lemma.

One can now give the proof of Lemma 4.1.

Proof of Lemma 4.1. Since ϕ1,2,3 and ψ1,2,3 have the same law, it suf-

fices to prove the result for ϕ1,2,3. Let (Sn)n∈Z and (S̃n)n≥0 be two indepen-
dent random walks starting from the origin. Define

τ1 := inf{n ≥ 1 : S̃n ∈ R(−∞,−εk−1]}, τ2 := inf{n ≥ 1 : S̃n ∈ R[εk+1, k]},

and
τ3 := inf{n ≥ 1 : S̃n ∈ R[k + 1,∞)}.

One has

(4.1) E[ϕ1,2,3] ≤
∑

i1 6=i2 6=i3

P[τi1 ≤ τi2 ≤ τi3 ].

We first consider the term corresponding to i1 = 1, i2 = 2, and i3 = 3. One
has by the Markov property,

P[τ1 ≤ τ2 ≤ τ3 <∞]
(2.13)

. E

[
1{τ1 ≤ τ2 <∞}
1 + ‖S̃τ2 − Sk‖

]
(2.12)

.
k∑

i=εk

E

[
G(Si − S̃τ1)1{τ1 <∞}

1 + ‖Si − Sk‖

]
.

Now define Gi := σ((Sj)j≤i)∨σ((S̃n)n≥0), and note that τ1 is Gi-measurable
for any i ≥ 0. Moreover, the Markov property and (2.3) show that

E
[

1

1 + ‖Si − Sk‖
| Gi
]
.

1√
k − i

.
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Therefore,

P[τ1 ≤ τ2 ≤ τ3 <∞] .
k∑

i=εk

E

[
1{τ1 <∞} ·

G(Si − S̃τ1)

1 +
√
k − i

]

.
∑
z∈Z5

P[τ1 <∞, S̃τ1 = z] ·

 k/2∑
i=εk

E[G(Si − z)]√
k

+
k∑

i=k/2

E[G(Si − z)]
1 +
√
k − i


(2.9)

.
1√
kεk
· P[τ1 <∞]

(2.13)

.
1

εk
√
k
.

We consider next the term corresponding to i1 = 1, i2 = 3 and i3 = 2, whose
analysis slightly differs from the previous one. First Lemma 4.3 gives

P[τ1 ≤ τ3 ≤ τ2 <∞] =
∑
x,y∈Z5

E

1{τ1 ≤ τ3 <∞, S̃τ3 = y, Sk = x}
k∑

i=εk

G(Si − y)


(4.2)

=
∑
x,y∈Z5

 k∑
i=εk

∑
z∈Z5

pi(z)G(z − y)pk−i(x− z)

P
[
τ1 ≤ τ3 <∞, S̃τ3 = y | Sk = x

]

.
∑
x∈Z5

1

(‖x‖+
√
k)5

(
P[τ1 ≤ τ3 <∞ | Sk = x]

√
εk

+ E

[
1{τ1 ≤ τ3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

])
.

We then have

P[τ1 ≤ τ3 <∞ | Sk = x]
(2.13)

. E

[
1{τ1 <∞}

1 + ‖S̃τ1 − x‖

]
(2.12)

.
∑
y∈Z5

Gεk(y)G(y)

1 + ‖y − x‖
Lemma 2.3

.
1

(1 + ‖x‖)
√
εk

+
∑

‖y−x‖≤ ‖x‖
2

Gεk(y)G(y)

1 + ‖y − x‖
.

Moreover, when ‖x‖ ≥ √εk, one has

∑
‖y−x‖≤ ‖x‖

2

Gεk(y)G(y)

1 + ‖y − x‖

(2.7)

.
1

‖x‖6
∑

‖y−x‖≤ ‖x‖
2

1

1 + ‖y − x‖
.

1

‖x‖2
,

while, when ‖x‖ ≤ √εk,∑
‖y−x‖≤ ‖x‖

2

Gεk(y)G(y)

1 + ‖y − x‖

(2.7)

. (1 + ‖x‖)ε−3/2
k .

1

εk
.
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Therefore, it holds for any x,

(4.3) P[τ1 ≤ τ3 <∞ | Sk = x] .
1

(1 + ‖x‖)
√
εk
.

Similarly, one has

E

[
1{τ1 ≤ τ3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

]
≤ E

∑
y∈Z5

G(y − S̃τ1)G(y − x)

1 + ‖y − x‖
1{τ1 <∞}



≤ E

[
1{τ1 <∞}

1 + ‖S̃τ1 − x‖2

]
≤
∑
y∈Z5

Gεk(y)G(y)

1 + ‖y − x‖2
.

1

(1 + ‖x‖2)
√
εk
.

(4.4)

Injecting (4.3) and (4.4) into (4.2) finally gives

P[τ1 ≤ τ2 ≤ τ3 <∞] .
1

εk
√
k
.

The other terms in (4.1) are entirely similar, so this concludes the proof of
the lemma.

For the proof of Lemma 4.2, one needs some additional estimates that we
state as two separate lemmas.

Lemma 4.4. There exists a constant C > 0, such that for any x, y ∈ Z5,

k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

(
1

1 + ‖z − x‖
+

1√
k − i

)

≤ C ·


1

k5/2

(
1

1+‖x‖2 + 1
εk

)
+ 1

k3/2ε
3/2
k (1+‖y−x‖)

if ‖x‖ ≤
√
k

1
‖x‖5εk

(
1 + k√

εk(1+‖y−x‖)

)
if ‖x‖ >

√
k.

Proof. We proceed similarly as for the proof of Lemma 4.3. Assume first
that ‖x‖ ≤

√
k. On one hand, using Lemma 2.3, we get

k/2∑
i=εk

1√
k − i

∑
z∈Z5

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

.
1

k3

∑
z∈Z5

Gεk(z)G(z−y) .
1

k5/2
√
kεk

,
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and,

k/2∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5(1 + ‖z − x‖)

.
1

k5/2

∑
z∈Z5

Gεk(z)G(z − y)

1 + ‖z − x‖

.
1

k5/2

 ∑
‖z−x‖≥ ‖x‖

2

Gεk(z)G(z − y)

1 + ‖z − x‖
+

∑
‖z−x‖≤ ‖x‖

2

Gεk(z)G(z − y)

1 + ‖z − x‖


.

1

k5/2

(
1

(1 + ‖x‖)√εk
+

1

1 + ‖x‖2

)
.

1

k5/2

(
1

1 + ‖x‖2
+

1

εk

)
.

On the other hand, by (2.3)

k−εk∑
i=k/2

∑
‖z‖>2

√
k

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

(
1

1 + ‖z − x‖
+

1√
k − i

)
.

1

k2

∑
‖z‖>2

√
k

G(z − y)

‖z‖5
. k−

7
2 .

Furthermore,

k−εk∑
i=k/2

1√
k − i

∑
‖z‖≤2

√
k

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

.
1

k2εk

∑
‖z‖≤2

√
k

G(z − y)

1 + ‖z − x‖3
.

(k2εk)
−1

1 + ‖y − x‖
,

and

k−εk∑
i= k

2

∑
‖z‖≤2

√
k

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

1

1 + ‖z − x‖
.

1

k3/2ε
3/2
k

∑
‖z‖≤2

√
k

G(z − y)

1 + ‖z − x‖3

.
1

k3/2ε
3/2
k

1

1 + ‖y − x‖
.

Assume now that ‖x‖ >
√
k. One has on one hand, using Lemma 2.3,

k−εk∑
i=εk

∑
‖z−x‖≥ ‖x‖

2

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

(
1

1 + ‖z − x‖
+

1√
k − i

)
.

1

‖x‖5εk
.

On the other hand,

k−εk∑
i=εk

∑
‖z−x‖≤ ‖x‖

2

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

1

1 + ‖z − x‖
.

k

‖x‖5ε3/2
k

∑
z∈Z5

G(z − y)

1 + ‖z − x‖3

.
k

‖x‖5ε3/2
k (1 + ‖y − x‖)

,
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and

k−εk∑
i=εk

1√
k − i

∑
‖z−x‖≤ ‖x‖

2

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

.

√
k

‖x‖5εk

∑
z∈Z5

G(z − y)

1 + ‖y − x‖3

.

√
k

‖x‖5εk(1 + ‖y − x‖)
,

concluding the proof of the lemma.

Lemma 4.5. There exists a constant C > 0, such that for any x, y ∈ Z5,∑
v∈Z5

1

(‖v‖+
√
k)5

(
1

1 + ‖x− v‖
+

1

1 + ‖x‖

)
1

(‖x− v‖+
√
εk)5

(
1

1 + ‖y − x‖
+

1

1 + ‖y − v‖

)

≤ C ·


1

k2εk

(
1√
εk

+ 1
1+‖x‖ + 1

1+‖y−x‖ +
√
εk

(1+‖x‖)(1+‖y−x‖)

)
if ‖x‖ ≤

√
k

log(
‖x‖√
εk

)

‖x‖5√εk

(
1

1+‖y−x‖ + 1√
k

)
if ‖x‖ >

√
k.

Proof. Assume first that ‖x‖ ≤
√
k. In this case it suffices to notice that

on one hand, for any α ∈ {3, 4}, one has∑
‖v‖≤2

√
k

1

(1 + ‖x− v‖α)(1 + ‖y − v‖4−α)
= O(

√
k),

and on the other hand, for any α, β ∈ {0, 1},∑
‖v‖>2

√
k

1

‖v‖10+α(1 + ‖y − v‖)β
= O(k−5/2−α−β).

Assume next that ‖x‖ >
√
k. In this case it is enough to observe that∑

‖v‖≤
√
k

2

(
1

1 + ‖x− v‖
+

1

‖x‖

)(
1

1 + ‖y − x‖
+

1

1 + ‖y − v‖

)
.

k2

(1 + ‖y − x‖)
,

∑
‖v‖≥

√
k

2

1

‖v‖5(
√
εk + ‖x− v‖)5

.
log( ‖x‖√εk )

‖x‖5
,

∑
‖v‖≥

√
k

2

1

‖v‖5(
√
εk + ‖x− v‖)5(1 + ‖y − v‖)

.
log( ‖x‖√εk )

‖x‖5

(
1√
k

+
1

1 + ‖y − x‖

)
.
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Proof of Lemma 4.2. First note that for any `, one has E[ψ`] = O(ε
−1/2
k ),

by (2.14). Using also similar arguments as in the proof of Lemma 4.1, that
we will not reproduce here, one can see that E[ϕi,j ] = O(ε−1

k ), for any i 6= j.
Thus only the terms of the form E[ϕi,jψ`] are at stake.

Let (Sn)n∈Z, (S̃n)n≥0 and (Ŝn)n≥0 be three independent walks starting
from the origin. Recall the definition of τ1, τ2 and τ3 from the proof of
Lemma 4.1, and define analogously

τ̂1 := inf{n ≥ 1 : Sk+Ŝn ∈ R(−∞,−1]}, τ̂2 := inf{n ≥ 1 : Sk+Ŝn ∈ R[0, k−εk−1]},

and
τ̂3 := inf{n ≥ 1 : Sk + Ŝn ∈ R[k + εk + 1,∞)}.

When ` 6= i, j, one can take advantage of the independence between the
different parts of the range of S, at least once we condition on the value of
Sk. This allows for instance to write

E[ϕ1,2ψ3] ≤ P[τ1 <∞, τ2 <∞, τ̂3 <∞] = P[τ1 <∞, τ2 <∞]P[τ̂3 <∞] . ε−3/2
k ,

using independence for the second equality and our previous estimates for
the last one. Similarly,

E[ϕ1,3ψ2] ≤
∑
x∈Z

P[τ1 <∞, τ3 <∞ | Sk = x]× P[τ̂2 <∞, Sk = x]

.
∑
x∈Z5

1

(1 + ‖x‖)
√
εk
· 1

(1 + ‖x‖+
√
k)5

(
1

1 + ‖x‖
+

1
√
εk

)
.

1

εk
√
k
,

using (4.3) and Lemma 4.3 for the second inequality. The term E[ϕ2,3ψ1] is
handled similarly. We consider now the other cases. One has

(4.5) E[ϕ2,3ψ3] ≤ P[τ2 ≤ τ3 <∞, τ̂3 <∞] + P[τ3 ≤ τ2 <∞, τ̂3 <∞].

By using the Markov property at time τ2, one can write

P[τ2 ≤ τ3 <∞, τ̂3 <∞]

≤
∑
x,y∈Z5

E

( ∞∑
i=0

G(Si − y + x)

) ∞∑
j=εk

G(Sj)

P[τ2 <∞, S̃τ2 = y, Sk = x].
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Then applying Lemmas 2.3 and 4.3, we get

E

( εk∑
i=0

G(Si − y + x)

) ∞∑
j=εk

G(Sj)


=
∑
v∈Z5

E

[(
εk∑
i=0

G(Si − y + x)

)
1{Sεk = v}

]
E

 ∞∑
j=0

G(Sj + v)


.
∑
v∈Z5

1

1 + ‖v‖
·

(
εk∑
i=0

pi(z)G(z − y + x)pεk−i(v − z)

)

.
∑
v∈Z5

1

1 + ‖v‖
1

(‖v‖+
√
εk)5

(
1

1 + ‖v − y + x‖
+

1

1 + ‖y − x‖

)
.

ε
−1/2
k

1 + ‖y − x‖
.

(4.6)

Likewise,

E

 ∞∑
i=εk

G(Si − y + x)

 ∞∑
j=εk

G(Sj)

 ≤ ∑
z∈Z5

Gεk(z)

(
G(z − y + x)

1 + ‖z‖
+

G(z)

1 + ‖z − y + x‖

)
.

1
√
εk(1 + ‖y − x‖)

.(4.7)

Recall now that by (2.14), one has P[τ2 < ∞] . ε
−1/2
k . Moreover, from the

proof of Lemma 4.1, one can deduce that

E

[
1{τ2 <∞}
‖S̃τ2 − Sk‖

]
.

1√
kεk

.

Combining all these estimates we conclude that

P[τ2 ≤ τ3 <∞, τ̂3 <∞] .
1

εk
√
k
.

We deal next with the second term in the right-hand side of (4.5). Applying



24 BRUNO SCHAPIRA

the Markov property at time τ3, and then Lemma 4.3, we obtain

P[τ3 ≤ τ2 <∞, τ̂3 <∞]

≤
∑
x,y∈Z5

 k∑
i=εk

E[G(Si − y)1{Sk = x}]

P[τ3 <∞, τ̂3 <∞, S̃τ3 = y | Sk = x]

.
∑
x,y∈Z5

1

(‖x‖+
√
k)5

(
1

1 + ‖y − x‖
+

1
√
εk

)
P[τ3 <∞, τ̂3 <∞, S̃τ3 = y | Sk = x]

.
∑
x∈Z5

1

(‖x‖+
√
k)5

(
P[τ3 <∞, τ̂3 <∞ | Sk = x]

√
εk

+ E

[
1{τ3 <∞, τ̂3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

])

.
∑
x∈Z5

1

(‖x‖+
√
k)5

(
1

εk(1 + ‖x‖)
+ E

[
1{τ3 <∞, τ̂3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

])
,

(4.8)

using also (4.6) and (4.7) (with y = 0) for the last inequality. We use now
(2.8) and Lemma 2.2 to remove the denominator in the last expectation
above. Define for r ≥ 0, and x ∈ Z5,

ηr(x) := inf{n ≥ 0 : ‖S̃n − x‖ ≤ r}.

On the event when r/2 ≤ ‖S̃ηr(x)−x‖ ≤ r, one applies the Markov property
at time ηr(x), and we deduce from (2.8) and Lemma 2.2 that

E

[
1{τ3 <∞, τ̂3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

]
≤ P[τ3 <∞, τ̂3 <∞ | Sk = x]

1 + ‖x‖

+

log2 ‖x‖∑
i=0

P
[
τ3 <∞, τ̂3 <∞, 2i ≤ ‖S̃τ3 − x‖ ≤ 2i+1 | Sk = x

]
2i

.
1

√
εk(1 + ‖x‖2)

+

log2 ‖x‖∑
i=0

P [η2i+1(x) ≤ τ3 <∞, τ̂3 <∞ | Sk = x]

2i

.
ε
−1/2
k

1 + ‖x‖2
+

P[τ̂3 <∞]

1 + ‖x‖3
+

log2 ‖x‖∑
i=0

22i

1 + ‖x‖3
max
‖z‖≥2i

P0,0,z

[
HR[εk,∞) <∞, H̃R∞ <∞

]
,

where in the last probability, H and H̃ refer to hitting times by two inde-
pendent walks, independent of S, starting respectively from the origin and
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from z. Then it follows from (4.6) and (4.7) that

(4.9) E

[
1{τ3 <∞, τ̂3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

]
.

1
√
εk(1 + ‖x‖2)

.

Combining this with (4.8), it yields that

P[τ2 ≤ τ3 <∞, τ̂3 <∞] .
1

εk
√
k
.

The terms E[ϕ1,3ψ3] and E[ϕ1,3ψ1] are entirely similar, and we omit repeat-
ing the proof. Thus it only remains to consider the terms E[ϕ2,3ψ2] and
E[ϕ1,2ψ2]. Since they are also similar we only give the details for the former.
We start again by writing

(4.10) E[ϕ2,3ψ2] ≤ P[τ2 ≤ τ3 <∞, τ̂2 <∞] + P[τ3 ≤ τ2 <∞, τ̂2 <∞].

Then one has

P[τ3 ≤ τ2 <∞, τ̂2 <∞]

(4.11)

≤
∑
x,y∈Z5

E

 k∑
i=εk

G(Si − y)

k−εk∑
j=0

G(Sj − x)

1{Sk = x}

P[τ3 <∞, S̃τ3 = y | Sk = x]

≤
∑
x,y∈Z5

 k∑
i=εk

k−εk∑
j=0

∑
z,w∈Z5

P[Si = z, Sj = w, Sk = x]G(z − y)G(w − x)


× P[τ3 <∞, S̃τ3 = y | Sk = x].
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Now for any x, y ∈ Z5,

Σ1(x, y) :=

k−εk∑
i=εk

k−εk∑
j=εk

∑
z,w∈Z5

P[Si = z, Sj = w, Sk = x]G(z − y)G(w − x)

≤ 2

k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

k−εk∑
j=i

∑
w∈Z5

pj−i(w − z)G(w − x)pk−j(x− w)


= 2

k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

 k∑
j=εk

∑
w∈Z5

pj(w)G(w)pk−i−j(w + x− z)


Lemma 4.3

.
k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

(
1

1 + ‖z − x‖
+

1√
k − i

)
Lemma 4.4

.


1

k5/2

(
1

1+‖x‖2 + 1
εk

)
+ 1

k3/2ε
3/2
k (1+‖y−x‖)

if ‖x‖ ≤
√
k

1
‖x‖5εk

(
1 + k√

εk(1+‖y−x‖)

)
if ‖x‖ >

√
k.

We also have

Σ2(x, y) :=

k∑
i=k−εk

k−εk∑
j=0

∑
z,w∈Z5

P[Si = z, Sj = w, Sk = x]G(z − y)G(w − x)

=
k∑

i=k−εk

k−εk∑
j=0

∑
z,v,w∈Z5

P[Sj = w, Sk−εk = v, Si = z, Sk = x]G(z − y)G(w − x)

=
∑
v∈Z5

k−εk∑
j=0

∑
w∈Z5

pj(w)pk−εk−j(v − w)G(w − x)

 εk∑
i=0

∑
z∈Z5

pi(z − v)pεk−i(x− z)G(z − y)

 ,

and applying then Lemmas 4.3 and 4.5, gives

Σ2(x, y)

.
∑
v∈Z5

1

(‖v‖+
√
k)5

(
1

1 + ‖x− v‖
+

1

1 + ‖x‖

)
1

(‖x− v‖+
√
εk)5

(
1

1 + ‖y − x‖
+

1

1 + ‖y − v‖

)

.


1

k2εk

(
1√
εk

+ 1
1+‖x‖ + 1

1+‖y−x‖ +
√
εk

(1+‖x‖)(1+‖y−x‖)

)
if ‖x‖ ≤

√
k

log(
‖x‖√
εk

)

‖x‖5√εk

(
1

1+‖y−x‖ + 1√
k

)
if ‖x‖ >

√
k.
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Likewise, by reversing time, one has

Σ3(x, y) :=
k∑

i=εk

εk∑
j=0

∑
z,w∈Z5

P[Si = z, Sj = w, Sk = x]G(z − y)G(w − x)

=

k−εk∑
i=0

k∑
j=k−εk

∑
z,v,w∈Z5

P[Si = z − x, Sk−εk = v − x, Sj = w − x, Sk = −x]G(z − y)G(w − x)

=
∑
v∈Z5

k−εk∑
i=0

∑
z∈Z5

pi(z − x)pk−εk−i(v − z)G(z − y)

 εk∑
j=0

∑
w∈Z5

pj(w − v)pεk−j(w)G(w − x)


.
∑
v∈Z5

1

(‖v − x‖+
√
k)5

(
1

1 + ‖y − v‖
+

1

1 + ‖y − x‖

)
1

(‖v‖+
√
εk)5

(
1

1 + ‖x‖
+

1

1 + ‖x− v‖

)
,

and then a similar argument as in the proof of Lemma 4.5 gives the same
bound for Σ3(x, y) as for Σ2(x, y). Now recall that (4.11) yields

P[τ3 ≤ τ2 <∞, τ̂2 <∞] ≤
∑
x,y∈Z5

(Σ1(x, y) + Σ2(x, y) + Σ3(x, y))P[τ3 <∞, S̃τ3 = y | Sk = x].

Recall also that by (2.13),

P[τ3 <∞ | Sk = x] .
1

1 + ‖x‖
,

and

E

[
1{τ3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣Sk = x

]
≤
∑
y∈Z5

G(y)G(y − x)

1 + ‖y − x‖
.

1

1 + ‖x‖2
.

Furthermore, for any α ∈ {1, 2, 3}, and any β ≥ 6,

∑
‖x‖≤

√
k

1

1 + ‖x‖α
. k

5−α
2 ,

∑
‖x‖≥

√
k

log( ‖x‖√εk )

‖x‖β
≤

∑
‖x‖≥√εk

log( ‖x‖√εk )

‖x‖β
. ε

5−β
2

k .

Putting all these pieces together we conclude that

P[τ3 ≤ τ2 <∞, τ̂2 <∞] . ε−3/2
k .

