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Capacity of the range in dimension 5

Bruno Schapira*

Abstract

We prove a Central limit theorem for the capacity of the range of a symmetric random walk
on Z°, under only a moment condition on the step distribution. The result is analogous to the
central limit theorem for the size of the range in dimension three, obtained by Jain and Pruitt
in 1971. In particular an atypical logarithmic correction appears in the scaling of the variance.
The proof is based on new asymptotic estimates, which hold in any dimension d > 5, for the
probability that the ranges of two independent random walks intersect. The latter are then used
for computing covariances of some intersection events, at the leading order.

Keywords and phrases. Random Walk, Range, Capacity, Central Limit Theorem, Intersec-
tion of random walk ranges.
MSC 2010 subject classifications. 60F05; 60G50; 60J45.

1 Introduction

Consider a random walk (.S),),>0 on 7%, that is a process of the form S, = So+ X1 +- - -+ X,,, where
the (X;)i>1 are independent and identically distributed. A general question is to understand the
geometric properties of its range, that is the random set R,, := {Sp, ..., Sy}, and more specifically
to analyze its large scale limiting behavior as the time n is growing. In their pioneering work,
Dvoretzky and Erdés [DE5S1] proved a strong law of large numbers for the number of distinct sites
in Ry, in any dimension d > 1. Later a central limit theorem was obtained first by Jain and Orey
[JOG69] in dimensions d > 5, then by Jain and Pruitt [JP71] in dimension 3 and more, and finally by
Le Gall [LG86] in dimension 2, under fairly general hypotheses on the common law of the (X;)i>1.
Furthermore, a lot of activity has been focused on analyzing the large and moderate deviations,
which we will not discuss here.

More recently some papers were concerned with other functionals of the range, including its entropy
[BKYY10], and its boundary [AS17, BKYY10, BY19, DGKI18, [Ok16]. Here we will be interested
in another natural way to measure the size of the range, which also captures some properties of its
shape. Namely we will consider its Newtonian capacity, defined for a finite subset A C Z%, as

Cap(A) := Y P,[H} = od], (1.1)
TEA

where P, is the law of the walk starting from x, and HZ denotes the first return time to A (see
below). Actually the first study of the capacity of the range goes back to the earlier work by Jain
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and Orey [JOG69], who proved a law of large numbers in any dimension d > 3; and more precisely
that almost surely, as n — oo,

1
~Cap(Ru) = 7 (1.2)

for some constant 74, which is nonzero if and only if d > 5 — the latter observation being actually
directly related to the fact that it is only in dimension 5 and higher that two independent ranges have
a positive probability not to intersect each other. However, until very recently to our knowledge
there were no other work on the capacity of the range, even though the results of Lawler on
the intersection of random walks incidentally gave a sharp asymptotic behavior of the mean in
dimension four, see [Law91].

In a series of recent papers [C17, [ASS18, [ASS19], the central limit theorem has been established
for the simple random walk in any dimension d > 3, except for the case of dimension 5, which
remained unsolved so far. The main goal of this paper is to fill this gap, but in the mean time we
obtain general results on the probability that the ranges of two independent walks intersect, which
might be of independent interest. We furthermore obtain estimates for the covariances between
such events, which is arguably one of the main novelty of our work; but we shall come back on this
point a bit later.

Our hypotheses on the random walk are quite general: we only require that the distribution of
the (X;);>1 is a symmetric and irreducible probability measureﬂ on Z% which has a finite d-th
moment?] Under these hypotheses our first result is the following.

Theorem A. Assume d =5. There exists a constant o > 0, such that as n — oo,

Var(Cap(R,)) ~ o2 nlogn.

We then deduce a central limit theorem.

Theorem B. Assume d = 5. Then,

Cap(R,) — 51 (:ﬁ)>
0,1).
ov/nlogn n—00 N(0.1)

As already mentioned, along the proof we also obtain a precise asymptotic estimate for the prob-
ability that the ranges of two independent walks starting from far away intersect. Previously to
our knowledge only the order of magnitude up to multiplicative constants had been established,
see [Law91]. Since our proof works the same in any dimension d > 5, we state our result in this
general setting. Recall that to each random walk one can associate a norm (see below for a formal
definition), which we denote here by J(-) (in particular in the case of the simple random walk it
coincides with the Euclidean norm).

Theorem C. Assume d > 5. Let S and S be two independent random walks starting from the
origin (with the same distribution). There exists a constant ¢ > 0, such that as ||z| — oo,

C
j(ﬂj)d_4 ’
!'symmetric means that for all z € Z%, P[X; = 2] = P[X; = —z], and irreducible means that for all z, P[S,, = z] > 0,

for some n > 1.
2this means that E[|| X1||%] < co, with || - || the Euclidean norm.