We deal now with the other term in (4.10). As previously, we first write
using the Markov property, and then using (2.12) and Lemma 2.3,

P[τ2 ≤ τ3 <∞, τ̂2 <∞] ≤ E

[
1{τ2 <∞, τ̂2 <∞}

1 + ‖S̃τ2 − Sk‖

]
.
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Then using (2.8) and Lemma 2.2 one can handle the denominator in the last
expectation, the same way as for (4.9), and we conclude similarly that

P[τ2 ≤ τ3 <∞, τ̂2 <∞] . ε−3/2
k .

This finishes the proof of Lemma 4.2.

5. Proof of Propositions 3.4 and 3.5. For the proof of these propo-
sitions we shall need the following estimate.

Lemma 5.1. One has for all x, y ∈ Z5,

k∑
i=k−εk

E [G(Si − y)1{Sk = x}]

. εk

 log(2 + ‖y−x‖√
εk

)

(‖x‖+
√
k)5(‖y − x‖+

√
εk)3

+
log(2 + ‖y‖√

k
)

(‖x‖+
√
εk)5(‖y‖+

√
k)3

 .

Proof. One has using (2.3) and (2.7),

k∑
i=k−εk

E [G(Si − y)1{Sk = x}] =
k∑

i=k−εk

∑
z∈Z5

pi(z)G(z − y)pk−i(x− z)

.
∑
z∈Z5

εk

(‖z‖+
√
k)5(1 + ‖z − y‖3)(‖x− z‖+

√
εk)5

.
1

ε
3/2
k (‖x‖+

√
k)5

∑
‖z−x‖≤√εk

1

1 + ‖z − y‖3

+
εk

(‖x‖+
√
k)5

∑
√
εk≤‖z−x‖≤ ‖x‖2

1

(1 + ‖z − y‖3)(1 + ‖z − x‖5)

+
εk

(‖x‖+
√
εk)5

∑
‖z−x‖≥ ‖x‖

2

1

(‖z‖+
√
k)5(1 + ‖z − y‖3)

.

Then it suffices to observe that∑
‖z−x‖≤√εk

1

1 + ‖z − y‖3
.

ε
5/2
k

(‖y − x‖+
√
εk)3

,

∑
√
εk≤‖z−x‖≤ ‖x‖2

1

(1 + ‖z − y‖3)(1 + ‖z − x‖5)
.

log(2 + ‖y−x‖√
εk

)

(‖y − x‖+
√
εk)3

,
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∑
z∈Z5

1

(‖z‖+
√
k)5(1 + ‖z − y‖3)

.
log(2 + ‖y‖√

k
)

(‖y‖+
√
k)3

.

Proof of Proposition 3.4 (i). This part is the easiest: it suffices to
observe that ϕ1,2 is a sum of one term which is independent of Zkψ0 and
another one, whose expectation is negligible. To be more precise, define

ϕ0
1,2 := P

[
H+
R[−εk,εk] =∞, H+

R(−∞,−εk−1] <∞, H
+
R[εk+1,k−εk−1] <∞ | S

]
,

and note that Z0ϕ
0
1,2 is independent of Zkψ0. It follows that

|Cov(Z0ϕ1,2, Zkψ0)| = |Cov(Z0(ϕ1,2 − ϕ0
1,2), Zkψ0)| ≤ P [τ1 <∞, τ∗ <∞] ,

with τ1 and τ∗ the hitting times respectively of R(−∞,−εk] and R[k−εk, k]
by another walk S̃ starting from the origin, independent of S. Now, using
(2.3), we get

P[τ1 ≤ τ∗ <∞] ≤ E

1{τ1 <∞}

 k∑
i=k−εk

G(Si − S̃τ1)


≤
∑
y∈Z5

∑
z∈Z5

k∑
i=k−εk

pi(z)G(z − y)

P[τ1 <∞, S̃τ1 = y]

.
εk
k3/2

P[τ1 <∞]
(2.14)

.
√
εk

k3/2
.

Likewise, using now Lemma 2.3,

P[τ∗ ≤ τ1 <∞] ≤ E

1{τ∗ <∞}
 ∞∑
i=εk

G(S−i − S̃τ∗)


≤
∑
y∈Z5

∑
z∈Z5

Gεk(z)G(z − y)

P[τ∗ <∞, S̃τ∗ = y]

.
1
√
εk

P[τ∗ <∞] .
√
εk

k3/2
,

and the first part of (i) follows. But since Z0 and Zk have played no role
here, the same computation gives the result for the covariance between Z0ϕ0

and Zkψ2,3 as well.
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Proof of Proposition 3.4 (ii)-(iii). These parts are more involved.
Since they are entirely similar, we only prove (iii), and as for (i) we only
give the details for the covariance between Z0ϕ2,3 and Zkψ0, since Z0 and
Zk will not play any role here. We define similarly as in the proof of (i),

ϕ0
2,3 := P

[
H+
R[−εk,εk] =∞, H+

R[εk,k−εk] <∞, H
+
R[k+εk,∞) <∞ | S

]
,

but observe that this time, the term ϕ0
2,3 is no more independent of ψ0. This

entails some additional difficulty, on which we shall come back later, but
first we show that one can indeed replace ϕ2,3 by ϕ0

2,3 in the computation of
the covariance. For this, denote respectively by τ2, τ3, τ∗ and τ∗∗ the hitting
times of R[εk, k], R[k,∞), R[k − εk, k], and R[k, k + εk] by S̃. One has

E[|ϕ2,3 − ϕ0
2,3|] ≤ P[τ2 <∞, τ∗∗ <∞] + P[τ3 <∞, τ∗ <∞].

Using (2.3), (2.12) and Lemma 2.3, we get

P[τ∗ ≤ τ3 <∞] ≤ E

[
1{τ∗ <∞}

1 + ‖S̃τ∗ − Sk‖

]
≤

k∑
i=k−εk

E
[

G(Si)

1 + ‖Si − Sk‖

]

.
k∑

i=k−εk

E
[

G(Si)

1 +
√
k − i

]
.
∑
z∈Z5

k∑
i=k−εk

pi(z)G(z)

1 +
√
k − i

.
√
εk
∑
z∈Z5

1

(‖z‖+
√
k)5

G(z) .
√
εk

k3/2
.

Next, applying Lemma 5.1, we get

P[τ3 ≤ τ∗ <∞]

≤
∑
x,y∈Z5

E

 k∑
i=k−εk

G(Si − y)

1{Sk = x}

P[τ3 <∞, S̃τ3 = y | Sk = x]

. εk
∑
x∈Z5

E

 1{τ3 <∞} log(2 +
‖S̃τ3−x‖√

εk
)

(‖x‖+
√
k)5(
√
εk + ‖S̃τ3 − x‖)3

∣∣∣Sk = x


+E

 1{τ3 <∞} log(2 +
‖S̃τ3‖√

k
)

(‖x‖+
√
εk)5(

√
k + ‖S̃τ3‖)3

∣∣∣Sk = x

 .
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Moreover,

E

1{τ3 <∞} log(2 +
‖S̃τ3−x‖√

εk
)

(
√
εk + ‖S̃τ3 − x‖)3

∣∣∣Sk = x

 (2.12)

≤
∑
y∈Z5

G(y)G(y − x) log(2 + ‖y−x‖√
εk

)

(
√
εk + ‖y − x‖)3

.
1

√
εk(1 + ‖x‖)3

,

and

E

1{τ3 <∞} log(2 +
‖S̃τ3‖√

k
)

(
√
k + ‖S̃τ3‖)3

∣∣∣Sk = x

 (2.12)

≤
∑
y∈Z5

G(y)G(y − x) log(2 + ‖y‖√
k

)

(
√
k + ‖y‖)3

.
1√

k(1 + ‖x‖)(
√
k + ‖x‖)2

.

Furthermore, it holds∑
x∈Z5

1

(‖x‖+
√
k)5(1 + ‖x‖)3

.
1

k3/2
,

∑
x∈Z5

1

(‖x‖+
√
εk)5(1 + ‖x‖)(

√
k + ‖x‖)2

.
1√
kεk

,

which altogether proves that

P[τ3 ≤ τ∗ <∞] .
√
εk

k3/2
.

Likewise,

P[τ2 ≤ τ∗∗ <∞] ≤
∑
x,y∈Z5

E

[
εk∑
i=0

G(Si − y + x)

]
P[τ2 <∞, S̃τ2 = y, Sk = x],

and using (2.7), we get

E

[
εk∑
i=0

G(Si − y + x)

]
=

εk∑
i=0

∑
z∈Z5

pi(z)G(z − y + x)

.
∑

‖z‖≤√εk

G(z)G(z − y + x) + εk
∑

‖z‖≥√εk

G(z − y + x)

‖z‖5

.
εk

(‖y − x‖+
√
εk)2(1 + ‖y − x‖)

+ εk
log
(

2 + ‖y−x‖√
εk

)
(‖y − x‖+

√
εk)3

. εk
log
(

2 + ‖y−x‖√
εk

)
(‖y − x‖+

√
εk)2(1 + ‖y − x‖)

.
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Therefore, using the Markov property,

P[τ2 ≤ τ∗∗ <∞] . εk · E

 log

(
2 +

‖S̃τ2−Sk‖√
εk

)
· 1{τ2 <∞}

(‖S̃τ2 − Sk‖+
√
εk)2(1 + ‖S̃τ2 − Sk‖)


. εk

k∑
i=εk

E[G(Si)] · E

 log
(

2 +
‖Sk−i‖√

εk

)
(‖Sk−i‖+

√
εk)2(1 + ‖Sk−i‖)

 .
Furthermore, using (2.3) we obtain after straightforward computations,

E

 log
(

2 +
‖Sk−i‖√

εk

)
(‖Sk−i‖+

√
εk)2(1 + ‖Sk−i‖)

 . log
(

2 + k−i
εk

)
√
k − i(εk + k − i)

,

and using in addition (2.9), we conclude that

P[τ2 ≤ τ∗∗ <∞] .
√
εk

k3/2
· log(

k

εk
).

Similarly, using Lemma 4.3 we get

P[τ∗∗ ≤ τ2 <∞]

=
∑
x,y∈Z5

P[τ∗∗ <∞, S̃τ∗∗ = y | Sk = x] · E

 k∑
i=εk

G(Si − y)1{Sk = x}


.
∑
x∈Z5

1

(‖x‖+
√
k)5

(
E

[
1{τ∗∗ <∞}

1 + ‖S̃τ∗∗ − x‖

∣∣∣Sk = x

]
+

P[τ∗∗ <∞ | Sk = x]
√
εk

)
.

Moreover, one has

P[τ∗∗ <∞ | Sk = x] ≤
εk∑
i=0

E[G(Si + x)] .
εk∑
i=0

∑
z∈Z5

1

(1 + ‖z‖+
√
i)5(1 + ‖z + x‖3)

.
∑

‖z‖≤√εk

1

(1 + ‖z‖3)(1 + ‖z + x‖3)
+

∑
‖z‖≥√εk

εk
‖z‖5(1 + ‖z + x‖3)

.
εk log(2 + ‖x‖√

εk
)

(
√
εk + ‖x‖)2(1 + ‖x‖)

,
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and likewise

E

[
1{τ∗∗ <∞}

1 + ‖S̃τ∗∗ − x‖

∣∣∣Sk = x

]
≤

εk∑
i=0

∑
z∈Z5

1

(1 + ‖z‖+
√
i)5(1 + ‖z − x‖3)(1 + ‖z‖)

.
∑

‖z‖≤√εk

1

(1 + ‖z‖4)(1 + ‖z − x‖3)
+

∑
‖z‖≥√εk

εk
‖z‖6(1 + ‖z − x‖3)

.
√
εk

(‖x‖+
√
εk)(1 + ‖x‖2)

.

Then it follows as above that

P[τ∗∗ ≤ τ2 <∞] .
√
εk

k3/2
· log(

k

εk
).

In other words we have proved that

E[|ϕ2,3 − ϕ0
2,3|] .

√
εk

k3/2
· log(

k

εk
).

We then have to deal with the fact that Z0ϕ
0
2,3 is not really independent of

Zkψ0. Therefore, we introduce the new random variables

Z̃k := 1{Si 6= Sk ∀i = k + 1, . . . , ε′k}, ψ̃0 := PSk
[
H+
R[k−ε′k,k+ε′k]

=∞ | S
]
,

where (ε′k)k≥0 is another sequence of integers, whose value will be fixed later.
For the moment we only assume that it satisfies ε′k ≤ εk/4, for all k. One
has by (2.7) and (2.14),

(5.1) E[|Zkψ0 − Z̃kψ̃0|] .
1√
ε′k
.

Furthermore, for any y ∈ Z5,

E
[
ϕ0

2,3 | Sk+εk − Sk−εk = y
]

=
∑
x∈Z5

E
[
ϕ0

2,31{Sk−εk = x} | Sk+εk − Sk−εk = y
](5.2)

≤
∑
x∈Z5

P
[
R̃∞ ∩R[εk, k − εk] 6= ∅, R̃∞ ∩ (x+ y + R̂∞) 6= ∅, Sk−εk = x

]
,

where in the last probability, R̃∞ and R̂∞ are the ranges of two independent
walks, independent of S, starting from the origin. Now x and y being fixed,
define

τ1 := inf{n ≥ 0 : S̃n ∈ R[εk, k− εk]}, τ2 := inf{n ≥ 0 : S̃n ∈ (x+ y+ R̂∞)}.
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Applying (2.12) and the Markov property we get

P[τ1 ≤ τ2 <∞, Sk−εk = x] ≤ E

[
1{τ1 <∞, Sk−εk = x}

1 + ‖S̃τ1 − (x+ y)‖

]

≤
k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z)pk−εk−i(x− z)
1 + ‖z − (x+ y)‖

.
1

(‖x‖+
√
k)5

(
1

√
εk(1 + ‖x+ y‖)

+
1

1 + ‖x‖2

)
,

using also similar computations as in the proof of Lemma 4.3 for the last
inequality. It follows that for some constant C > 0, independent of y,∑

x∈Z5

P[τ1 ≤ τ2 <∞, Sk−εk = x] .
1√
kεk

.

On the other hand, by Lemmas 4.3 and 2.5,

P[τ2 ≤ τ1 <∞, Sk−εk = x] .
1

(‖x‖+
√
k)5

(
E

[
1{τ2 <∞}

1 + ‖S̃τ2 − x‖

]
+

P[τ2 <∞]
√
εk

)

.
1

(‖x‖+
√
k)5

(
1

√
εk(1 + ‖x+ y‖)

+
1

1 + ‖x‖2

)
,

and it follows as well that∑
x∈Z5

P[τ2 ≤ τ1 <∞, Sk−εk = x] .
1√
kεk

.

Coming back to (5.2), we deduce that

(5.3) E
[
ϕ0

2,3 | Sk+εk − Sk−εk = y
]
.

1√
kεk

,

with an implicit constant independent of y. Together with (5.1), this gives

E
[
ϕ0

2,3|Zkψ0 − Z̃kψ̃0|
]

=
∑
y∈Z5

E
[
ϕ0

2,3 | Sk+εk − Sk−εk = y
]
· E
[
|Zkψ0 − Z̃kψ̃0|1{Sk+εk − Sk−εk = y}

]
.

1√
kεkε

′
k

.
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Thus at this point we have shown that

Cov(Z0ϕ2,3, Zkψ0) = Cov(Z0ϕ
0
2,3, Z̃kψ̃0) +O

(√
εk

k3/2
· log(

k

εk
) +

1√
kεkε

′
k

)
.

Note next that

Cov(Z0ϕ
0
2,3, Z̃kψ̃0) =

∑
y,z∈Z5

E
[
Z0ϕ

0
2,3 | Sk+εk − Sk−ε′k = y

]
× E

[
Z̃kψ̃01{Sk+ε′k

− Sk−ε′k = z}
] (
pεk−ε′k(y − z)− pεk+ε′k

(y)
)
.

Moreover, one can show exactly as (5.3) that uniformly in y,

E
[
ϕ0

2,3 | Sk+εk − Sk−ε′k = y
]
.

1√
kεk

.

Therefore by using also (2.5) and Theorem 2.1, we see that

|Cov(Z0ϕ
0
2,3, Z̃kψ̃0)|

.
1√
kεk

∑
‖y‖≤ε

6
10
k

∑
‖z‖≤ε

1
10
k ·
√
ε′k

p2ε′k
(z) |pεk−ε′k(y − z)− pεk+ε′k

(y)|+ 1

εk
√
k
.

Now straightforward computations show that for y and z as in the two sums
above, one has for some constant c > 0,

|pεk−ε′k(y − z)− pεk+ε′k
(y)| .

(
‖z‖
√
εk

+
ε′k
εk

)
pεk−ε′k

(cy),

at least when ε′k ≤
√
εk, as will be assumed in a moment. Using also that∑

z ‖z‖p2ε′k
(z) .

√
ε′k, we deduce that

|Cov(Z0ϕ
0
2,3, Z̃kψ̃0)| = O

( √
ε′k

εk
√
k

)
.

This concludes the proof as we choose ε′k = b√εkc.

We can now quickly give the proof of Proposition 3.5.

Proof of Proposition 3.5. Case 1 ≤ i < j ≤ 3. First note that Z0ϕ1

and Zkψ3 are independent, so only the cases i = 1 and j = 2, or i = 2 and
j = 3 are at stake. Let us only consider the case i = 2 and j = 3, since the
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other one is entirely similar. Define, in the same fashion as in the proof of
Proposition 3.4,

ϕ0
2 := P

[
H+
R[−εk,εk] =∞, H+

R[εk+1,k−εk] <∞ | S
]
.

One has by using independence and translation invariance,

E[|ϕ2 − ϕ0
2|ψ3] ≤ P[HR[k−εk,k] <∞] · P[HR[εk,∞) <∞] .

√
εk

k3/2
,

which entails

Cov(Z0ϕ2, Zkψ3) = Cov(Z0ϕ
0
2, Zkψ3) +O

(√
εk

k3/2

)
.
√
εk

k3/2
,

since Z0ϕ
0
2 and Zkψ3 are independent.

Case 1 ≤ j ≤ i ≤ 3. Here one can use entirely similar arguments as those
from the proof of Lemma 4.2, and we therefore omit the details.

6. Proof of Proposition 3.6. We need to estimate here the covari-
ances Cov(Z0ϕi, Zkψ0) and Cov(Z0ϕ0, Zkψ4−i), for all 1 ≤ i ≤ 3.

Case i = 1. It suffices to observe that Z0ϕ1 and Zkψ0 are independent, as
are Z0ϕ0 and Zkψ3. Thus their covariances are equal to zero.

Case i = 2. We first consider the covariance between Z0ϕ2 and Zkψ0,
which is easier to handle. Define

ϕ̃2 := P
[
H+
R[−εk,k−εk−1] =∞, H+

R[k−εk,k] <∞ | S
]
,

and note that Z0(ϕ2 − ϕ̃2) is independent of Zkψ0. Therefore

Cov(Z0ϕ2, Zkψ0) = Cov(Z0ϕ̃2, Zkψ0).

Then we decompose ψ0 as ψ0 = ψ1
0 − ψ2

0, where

ψ1
0 := PSk [H+

R[k,k+εk] =∞ | S], ψ2
0 := PSk [H+

R[k,k+εk] =∞, H+
R[k−εk,k−1] <∞ | S].

Using now that Zkψ
1
0 is independent of Z0ϕ̃2 we get

Cov(Z0ϕ2, Zkψ0) = −Cov(Z0ϕ̃2, Zkψ
2
0).

Let (S̃n)n≥0 and (Ŝn)n≥0 be two independent walks starting from the origin,
and define

τ1 := inf{n ≥ 0 : Sk−n ∈ R̃[1,∞)}, τ2 := inf{n ≥ 0 : Sk−n ∈ (Sk+R̂[1,∞))}.
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We decompose

Cov(Z0ϕ̃2, Zkψ
2
0)

= E
[
Z0ϕ̃2Zkψ

2
01{τ1 ≤ τ2}

]
+ E

[
Z0ϕ̃2Zkψ

2
01{τ1 > τ2}

]
− E[Z0ϕ̃2]E[Zkψ

2
0].

We bound the first term on the right-hand side simply by the probability
of the event {τ1 ≤ τ2 ≤ εk}, which we treat later, and for the difference
between the last two terms, we use that∣∣∣∣∣1{τ2 < τ1 ≤ εk} −

εk∑
i=0

1
{
τ2 = i, H+

R[k−εk,k−i−1] <∞
}∣∣∣∣∣ ≤ 1{τ1 ≤ τ2 ≤ εk}.

Using also that the event {τ2 = i} is independent of (Sn)n≤k−i, we deduce
that

|Cov(Z0ϕ̃2, Zkψ
2
0)|

≤ 2P[τ1 ≤ τ2 ≤ εk] +

εk∑
i=0

P[τ2 = i]
∣∣∣P [H+

R[k−εk,k−i] <∞
]
− P

[
H+
R[k−εk,k] <∞

]∣∣∣
≤ 2P[τ1 ≤ τ2 ≤ εk] +

εk∑
i=0

P[τ2 = i] · P
[
H+
R[k−i,k] <∞

]
(2.14)

≤ 2P[τ1 ≤ τ2 ≤ εk] +
C

k3/2

εk∑
i=0

iP[τ2 = i]

≤ 2P[τ1 ≤ τ2 ≤ εk] +
C

k3/2

εk∑
i=0

P[τ2 ≥ i]

(2.14)

≤ 2P[τ1 ≤ τ2 ≤ εk] +
C

k3/2

εk∑
i=0

1√
i
≤ 2P[τ1 ≤ τ2 ≤ εk] +

C
√
εk

k3/2
.

Then it amounts to bound the probability of τ1 being smaller than τ2:

P[τ1 ≤ τ2 ≤ εk] =
∑
x,y∈Z5

εk∑
i=0

P [τ1 = i, i ≤ τ2 ≤ εk, Sk = x, Sk−i = x+ y]

≤
∑
x,y∈Z5

εk∑
i=0

P
[
τ1 = i, Sk−i = x+ y, (x+ R̂∞) ∩R[k − εk, k − i] 6= ∅, Sk = x

]

≤
∑
x,y∈Z5

εk∑
i=0

P
[
R̃∞ ∩ (x+R[0, i− 1]) = ∅, Si = y, x+ y ∈ R̃∞

]
× P

[
R̂∞ ∩ (y +R[0, εk − i]) 6= ∅, Sk−i = −x− y

]
,
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using invariance by time reversal of S, and where we stress the fact that in
the first probability in the last line, R and R̃ are two independent ranges
starting from the origin. Now the last probability can be bounded using
(2.6) and Lemma 4.3, which give

P
[
R̂∞ ∩ (y +R[0, εk − i]) 6= ∅, Sk−i = −x− y

]
≤

εk−i∑
j=0

E [G(Sj + y)1{Sk−i = −x− y}]

=

εk−i∑
j=0

∑
z∈Z5

pj(z)G(z + y)pk−i−j(z + x+ y) =

k−i∑
j=k−εk

∑
z∈Z5

pj(z)G(z − x)pk−i−j(z − x− y)

.
1

(‖x+ y‖+
√
k)5

(
1

1 + ‖y‖
+

1√
k + ‖x‖

)
.

It follows that

P[τ1 ≤ τ2 ≤ εk] .
∑
x,y∈Z5

εk∑
i=0

G(x+ y)pi(y)

(‖x+ y‖+
√
k)5

(
1

1 + ‖y‖
+

1√
k + ‖x‖

)
,

and then standard computations show that

(6.1) P[τ1 ≤ τ2 ≤ εk] .
√
εk

k3/2
.

Taking all these estimates together proves that

Cov(Z0ϕ2, Zkψ0) .
√
εk

k3/2
.

We consider now the covariance between Z0ϕ0 and Zkψ2. Here a new prob-
lem arises due to the random variable Z0, which does not play the same role
as Zk, but one can use similar arguments. In particular the previous proof
gives

Cov(Z0ϕ0, Zkψ2) = −Cov((1− Z0)ϕ0, Zkψ2) +O
(√

εk

k3/2

)
.

Then we decompose as well ϕ0 = ϕ1
0 − ϕ2

0, with

ϕ1
0 := P[H+

R[k−εk,k] =∞ | S], ϕ2
0 := P[H+

R[k−εk,k] =∞, H+
R[k+1,k+εk] <∞ | S].

Using independence we get

Cov((1− Z0)ϕ1
0, Zkψ2) = E[ϕ1

0] · Cov((1− Z0), Zkψ2).
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Then we define in the same fashion as above,

τ̃0 := inf{n ≥ 1 : Sn = 0}, τ̃2 := inf{n ≥ 0 : Sn ∈ (Sk + R̂[1,∞))},

with R̂ the range of an independent walk starting from the origin. Recall
that by definition 1− Z0 = 1{τ̃0 ≤ εk}. Thus one can write

Cov((1−Z0), Zkψ2) = E[Zkψ21{τ̃2 ≤ τ̃0 ≤ εk}]+E[Zkψ21{τ̃0 < τ̃2}]−P[τ̃0 ≤ εk]E[Zkψ2].

On one hand, using (2.6), the Markov property, and (2.9),

E[Zkψ21{τ̃2 ≤ τ̃0 ≤ εk}] ≤ P[τ̃2 ≤ τ̃0 ≤ εk] ≤
∑
y∈Z5

P[τ̃2 ≤ εk, Sτ̃2 = y] ·G(y)

≤
εk∑
i=0

E [G(Si − Sk)G(Si)] ≤
εk∑
i=0

E[G(Sk−i)] · E[G(Si)] .
1

k3/2

εk∑
i=0

1

1 + i3/2
.

1

k3/2
.

On the other hand, similarly as above,

E[Zkψ21{τ̃0 < τ̃2}]− P[τ̃0 ≤ εk] · E[Zkψ2]

≤ P[τ̃2 ≤ τ̃0 ≤ εk] +

εk∑
i=1

P[τ̃0 = i]
(
P
[
(Sk + R̂[1,∞)) ∩R[i+ 1, εk] 6= ∅

]
− P[τ̃2 ≤ εk]

)
.

1

k3/2
+

εk∑
i=1

P[τ̃0 = i]P[τ̃2 ≤ i]
(2.14)

.
1

k3/2
+

1

k3/2

εk∑
i=1

iP[τ̃0 = i]

.
1

k3/2
+

1

k3/2

εk∑
i=1

P[τ̃0 ≥ i]
(2.6),(2.7)

.
1

k3/2
+

1

k3/2

εk∑
i=1

1

1 + i3/2
.

1

k3/2
.

(6.2)

In other terms, we have already shown that

|Cov((1− Z0)ϕ1
0, Zkψ2)| . 1

k3/2
.

The case when ϕ1
0 is replaced by ϕ2

0 is entirely similar. Indeed, we define

τ̃1 := inf{n ≥ 0 : Sn ∈ R̃[1,∞)},

with R̃ the range of a random walk starting from the origin, independent of
S and R̂. Then we set τ̃0,1 := max(τ̃0, τ̃1), and exactly as for (6.1) and (6.2),
one has

P[τ̃2 ≤ τ̃0,1 ≤ εk] .
√
εk

k3/2
,
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and

E
[
(1− Z0)ϕ2

0Zkψ21{τ̃0,1 < τ̃2}
]
− E[(1− Z0)ϕ2

0] · E[Zkψ2]

≤ P[τ̃2 ≤ τ̃0,1 ≤ εk] +

εk∑
i=0

P[τ̃0,1 = i] · P[τ̃2 ≤ i] .
√
εk

k3/2
.

Altogether, this gives

|Cov(Z0ϕ0, Zkψ2)| .
√
εk

k3/2
.

Case i = 3. We only need to treat the case of the covariance between Z0ϕ3

and Zkψ0, as the other one is entirely similar here. Define

ϕ̃3 := P
[
H+
R[−εk,εk]∪R[k+εk+1,∞) =∞, H+

R[k,k+εk] <∞ | S
]
.

The proof of the case i = 2, already shows that

|Cov(Z0ϕ̃3, Zkψ0)| .
√
εk

k3/2
.

Define next

h3 := ϕ3 − ϕ̃3 = P
[
H+
R[−εk,εk] =∞, H+

R[k+εk+1,∞) <∞ | S
]
.

Assume for a moment that εk ≥ k
9
20 . We will see later another argument

when this condition is not satisfied. Then define ε′k := bε10/9
k /k1/9c, and note

that one has ε′k ≤ εk. Write ψ0 = ψ′0 + h0, with

ψ′0 := P
[
H+
R[k−ε′k+1,k+ε′k−1]

=∞ | S
]
,

and

h0 := P
[
H+
R[k−ε′k+1,k+ε′k−1]

=∞, H+
R[k−εk,k−ε′k]∪R[k+ε′k,k+εk]

<∞ | S
]
.

Define also

Z ′k := 1{S` 6= Sk, for all ` = k + 1, . . . , k + ε′k − 1}.

One has

Cov(Z0h3, Zkψ0) = Cov(Z0h3, Z
′
kψ
′
0)+Cov(Z0h3, Z

′
kh0)+Cov(Z0h3, (Zk−Z ′k)ψ0).
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For the last of the three terms, one can simply notice that, using the Markov
property at the first return time to Sk (for the walk S), and then (2.6), (2.7),
and (2.14), we get

E[h3(Zk − Z ′k)] ≤ E[Zk − Z ′k]× P[R̃∞ ∩R [k,∞) 6= ∅]

.
1

(ε′k)
3/2
√
k
.

1

ε
5/3
k k1/3

.
1

k
13
12

,

using our hypothesis on εk for the last equality. As a consequence, it also
holds

|Cov(Z0h3, (Zk − Z ′k)ψ0)| . k−
13
12 .

Next we write

(6.3) Cov(Z0h3, Z
′
kh0) =

∑
x,y∈Z5

(pk−2εk(x− y)− pk(x))H1(y)H2(x),

where

H1(y) := E
[
Z ′kh01{Sk+εk − Sk−εk = y}

]
, H2(x) := E [Z0h3 | Sk+εk − Sεk = x] .

Define rk := (k/ε′k)
1/8. By using symmetry and translation invariance,∑

‖y‖≥√εkrk

H1(y) ≤ P
[
HR[−εk,−ε′k]∪R[ε′k,εk] <∞, ‖Sεk − S−εk‖ ≥

√
εkrk

]
≤ 2P

[
HR[ε′k,εk] <∞, ‖Sεk‖ ≥

√
εk
rk
2

]
+ 2P

[
HR[ε′k,εk] <∞, ‖S−εk‖ ≥

√
εk
rk
2

]
(2.14), (2.5)

≤ 2P
[
HR[ε′k,εk] <∞, ‖Sεk‖ ≥

√
εk
rk
2

]
+

C√
ε′kr

5
k

.

Considering the first probability on the right-hand side, define τ as the first
hitting time (for S), after time ε′k, of another independent walk S̃ (starting
from the origin). One has

P
[
HR[ε′k,εk] <∞, ‖Sεk‖ ≥

√
εk
rk
2

]
≤ P[‖Sτ‖ ≥

√
εk
rk
4
, τ ≤ εk] + P[‖Sεk − Sτ‖ ≥

√
εk
rk
4
, τ ≤ εk].

Using then the Markov property at time τ , we deduce with (2.14) and (2.5),

P[‖Sεk − Sτ‖ ≥
√
εk
rk
4
, τ ≤ εk] .

1√
ε′kr

5
k

.
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Likewise, using the Markov property at the first time when the walk exit
the ball of radius

√
εkrk/4, and applying then (2.5) and (2.13), we get as

well

P[‖Sτ‖ ≥
√
εk
rk
4
, τ ≤ εk] .

1
√
εkr

6
k

.

Furthermore, for any y, one has

∑
x∈Z5

pk−2εk(x− y)H2(x)
(2.3),(2.13)

.
∑
x∈Z5

1

(1 + ‖x+ y‖)(‖x‖+
√
k)5
.

1√
k
,

with an implicit constant, which is uniform in y (and the same holds with

pk(x) instead of pk−2εk(x− y)). Similarly, define r′k := (k/ε′k)
1
10 . One has for

any y, with ‖y‖ ≤ √εkrk,

∑
‖x‖≥

√
kr′k

pk−2εk(x− y)H2(x)
(2.5),(2.13)

.
1√

k(r′k)
6
.

Therefore coming back to (6.3), and using that by (2.13),
∑

yH1(y) .

1/
√
ε′k, we get

Cov(Z0h3, Z
′
kh0)

=
∑

‖x‖≤
√
kr′k

∑
‖y‖≤√εkrk

(pk−2εk(x− y)− pk(x))H1(y)H2(x) +O

(
1√

kε′k(r
′
k)

6
+

1√
kε′kr

5
k

)

=
∑

‖x‖≤
√
kr′k

∑
‖y‖≤√εkrk

(pk−2εk(x− y)− pk(x))H1(y)H2(x) +O

(
(ε′k)

1
10

k
11
10

)
.

Now we use the fact H1(y) = H1(−y). Thus the last sum is equal to half of
the following:∑
‖x‖≤

√
kr′k

∑
‖y‖≤√εkrk

(pk−2εk(x− y) + pk−2εk(x+ y)− 2pk(x))H1(y)H2(x)

Theorem 2.1,(2.13)

≤
∑

‖x‖≤
√
kr′k

∑
‖y‖≤√εkrk

(pk−2εk
(x− y) + pk−2εk

(x+ y)− 2pk(x))H1(y)H2(x)

+O

(
(r′k)

4

k3/2
√
ε′k

)
,
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(with an additional factor 2 in front in case of a bipartite walk). Note that the
error term above isO(k−11/10), by definition of r′k. Moreover, straightforward
computations show that for any x and y as in the sum above,

|pk−2εk
(x− y) + pk−2εk

(x+ y)− 2pk(x)| .
(
‖y‖2 + εk

k

)
pk(cx).

In addition one has (with the notation as above for τ),∑
y∈Z5

‖y‖2H1(y) ≤ 2E
[
‖Sεk − S−εk‖

21{τ ≤ εk}
]

≤ 4E[‖Sεk‖
2]P[τ ≤ εk] + 4E

[
‖Sεk‖

21{τ ≤ εk}
]

(2.5),(2.14)

.
εk√
ε′k

+ E
[
‖Sτ‖21{τ ≤ εk}

]
+ E

[
‖Sεk − Sτ‖

21{τ ≤ εk}
]

(2.5),(2.14)

.
εk√
ε′k

+
∑
r≥√εk

rP [‖Sτ‖ ≥ r, τ ≤ εk]
(2.5),(2.13)

.
εk√
ε′k
,

using also the Markov property in the last two inequalities (at time τ for
the first one, and at the exit time of the ball of radius r for the second one).
Altogether, this gives

|Cov(Z0h3, Z
′
kh0)| . εk

k3/2
√
ε′k

+
(ε′k)

1
10

k
11
10

.
(εk)

1
9

k
10
9

.

In other words, for any sequence (εk)k≥1, such that εk ≥ k9/20, one has

Cov(Z0h3, Zkψ0) = Cov(Z0h3, Z
′
kψ
′
0) +O

(
(εk)

1
9

k
10
9

+
1

k
13
12

)
.

One can then iterate the argument with the sequence (ε′k) in place of (εk),
and (after at most a logarithmic number of steps), we are left to consider a
sequence (εk), satisfying εk ≤ k9/20. In this case, we use similar arguments
as above. Define H̃1(y) as H1(y), but with Zkψ0 instead of Z ′kh0 in the

expectation, and choose rk :=
√
k/εk, and r′k = k

1
10 . Then we obtain exactly
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as above,

Cov(Z0h3, Zkψ0)

=
∑

‖x‖≤
√
kr′k

∑
‖y‖≤

√
k

(pk−2εk(x− y)− pk(x))H̃1(y)H2(x) +O

(
1

r5
k

√
k

+
1

(r′k)
6
√
k

)

=
∑

‖x‖≤
√
kr′k

∑
‖y‖≤

√
k

(pk−2εk
(x− y)− pk(x))H̃1(y)H2(x) +O

(
1

k
11
10

)

.
εk
k3/2

+
1

k
11
10

.
1

k
21
20

,

which concludes the proof of the proposition.

7. Intersection of two random walks and proof of Theorem C.
In this section we prove a general result, which will be needed for proving
Proposition 3.7, and which also gives Theorem C as a corollary. First we
introduce some general condition for a function F : Zd → R, namely:

(7.1)
there exists a constant CF > 0, such that

|F (y)− F (x)| ≤ CF ‖y−x‖1+‖y‖ · |F (x)|, for all x, y ∈ Zd.

Note that any function satisfying (7.1) is automatically bounded. Observe
also that this condition is satisfied by functions which are equivalent to
c/J (x)α, for some constants α ∈ [0, 1], and c > 0. On the other hand, it is
not satisfied by functions which are o(1/‖x‖), as ‖x‖ → ∞. However, this
is fine, since the only two cases that will be of interest for us here are when
either F is constant, or when F (x) is of order 1/‖x‖. Now for a general
function F : Zd → R, we define for r > 0,

F (r) := sup
r≤‖x‖≤r+1

|F (x)|.

Then, set

IF (r) :=
log(2 + r)

rd−2

∫ r

0
s · F (s) ds+

∫ ∞
r

F (s) log(2 + s)

sd−3
ds,

and, with χd(r) := 1 + (log(2 + r))1{d=5},

JF (r) :=
χd(r)

rd−2

∫ r

0
F (s) ds+

∫ ∞
r

F (s)χd(s)

sd−2
ds.
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Theorem 7.1. Let (Sn)n≥0 and (S̃n)n≥0 be two independent random
walks on Zd, d ≥ 5, starting respectively from the origin and some x ∈ Zd.
Let ` ∈ N ∪ {∞}, and define

τ := inf{n ≥ 0 : S̃n ∈ R[0, `]}.

There exists ν ∈ (0, 1), such that for any F : Zd → R, satisfying (7.1),

E0,x

[
F (S̃τ )1{τ <∞}

]
=
γd
κ
· E

[∑̀
i=0

G(Si − x)F (Si)

]
(7.2)

+O
(

IF (‖x‖)
(` ∧ ‖x‖)ν

+ (` ∧ ‖x‖)νJF (‖x‖)
)
,

where γd is as in (1.2), and κ is some positive constant given by

κ := E

[(∑
n∈Z

G(Sn)
)
· P
[
H+
R∞

= +∞ | R∞
]
· 1{Sn 6= 0, ∀n ≥ 1}

]
,

with (Sn)n∈Z a two-sided walk starting from the origin and R∞ := {Sn}n∈Z.

Remark 7.2. Note that when F (x) ∼ c/J (x)α, for some constants α ∈
[0, 1] and c > 0, then IF (r) and JF (r) are respectively of order 1/rd−4+α,
and 1/rd−3+α (up to logarithmic factors), while one could show that

E

[∑̀
i=0

G(Si − x)F (Si)

]
∼ c′

J (x)d−4+α
, as ‖x‖ → ∞ and `/‖x‖2 →∞,

for some other constant c′ > 0 (see below for a proof at least when ` = ∞
and α = 0). Therefore in these cases Theorem 7.1 provides a true equivalent
for the term on the left-hand side of (7.2).

Remark 7.3. This theorem strengthens Theorem C in two aspects: on
one hand it allows to consider functionals of the position of one of the two
walks at its hitting time of the other path, and on the other hand it also
allows to consider only a finite time horizon for one of the two walks (not
mentioning the fact that it gives additionally some bound on the error term).
Both these aspects will be needed later (the first one in the proof of Lemma
8.2, and the second one in the proofs of Lemmas 8.3 and 8.4).

Given this result one obtains Theorem C as a corollary. To see this, we
first recall an asymptotic result on the Green’s function: in any dimension
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d ≥ 5, under our hypotheses on µ, there exists a constant cd > 0, such that
as ‖x‖ → ∞,

(7.3) G(x) =
cd

J (x)d−2
+O(‖x‖1−d).

This result is proved in [U98] under only the hypothesis that X1 has a finite
(d − 1)-th moment (we refer also to Theorem 4.3.5 in [LL10], for a proof
under the stronger hypothesis that X1 has a finite (d+ 1)-th moment). One
also needs the following elementary fact:

Lemma 7.4. There exists a positive constant c, such that as ‖x‖ → ∞,∑
y∈Zd\{0,x}

1

J (y)d−2 · J (y − x)d−2
=

c

J (x)d−4
+O

(
1

‖x‖d−3

)
.

Proof. The proof follows by first an approximation by an integral, and
then a change of variables. More precisely, letting u := x/J (x), one has∑
y∈Zd\{0,x}

1

J (y)d−2J (y − x)d−2
=

∫
Rd

1

J (y)d−2J (y − x)d−2
dy +O(‖x‖3−d)

=
1

J (x)d−4

∫
R5

1

J (y)d−2J (y − u)d−2
dy +O(‖x‖3−d),

and it suffices to observe that by rotational invariance, the last integral is
independent of x.

Proof of Theorem C. The result follows from Theorem 7.1, by taking
F ≡ 1 and ` =∞, and then by using (7.3) together with Lemma 7.4.

It amounts now to prove Theorem 7.1. For this, we need some technical
estimates that we gather in Lemma 7.5 below. Since we believe this is not
the most interesting part, we defer its proof to the end of this section.

Lemma 7.5. Assume that F satisfies (7.1). Then

1. There exists a constant C > 0, such that for any x ∈ Zd,
(7.4)
∞∑
i=0

E

 ∞∑
j=0

G(Sj − Si)
‖Sj − Si‖
1 + ‖Sj‖

 · |F (Si)|G(Si − x)

 ≤ CJF (‖x‖).
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2. There exists C > 0, such that for any R > 0, and any x ∈ Zd,
(7.5)
∞∑
i=0

E

 ∑
|j−i|≥R

G(Sj − Si)

 |F (Si)|G(Si − x)

 ≤ C

R
d−4

2

· IF (‖x‖),

(7.6)
∞∑
i=0

E

 ∑
|j−i|≥R

G(Sj − Si)|F (Sj)|

G(Si − x)

 ≤ C

R
d−4

2

· IF (‖x‖).

One also need some standard results from (discrete) potential theory. If
Λ is a nonempty finite subset of Zd, containing the origin, we define

rad(Λ) := 1 + sup
x∈Λ
‖x‖,

and also consider for x ∈ Λ,

eΛ(x) := Px[H+
Λ =∞], and eΛ(x) :=

eΛ(x)

Cap(Λ)
.

The measure eΛ is sometimes called the harmonic measure of Λ from infinity,
due to the next result.

Lemma 7.6. There exists a constant C > 0, such that for any finite
subset Λ ⊆ Zd containing the origin, and any y ∈ Zd, with ‖y‖ > 2rad(Λ),

Py[HΛ <∞] ≤ C · Cap(Λ)

1 + ‖y‖d−2
.(7.7)

Furthermore, for any x ∈ Λ, and any y ∈ Zd,∣∣∣Py[SHΛ
= x | HΛ <∞]− eΛ(x)

∣∣∣ ≤ C · rad(Λ)

1 + ‖y‖
.(7.8)

This lemma is proved in [LL10] for finite range random walks. The proof
extends to our setting, but some little care is needed, so we shall give some
details at the end of this section. Assuming this, one can now give the proof
of our main result.

Proof of Theorem 7.1. The proof consists in computing the quantity

(7.9) A := E0,x

∑̀
i=0

∞∑
j=0

1{Si = S̃j}F (Si)

 ,
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in two different ways3. On one hand, by integrating with respect to the law
of S̃ first, we obtain

(7.10) A = E

[∑̀
i=0

G(Si − x)F (Si)

]
.

On the other hand, the double sum in (7.9) is nonzero only when τ is finite.
Therefore, using also the Markov property at time τ , we get

A = E0,x

∑̀
i=0

∞∑
j=0

1{Si = S̃j}F (Si)

1{τ <∞}


=
∑̀
i=0

E0,x

∑̀
j=0

G(Sj − Si)F (Sj)

Z`i · 1{τ <∞, S̃τ = Si}

 ,
where we recall that Z`i = 1{Sj 6= Si, ∀j = i + 1, . . . , `}. The computation
of this last expression is divided in a few steps.

Step 1. Set

B :=
∑̀
i=0

E0,x

∑̀
j=0

G(Sj − Si)

F (Si)Z
`
i · 1{τ <∞, S̃τ = Si}

 ,
and note that,

|A−B|
(7.1)

≤ CF
∑̀
i=0

E0,x

∑̀
j=0

G(Sj − Si)
‖Sj − Si‖
(1 + ‖Sj‖)

 |F (Si)|1{Si ∈ R̃∞}


(2.6)

≤ CF
∑̀
i=0

E

∑̀
j=0

G(Sj − Si)
‖Sj − Si‖
(1 + ‖Sj‖)

 |F (Si)|G(Si − x)

 (7.4)
= O (JF (‖x‖)) .

Step 2. Consider now some positive integer R, and define

DR :=
∑̀
i=0

E0,x

[
Gi,R,`F (Si)Z

`
i · 1{τ <∞, S̃τ = Si}

]
,

3This idea goes back to the seminal paper of Erdós and Taylor [ET60], even though
it was not used properly there and was corrected only a few years later by Lawler, see
[Law91].
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with Gi,R,` :=
∑(i+R)∧`

j=(i−R)∨0G(Sj − Si). One has

|B−DR|
(2.6)

≤
∑̀
i=0

E

 ∑
|j−i|>R

G(Sj − Si)

 |F (Si)|G(Si − x)

 (7.5)

.
IF (‖x‖)
R
d−4

2

.

Step 3. Let R be an integer larger than 2, and such that ` ∧ ‖x‖2 ≥ R6.
Let M := b`/R5c − 1, and define for 0 ≤ m ≤M ,

Im := {mR5+R3, . . . , (m+1)R5−R3}, and Jm := {mR5, . . . , (m+1)R5−1}.

Define further

ER :=
M∑
m=0

∑
i∈Im

E0,x

[
Gi,RF (Si)Z

`
i · 1{τ <∞, S̃τ = Si}

]
,

with Gi,R :=
∑i+R

j=i−RG(Sj − Si). One has, bounding Gi,R by (2R+ 1)G(0),

|DR − ER| ≤ (2R+ 1)G(0)

×


M∑
m=0

∑
i∈Jm\Im

E [|F (Si)|G(Si − x)] +
∑̀

i=(M+1)R5

E [|F (Si)|G(Si − x)]

 ,

with the convention that the last sum is zero when ` is infinite. Using ` ≥ R6,
we get

∑̀
i=(M+1)R5

E [|F (Si)|G(Si − x)] ≤
∑
z∈Zd
|F (z)|G(z − x)

(M+2)R5∑
i=(M+1)R5

pi(z)

(2.3), (2.7)

.
R5

`

∑
z∈Zd

|F (z)|
(1 + ‖z − x‖d−2)(1 + ‖z‖d−2)

.
R5

`
· IF (‖x‖).
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Likewise, since ‖x‖2 ≥ R6,

M∑
m=0

∑
i∈Jm\Im

E [|F (Si)|G(Si − x)] ≤
∑
z∈Zd

|F (z)|
1 + ‖z − x‖d−2

M∑
m=0

∑
i∈Jm\Im

pi(z)

(2.7)

.
1

1 + ‖x‖d−2

∑
‖z‖2≤R5

1

1 + ‖z‖d−2

+
∑

‖z‖2≥R5

|F (z)|
1 + ‖z − x‖d−2

M∑
m=0

∑
i∈Jm\Im

(
1{i ≤ ‖z‖2}

1 + ‖z‖d
+
1{i ≥ ‖z‖2}

id/2

)

.
R5

1 + ‖x‖d−2
+

1

R2
· IF (‖x‖),

(7.11)

using for the last inequality that the proportion of indices i which are not
in one of the Im’s, is of order 1/R2.

Step 4. For 0 ≤ m ≤M + 1, set

R(m) := R[mR5, (m+ 1)R5 − 1], and τm := inf{n ≥ 0 : S̃n ∈ R(m)}.

Then let

FR :=

M∑
m=0

∑
i∈Im

E0,x

[
Gi,RF (Si)Z

`
i · 1{τm <∞, S̃τm = Si}

]
.

Since by definition τ ≤ τm, for any m, one has for any i ∈ Im,

|P0,x[τ <∞, S̃τ = Si | S]− P0,x[τm <∞, S̃τm = Si | S]|

≤ P0,x[τ < τm <∞, S̃τm = Si | S] ≤
∑
j /∈Jm

P0,x[τ < τm <∞, S̃τ = Sj , S̃τm = Si | S]

(2.6)

≤
∑
j /∈Jm

G(Sj − x)G(Si − Sj).
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Therefore, bounding again Gi,R by (2R+ 1)G(0), we get

|ER − FR| . R
M∑
m=0

∑
i∈Im

E

∑
j /∈Jm

G(Si − Sj)G(Sj − x)

 · |F (Si)|


. R

∞∑
i=0

E

 ∑
j : |j−i|≥R3

G(Si − Sj)G(Sj − x)

 · |F (Si)|


(7.6)

.
1

R3 d−4
2
−1
· IF (‖x‖) . 1√

R
· IF (‖x‖).

Step 5. For m ≥ 0 and i ∈ Im, define

emi := PSi
[
H+
R(m) =∞ | S

]
, and emi :=

emi
Cap(R(m))

.

Then let

HR :=
M∑
m=0

∑
i∈Im

E0,x

[
Gi,RF (Si)Z

`
i e
m
i · 1{τm <∞}

]
.

Applying (7.8) to the sets Λm := R(m) − Sim , we get for any m ≥ 0, and
any i ∈ Im,∣∣∣P0,x[S̃τm = Si | τm <∞, S]− emi

∣∣∣ ≤ C rad(Λm)

1 + ‖x− Sim‖
.(7.12)

By (7.7), it also holds

P0,x[τm <∞ | S] ≤ CR5

1 + ‖x− Sim‖d−2
+ 1{‖x− Sim‖ ≤ 2rad(Λm)}

.
R5 + rad(Λm)d−2

1 + ‖x− Sim‖d−2
,(7.13)

using that Cap(Λm) ≤ |Λm| ≤ R5. Note also that by (2.4) and Doob’s
Lp-inequality (see Theorem 4.3.3 in [Dur10]), one has for any 1 < p ≤ d,

(7.14) E[rad(Λm)p] = O(R
5p
2 ).
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Therefore,

|FR −HR|
(7.12)

. R
M∑
m=0

∑
i∈Im

E0,x

[
|F (Si)| · rad(Λm)

1 + ‖x− Sim‖
1{τm <∞}

]
(7.1)

. R6
M∑
m=0

E0,x

[
|F (Sim)| · rad(Λm)2

1 + ‖x− Sim‖
1{τm <∞}

]
(7.13),(7.14)

. R6+ 5d
2

M∑
m=0

E
[

|F (Sim)|
1 + ‖x− Sim‖d−1

]
. R6+ 5d

2

∑
z∈Zd

|F (z)|G(z)

1 + ‖x− z‖d−1

(2.7)

.
R6+ 5d

2

1 + ‖x‖
· IF (‖x‖).

Step 6. Let

KR :=
M∑
m=0

∑
i∈Im

E
[
Gi,RZ`i emi

]
· E [F (Sim)1{τm <∞}] .

One has, using the Markov property and a similar argument as in the pre-
vious step,

|KR −HR|
(7.1)

. R

M∑
m=0

∑
i∈Im

E0,x

[
|F (Sim)| · (1 + ‖Si − Sim‖2)

1 + ‖Sim‖
· 1{τm <∞}

]
(7.13),(2.5)

. R6+ 5d
2

M∑
m=0

E
[

|F (Sim)|
(1 + ‖Sim‖)(1 + ‖x− Sim‖d−2)

]
. R6+ 5d

2 · JF (‖x‖).

Step 7. Finally we define

Ã :=
κ

γd
· E0,x

[
F (S̃τ )1{τ <∞}

]
.

We recall that one has (see Lemmas 2.1 and 2.2 in [AS19]),

E
[
(Cap(Rn)− γdn)2

]
= O(n(log n)2).(7.15)

It also holds for any nonempty subset Λ ⊆ Zd,

Cap(Λ) ≥ c|Λ|1−
2
d ≥ c|Λ|3,(7.16)
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using d ≥ 5 for the second inequality (while the first inequality follows from
[LL10, Proposition 6.5.5] applied to the constant function equal to c/|Λ|2/d,
with c > 0 small enough). As a consequence, for any m ≥ 0 and any i ∈ Im,∣∣∣∣∣E [Gi,RZ`i emi ]− E

[
Gi,RZ`i emi

]
γdR5

∣∣∣∣∣ . 1

R4
E

[
|Cap(R(m))− γdR5|

Cap(R(m))

]
(7.15)

.
logR

R3/2
E
[

1

Cap(R(m))2

]1/2 (7.16)

.
logR

R3/2

(
P[Cap(R(m)) ≤ γdR5/2]

R6
+

1

R10

)1/2

(7.15)

.
logR

R3/2

(
(logR)2

R11
+

1

R10

)1/2

.
1

R6
.

Next, recall that Z(i) = 1{Sj 6= Si, ∀j > i}, and note that

|E
[
Gi,RZ`i emi

]
− E [Gi,RZ(i)emi ] |

(2.6), (2.7)

.
1

R7/2
.

Moreover, letting ei := PSi [H
+
R∞

= ∞ | R∞] (where we recall R∞ is the

range of a two-sided random walk), one has

|E [Gi,RZiemi ]− E [Gi,RZiei] |
(2.14)

.
1√
R
,

|E [Gi,RZiei]− κ| ≤ 2E

∑
j>R

G(Sj)

 (2.9)

.
1√
R
.

Altogether this gives for any m ≥ 0 and any i ∈ Im,∣∣∣∣E [Gi,RZ`i emi ]− κ

γdR5

∣∣∣∣ . 1

R5+ 1
2

,

and thus for any m ≥ 0,∣∣∣∣∣
(∑
i∈Im

E
[
Gi,RZ`i emi

])
− κ

γd

∣∣∣∣∣ . 1√
R
.

Now, a similar argument as in Step 6 shows that

M∑
m=0

∣∣∣E0,x [F (Sim)1{τm <∞}]− E0,x

[
F (S̃τm)1{τm <∞}

]∣∣∣ . R 5d
2 JF (‖x‖).
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Furthermore, using that

F (S̃τ )1{τ <∞} =
M+1∑
m=0

F (S̃τm)1{τ = τm <∞}

=
M+1∑
m=0

F (S̃τm)(1{τm <∞}− 1{τ < τm <∞}),

(with the convention that the term corresponding to index M + 1 is zero
when ` =∞) we get,∣∣∣∣∣

M∑
m=0

E0,x

[
F (S̃τm)1{τm <∞}

]
− E0,x

[
F (S̃τ )1{τ <∞}

]∣∣∣∣∣
. P0,x[τM+1 <∞] +

M∑
m=0

E0,x

[
|F (S̃τm)|1{τ < τm <∞}

]
.

Using (7.13), (7.14) and (2.10), we get

P0,x[τM+1 <∞] .
R

5(d−2)
2

1 + ‖x‖d−2
.

On the other hand, for any m ≥ 0,

E
[
|F (S̃τm)|1{τ < τm <∞}

]
≤
∑
j∈Jm

∑
i/∈Jm

E [|F (Sj)|G(Si − Sj)G(Si − x)]

≤
∑
j∈Im

∑
|j−i|>R3

E [|F (Sj)|G(Si − Sj)G(Si − x)]

+
∑

j∈Jm\Im

∑
i/∈Jm

E [|F (Sj)|G(Si − Sj)G(Si − x)] .

The first sum is handled as in Step 4. Namely,

M∑
m=0

∑
j∈Im

∑
|j−i|>R3

E [|F (Sj)|G(Si − Sj)G(Si − x)]

≤
∑
j≥0

∑
|j−i|>R3

E [|F (Sj)|G(Si − Sj)G(Si − x)]
(7.6)

.
IF (‖x‖)
R3/2

.



CAPACITY OF THE RANGE IN DIMENSION 5 55

Similarly, defining J̃m := {mR5, . . . ,mR5 +R} ∪ {(m+ 1)R5 −R, . . . , (m+
1)R5 − 1}, one has,

M∑
m=0

∑
j∈Jm\Im

∑
i/∈Jm

E [|F (Sj)|G(Si − Sj)G(Si − x)]

≤
M∑
m=0

∑
j∈Jm\Im

∑
|i−j|>R

E [|F (Sj)|G(Si − Sj)G(Si − x)]

+

M∑
m=0

∑
j∈Jm\Im

∑
i/∈Jm, |i−j|≤R

E [|F (Sj)|G(Si − Sj)G(Si − x)]

(7.6),(7.1)

.
IF (‖x‖)√

R
+

M∑
m=0

∑
j∈Jm\Im

∑
i/∈Jm, |i−j|≤R

E [|F (Si)|G(Si − x)]

.
IF (‖x‖)√

R
+R

M∑
m=0

∑
i∈J̃m

E [|F (Si)|G(Si − x)] .
IF (‖x‖)√

R
+

R5

1 + ‖x‖d−2
,

using for the last inequality the same argument as in (7.11). Note also that

E[|F (S̃τ )|1{τ <∞}]
(2.12)

≤
∑
i≥0

E[|F (Si)|G(Si − x)] . IF (‖x‖).

Therefore, putting all pieces together yields

|KR − Ã| .
IF (‖x‖)√

R
+R

5d
2 · JF (‖x‖) +

R
5(d−2)

2

1 + ‖x‖d−2
.

Step 8. Altogether the previous steps show that for any R large enough,

any ` ≥ 1, and any x ∈ Zd, satisfying ` ∧ ‖x‖2 ≥ R6,

|A− Ã| .

(
1√
R

+
R6+ 5d

2

1 + ‖x‖

)
· IF (‖x‖) +

R
5(d−2)

2

1 + ‖x‖d−2
+R6+ 5d

2 · JF (‖x‖).

The proof of the theorem follows by taking for R a sufficiently small power
of ‖x‖ ∧ `, and observing that for any function F satisfying (7.1), one has
lim inf‖z‖→∞ |F (z)|/‖z‖ > 0, and thus also IF (‖x‖) ≥ c

1+‖x‖d−3 .

It amounts now to give the proofs of Lemmas 7.5 and 7.6.
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Proof of Lemma 7.5. We start with the proof of (7.4). Recall the def-
inition of χd given just above Theorem 7.1. One has for any i ≥ 0,

E

 ∞∑
j=i+1

G(Sj − Si)
‖Sj − Si‖
1 + ‖Sj‖

| Si

 (2.7)

. E

 ∞∑
j=i+1

1

(1 + ‖Sj − Si‖d−3)(1 + ‖Sj‖)
| Si


.
∑
z∈Zd

G(z)
1

(1 + ‖z‖d−3)(1 + ‖Si + z‖)

(2.7)

.
χd(‖Si‖)
1 + ‖Si‖

,

and moreover,

∞∑
i=0

E
[
|F (Si)|χd(‖Si‖)

1 + ‖Si‖
G(Si − x)

]
=
∑
z∈Zd

G(z)
|F (z)|χd(‖z‖)

1 + ‖z‖
G(z − x)

(2.7)

.
χd(‖x‖)

1 + ‖x‖d−2

∑
‖z‖≤ ‖x‖

2

|F (z)|
1 + ‖z‖d−1

+
∑

‖z‖≥ ‖x‖
2

|F (z)|χd(‖z‖)
1 + ‖z‖2d−3

+
χd(‖x‖)

1 + ‖x‖d−1

∑
‖z−x‖≤ ‖x‖

2

|F (z)|
1 + ‖z − x‖d−2

(7.1)

. JF (‖x‖/2) +
|F (x)|χd(‖x‖)

1 + ‖x‖d−3
. JF (‖x‖),

(7.17)

where the last inequality follows from the fact that by (7.1),∫ ‖x‖
‖x‖/2

F (s)χd(s)

sd−2
ds � |F (x)|χd(‖x‖)

1 + ‖x‖d−3
� χd(‖x‖)

1 + ‖x‖d−2

∫ ‖x‖
‖x‖/2

F (s) ds.

Thus

∞∑
i=0

∞∑
j=i+1

E
[
G(Sj − Si)

‖Sj − Si‖
1 + ‖Sj‖

|F (Si)|G(Si − x)

]
= O(JF (‖x‖)).
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On the other hand, for any j ≥ 0,

E

 ∞∑
i=j+1

G(Sj − Si)‖Sj − Si‖ · |F (Si)|G(Si − x) | Sj


(2.7)

.
∞∑

i=j+1

E
[
|F (Si)|G(Si − x)

1 + ‖Sj − Si‖d−3
| Sj
]

(2.7)

.
∑
z∈Zd

|F (Sj + z)|G(Sj + z − x)

1 + ‖z‖2d−5

(7.1),(2.7)

.
∑
z∈Zd

|F (Sj)|
(1 + ‖z‖2d−5)(1 + ‖Sj + z − x‖d−2)

+
1

1 + ‖Sj‖2d−5

∑
‖u‖≤‖Sj‖

|F (u)|
1 + ‖u− x‖d−2

(7.1)

.
|F (Sj)|χd(‖Sj − x‖)

1 + ‖Sj − x‖d−2
+
1{‖Sj‖ ≤ ‖x‖/2} · |F (Sj)|
(1 + ‖x‖d−2)(1 + ‖Sj‖d−5)

+
1{‖Sj‖ ≥ ‖x‖/2}

1 + ‖Sj‖2d−5

(
|F (x)|(1 + ‖x‖2) + |F (Sj)|(1 + ‖Sj‖2)

)

.
|F (Sj)|χd(‖Sj − x‖)

1 + ‖Sj − x‖d−2
+
1{‖Sj‖ ≤ ‖x‖}|F (Sj)|

1 + ‖x‖d−2
+
1{‖Sj‖ ≥ ‖x‖}|F (Sj)|

1 + ‖Sj‖d−2
,

(7.18)

where for the last two inequalities we used that by (7.1), if ‖u‖ ≤ ‖v‖, then
|F (u)| . |F (v)|(1 + ‖v‖)/(1 + ‖u‖), and also that d ≥ 5 for the last one.
Moreover, for any r ≥ 0

∞∑
j=0

E
[
1{‖Sj‖ ≤ r} · |F (Sj)|

1 + ‖Sj‖

]
=
∑
‖z‖≤r

G(z)|F (z)|
1 + ‖z‖

(2.7)
= O

(∫ r

0
F (s) ds

)
,

∞∑
j=0

E
[
1{‖Sj‖ ≥ r} · |F (Sj)|

1 + ‖Sj‖d−1

]
=
∑
‖z‖≥r

G(z)|F (z)|
1 + ‖z‖d−1

(2.7)
= O

(∫ ∞
r

F (s)

sd−2
ds

)
.

Using also similar computations as in (7.17) to handle the first term in
(7.18), we conclude that

∞∑
j=0

∞∑
i=j+1

E
[
G(Sj − Si)

‖Sj − Si‖
1 + ‖Sj‖

|F (Si)|G(Si − x)

]
= O(JF (‖x‖)),

which finishes the proof of (7.4).
We then move to the proof of (7.5). First note that for any i ≥ 0,

E

 ∑
j≥i+R

G(Sj − Si) | Si

 = E

∑
j≥R

G(Sj)

 (2.9)
= O

(
R

4−d
2

)
,
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and furthermore,
(7.19)
∞∑
i=0

E[|F (Si)|G(Si − x)] =
∑
z∈Zd
|F (z)|G(z − x)G(z)

(7.1), (2.7)
= O(IF (‖x‖)),

which together give the desired upper bound for the sum on the set {0 ≤
i ≤ j −R}. On the other hand, for any j ≥ 0, we get as for (7.18),

E

 ∑
i≥j+R

G(Sj − Si)|F (Si)|G(Si − x) | Sj

 =
∑
z∈Zd

G(z)|F (Sj + z)|G(Sj + z − x)GR(z)

(2.7)

.
1

R
d−4

2

·
∑
z∈Zd

|F (Sj + z)|
(1 + ‖z‖d)(1 + ‖Sj + z − x‖d−2)

(7.1)

.
1

R
d−4

2

∑
z∈Zd

|F (Sj)|
(1 + ‖z‖d)(1 + ‖Sj + z − x‖d−2)

+
1

1 + ‖Sj‖d
∑

‖u‖≤‖Sj‖

|F (u)|
1 + ‖u− x‖d−2


.

1

R
d−4

2

{
|F (Sj)| log(2 + ‖Sj − x‖)

1 + ‖Sj − x‖d−2
+

|F (Sj)|
1 + ‖x‖d−2 + ‖Sj‖d−2

}
.

Then similar computation as above, see e.g. (7.19), give

(7.20)
∑
j≥0

E
[
|F (Sj)| log(2 + ‖Sj − x‖)

1 + ‖Sj − x‖d−2

]
= O(IF (‖x‖)),

∑
j≥0

E
[

|F (Sj)|
1 + ‖x‖d−2 + ‖Sj‖d−2

]
= O(IF (‖x‖)),

which altogether proves (7.5).
The proof of (7.6) is entirely similar: on one hand, for any i ≥ 0,

E

 ∞∑
j=i+R

G(Sj − Si)|F (Sj)| | Si

 (7.1)

. E

 ∞∑
j=i+R

G(Sj − Si)
‖Sj − Si‖
1 + ‖Sj‖

| Si

 |F (Si)|

.
∑
z∈Zd

GR(z)
|F (Si)|

(1 + ‖z‖d−3)(1 + ‖Si + z‖)

.
∑
z∈Zd

|F (Si)|
(R

d−2
2 + ‖z‖d−2)(1 + ‖z‖d−3)(1 + ‖Si + z‖)

.
|F (Si)|
R
d−4

2

,

and together with (7.20), this yields

∞∑
i=0

∞∑
j=i+R

E [G(Sj − Si)|F (Sj)|G(Si − x)] .
IF (‖x‖)
R
d−4

2

.
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On the other hand, for any j ≥ 0, using (2.7),

E

 ∑
i≥j+R

G(Sj − Si)G(Si − x) | Sj

 . ∑
z∈Zd

G(Sj + z − x)

R
d−4

2 (1 + ‖z‖d)
.

log(2 + ‖Sj − x‖)
R
d−4

2 (1 + ‖Sj − x‖d−2)
,

and we conclude the proof of (7.6) using (7.20) again.

Proof of Lemma 7.6. The first statement follows directly from (7.3)
and the last-exit decomposition (see Proposition 4.6.4 (c) in [LL10]):

Py[HΛ <∞] =
∑
x∈Λ

G(y − x)eΛ(x).

Indeed if ‖y‖ > 2rad(Λ), using (2.7) we get G(y − x) ≤ C‖y‖2−d, for some
constant C > 0 independent of x ∈ Λ, which gives well (7.7), since by
definition

∑
x∈Λ eΛ(x) = Cap(Λ).

The second statement is more involved. Note that one can always assume
J (y) > Crad(Λ), for some constant C > 0, for otherwise the result is
trivial. We use similar notation as in [LL10]. In particular GA(x, y) denotes
the Green’s function restricted to a subset A ⊆ Zd, that is the expected
number of visits to y before exiting A for a random walk starting from x,
and HA(x, y) = Px[HAc = y]. We also let Cn denote the (discrete) ball of
radius n for the norm J (·). Then exactly as in [LL10] (see Lemma 6.3.3 and
Proposition 6.3.5 thereof), one can see using (7.3) that for all n ≥ 1,

(7.21) |GCn(x,w)−GCn(0, w)| ≤ C ‖x‖
1 + ‖w‖

GCn(0, w),

for all x ∈ Cn/4, and all w satisfying 2J (x) ≤ J (w) ≤ n/2. One can then
derive an analogous estimate for the (discrete) derivative of HCn . Define
An = Cn \ Cn/2, and ρ = H+

Acn
. By the last-exit decomposition (see [LL10,

Lemma 6.3.6]), one has for x ∈ Cn/8 and z /∈ Cn,

|HCn(x, z)−HCn(0, z)| ≤
∑

w∈Cn/2

|GCn(x,w)−GCn(0, w)| · Pw[Sρ = z]

(7.21),(2.7)

.
‖x‖
n
·HCn(0, z) +

∑
2J (x)≤J (w)≤n

4

‖x‖
‖w‖d−1

Pw[Sρ = z]

+
∑

J (w)≤2J (x)

(
1

1 + ‖w − x‖d−2
+

1

1 + ‖w‖d−2

)
Pw[Sρ = z].
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Now, observe that for any y /∈ Cn, any w ∈ Cn/4, and any A ⊆ Zd,∑
z /∈Cn

GA(y, z)Pw[Sρ = z] .
∑
z /∈Cn

Pw[Sρ = z] . Pw[J (S1) >
n

2
] . P[J (X1) >

n

4
] . n−d,

using that by hypothesis J (X1) has a finite d-th moment. It follows from
the last two displays that

∑
z /∈Cn

GA(y, z)HCn(x, z) =

∑
z /∈Cn

GA(y, z)HCn(0, z)

(1 +O
(‖x‖
n

))
+O

(
‖x‖
nd−1

)
.

(7.22)

Now let Λ be some finite subset of Zd containing the origin, and let m :=
sup{J (u) : ‖u‖ ≤ 2rad(Λ)}. Note that m = O(rad(Λ)), and thus one
can assume J (y) > 16m. Set n := J (y) − 1. Using again the last-exit
decomposition and symmetry of the step distribution, we get for any x ∈ Λ,

Py[SHΛ
= x, HΛ <∞] =

∑
z /∈Cn

GΛc(y, z)Px[Sτn = z, τn < H+
Λ ],(7.23)

with τn := HCcn . We then write, using the Markov property,

Px[Sτn = z, τn < H+
Λ ] =

∑
x′∈Cn/8\Cm

Px[τm < H+
Λ , Sτm = x′] · Px′ [Sτn = z, τn < H+

Λ ]

+ Px
[
J (Sτm) >

n

8
, Sτn = z

]
,(7.24)

with τm := HCcm . Concerning the last term we note that∑
z /∈Cn

GΛc(y, z)Px
[
J (Sτm) >

n

8
, Sτn = z

]
(2.6)

≤
∑
z /∈Cn

G(z − y)

Px[Sτm = z] +
∑

u∈Cn\Cn/8

Px[Sτm = u]G(z − u)


Lemma 2.3

.
∑
z /∈Cn

G(z − y)Px[Sτm = z] +
∑

u∈Cn\Cn/8

Px[Sτm = u]

‖y − u‖d−4

. Px[J (Sτm) > n/8] .
∑
u∈Cm

GCm(x, u)P[J(X1) >
n

8
−m]

(2.7)
= O

(
m2

nd

)
= O

( m

nd−1

)
,(7.25)
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applying once more the last-exit decomposition at the penultimate line, and
the hypothesis that J (X1) has a finite d-th moment at the end. We handle
next the sum in the right-hand side of (7.24). First note that (7.22) gives
for any x′ ∈ Cn/8,∑

z /∈Cn

GΛc(y, z)Px′ [Sτn = z] =
∑
z /∈Cn

GΛc(y, z)HCn(x′, z)

=

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(1 +O
(‖x′‖

n

))
+O

(
‖x′‖
nd−1

)
.(7.26)

Observe then two facts. On one hand, by the last exit-decomposition and
symmetry of the step distribution,
(7.27)∑
z /∈Cn

GΛc(y, z)HCn(0, z) ≤
∑
z /∈Cn

GZd\{0}(y, z)HCn(0, z) = P[Hy <∞]
(2.6),(2.7)

. n2−d,

and on the other hand by Proposition 4.6.2 in [LL10],

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(7.28)

=
∑
z /∈Cn

GZd\{0}(y, z)HCn(0, z) +
∑
z /∈Cn

(
GΛc(y, z)−GZd\{0}(y, z)

)
HCn(0, z)

≥ P[Hy <∞]−O

Py[HΛ <∞]
∑
z /∈Cn

G(z)HCn(0, z)


(2.8)

≥ P[Hy <∞]−O

n2−d
∑
z /∈Cn

G(z)2

 (7.3)

≥ c

nd−2
.

This last fact, combined with (7.26) gives therefore, for any x′ ∈ Cn/8,

∑
z /∈Cn

GΛc(y, z)Px′ [Sτn = z] =

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(1 +O
(‖x′‖

n

))
.

(7.29)

By the Markov property, we get as well

∑
z /∈Cn

GΛc(y, z)Px′ [Sτn = z | HΛ < τn] =

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(1 +O
(m
n

))
,
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since by definition Λ ⊆ Cm ⊂ Cn/8, and thus∑
z /∈Cn

GΛc(y, z)Px′ [Sτn = z, HΛ < τn]

= Px′ [HΛ < τn]

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(1 +O
(m
n

))
.

Subtracting this from (7.29), we get for x′ ∈ Cn/8 \ Cm,∑
z /∈Cn

GΛc(y, z)Px′ [Sτn = z, τn < HΛ]

= Px′ [τn < HΛ]

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(1 +O
(‖x′‖

n

))
,

since by (2.8), one has Px′ [τn < HΛ] > c, for some constant c > 0, for
any x′ /∈ Cm (note that the stopping time theorem gives in fact Px′ [HΛ <
∞] ≤ G(x′)/ inf‖u‖≤rad(Λ)G(u), and thus by using (7.3), one can ensure
Px′ [HΛ <∞] ≤ 1−c, by taking ‖x′‖ large enough, which is always possible).
Combining this with (7.23), (7.24) and (7.25), and using as well (7.27) and
(7.28), we get

Py[SHΛ
= x, HΛ <∞] = Px[τn < HΛ]

∑
z /∈Cn

GΛc(y, z)HCn(0, z)


+O

 1

nd−1

∑
x′∈Cn/8\Cm

Px[Sτm = x′] · ‖x′‖

+O
( m

nd−1

)
(2.8)
= eΛ(x)

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(1 +O
(m
n

))
+O

 1

nd−1

n/8∑
r=2m

m2

rd−1

+O
( m

nd−1

)

= eΛ(x)

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(1 +O
(m
n

))
,

using the same argument as in (7.25) for bounding Px′ [J (Sτm) ≥ r], when
r ≥ 2m. Summing over x ∈ Λ gives

Py[HΛ <∞] = Cap(Λ)

∑
z /∈Cn

GΛc(y, z)HCn(0, z)

(1 +O
(m
n

))
,

and the proof of the lemma follows from the last two displays.
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8. Proof of Proposition 3.7. The proof is divided in four steps, cor-
responding to the next four lemmas.

Lemma 8.1. Assume that εk → ∞, and εk/k → 0. There exists a con-
stant σ1,3 > 0, such that

Cov(Z0ϕ3, Zkψ1) ∼ σ1,3

k
.

Lemma 8.2. There exist positive constants δ and σ1,1, such that when
εk ≥ k1−δ, and εk/k → 0,

Cov(Z0ϕ1, Zkψ1) ∼ Cov(Z0ϕ3, Zkψ3) ∼ σ1,1

k
.

Lemma 8.3. There exist positive constants δ and σ1,2, such that when
εk ≥ k1−δ, and εk/k → 0,

Cov(Z0ϕ2, Zkψ1) ∼ Cov(Z0ϕ3, Zkψ2) ∼ σ1,2

k
.

Lemma 8.4. There exist positive constants δ and σ2,2, such that when
εk ≥ k1−δ, and εk/k → 0,

Cov(Z0ϕ2, Zkψ2) ∼ σ2,2

k
.

8.1. Proof of Lemma 8.1. We assume now to simplify notation that the
distribution µ is aperiodic, but it should be clear from the proof that the
case of a bipartite walk could be handled similarly.

The first step is to show that
(8.1)

Cov(Z0ϕ3, Zkψ1) = ρ2

∑
x∈Z5

pk(x)ϕ2
x −

∑
x∈Z5

pk(x)ϕx

2+ o

(
1

k

)
,

where ρ and ϕx are defined respectively as

ρ := E
[
P
[
H+
R∞

=∞ | (Sn)n∈Z

]
· 1{S` 6= 0, ∀` ≥ 1}

]
,(8.2)

and
ϕx := P0,x[R∞ ∩ R̃∞ 6= ∅].

To see this, one needs to dissociate Z0 and Zk, as well as the events of
avoiding R[−εk, εk] and R[k− εk, k+ εk] by two independent walks starting
respectively from the origin and from Sk, which are local events (in the sense
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that they only concern small parts of the different paths), from the events
of hitting R[k + 1,∞) and R(−∞,−1] by these two walks, which involve
different parts of the trajectories.

To be more precise, consider (S1
n)n≥0 and (S2

n)n≥0, two independent ran-
dom walks starting from the origin, and independent of (Sn)n∈Z. Then define

τ1 := inf{n ≥ εk : S1
n ∈ R[k+εk,∞)}, τ2 := inf{n ≥ εk : Sk+S

2
n ∈ R(−∞,−εk]}.

We first consider the term E[Z0ϕ3]. Let

τ0,1 := inf
{
n ≥ εk : S1

n ∈ R[−εk, εk]
}
,

and

∆0,3 := E
[
Z0 · 1{R1[1, εk] ∩R[−εk, εk] = ∅} · 1{τ1 <∞}

]
.

One has,

|E[Z0ϕ3]−∆0,3| ≤ P [τ0,1 <∞, τ1 <∞] + P
[
R1[0, εk] ∩R[k,∞) 6= ∅

]
+ P[R1

∞ ∩R[k, k + εk] 6= ∅]

(2.14)

≤ P[τ1 ≤ τ0,1 <∞] + P[τ0,1 ≤ τ1 <∞] +O
( εk
k3/2

)
.

Next, conditioning on R[−εk, εk] and using the Markov property at time
τ0,1, we get with X = Sεk − S1

τ0,1 ,

P[τ0,1 ≤ τ1 <∞] ≤ E
[
P0,X [R[k,∞) ∩ R̃∞ 6= ∅] · 1{τ0,1 <∞}

]
(2.14)

= O
(
P[τ0,1 <∞]√

k

)
(2.14)

= O
(

1√
kεk

)
.

Likewise, using the Markov property at time τ1, we get

P[τ1 ≤ τ0,1 <∞]
(2.12)

≤ E

 εk∑
j=−εk

G(Sj − S1
τ1)

1{τ1 <∞}


(2.12)

≤
∞∑

i=k+εk

εk∑
j=−εk

E
[
G(Sj − Si)G(Si − S1

εk
)
]

≤ (2εk + 1) sup
x∈Z5

∞∑
i=k

E [G(Si)G(Si − x)]

≤ (2εk + 1) sup
x∈Z5

∑
z∈Z5

G(z)G(z − x)Gk(z)
(2.7),Lemma 2.3

= O
( εk
k3/2

)
.



CAPACITY OF THE RANGE IN DIMENSION 5 65

Now define for any y1, y2 ∈ Z5,
(8.3)

H(y1, y2) := E
[
Z01{R1[1, εk] ∩R[−εk, εk] = ∅, Sεk = y1, S

1
εk

= y2}
]
.

One has by the Markov property

∆0,3 =
∑
x∈Z5

∑
y1,y2∈Z5

H(y1, y2)pk(x+ y2 − y1)ϕx.

Observe that typically ‖y1‖ and ‖y2‖ are much smaller than ‖x‖, and thus
pk(x+ y2− y1) should be also typically close to pk(x). To make this precise,
consider (χk)k≥1 some sequence of positive integers, such that εkχ

3
k ≤ k, for

all k ≥ 1, and χk → ∞, as k → ∞. One has using Cauchy-Schwarz at the
third line,∑
‖x‖2≤k/χk

∑
y1,y2∈Z5

H(y1, y2)pk(x+ y2 − y1)ϕx

≤
∑

‖x‖2≤k/χk

∑
y2∈Z5

pεk(y2)pk+εk(x)ϕx−y2

(2.13)

. E
[
1{‖Sk+εk‖2 ≤ k/χk}

1 + ‖Sk+εk − S1
εk
‖

]

. E
[

1

1 + ‖Sk+2εk‖2

]1/2

· P
[
‖Sk+εk‖

2 ≤ k/χk
]1/2 (2.3)

.
1

√
k · χ5/4

k

.

Likewise, using just (2.5) at the end instead of (2.3), we get∑
‖x‖2≥kχk

∑
y1,y2∈Z5

H(y1, y2)pk(x+ y2 − y1)ϕx .
1

√
k · χ5/4

k

,

and one can handle the sums on the sets {‖y1‖2 ≥ εkχk} and {‖y2‖2 ≥ εkχk}
similarly. Therefore, it holds

∆0,3 =
∑

k/χk≤‖x‖2≤kχk

∑
‖y1‖2≤εkχk

∑
‖y2‖2≤εkχk

H(y1, y2)pk(x+y2−y1)ϕx+O

(
1

√
k · χ5/4

k

)
.

Moreover, Theorem 2.1 shows that for any x, y1, y2 as in the three sums
above, one has

|pk(x+ y2 − y1)− pk(x)| = O
(√

εk · χk√
k
· pk(x) +

1

k7/2

)
.

Note also that by (2.13), one has

(8.4)
∑

x,y1,y2∈Z5

H(y1, y2)pk(x)ϕx ≤
∑
x∈Z5

pk(x)ϕx = O
(

1√
k

)
.
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Using as well that
√
εkχk ≤

√
k/χk, and

∑
‖x‖2≤kχk ϕx = O(k2χ2

k), we get

∆0,3 = ρk
∑
x∈Z5

pk(x)ϕx +O
(

1√
k · χk

+
χ2
k

k3/2

)
,

with

ρk :=
∑

y1,y2∈Z5

H(y1, y2) = E
[
Z0 · 1{R1[1, εk] ∩R[−εk, εk] = ∅}

]
.

Note furthermore that one can always take χk such that χk = o(
√
k), and

that by (2.6), (2.7) and (2.14), one has |ρk − ρ| . ε
−1/2
k . This gives

E[Z0ϕ3] = ρ
∑
x∈Z5

pk(x)ϕx + o

(
1√
k

)
.(8.5)

By symmetry the same estimate holds for E[Zkψ1], and thus using again
(8.4), it entails

E[Z0ϕ3] · E[Zkψ1] = ρ2

∑
x∈Z5

pk(x)ϕx

2

+ o

(
1

k

)
.

The estimate of E[Z0ϕ3Zkψ1] is done along the same line, but is a bit more
involved. Indeed, let

∆1,3 := E [Z0Zk1{R1[1, εk] ∩R[−εk, εk] = ∅}

×1{(Sk +R2[1, εk]) ∩R[k − εk, k + εk] = ∅, τ1 <∞, τ2 <∞}
]
.

The difference between E[Z0ϕ3Zkψ1] and ∆1,3 can be controlled roughly as
above, but one needs additionally to handle the probability of τ2 being finite.
Namely one has using symmetry,

|E[Z0ϕ3Zkψ1]−∆1,3| ≤ 2 (P [τ0,1 <∞, τ1 <∞, τ2 <∞]

(8.6)

+P
[
R1[0, εk] ∩R[k,∞) 6= ∅, τ2 <∞

]
+ P[R1

∞ ∩R[k, k + εk] 6= ∅, τ2 <∞]
)
,

with
τ2 := inf{n ≥ 0 : Sk + S2

n ∈ R(−∞, 0]}.
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The last term in (8.6) is handled as follows:

P
[
R1
∞ ∩R[k, k + εk] 6= ∅, τ2 <∞

]
=
∑
x∈Z5

P[R1
∞ ∩R [k, k + εk] 6= ∅, τ2 <∞, Sk = x]

(2.12)

≤
∑
x∈Z5

pk(x)ϕx

εk∑
i=0

E[G(Si + x)]
(2.7),(2.13),(2.10)

. εk
∑
x∈Z5

pk(x)

1 + ‖x‖4
(2.3)

.
εk
k2
.

The same arguments give as well

P
[
R1[0, εk] ∩R[k,∞) 6= ∅, τ2 <∞

]
.
εk
k2
,

P [τ0,1 <∞, τ1 <∞, τ2 <∞] = P [τ0,1 <∞, τ1 <∞, τ2 <∞] +O
(εk
k2

)
.

Then we can write,

P [τ0,1 ≤ τ1 <∞, τ2 <∞] = E
[
P0,Sk+εk

−Sτ0,1 [R∞ ∩ R̃∞ 6= ∅]1{τ0,1 <∞, τ2 <∞}
]

(2.12),(2.13)

.
εk∑

i=−εk

E

[
1

1 + ‖Sk+εk − Si‖
·

G(Si − S1
εk

)

1 + ‖Sk − S−εk‖

]
(2.9)

.
1

ε
3/2
k

εk∑
i=−εk

E
[

1

1 + ‖Sk − Si‖
· 1

1 + ‖Sk − S−εk‖

]
.

1
√
εk

max
k−εk≤j≤k+εk

sup
u∈Zd

E
[

1

1 + ‖Sj‖
· 1

1 + ‖Sj + u‖

]
.

1

k
√
εk
,

where the last equality follows from straightforward computations, using
(2.3). On the other hand,

P [τ1 ≤ τ0,1 <∞, τ2 <∞]
(2.12),(2.13)

.
∞∑

i=k+εk

εk∑
j=−εk

E

[
G(Sj − Si)G(Si − S1

εk
)

1 + ‖Sk − S−εk‖

]
(2.7),(2.10)

.
εk∑

j=−εk

∞∑
i=k+εk

E
[

G(Sj − Si)
(1 + ‖Si‖3)(1 + ‖Sk − S−εk‖)

]

.
εk∑

j=−εk

∑
z∈Zd

Gεk(z)E
[

G(z + Sk − Sj)
(1 + ‖z + Sk‖3)(1 + ‖Sk − S−εk‖)

]
.

Note now that for x, y ∈ Z5, by (2.7) and Lemma 2.3,∑
z∈Zd

Gεk(z)

(1 + ‖z − x‖3)(1 + ‖z − y‖3)
.

1

1 + ‖x‖3

(
1
√
εk

+
1

1 + ‖y − x‖

)
.
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It follows that

P [τ1 ≤ τ0,1 <∞, τ2 <∞] .
εk∑

j=−εk

E
[

1

(1 + ‖Sk‖3)(1 + ‖Sk − S−εk‖)

(
1
√
εk

+
1

1 + ‖Sj‖

)]
(2.10)

. E
[ √

εk
1 + ‖Sk‖4

]
+

0∑
j=−εk

E
[

1

(1 + ‖Sk‖3)(1 + ‖Sk − Sj‖)(1 + ‖Sj‖)

]

+

εk∑
j=1

E
[

1

(1 + ‖Sk‖4)(1 + ‖Sj‖)

]

.
1

k2

√εk +

εk∑
j=−εk

E
[

1

1 + ‖Sj‖

] . √εk
k2

,

using for the third inequality that by (2.3), it holds uniformly in x ∈ Z5 and
j ≤ εk,

E
[

1

1 + ‖Sk − Sj + x‖4

]
. k−2, E

[
1

(1 + ‖Sk‖3)(1 + ‖Sk + x‖)

]
. k−2.

Now we are left with computing ∆1.3. This step is essentially the same as
above, so we omit to give all the details. We first define for y1, y2, y3 ∈ Z5,

H(y1, y2, y3) := E
[
Z01{R1[1, εk] ∩R[−εk, εk] = ∅, Sεk = y1, S

1
εk

= y2, S−εk = y3}
]
,

and note that

∆1,3 =
∑

y1,y2,y3∈Z5

z1,z2,z3∈Z5

x∈Z5

H(y1, y2, y3)H(z1, z2, z3)pk−2εk(x−y1+z3)ϕx+z1−y2ϕx+z2−y3 .

Observe here that by Theorem C, ϕx+z1−y2 is equivalent to ϕx, when ‖z1‖
and ‖y2‖ are small when compared to ‖x‖, and similarly for ϕx+z2−y3 . Thus
using similar arguments as above, and in particular that by (2.3) and (2.13),

(8.7)
∑
x∈Z5

pk(x)ϕ2
x = O

(
1

k

)
,

we obtain

∆1,3 = ρ2
∑
x∈Z5

pk(x)ϕ2
x + o

(
1

k

)
.
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Putting all pieces together gives (8.1). Using in addition (2.3), (2.13) and
Theorem 2.1, we deduce that

Cov(Z0ϕ3, Zkψ1) = ρ2

∑
x∈Z5

pk(x)ϕ2
x −

∑
x∈Z5

pk(x)ϕx

2+ o

(
1

k

)
.

Then Theorem C, together with (8.4) and (8.7) show that

Cov(Z0ϕ3, Zkψ1) = σ

∑
x∈Z5

pk(x)

1 + J (x)2
−

∑
x∈Z5

pk(x)

1 + J (x)

2+ o

(
1

k

)
,

for some constant σ > 0. Finally an approximation of the series with an
integral and a change of variables gives, with c0 := (2π)−5/2(det Γ)−1/2,

Cov(Z0ϕ3, Zkψ1) =
σc0

k


∫
R5

e−5J (x)2/2

J (x)2
dx− c0

(∫
R5

e−5J (x)2/2

J (x)
dx

)2
+ o

(
1

k

)
.

The last step of the proof is to observe that the difference between the
two terms in the curly bracket is well a positive real. This follows simply
by Cauchy-Schwarz, once we observe that c0

∫
R5 e

−5J (x)2/2 dx = 1, which
itself can be deduced for instance from the fact that 1 =

∑
x∈Z5 pk(x) ∼

c0

∫
R5 e

−5J (x)2/2 dx, by the above arguments. This concludes the proof of
Lemma 8.1. �

8.2. Proof of Lemma 8.2. Let us concentrate on the term Cov(Z0ϕ3, Zkψ3),
the estimate of Cov(Z0ϕ1, Zkψ1) being entirely similar. We also assume to
simplify notation that the walk is aperiodic.

We consider as in the proof of the previous lemma (S1
n)n≥0 and (S2

n)n≥0

two independent random walks starting from the origin, independent of
(Sn)n∈Z, and define this time

τ1 := inf{n ≥ k+εk : Sn ∈ R1[εk,∞)}, τ2 := inf{n ≥ k+εk : Sn ∈ Sk+R2[
√
εk,∞)}.

Define as well

τ1 := inf{n ≥ k + εk : Sn ∈ R1
∞}, τ2 := inf{n ≥ k + εk : Sn ∈ Sk +R2

∞}.

Step 1. Our first task is to show that

(8.8) Cov(Z0ϕ3, Zkψ3) = ρ2 · Cov (1{τ1 <∞}, 1{τ2 <∞}) + o

(
1

k

)
,
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with ρ as defined in (8.2). This step is essentially the same as in the proof
of Lemma 8.1, but with some additional technical difficulties, so let us give
some details. First, the proof of Lemma 8.1 shows that (using the same
notation),

E[Z0ϕ3] = ∆0,3 +O
(

1√
kεk

+
εk
k3/2

)
,

and that for any sequence (χk)k≥1 going to infinity with εkχ
2+ 1

4
k ≤ k,

∆0,3 =
∑

k/χk≤‖x‖2≤kχk

∑
‖y1‖2≤εkχk
‖y2‖2≤εkχk

H(y1, y2)pk(x+y2−y1)ϕx+O

(
1

√
k · χ5/4

k

)
.

Observe moreover, that by symmetry H(y1, y2) = H(−y1,−y2), and that by
Theorem 2.1, for any x, y1, and y2 as above, for some constant c > 0,

|pk(x+ y2 − y1) + pk(x+ y1 − y2)− pk(x)| = O
(
εkχk
k

pk(cx) +
1

k7/2

)
,

It follows that one can improve the bound (8.5) into

E[Z0ϕ3] = ρ
∑
x∈Z5

pk(x)ϕx +O

(
εkχk
k3/2

+
χ2
k

k3/2
+

1
√
k · χ5/4

k

+
1√
kεk

+
εk
k3/2

)

= ρP[τ1 <∞] +O

(
εkχk
k3/2

+
χ2
k

k3/2
+

1
√
k · χ5/4

k

+
1√
kεk

+
εk
k3/2

)
.(8.9)

Since by (2.14) one has

E[Zkψ3] ≤ E[ψ3] = O
(

1
√
εk

)
,

this yields by taking χ
2+1/4
k := k/εk, and εk ≥ k2/3 (but still εk = o(k)),

E[Z0ϕ3] · E[Zkψ3] = ρP[τ1 <∞] · E[Zkψ3] + o

(
1

k

)
.(8.10)

We next seek an analogous estimate for E[Zkψ3]. Define Z ′k := 1{Sk+i 6=
Sk, ∀i = 1, . . . , ε

3/4
k }, and

∆0 := E
[
Z ′k · 1

{
R[k − εk, k + ε

3/4
k ] ∩ (Sk +R2[1,

√
εk]) = ∅, τ2 <∞

}]
.
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Note that (with R and R̃ two independent walks),

|E[Zkψ3]−∆0| ≤ P
[
0 ∈ R[ε

3/4
k , εk]

]
+ P

[
R̃[0,

√
εk] ∩R[εk,∞) 6= ∅

]
+ P

[
R̃∞ ∩R[ε

3/4
k , εk] 6= ∅, R̃∞ ∩R[εk,∞) 6= ∅

]
+ P

[
R̃[
√
εk,∞) ∩R[−εk, εk] 6= ∅, R̃[

√
εk,∞) ∩R[εk,∞) 6= ∅

]
.

Moreover,
(8.11)

P
[
0 ∈ R[ε

3/4
k , εk]

] (2.6),(2.9)

. ε
−9/8
k , P

[
R̃[0,

√
εk] ∩R[εk,∞) 6= ∅

] (2.14)

. ε−1
k .

Using also the same computation as in the proof of Lemma 4.1, we get

P
[
R̃∞ ∩R[ε

3/4
k , εk] 6= ∅, R̃∞ ∩R[εk,∞) 6= ∅

]
. ε
− 3

8
− 1

2
k ,

(8.12)

P
[
R̃[
√
εk,∞) ∩R[−εk, εk] 6= ∅, R̃[

√
εk,∞) ∩R[εk,∞) 6= ∅

]
. ε
− 1

4
− 1

2
k .

As a consequence

E[Zkψ3] = ∆0 +O
(
ε
−3/4
k

)
.(8.13)

Introduce now

H̃(y1, y2) := E
[
Z ′k·1{R[k − εk, k + ε

3/4
k ] ∩ (Sk +R2[1,

√
εk]) = ∅}

× 1{S
k+ε

3/4
k

− Sk = y1, S
2√
εk

= y2}
]
,

and note that

∆0 =
∑
x∈Zd

∑
y1,y2∈Zd

H̃(y1, y2)p
εk−ε

3/4
k

(x+ y2 − y1)ϕx.

Let χk := ε
1/8
k . As above, we can see that

∆0 =
∑

εk/χk≤‖x‖2≤εkχk
‖y1‖2≤ε3/4k χk
‖y2‖2≤

√
εkχk

H̃(y1, y2)p
εk−ε

3/4
k

(x+ y2 − y1)ϕx +O

(
1

√
εkχ

5/4
k

)

=

 ∑
y1,y2∈Zd

H̃(y1, y2)

∑
x∈Zd

pεk(x)ϕx

+O

(
χk

ε
3/4
k

+
χ2
k

ε
3/2
k

+
1

√
εkχ

5/4
k

)

= ρ · P[τ2 <∞] +O(ε
−5/8
k ).
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Then by taking εk ≥ k5/6, and recalling (8.10) and (8.13), we obtain

E[Z0ϕ3] · E[Zkψ3] = ρ2 · P[τ1 <∞] · P[τ2 <∞] + o

(
1

k

)
.(8.14)

Finally, let

∆3,3 :=E[Z0Z
′
k1{R1[1, εk] ∩R[−εk, εk] = ∅}

× 1{(Sk +R2[1,
√
εk]) ∩R[k − ε

3
4
k , k + ε

3
4
k ] = ∅, τ1 <∞, τ2 <∞}].

It amounts to estimate the difference between ∆3,3 and E[Z0Zkϕ3ψ3]. Define

τ̃1 := inf{n ≥ k+εk : Sn ∈ R1[0, εk]}, τ̃2 := inf{n ≥ k+εk : Sn ∈ Sk+R2[0,
√
εk]}.

Observe first that

P[τ̃1 ≤ τ2 <∞]
(2.13)

. E
[

1{τ̃1 <∞}
1 + ‖Sτ̃1 − Sk‖

]
(2.12)

.
εk∑
i=0

E
[
G(S1

i − Sk+εk)

1 + ‖S1
i − Sk‖

]

.
εk∑
i=0

∑
z∈Z5

pi(z)E
[
G(z − Sk+εk)

1 + ‖z − Sk‖

]
(2.3)

.
∑
z∈Z5

√
εk

1 + ‖z‖4
E
[
G(z − Sk+εk)

1 + ‖z − Sk‖

]

(2.7)

. E
[ √

εk
(1 + ‖Sk+εk‖2)(1 + ‖Sk‖)

]
(2.10)

. E
[ √

εk
1 + ‖Sk‖3

]
(2.9)

.
√
εk

k3/2
,

(8.15)

and likewise,

P[τ1 ≤ τ̃2 <∞]
(2.12)

≤
∑
j≥0

εk∑
i=0

E
[
G(Sk + S2

i − S1
j )G(S1

j − Sk+εk)
]

=

εk∑
i=0

∑
z∈Z5

E
[
G(z)G(Sk + S2

i − z)G(z − Sk+εk)
]

≤ C
εk∑
i=0

E
[

1

1 + ‖Sk + S2
i ‖3

(
1

1 + ‖Sk+εk‖
+

1

1 + ‖Sk+εk − Sk − S2
i ‖

)]
(2.9), (2.10)

≤ CE
[

εk
1 + ‖Sk‖4

]
+ CE

[ √
εk

1 + ‖Sk‖3

]
= O

(√
εk

k3/2

)
.

Additionally, it follows directly from (2.14) that

P[τ2 ≤ τ̃1 <∞] .
√
εk

k3/2
, and P[τ̃2 ≤ τ1 <∞] .

1

εk
√
k
,
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which altogether yields

|P[τ1 <∞, τ2 <∞]− P[τ1 <∞, τ2 <∞]| .
√
εk

k3/2
+

1

εk
√
k
.

Similar computations give also

(8.16) P[τ1 <∞, τ2 <∞] .
1√
kεk

.

Next, using (8.11) and the Markov property, we get

E[|Zk − Z ′k|1{τ1 <∞}] .
1

ε
9/8
k

√
k
.

Thus, for εk ≥ k5/6,

|E[Z0Zkϕ3ψ3]−∆3,3| ≤ P[τ0,1 <∞, τ1 <∞, τ2 <∞] + P[τ0,2 <∞, τ1 <∞, τ2 <∞]

+ P[τ̃0,2 <∞, τ1 <∞, τ2 <∞] + o

(
1

k

)
,

where τ0,1 is as defined in the proof of Lemma 8.1,

τ0,2 := inf{n ≥
√
εk : Sk + S2

n ∈ R[k − εk, k + εk]},

and

τ̃0,2 := inf{n ≤
√
εk : Sk + S2

n ∈ R[k − εk, k − ε
3/4
k ] ∪R[k + ε

3/4
k , k + εk]}.

Applying (2.14) twice already shows that

P[τ̃0,2 <∞, τ1 <∞] .
1√
k
· P[τ̃0,2 <∞] .

1
√
kε

5/8
k

= o

(
1

k

)
.

Then, notice that (8.15) entails

P[R[k + εk,∞) ∩R1[0, τ0,1] 6= ∅, S1
τ0,1 ∈ R[−εk, 0]] .

√
εk

k3/2
.

On the other hand,

P[R[k + εk,∞) ∩R1[0, τ0,1] 6= ∅, S1
τ0,1 ∈ R[0, εk]]

(2.12)

≤
εk∑
i=0

∞∑
j=k+εk

E[G(Si − Sk+j)G(Sk+j − Sk)] =

εk∑
i=0

∑
z∈Z5

E[G(Si − Sk + z)G(z)Gεk(z)]

(2.9)

.
εk
k3/2

∑
z∈Z5

G(z)Gεk(z)
Lemma 2.3

.
√
εk

k3/2
.
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By (2.12) and (2.9), one has with R̃∞ an independent copy of R∞,

P[τ0,1 <∞, τ2 <∞,R[k + εk,∞) ∩R1[τ0,1,∞) 6= ∅]

.
1
√
εk

max
−εk≤i≤εk

P[τ2 <∞, R[k + εk,∞) ∩ (Si + R̃∞) 6= ∅] .
1

εk
√
k
,

where the last equality follows from (8.16). Thus

P[τ0,1 <∞, τ1 <∞, τ2 <∞] = o

(
1

k

)
.

In a similar fashion, one has

P[τ0,2 <∞, τ2 ≤ τ1 <∞]
(2.14)

.
1√
k
P[τ0,2 <∞, τ2 <∞]

(8.12)

.
1

ε
3/4
k

√
k
,

as well as,

P
[
τ0,2 <∞, τ1 ≤ τ2 <∞, Sτ2 ∈ (Sk +R2[0, τ0,2])

]
(2.12)

≤
k+εk∑
i=k−εk

∑
j≥0

∑
`≥0

E[G(Si − S̃j − S1
` )G(S̃j + S1

` − Sk)G(S1
` − Sk+εk)]

≤
k+εk∑
i=k−εk

∑
`≥0

∑
z∈Z5

E[G(z)G(Si − S1
` − z)G(z + S1

` − Sk)G(S1
` − Sk+εk)]

Lemma 2.3

.
k+εk∑
i=k−εk

∑
`≥0

E
[
G(S1

` − Sk+εk)

1 + ‖S1
` − Sk‖3

(
1

1 + ‖S1
` − Si‖

+
1

1 + ‖Si − Sk‖

)]
(2.9),(2.10)

.
εk∑
i=0

∑
`≥0

{
E

[
ε
−3/2
k

1 + ‖S1
` − Sk‖3

(
1

1 + ‖S1
` − Sk−i‖

+
1

1 + ‖Sk−i − Sk‖

)]

+ E
[

1

(1 + ‖S1
` − Sk+i‖3)(1 + ‖S1

` − Sk‖3)

(
1

1 + ‖S1
` − Sk+i‖

+
1

1 + ‖Sk+i − Sk‖

)]}
(2.3),(2.10)

.
εk∑
i=0

∑
`≥0

{
E

[
ε
−3/2
k

1 + ‖S1
` − Sk−i‖3

(
1

1 + ‖S1
` − Sk−i‖

+
1

1 +
√
i

)]

+ E

[
(1 + i)−1/2

1 + ‖S1
` − Sk‖6

]}

.
√
εk

k3/2
,
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and

P
[
τ0,2 <∞, τ1 ≤ τ2 <∞, Sτ2 ∈ (Sk +R2[τ0,2,∞))

]
(2.6)

≤
εk∑

i=−εk

E
[
G(Sk+i − Sk − S2√

εk
)1{τ1 <∞, R[τ1,∞) ∩ (Sk+i + R̃∞) 6= ∅}

]
(2.13)

.
εk∑

i=−εk

E
[
G(Sk+i − Sk − S2√

εk
)

1{τ1 <∞}
1 + ‖Sτ1 − Sk+i‖

]
(2.12)

.
εk∑

i=−εk

∑
j≥k+εk

E

[
G(Sk+i − Sk − S2√

εk
)G(Sj)

1 + ‖Sj − Sk+i‖

]

.
εk∑
i=0

∑
z∈Z5

{
E

[
G(Sk−i − Sk − S2√

εk
)G(Sk + z)G(z)

1 + ‖z + Sk − Sk−i‖

]

+E

[
G(Sk+i − Sk − S2√

εk
)G(Sk+i + z)G(z)

1 + ‖z‖

]}

.
εk∑
i=0

{
E

[
G(Sk−i − Sk − S2√

εk
)

1 + ‖Sk‖2

]
+ E

[
G(Sk+i − Sk − S2√

εk
)

1 + ‖Sk+i‖2

]}
(2.9),(2.10)

.
1

ε
3/4
k

√
εk∑

i=0

E
[

1

1 + ‖Sk‖2
+

1

1 + ‖Sk+i‖2

]
+

εk∑
i=
√
εk

E
[
G(Sk−i − Sk)

1 + ‖Sk‖2
+
G(Sk+i − Sk)
1 + ‖Sk+i‖2

]
(2.3),(2.9)

.
1

ε
1/4
k k

+

εk∑
i=
√
εk

1

i3/2
· E
[

1

1 + ‖Sk−i‖2
+

1

1 + ‖Sk‖2

]
.

1

ε
1/4
k k

.

Thus at this point we have shown that

|E[Z0Zkϕ3ψ3]−∆3,3| = o

(
1

k

)
.(8.17)

Now define

H̃(z1, z2, z3) := P
[
0 /∈ R[1, ε

3/4
k ], R̃[1,

√
εk] ∩R[−ε3/4

k , ε
3/4
k ] = ∅,

S
ε
3/4
k

= z1, S−ε3/4k

= z3, S̃√εk = z3

]
,

and recall also the definition of H(y1, y2) given in (8.3). One has

∆3,3 =
∑

H(y1, y2)H̃(z1, z2, z3)p
k−εk−ε

3/4
k

(x−y1+y2+z3−z2)p
εk−ε

3/4
k

(u−z1+z2)ϕx,u,
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where the sum runs over all x, u, y1, y2, z1, z2, z3 ∈ Z5, and

ϕx,u := P[τ1 <∞, τ2 <∞ | Sk = x, Sk+εk = x+ u].

Note that the same argument as for (8.16) gives also

ϕx,u .
1

1 + ‖u‖

(
1

1 + ‖x+ u‖
+

1

1 + ‖x‖

)
.(8.18)

Using this it is possible to see that in the expression of ∆3,3 given just above,
one can restrict the sum to typical values of the parameters. Indeed, consider
for instance the sum on atypically large values of x. More precisely, take χk,

such that εkχ
2+1/4
k = k, and note that by (8.18),∑

‖x‖2≥kχk
u,y1,y2,z1,z2,z3

H(y1, y2)H̃(z1, z2, z3)p
k−εk−ε

3/4
k

(x− y1 + y2 + z3 − z2)p
εk−ε

3/4
k

(u− z1 + z2)ϕx,u

≤ P
[
‖Sk − S1

εk
‖ ≥

√
kχk, τ1 <∞, τ2 <∞

]
≤ P

[
‖Sk − S1

εk
‖ ≥

√
kχk, τ1 <∞, τ2 <∞

]
. E

[
1{‖Sk − S1

εk
‖ ≥
√
kχk}

1 + ‖Sk+εk − Sk‖

(
1

1 + ‖Sk − S1
εk
‖

+
1

1 + ‖Sk+εk − S1
εk
‖

)]
.

1

χ
5/4
k

√
kεk

,

where the last equality follows by applying Cauchy-Schwarz inequality and
(2.5). The other cases are entirely similar. Thus ∆3,3 is well approximated
by the sums on typical values of the parameters (similarly as for ∆0 for
instance), and then we can deduce with Theorem 2.1 and (8.18) that

∆3,3 = ρ2 · P[τ1 <∞, τ2 <∞] + o

(
1

k

)
.

Together with (8.17) and (8.14) this proves (8.8).
Step 2. For a (possibly random) time T , set

τ1◦T := inf{n ≥ T∨εk : Sn ∈ R1
∞}, τ2◦T := inf{n ≥ T∨εk : Sn ∈ (Sk+R2

∞)}.

Observe that
(8.19)
P[τ1 ≤ τ2 <∞] = P[τ1 ≤ τ2 ◦ τ1 <∞]−P[τ2 ≤ τ1 ◦ τ2 ≤ τ2 ◦ τ1 ◦ τ2 <∞],

and symmetrically,
(8.20)
P[τ2 ≤ τ1 <∞] = P[τ2 ≤ τ1 ◦ τ2 <∞]−P[τ1 ≤ τ2 ◦ τ1 ≤ τ1 ◦ τ2 ◦ τ1 <∞].
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Our aim here is to show that the two error terms appearing in (8.19) and
(8.20) are negligible. Applying repeatedly (2.12) gives

E1 := P[τ1 ≤ τ2 ◦ τ1 ≤ τ1 ◦ τ2 ◦ τ1 <∞]

.
∑
j≥0

∑
`≥0

∑
m≥0

E
[
G(S1

j − Sk − S2
` )G(Sk + S2

` − S1
m)G(S1

m − Sk+εk)
]

(2.10)

.
∑
j≥0

∑
`≥0

∑
m≥0

E
[
G(S1

j − Sk − S2
` )G(Sk + S2

` − S1
m)G(S1

m − Sk)
]

.
∑
j≥0

∑
m≥0

G(z)E
[
G(S1

j − Sk − z)G(Sk + z − S1
m)G(S1

m − Sk)
]
.

Note also that by using Lemma 2.3 and (2.7), we get∑
z∈Z5

G(z − x)G(z − y)G(z) .
1

1 + ‖x‖3

(
1

1 + ‖y‖
+

1

1 + ‖y − x‖

)
.

Thus, distinguishing also the two cases j ≤ m and m ≤ j, we obtain

E1 .
∑
j≥0

∑
m≥0

E

[
G(S1

m − Sk)
1 + ‖S1

j − Sk‖3

(
1

1 + ‖S1
m − Sk‖

+
1

1 + ‖S1
m − S1

j ‖

)]

.
∑
j≥0

∑
z∈Z5

G(z)

{
E

[
G(z + S1

j − Sk)
1 + ‖S1

j − Sk‖3

(
1

1 + ‖z + S1
j − Sk‖

+
1

1 + ‖z‖

)]

+E

[
G(S1

j − Sk)
1 + ‖z + S1

j − Sk‖3

(
1

1 + ‖S1
j − Sk‖

+
1

1 + ‖z‖

)]}

.
∑
j≥0

E

[
1

1 + ‖S1
j − Sk‖5

]
. E

[
log(1 + ‖Sk‖)

1 + ‖Sk‖3

]
.

log k

k3/2
.
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Similarly,

P[τ2 ≤ τ1 ◦ τ2 ≤ τ2 ◦ τ1 ◦ τ2 <∞]

.
∑
j≥0

∑
`≥0

∑
m≥0

E
[
G(S2

j + Sk − S1
` )G(S1

` − Sk − S2
m)G(S2

m + Sk − Sk+εk)
]

(2.9),(2.10)

.
1
√
εk

∑
j≥0

∑
`≥0

∑
m≥0

E

[
G(S2

j + Sk − S1
` )G(S1

` − Sk − S2
m)

1 + ‖S2
m‖2

]

.
1
√
εk

∑
j≥0

∑
m≥0

E

[
1

(1 + ‖S2
m‖2)(1 + ‖S2

j + Sk‖3)

(
1

1 + ‖S2
m + Sk‖

+
1

1 + ‖S2
m − S2

j ‖

)]

.
1
√
εk

∑
j≥0

E

[
1

(1 + ‖S2
j ‖)(1 + ‖S2

j + Sk‖3)
+

1

(1 + ‖S2
j ‖2)(1 + ‖S2

j + Sk‖2)

]

.
1
√
εk
· E
[

log(1 + ‖Sk‖)
1 + ‖Sk‖2

]
.

log k

k
√
εk
.

Step 3. We now come to the estimate of the two main terms in (8.19) and
(8.20). In fact it will be convenient to replace τ1 in the first one by

τ̂1 := inf{n ≥ k : Sn ∈ R1
∞}.

The error made by doing this is bounded as follows: by shifting the origin
to Sk, and using symmetry of the step distribution, we can write

|P[τ1 ≤ τ2 ◦ τ1 <∞]− P[τ̂1 ≤ τ2 ◦ τ̂1 <∞]| ≤ P
[
R1
∞ ∩R[k, k + εk] 6= ∅, τ2 <∞

]
(2.6)

≤ E

( εk∑
i=0

G(Si − S̃k)

) ∞∑
j=εk

G(Sj)


= E

( εk∑
i=0

G(Si − S̃k)

)∑
z∈Z5

G(z)G(z + Sεk)


Lemma 2.3

.
εk∑
i=0

E

[
G(Si − S̃k)
1 + ‖Sεk‖

]
(2.9)

.
εk
k3/2

· E
[

1

1 + ‖Sεk‖

]
.
√
εk

k3/2
.

Moreover, using Theorem C, the Markov property and symmetry of the step
distribution, we get for some constant c > 0,

P[τ̂1 ≤ τ2 ◦ τ̂1 <∞] = cE
[

1{τ̂1 <∞}
1 + J (Sτ̂1 − Sk)

]
+ o

(
1

k

)
= cE

[
1{τ̂1 <∞}
1 + J (Sτ̂1)

]
+ o

(
1

k

)
= c

∑
x∈Z5

pk(x)E0,x [F (Sτ )1{τ <∞}] + o

(
1

k

)
,
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with τ the hitting time of two independent walks starting respectively from
the origin and from x, and F (z) := 1/(1+J (z)). Note that the bound o(1/k)
on the error term in the last display comes from the fact that

E
[
1{τ̂1 <∞}
1 + J (Sτ̂1)

]
(2.12)

.
∑
j≥0

E

[
G(S̃j − Sk)

1 + ‖S̃j‖

]
.
∑
z∈Z5

E
[
G(z)G(z − Sk)

1 + ‖z‖

]
.

1

k
.

Then by applying Theorem 7.1, we get

(8.21) P[τ̂1 ≤ τ2 ◦ τ̂1 <∞] = c0

∑
x∈Z5

pk(x)
∑
z∈Z5

G(z)G(z − x)

1 + J (z)
+ o

(
1

k

)
,

for some constant c0 > 0. Likewise, by Theorem 7.1 one has for some con-
stant ν ∈ (0, 1),

P[τ2 ≤ τ1 ◦ τ2 <∞] = cE
[
1{τ2 <∞}
1 + J (Sτ2)

]
+O

(
E
[
1{τ2 <∞}

1 + J (Sτ2)1+ν

])
.

Furthermore,

E
[
1{τ2 <∞}

1 + J (Sτ2)1+ν

]
.
∑
j≥0

E

[
G(S2

j + Sk − Sk+εk)

1 + ‖S2
j + Sk‖1+ν

]
(2.9),(2.10)

.
1
√
εk

∑
j≥0

E

[
1

(1 + ‖S2
j ‖2)(1 + ‖S2

j + Sk‖1+ν)

]

.
1
√
εk

E
[

log(1 + ‖Sk‖)
1 + ‖Sk‖1+ν

]
.

log k

k(1+ν)/2√εk
.

Therefore, taking εk ≥ k1−ν/2, we get

P[τ2 ≤ τ1 ◦ τ2 <∞] = cE
[
1{τ2 <∞}
1 + J (Sτ2)

]
+ o

(
1

k

)
= c

∑
u∈Z5

pεk(u)E0,u

[
1{τ <∞}

1 + J (Sτ − Sk)

]
+ o

(
1

k

)
= c

∑
u∈Z5

pεk(u)E0,u

[
F̃ (Sτ )1{τ <∞}

]
+ o

(
1

k

)
,(8.22)

with τ the hitting time of two independent walks starting respectively from
the origin and from u, and

F̃ (z) := E
[

1

1 + J (z − Sk)

]
.
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We claim that this function F̃ satisfies (7.1), for some constant C
F̃

which is
independent of k. Indeed, first notice that

F̃ (z) � 1

1 + ‖z‖+
√
k
, and E

[
1

1 + J (z − Sk)2

]
� 1

1 + ‖z‖2 + k
,

which can be seen by using Theorem 2.1. Moreover, by triangle inequality,
and Cauchy-Schwarz,

|F̃ (y)− F̃ (z)| . E
[

‖y − z‖
(1 + ‖y − Sk‖)(1 + ‖z − Sk‖)

]
. ‖y − z‖E

[
1

1 + ‖y − Sk‖2

] 1
2

E
[

1

1 + ‖z − Sk‖2

] 1
2

.
‖y − z‖

(1 + ‖y‖+
√
k)(1 + ‖z‖+

√
k)
.
‖y − z‖
1 + ‖y‖

· F̃ (z),

which is the desired condition (7.1). Therefore, coming back to (8.22) and
applying Theorem 7.1 once more gives,

P[τ2 ≤ τ1 ◦ τ2 <∞] = c0

∑
u∈Z5

pεk(u)
∑
z∈Z5

G(z)G(z − u)F̃ (z) + o

(
1

k

)
= c0

∑
u∈Z5

∑
x∈Z5

pεk(u)pk(x)
∑
z∈Z5

G(z)G(z − u)

1 + J (z − x)
+ o

(
1

k

)
.(8.23)

Similarly, one has

P[τ1 <∞] · P[τ2 <∞] = P[τ̂1 <∞] · P[τ2 <∞] +O
(√

εk

k3/2

)
= c0

∑
u∈Z5

∑
x∈Z5

pεk(u)pk(x)
∑
z∈Z5

G(z)G(z − u)

1 + J (x)
+ o

(
1

k

)
.(8.24)

Note in particular that the constant c0 that appears here is the same as in
(8.21) and (8.23).

Step 4. We claim now that when one takes the difference between the two
expressions in (8.23) and (8.24), one can remove the parameter u from the
factor G(z−u) (and then absorb the sum over u). Indeed, note that for any
z with J (z) ≤ J (x)/2, one has∣∣∣∣ 1

1 + J (z + x)
+

1

1 + J (z − x)
− 2

1 + J (x)

∣∣∣∣ . ‖z‖2

1 + ‖x‖3
.
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It follows that, for any χk ≥ 2,∑
u,x∈Z5

J (z)≤J (x)
χk

pεk(u)pk(x)G(z)G(z − u)

∣∣∣∣ 1

1 + J (z − x)
+

1

1 + J (z + x)
− 2

1 + J (x)

∣∣∣∣
.
∑
x∈Z5

pk(x)

1 + ‖x‖3
∑

J (z)≤J (x)/χk

E[G(z − Sεk)]

1 + ‖z‖

(2.10)

.
1

kχk
.

In the same way, for any z with J (z) ≥ 2J (u), one has

|G(z − u)−G(z)| . ‖u‖
1 + ‖z‖4

,

∣∣∣∣ 1

1 + J (z − x)
− 1

1 + J (x)

∣∣∣∣ . ‖z‖
(1 + ‖x‖)(1 + ‖z − x‖)

.

Therefore, for any χk ≥ 2,∑
u,x∈Z5

J (z)≥(J (u)χk)∨J (x)
χk

pεk(u)pk(x)G(z)|G(z − u)−G(z)|
∣∣∣∣ 1

1 + J (z − x)
− 1

1 + J (x)

∣∣∣∣
.
√
εk
∑
x∈Z5

pk(x)

1 + ‖x‖
∑

J (z)≥J (x)/χk

1

‖z‖6(1 + ‖z − x‖)

(2.10)

.
χ2
k

√
εk

k3/2
.

On the other hand by taking χk = (k/εk)
1/6, we get using (2.3) and (2.5),∑

x,z∈Z5

J (u)≥√εkχk

pεk(u)pk(x)G(z)G(z − u)

(
1

1 + J (z − x)
+

1

1 + J (x)

)
.

1

χ5
k

√
kεk

= o

(
1

k

)
,

∑
u,z∈Z5

J (x)≤
√
k/χk

pεk(u)pk(x)G(z)G(z − u)

(
1

1 + J (z − x)
+

1

1 + J (x)

)
= o

(
1

k

)
.

As a consequence, since J (u) ≤ √εkχk and J (x) ≥
√
k/χk, implies J (u) ≤

J (x)/χk, with our choice of χk, we get as wanted (using also symmetry of
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the step distribution) that

P[τ2 ≤ τ1 ◦ τ2 <∞]− P[τ1 <∞] · P[τ2 <∞]

(8.25)

= c0

∑
x,z∈Z5

pk(x)G(z)2

(
1

1 + J (z − x)
− 1

1 + J (x)

)
+ o

(
1

k

)

=
c0

2

∑
x,z∈Z5

pk(x)G(z)2

(
1

1 + J (z − x)
+

1

1 + J (z + x)
− 2

1 + J (x)

)
+ o

(
1

k

)
.

Step 5. The previous steps show that

Cov ({τ1 <∞}, {τ2 <∞}) = c0

∑
x,z∈Z5

pk(x)

(
G(z)G(z − x)

1 + J (z)
+

G(z)2

1 + J (z − x)
− G(z)2

1 + J (x)

)
.

Now by approximating the series with an integral (recall (7.3)), and doing a
change of variables, we get with u := x/J (x) and v := Λ−1u, and for some
constant c > 0 (that might change from line to line),∑

z∈Z5

(
G(z)G(z − x)

1 + J (z)
+

G(z)2

1 + J (z − x)
− G(z)2

1 + J (x)

)
∼ c

∫
R5

{
1

J (z)4 · J (z − x)3
+

1

J (z)6

(
1

J (z − x)
− 1

J (x)

)}
dz

=
c

J (x)2

∫
R5

{
1

J (z)4 · J (z − u)3
+

1

J (z)6

(
1

J (z − u)
− 1

)}
dz

=
c

J (x)2

∫
R5

{
1

‖z‖4 · ‖z − v‖3
+

1

‖z‖6

(
1

‖z − v‖
− 1

)}
dz.(8.26)

Note that the last integral is convergent and independent of v (and thus of
x as well) by rotational invariance. Therefore, since

∑
x∈Z5 pk(x)/J (x)2 ∼

σ/k, for some constant σ > 0 (for instance by applying Theorem 2.1), it
only remains to show that the integral above is positive. To see this, we use
that the map z 7→ ‖z‖−3 is harmonic outside the origin, and thus satisfies
the mean value property on R5 \{0}. In particular, using also the rotational
invariance, this shows (with B1 the unit Euclidean ball and ∂B1 the unit
sphere), ∫

Bc1

1

‖z‖4 · ‖z − v‖3
dz =

1

|∂B1|

∫
∂B1

dv

∫
Bc1

1

‖z‖4 · ‖z − v‖3
dz(8.27)

=

∫
Bc1

1

‖z‖7
dz = c1

∫ ∞
1

1

r3
dr =

c1

2
,
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for some constant c1 > 0. Likewise,

(8.28)

∫
B1

1

‖z‖4 · ‖z − v‖3
dz =

c1

|∂B1|

∫ 1

0
dr

∫
∂B1

du

‖ru− v‖3
= c1,

with the same constant c1 as in the previous display. On the other hand

(8.29)

∫
Bc1

1

‖z‖6
dz = c1

∫ ∞
1

1

r2
dr = c1.

Furthermore, using again the rotational invariance,

∫
B1

1

‖z‖6

(
1

‖z − v‖
− 1

)
dz =

∫
B1

1

‖z‖6

(
1

2‖z − v‖
+

1

2‖z + v‖
− 1

)
dz

(8.30)

=
c1

|∂B1|

∫ 1

0

dr

r2

∫
∂B1

(
1

2‖v − ru‖
+

1

2‖v + ru‖
− 1

)
du.

Now we claim that for any u, v ∈ ∂B1, and any r ∈ (0, 1),

(8.31)
1

2

(
1

‖v − ru‖
+

1

‖v + ru‖

)
≥ 1√

1 + r2
.

Before we prove this claim, let us see how we can conclude the proof. It
suffices to notice that, if f(s) = (1 + s2)−1/2, then f ′(s) ≥ −s, for all
s ∈ (0, 1), and thus

(8.32)
1√

1 + r2
− 1 = f(r)− f(0) ≥ −

∫ r

0
s ds ≥ −r2/2.

Inserting this and (8.31) in (8.30) gives∫
B1

1

‖z‖6

(
1

‖z − v‖
− 1

)
dz ≥ −c1

2
.

Together with (8.27), (8.28), (8.29), this shows that the integral in (8.26) is
well positive. Thus all that remains to do is proving the claim (8.31). Since
the origin, v, v+ ru, and v− ru all lie in a common two-dimensional plane,
one can always work in the complex plane, and assume for simplicity that
v = 1, and u = eiθ, for some θ ∈ [0, π/2]. In this case, the claim is equivalent
to showing that

1

2

(
1√

1 + r2 + 2r cos θ
+

1√
1 + r2 − 2r cos θ

)
≥ 1√

1 + r2
,

which is easily obtained using that the left hand side is a decreasing function
of θ. This concludes the proof of Lemma 8.2. �
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Remark 8.5. Note that the estimate of the covariance mentioned in the
introduction, in case (ii), can now be done as well. Indeed, denoting by

τ̂2 := inf{n ≥ k + 1 : Sn ∈ Sk +R2
∞},

it only remains to show that

|P[τ̂2 ≤ k + εk, τ1 <∞]− P[τ̂2 ≤ k + εk] · P[τ1 <∞]| = o

(
1

k

)
.

Using similar estimates as above we get, with χk = (k/εk)
4/5,

|P[τ̂2 ≤ k + εk, τ1 <∞]− P[τ̂2 ≤ k + εk] · P[τ1 <∞]|

(2.5)
= |P[τ̂2 ≤ k + εk, ‖Sτ̂2 − Sk‖ ≤

√
εkχk, τ1 <∞]− P[τ̂2 ≤ k + εk]P[τ1 <∞]|+O

 1
√
kχ

5
2
k


=

∑
x∈Z5

‖y‖≤√εkχk

∣∣∣∣pk(x+ y) + pk(x− y)

2
− pk(x)

∣∣∣∣P[τ̂2 ≤ k + εk, Sτ̂2 − Sk = y]ϕx +O

 1
√
kχ

5
2
k


.

1

k
3
2

E
[
‖Sτ̂2 − Sk‖

21{‖Sτ̂2 − Sk‖ ≤
√
εkχk}

]
+

1
√
kχ

5
2
k

.
1

√
kχ

5
2
k

+

√
εkχk

k
3
2

,

using that by (2.13) and the Markov property, one has P[‖Sτ̂2−Sk‖ ≥ t] . 1
t .

8.3. Proof of Lemma 8.3. We consider only the case of Cov(Z0ϕ2, Zkψ1),
the other one being entirely similar. Define

τ1 := inf{n ≥ 0 : S1
n ∈ R[εk, k]}, τ2 := inf{n ≥ 0 : Sk + S2

n ∈ R(−∞, 0]},

with S1 and S2 two independent walks, independent of S. The first step is
to see that

Cov(Z0ϕ3, Zkψ2) = ρ2 · Cov(1{τ1 <∞},1{τ2 <∞}) + o

(
1

k

)
,

with ρ as in (8.2). Since the proof of this fact has exactly the same flavor as
in the two previous lemmas, we omit the details and directly move to the
next step.
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Let η ∈ (0, 1/2) be some fixed constant (which will be sent to zero later).
Notice first that

P
[
S1
τ1 ∈ R[(1− η)k, k], τ2 <∞

] (2.6),(2.13)

.
k∑

i=b(1−η)kc

E
[
G(Si)

1 + ‖Sk‖

]
(2.9)

.
k∑

i=b(1−η)kc

E [G(Si)]

1 +
√
k − i

(2.9)

.
√
η

k
.(8.33)

Next, fix another constant δ ∈ (0, 1/4) (which will be soon chosen small
enough). Then let N := b(1− η)k/ε1−δ

k c, and for i = 1, . . . , N , define

τ i1 := inf{n ≥ 0 : S1
n ∈ R[ki, ki+1]}, with ki := εk + ibε1−δ

k c.

We claim that with sufficiently high probability, at most one of these hitting
times is finite. Indeed, for i ≤ N , set Ii := {ki, . . . , ki+1}, and notice that∑

1≤i<j≤N
P[τ i1 <∞, τ

j
1 <∞, τ2 <∞]

≤
∑

1≤i<j≤N

(
P[τ i1 ≤ τ

j
1 <∞, τ2 <∞] + P[τ j1 ≤ τ

i
1 <∞, τ2 <∞]

)
(2.12),(2.13)

.
∑

i=1,...,N,j 6=i
`∈Ii,m∈Ij

E
[
G(S` − Sm)G(Sm)

1 + ‖Sk‖

]
.

1√
k

∑
i=1,...,N,j 6=i
`∈Ii,m∈Ij

E [G(S` − Sm)G(Sm)]

(2.9),(2.10)

.
1√
k

∑
i=1,...,N,j 6=i
`∈Ii,m∈Ij

1

(1 + |m− `|3/2)(m ∧ `)3/2
.
Nε

(1−δ)/2
k

ε
3/2
k

√
k

= o

(
1

k

)
,

where the last equality follows by assuming εk ≥ k1−c, with c > 0 small
enough. Therefore, as claimed

P[τ1 <∞, τ2 <∞] =
N∑
i=1

P[τ i1 <∞, τ2 <∞] + o

(
1

k

)
,

and one can show as well that,

P[τ1 <∞] · P[τ2 <∞] =
N−2∑
i=1

P[τ i1 <∞] · P[τ2 <∞] + o

(
1

k

)
.
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Next, observe that for any i ≤ N , using Hölder’s inequality at the third line,

P
[
τ i1 <∞, τ2 <∞, ‖Ski+1

− Ski‖
2 ≥ ε1−δ/2

k

] (2.6),(2.13)

.
ki+1∑
j=ki

E

[
G(Sj)1{‖Ski+1

− Ski‖2 ≥ ε
1−δ/2
k }

1 + ‖Sk‖

]
(2.9)

.
1√
k

ki+1∑
j=ki

E
[
G(Sj)1{‖Ski+1

− Ski‖
2 ≥ ε1−δ/2

k }
]

.
1√
k

ki+1∑
j=ki

E
[

1

1 + ‖Sj‖4

]3/4
 · P [‖Ski+1

− Ski‖
2 ≥ ε1−δ/2

k

]1/4

(2.5)

.
ε1−δ
k

k
3/2
i

√
k
· 1

ε
5δ/16
k

= o

(
1

Nk

)
,

by choosing again εk ≥ k1−c, with c small enough. Similarly, one has using
Cauchy-Schwarz,

P
[
τ i1 <∞, τ2 <∞, ‖Sk − Ski+1

‖2 ≥ kεδ/2k

]
.

ki+1∑
j=ki

E

[
G(Sj)1{‖Sk − Ski+1

‖2 ≥ kεδ/2k }
1 + ‖Sk‖

]

.
1

ε
5δ/8
k

ki+1∑
j=ki

E

[
G(Sj)E

[
1

1 + ‖Sk‖2
| Sj
]1/2

]
.

ε1−δ
k

k
3/2
i

√
k
· 1

ε
5δ/8
k

= o

(
1

Nk

)
.

As a consequence, using also Theorem 2.1, one has for i ≤ N , and with
` := ki+1 − ki,

P[τ i1 <∞, τ2 <∞]

=
∑
x∈Z5

∑
‖z‖2≤kεδ/2k

‖y‖2≤ε1−δ/2k

pki(x)P0,x

[
R∞ ∩ R̃[0, `] 6= ∅, S̃` = y

]
pk−ki+1

(z − y)ϕx+z + o

(
1

Nk

)

=
∑
x∈Z5

∑
‖y‖2≤ε1−δ/2k

‖z‖2≤kεδ/2
k

pki(x)P0,x

[
R∞ ∩ R̃[0, `] 6= ∅, S̃` = y

]
pk−ki(z)ϕx+z + o

(
1

Nk

)

=
∑
x,z∈Z5

pki(x)P0,x

[
R∞ ∩ R̃[0, `] 6= ∅

]
pk−ki(z)ϕx+z + o

(
1

Nk

)
.
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Moreover, Theorem 7.1 yields for any nonzero x ∈ Z5, and some ν > 0,

P0,x

[
R∞ ∩ R̃[0, `] 6= ∅

]
=
γ5

κ
· E

∑̀
j=0

G(x+ S̃j)

+O
(

log(1 + ‖x‖)
‖x‖(‖x‖ ∧ `)ν

)
.

(8.34)

Note also that for any ε ∈ [0, 1],∑
x,z∈Z5

pki(x)

1 + ‖x‖1+ε
pk−ki(z)ϕx+z = E

[
1

(1 + ‖Ski‖1+ε)(1 + ‖Sk‖)

]
.

1
√
ki

1+ε√
k
,

and thus
N∑
i=1

∑
x,z∈Z5

pki(x)

1 + ‖x‖1+ε
pk−ki(z)ϕx+z = O

(
1

`kε

)
.

In particular, the error term in (8.34) can be neglected, as we take for in-
stance δ = ν/2, and εk ≥ k1−c, with c small enough. It amounts now to
estimate the other term in (8.34). By (2.3), for any x ∈ Z5 and j ≥ 0,

E[G(x+ Sj)] = Gj(x) = G(x)−O(
j

1 + ‖x‖d
).

As will become clear the error term can be neglected here. Furthermore,
similar computations as above show that for any j ∈ {ki, . . . , ki+1},∑
x,z∈Z5

pki(x)G(x)pk−ki(z)ϕx+z =
∑
x,z∈Z5

pj(x)G(x)pk−j(z)ϕx+z + o

(
1

Nk

)
,

Altogether, and applying once more Theorem 7.1, this gives for some c0 > 0,
(8.35)
N∑
i=1

P[τ i1 <∞, τ2 <∞] =

(1−η)k∑
j=εk

E[G(Sj)ϕSk ]+o

(
1

k

)
= c0

b(1−η)kc∑
j=εk

E
[

G(Sj)

1 + J (Sk)

]
+o

(
1

k

)
.

We treat the first terms of the sum separately. Concerning the other ones
notice that by (7.3) and Donsker’s invariance principle, one has

b(1−η)kc∑
j=bηkc

E
[

G(Sj)

1 + J (Sk)

]
=

1

k

∫ 1−η

η
E
[
G(Λβs)

J (Λβ1)

]
ds+ o

(
1

k

)

=
c5

k

∫ 1−η

η
E
[

1

‖βs‖3 · ‖β1‖

]
ds+ o

(
1

k

)
,
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with (βs)s≥0 a standard Brownian motion, and c5 > 0 the constant that
appears in (7.3). In the same way, one has

N∑
i=1

P[τ i1 <∞] · P[τ2 <∞] = c0

bηkc∑
j=εk

E[G(Sj)]E
[

1

1 + J (Sk)

]

+
c0c5

k

∫ 1−η

η
E
[

1

‖βs‖3

]
E
[

1

‖β1‖

]
ds+ o

(
1

k

)
,

with the same constant c0, as in (8.35). We next handle the sum of the first
terms in (8.35) and show that its difference with the sum from the previous
display is negligible. Indeed, observe already that with χk := k/(ηεk),

bηkc∑
j=εk

E

[
G(Sj)1{‖Sj‖ ≥ η1/4

√
k}

1 + J (Sk)

]
+ E

[
G(Sj)1{‖Sk‖ ≥

√
kχk}

1 + J (Sk)

]
.
η1/4

k
.

Thus one has, using Theorem 2.1,

bηkc∑
j=εk

∣∣∣∣E [ G(Sj)

1 + J (Sk)

]
− E[G(Sj)] · E

[
1

1 + J (Sk)

]∣∣∣∣
(8.36)

.
bηkc∑
j=εk

∑
‖z‖≤

√
kχk

‖x‖≤η1/4√k

pj(x)G(x)

1 + ‖z‖
∣∣pk−j(z − x) + pk−j(z + x)− 2pk(z)

∣∣+
η1/4

k
.
η1/4

k
.

Define now for s ∈ (0, 1],

Hs := E
[

1

‖βs‖3‖β1‖

]
− E

[
1

‖βs‖3

]
· E
[

1

‖β1‖

]
.

Let fs(·) be the density of βs and notice that as s→ 0,

Hs =

∫
R5

∫
R5

fs(x)f1−s(y)

‖x‖3‖x+ y‖
dx dy −

∫
R5

∫
R5

fs(x)f1(y)

‖x‖3‖y‖
dx dy

=
1

s3/2

∫
R5

∫
R5

f1(x)f1(y)

‖x‖3

(
1

‖y
√

1− s+ x
√
s‖
− 1

‖y‖

)
dx dy

=
1

s3/2

∫
R5

∫
R5

f1(x)f1(y)

‖x‖3‖y‖

{(
1

2
+
‖x‖2

2‖y‖2
+
〈x, y〉2

‖y‖4

)
s+O(s3/2)

}
dx dy =

c√
s

+O(1),

with c > 0. Thus the map s 7→ Hs is integrable at 0, and since it is also
continuous on (0, 1], its integral on this interval is well defined. Since η can
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be taken arbitrarily small in (8.33) and (8.36), in order to finish the proof
it just remains to show that the integral of Hs on (0, 1] is positive.

To this end, note first that β̃1−s := β1 − βs is independent of βs. We use
then (8.31), which implies, with q = E[1/‖β1‖3],

E
[

1

‖βs‖3‖β1‖

]
= E

[
1

‖βs‖3‖βs + β̃1−s‖

]
≥ E

 1

‖βs‖3
√
‖βs‖2 + ‖β̃1−s‖2


=

(5q)2

s3/2

∫ ∞
0

∫ ∞
0

re−
5
2
r2
u4e−

5
2
u2√

sr2 + (1− s)u2
dr du

=
q2

5s3/2

∫ ∞
0

∫ ∞
0

re−
r2

2 u4e−
u2

2√
sr2 + (1− s)u2

dr du.

We split the double integral in two parts, one on the set {sr2 ≤ (1− s)u2},
and the other one on the complementary set {sr2 ≥ (1− s)u2}. Call respec-
tively I1

s and I2
s the integrals on these two sets. For I1

s , (8.32) gives

I1
s ≥

1√
1− s

∫ ∞
0

u3e−
u2

2

∫ √
1−s
s
u

0
re−

r2

2 dr du

− s

2(1− s)3/2

∫ ∞
0

ue−
u2

2

∫ √
1−s
s
u

0
r3e−

r2

2 dr du

=
2(1− s2)√

1− s
+

s2

√
1− s

− s√
1− s

=
2− s− s2

√
1− s

.

For I2
s we simply use the rough bound:

I2
s ≥

1√
2s

∫ ∞
0

∫ ∞
0

e−
r2

2 u4e−
u2

2 1{sr2 ≥ (1− s)u2} dr du,

which entails∫ 1

0

I2
s

s3/2
ds ≥ 1√

2

∫ ∞
0

∫ ∞
0

e−
r2

2 u4e−
u2

2

(∫ 1

u2

u2+r2

1

s2
ds

)
dr du

=
1√
2

(∫ ∞
0

r2e−
r2

2 dr

)2

=
1√
2

(∫ ∞
0

e−
r2

2 dr

)2

=
π

2
√

2
> 1,

where for the last inequality we use
√

2 < 3/2. Note now that

E
[

1

‖βs‖3

]
· E
[

1

‖β1‖

]
=

2q2

5s3/2
,
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and∫ 1

0

I1
s − 2

s3/2
ds ≥

∫ 1

0
s−3/2

{
(2− s− s2)(1 +

s

2
+

3s2

8
)− 2

}
ds

= −
∫ 1

0
(
3

4

√
s+

7

8
s3/2 +

3

8
s5/2) ds = −(

1

2
+

7

20
+

3

28
) = −134

140
> −1.

Altogether this shows that the integral of Hs on (0, 1] is well positive as
wanted. This concludes the proof of the lemma. �

Remark 8.6. The value of H1 can be computed explicitely and one can
check that it is positive. Similarly, by computing the leading order term in
I2
s , we could show that Hs is also positive in a neighborhood of the origin,

but it would be interesting to know whether Hs is positive for all s ∈ (0, 1).

8.4. Proof of Lemma 8.4. We define here

τ1 := inf{n ≥ 0 : S1
n ∈ R[εk, k−εk]}, τ2 := inf{n ≥ 0 : Sk+S

2
n ∈ R[εk, k−εk]},

with S1 and S2 two independent walks, independent of S. As in the previous
lemma, we omit the details of the fact that

Cov(Z0ϕ2, Zkψ2) = ρ2 · Cov(1{τ1 <∞},1{τ2 <∞}) + o

(
1

k

)
.

Then we define N := b(k − 3εk)/εkc and let (τ i1)i=1,...,N be as in the proof
of Lemma 8.3. Define also (τ i2)i=1,...,N analogously. Similarly as before one
can see that

P[τ1 <∞, τ2 <∞] =

N∑
i=1

N∑
j=1

P[τ i1 <∞, τ
j
2 <∞] + o

(
1

k

)
.(8.37)

Note also that for any i and j, with |i− j| ≤ 1, by (2.6) and (2.9),

P[τ i1 <∞, τ
j
2 <∞] = O

(
ε

2(1−δ)
k

k
3/2
i (k − ki)3/2

)
,

so that in (8.37), one can consider only the sum on the indices i and j
satisfying |i − j| ≥ 2. Furthermore, when i < j, the events {τ i1 < ∞} and
{τ j2 <∞} are independent. Thus altogether this gives

Cov(1{τ1 <∞},1{τ2 <∞})

=
N−2∑
i=1

N∑
j=i+2

(
P[τ j1 <∞, τ

i
2 <∞]− P[τ j1 <∞]P[τ i2 <∞]

)
+ o

(
1

k

)
.
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Then by following carefully the same steps as in the proof of the previous
lemma we arrive at

Cov(1{τ1 <∞}, 1{τ2 <∞}) =
c

k

∫ 1

0
H̃t dt+ o

(
1

k

)
,

with c > 0 some positive constant and,

H̃t :=

∫ t

0

(
E
[

1

‖βs − β1‖3 · ‖βt‖3

]
− E

[
1

‖βs − β1‖3

]
· E
[

1

‖βt‖3

])
ds,

at least provided we show first that H̃t it is well defined and that its integral
over [0, 1] is convergent. However, observe that for any t ∈ (0, 1), one has
with q = E[‖β1‖−3],∫ t

0
E
[

1

‖βs − β1‖3

]
· E
[

1

‖βt‖3

]
=

q2

t3/2

∫ t

0

1

(1− s)3/2
ds =

2q2(1−
√

1− t)
t3/2
√

1− t
,

and therefore this part is integrable on [0, 1]. This implies in fact that the
other part in the definition of H̃t is also well defined and integrable, since
we already know that Cov(1{τ1 <∞}, 1{τ2 <∞}) = O(1/k). Thus it only
remains to show that the integral of H̃t on [0, 1] is positive. To this end, we
write βt = βs + γt−s, and β1 = βs + γt−s + δ1−t, with (γu)u≥0 and (δu)u≥0

two independent Brownian motions, independent of β. Furthermore, using
that the map z 7→ 1/‖z‖3 is harmonic outside the origin, we can compute:

I1 := E
[
1{‖βs‖ ≥ ‖γt−s‖ ≥ ‖δ1−t‖}

‖βs − β1‖3 · ‖βt‖3

]
= E

[
1{‖βs‖ ≥ ‖γt−s‖ ≥ ‖δ1−t‖}
‖γt−s + δ1−t‖3 · ‖βs‖3

]
=

5q

s3/2
E

[
1{‖γt−s‖ ≥ ‖δ1−t‖}
‖γt−s + δ1−t‖3

∫ ∞
‖γt−s‖√

s

re−
5
2
r2
dr

]
=

q

s3/2
E
[
1{‖γt−s‖ ≥ ‖δ1−t‖}
‖γt−s + δ1−t‖3

e−
5
2s
‖γt−s‖2

]

=
q

s3/2
E
[
1{‖γt−s‖ ≥ ‖δ1−t‖}

‖γt−s‖3
e−

5
2s
‖γt−s‖2

]
=

5q2

s3/2(t− s)3/2
E

[∫ ∞
‖δ1−t‖√
t−s

re−
5
2
r2(1+ t−s

s
) dr

]

=
q2

√
s(t− s)3/2t

E

[
e
− ‖δ1−t‖

2t

s(t−s)

]
=

5q3

√
s(t− s)3/2t

∫ ∞
0

r4e
− 5

2
r2(1+

t(1−t)
s(t−s) )

dr =
q2s2(t− s)
t∆5/2

,

with
∆ := t(1− t) + s(t− s) = (1− t)(t− s) + s(1− s).
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Likewise,

I2 := E
[
1{‖βs‖ ≥ ‖γt−s‖, ‖δ1−t‖ ≥ ‖γt−s‖}

‖βs − β1‖3 · ‖βt‖3

]
=

q

s3/2
E
[
1{‖γt−s‖ ≤ ‖δ1−t‖}
‖γt−s + δ1−t‖3

e−
5
2s
‖γt−s‖2

]
=

q

s3/2
E
[
1{‖γt−s‖ ≤ ‖δ1−t‖}

‖δ1−t‖3
e−

5
2s
‖γt−s‖2

]
=

5q2

s3/2(1− t)3/2
E

[
e−

5
2s
‖γt−s‖2

∫ ∞
‖γt−s‖√

1−t

re−
5
2
r2
dr

]

=
q2

s3/2(1− t)3/2
E
[
e−

5
2
‖γt−s‖2( 1

s
+ 1

1−t )
]

=
q2s(1− t)

∆5/2
.

Define as well

I3 := E
[
1{‖βs‖ ≤ ‖γt−s‖ ≤ ‖δ1−t‖}

‖βs − β1‖3 · ‖βt‖3

]
,

I4 := E
[
1{‖δ1−t‖ ≤ ‖βs‖ ≤ ‖γt−s‖}

‖βs − β1‖3 · ‖βt‖3

]
, I5 := E

[
1{‖βs‖ ≤ ‖δ1−t‖ ≤ ‖γt−s‖}

‖βs − β1‖3 · ‖βt‖3

]
.

Note that by symmetry one has∫
0≤s≤t≤1

I1 ds dt =

∫
0≤s≤t≤1

I3 ds dt, and

∫
0≤s≤t≤1

I4 ds dt =

∫
0≤s≤t≤1

I5 ds dt.

Observe also that,

I1 + I2 =
q2s

t∆3/2
.

Moreover, using symmetry again, we can see that∫ t

0

s− t/2
∆3/2

ds = 0,

and thus ∫ t

0
(I1 + I2) ds =

q2

2

∫ t

0

1

∆3/2
ds.

Likewise,∫
0≤s≤t≤1

I1 ds dt =

∫
0≤s≤t≤1

q2s(t− s)2

t∆5/2
ds dt =

1

2

∫
0≤s≤t≤1

q2s(t− s)
∆5/2

ds dt

=

∫
0≤s≤t≤1

q2(1− t)(t− s)
2∆5/2

ds dt =

∫
0≤s≤t≤1

q2t(1− t)
4∆5/2

ds dt =

∫
0≤s≤t≤1

q2

6∆3/2
ds dt.

It follows that∫
0≤s≤t≤1

(I1 + I2 + I3) ds dt =
2q2

3

∫
0≤s≤t≤1

∆−3/2 ds dt.
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We consider now the term I4, which is a bit more complicated to compute,
thus we only give a lower bound on a suitable interval. To be more precise,
we first define for r ≥ 0 and λ ≥ 0,

F (r) :=

∫ r

0
s4e−5s2/2 ds, and F2(λ, r) :=

∫ r

0
F (λs)s4e−5s2/2 ds,

and then we write,

I4 = E
[
1{‖δ1−t‖ ≤ ‖βs‖ ≤ ‖γt−s‖}

‖γt−s‖6

]
= 5q · E

[
1{‖βs‖ ≤ ‖γt−s‖}

‖γt−s‖6
F

(
‖βs‖√
1− t

)]

=E
[

(5q)2

‖γt−s‖6
F2

( √
s√

1− t
,
‖γt−s‖√

s

)]
=

(5q)3

(t− s)3

∫ ∞
0

e−
5r2

2

r2
F2

( √
s√

1− t
, r

√
t− s√
s

)
dr

=
(5q)3

(t− s)3

{√
t− s√
s

∫ ∞
0

F

(
r

√
t− s√
1− t

)
r3e−

5r2

2 dr − 5

∫ ∞
0

F2

( √
s√

1− t
, r

√
t− s√
s

)
e−

5r2

2 dr

}
≥ (5q)3

(t− s)3

{
(t− s)

3
2

s3/2

∫ ∞
0

F

(
r

√
t− s√
1− t

)
r3e−

5r2t
2s dr +

(2s− t)
√
t− s

s3/2

∫ ∞
0

F

(
r

√
t− s√
1− t

)
r3e−

5r2

2 dr

}
,

using that

F2(λ, r) ≤ 1

5
r3F (λr)(1− e−5r2/2).

Therefore, if t/2 ≤ s ≤ t,

I4 ≥
(5q)3

[s(t− s)]3/2

∫ ∞
0

r3F

(
r

√
t− s√
1− t

)
e−

5r2t
2s dr

=
(5q)3√s

t2(t− s)3/2

∫ ∞
0

r3F

(
r

√
s(t− s)√
t(1− t)

)
e−5r2/2 dr

≥ 2 · 52q3√s
t2(t− s)3/2

∫ ∞
0

F

(
r

√
s(t− s)√
t(1− t)

)
re−

5r2

2 dr =
2 · 5q3s3(t− s)
t2[t(1− t)]5/2

∫ ∞
0

r4e
− 5r2∆

2t(1−t) dr

=
2q2s3(t− s)
t2∆5/2

≥ q2s(t− s)
2∆5/2

,

and as a consequence,∫
0≤s≤t≤1

I4 ds dt ≥
∫
t/2≤s≤t≤1

I4 ds dt ≥
q2

2

∫
t/2≤s≤t≤1

s(t− s)
∆5/2

ds dt

=
q2

4

∫
0≤s≤t≤1

s(t− s)
∆5/2

ds dt =
q2

12

∫
0≤s≤t≤1

∆−3/2 ds dt.
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Putting all these estimates together yields∫
0≤s≤t≤1

E
[

1

‖βs − β1‖3 · ‖βt‖3

]
ds dt =

5∑
k=1

∫
0≤s≤t≤1

Ik ds dt ≥
5

6

∫
0≤s≤t≤1

∆−3/2 ds dt.

Thus it just remains to show that∫
0≤s≤t≤1

∆−3/2 ds dt ≥ 6

5

∫
0≤s≤t≤1

∆̃−3/2 ds dt,(8.38)

where ∆̃ := t(1 − s). Note that ∆ = ∆̃ + (t − s)2. Recall also that for any
α ∈ R, and any x ∈ (−1, 1),

(1 + x)α = 1 +
∑
i≥1

α(α− 1) . . . (α− i+ 1)

i!
xi.(8.39)

Thus

1

∆3/2
=

1

∆̃3/2

1 +
∑
k≥1

(3/2)(5/2) . . . (k + 1/2)

k!
· (t− s)2k

∆̃k

 .

One needs now to compute the coefficients Ck defined by

Ck :=
(3/2)(5/2) . . . (k + 1/2)

k!

∫
0≤s≤t≤1

(t− s)2k

∆̃k+3/2
ds dt.

We claim that one has for any k ≥ 0,

Ck =
22k+2

2k + 1
(−1)kΣk,(8.40)

with Σ0 = 1, and for k ≥ 1,

Σk = 1 +

2k∑
i=1

(−1)i
(k + 1/2)(k − 1/2) . . . (k − i+ 3/2)

i!
.

We will prove this formula in a moment, but let us conclude the proof of
the lemma first, assuming it is true. Straightforward computations show by
(8.40) that

C0 = 4, C1 =
2

3
, and C2 =

3

10
,

and C0 + C1 + C2 ≥ 6C0/5, gives (8.38) as wanted.
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So let us prove (8.40) now. Note that one can assume k ≥ 1, as the result
for k = 0 is immediate. By (8.39), one has

(1− s)−k−3/2 = 1 +
∑
i≥1

(k + 3/2)(k + 5/2) . . . (k + i+ 1/2)

i!
si.

Thus by integrating by parts, we get∫ t

0

(t− s)2k

(1− s)k+3/2
ds = (2k)!

∑
i≥0

(k + 3/2) . . . (k + i+ 1/2)

(2k + i+ 1)!
· t2k+i+1,

and then∫ 1

0

∫ t

0

(t− s)2k

tk+3/2(1− s)k+3/2
ds dt = (2k)!

∑
i≥0

(k + 3/2) . . . (k + i− 1/2)

(2k + i+ 1)!
.

As a consequence,

Ck =
(2k)!

k!

∑
i≥0

(3/2)(5/2) . . . (k + i− 1/2)

(2k + i+ 1)!

=
(2k)!

(k + 1/2)(k − 1/2) . . . (3/2)(1/2)2 · k!

∑
i≥0

|(k + 1/2)(k − 1/2) . . . (−k − i+ 1/2)|
(2k + i+ 1)!

=
22k+2

2k + 1

∑
i≥0

|(k + 1/2)(k − 1/2) . . . (−k − i+ 1/2)|
(2k + i+ 1)!

,

and it just remains to observe that the last sum is well equal to Σk. The
latter is obtained by taking the limit as t goes to 1 in the formula (8.39) for
(1− t)k+1/2. This concludes the proof of Lemma 8.4. �

Remark 8.7. It would be interesting to show that the covariance be-
tween 1/‖βs − β1‖3 and 1/‖βt‖3 itself is positive for all 0 ≤ s ≤ t ≤ 1, and
not just its integral, as we have just shown.

9. Proof of Theorem B. The proof of Theorem B is based on the
Lindeberg-Feller theorem for triangular arrays, that we recall for convenience
(see Theorem 3.4.5 in [Dur10]):

Theorem 9.1 (Lindeberg-Feller). For each n let (Xn,i : 1 ≤ i ≤ n) be
a collection of independent random variables with zero mean. Suppose that
the following two conditions are satisfied
(i)
∑n

i=1 E[X2
n,i]→ σ2 > 0 as n→∞, and

(ii)
∑n

i=1 E
[
(Xn,i)

21{|Xn,i| > ε}
]
→ 0, as n→∞, for all ε > 0.

Then, Sn = Xn,1 + . . .+Xn,n =⇒ N (0, σ2), as n→∞.
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In order to apply this result, one needs three ingredients. The first one is
an asymptotic estimate for the variance of the capacity of the range, which
is given by our Theorem A. The second ingredient is a decomposition of the
capacity of two sets as a sum of the capacities of the two sets minus some
error term, in the spirit of the inclusion-exclusion formula for the cardinality
of a set, which allows to decompose the capacity of the range up to time n
into a sum of independent pieces having the law of the capacity of the range
up to a smaller time index, and finally the last ingredient is a sufficiently
good bound on the centered fourth moment.

This strategy has been already employed successfully for the capacity of
the range in dimension six and more in [ASS18] (and for the size of the
range as well, see [JO69, JP71]). In this case the asymptotic of the variance
followed simply from a sub-additivity argument, but the last two ingredients
are entirely similar in dimension 5 and in higher dimension. In particular
one has the following decomposition (see Proposition 1.6 in [ASS19]): for
any two subsets A,B ⊂ Zd, d ≥ 3,

Cap(A ∪B) = Cap(A) + Cap(B)− χ(A,B),(9.1)

where χ(A,B) is some error term. Its precise expression is not so important
here. All one needs to know is that

|χ(A,B)| ≤ 3
∑
x∈A

∑
y∈B

G(x, y),

so that by [ASS18, Lemma 3.2], if Rn and R̃n are the ranges of two inde-
pendent walks in Z5, then

E[χ(Rn, R̃n)4] = O(n2).(9.2)

We note that the result is shown for the simple random walk only in [ASS18],
but the proof applies as well to our setting (in particular Lemma 3.1 thereof
also follows from (2.9)). Now as noticed already by Le Gall in his paper
[LG86] (see his remark (iii) p.503), a good bound on the centered fourth
moment follows from (9.1) and (9.2), and the triangle inequality in L4. More
precisely in dimension 5, one obtains (see for instance the proof of Lemma
4.2 in [ASS18] for some more details):

E
[
(Cap(Rn)− E[Cap(Rn)])4

]
= O(n2(log n)4).(9.3)

Actually we would even obtain the slightly better boundO(n2(log n)2), using
our new bound on the variance Var(Cap(Rn)) = O(n log n), but this is not
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needed here. Using next a dyadic decomposition of n, one can write with
T := bn/(log n)4c,

Cap(Rn) =

bn/T c∑
i=0

Cap(R(i)
T )−Rn,(9.4)

where the (R(i)
T )i=0,...,n/T are independent pieces of the range of length either

T or T + 1, and

Rn =
L∑
`=1

2`−1∑
i=0

χ(R(2i)

n/2`
,R(2i+1)

n/2`
),

is a triangular array of error terms (with L = log2(log n)4). Then it follows
from (9.2), that

Var(Rn) ≤ L
L∑
`=1

Var

2`−1∑
i=1

χ(R(2i)

n/2`
,R(2i+1)

n/2`
)

 ≤ L L∑
`=1

2`−1∑
i=1

Var
(
χ(R(2i)

n/2`
,R(2i+1)

n/2`
)
)

= O(L2n) = O(n(log log n)2).

In particular (Rn−E[Rn])/
√
n log n converges in probability to 0. Thus one

is just led to show the convergence in law of the remaining sum in (9.4). For
this, one can apply Theorem 9.1, with

Xn,i :=
Cap(R(i)

T )− E
[
Cap(R(i)

T )
]

√
n log n

.

Indeed, Condition (i) of the theorem follows from Theorem A, and Condition
(ii) follows from (9.3) and Markov’s inequality (more details can be found
in [ASS18]). This concludes the proof of Theorem B. �
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range. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), 1080–1092.

[BY19] N. Berestycki, A. Yadin. Condensation of random walks and the Wulff crystal.
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