P[Rmm(xwioo);e@} ~




In fact we obtain a stronger and more general result. Indeed, first we get some control on the
second order term, and show that it is O(||z|*~¢~), for some constant v > 0. Moreover, we also
consider some functionals of the position of one of the two walks at its hitting time of the other
range. More precisely, we obtain asymptotic estimates for quantities of the form

E[F(S;)1{T < oo}],
with 7 the hitting time of the range x + ﬁoo, for functions F' satisfying some regularity property,
see (7.1)). In particular, it applies to functions of the form F(z) =1/J(x)%, for any « € [0, 1], for
which we obtain that for some constants v > 0, and ¢ > 0,

1{T < oo} c dod—
E = @) < x||*7¢ ”) .
7]~ T o (i

Moreover, the same kind of estimates is obtained when one considers rather 7 as the hitting time
of x + R|0, /], with ¢ a finite integer. These results are then used to derive asymptotic estimates

for covariances of hitting events in the following four situations: let S, S', S?, and S3, be four
independent random walks on Z°, all starting from the origin and consider either

(i) A={RL NR[k,0) # 2}, and B={R% N(S,+R3)+# I}, or
(ii) A={R NR[k,00) # @}, and B ={(Skp+R2)NR[k+1,00)# 2}, or
(iii) A={R.L NR[k,0) # @}, and B ={(Sp+R%)NR[0,k—1]# @}, or

[
[
[
(iv) A={RLNR[, k] # @}, and B={(S,+R%)NR0,k— 1] # 2}.
In all these cases, we show that for some constant ¢ > 0 (different in each case), as k — oo,
c

Cov(A,B) ~ T
Case (7) is the easiest, and follows directly from Theorem C, since actually one can see that in this
case both P[ANB] and P[A]-P[B] are asymptotically equivalent to a constant times the inverse of k.
However, the other cases are more intricate, partly due to some cancellations that occur between
the two terms, which taken separately are both of order 1/ Vk. In these cases, we rely on the
extensions of Theorem C, that we just mentioned above. More precisely in case (i7) we rely on the
general result applied with the functions F'(z) = 1/||z||, and its convolution with the distribution
of Sk, while in cases (ii7) and (iv) we use the extension to hitting times of finite windows of the
range. We stress also that the positivity of the constants ¢ here are not at all obvious, and require
some substantial work, especially in case (iv), where it relies on showing that

1 1 1
feoees Clim=m) ~Elm=aw ] E L] ) >

with (B4)u>0 a standard Brownian motion in R?.

The paper is organized as follows. The next section is devoted to preliminaries, in particular we
fix the main notation, recall known results on the transition kernel and the Green’s function, and
derive some basic estimates. In Section 3 we give the plan of the proof of Theorem A, which is cut
into a number of intermediate results: Propositions [3.3H3.7l Propositions [3.3H3.6| are then proved
in Sections 4-6. The last one, which is also the most delicate one, requires Theorem C and its
extensions. Its proof is therefore postponed to Section 8, while we first prove our general results on
the intersection of two independent ranges in Section 7. We note that this last section is written
in the general setting of random walks on Z?, for any d > 5, and it can be read independently of
the rest of the paper. Finally Section 9 is devoted to the proof of Theorem B, which is done by
following a relatively well-established general scheme, based on the Lindeberg-Feller theorem for
triangular arrays.



2 Preliminaries

2.1 Notation

We recall that we assume the law of the (X;);>1 to be a symmetric and irreducible probability
measure on Z%, d > 5, with a finite d-th moment. The walk is called aperiodic if the probability
to be at the origin at time n is nonzero for all n large enough, and it is called bipartite if this
probability is nonzero only when n is even. Note that only these two cases may appear for a
symmetric random walk.

Recall also that for z € Z%, we denote by P, the law of the walk starting from Sy = x. When z = 0,
we simply write it as P. We denote its total range as Roo := {Sk }r>0, and for 0 < k < n < +o0,
set Rlk,n| :=={Sk,...,Sn}.

For an integer k£ > 2, the law of k independent random walks (with the same step distribution)

starting from some x1,...,z; € Z°, is denoted by Ps, ...z, and as for a single walk, we simply
denote it by IP when they all start from the origin.
We define

Hy:=inf{n>0 : S,€ A}, and H}:=inf{n>1: S, € A},

respectively for the hitting time and first return time to a subset A C Z%, that we abbreviate
respectively as H, and H; when A is a singleton {z}.

We let ||z|| be the Euclidean norm of z € Z%. If X; has covariance matrix I' = AA!, we define its
associated norm as

T @)= o T2 = A 1l
and set J(z) = d~Y27*(z) (see [LLI0] p.4 for more details).

For a and b some nonnegative reals, we let a A b := min(a,b) and a V b := max(a,b). We use the
letters ¢ and C to denote constants, whose values might change from line to line. We also use
standard notation for the comparison of functions: we write f = O(g), if there exists a constant
C > 0, such that f(z) < Cg(x), for all x. Likewise, f = o(g) means that f/g — 0, and f ~ g
means that f and g are equivalent, that is if |f — g| = o(f). Finally we write f < g, when both

f=0(g), and g = O(f).

2.2 Transition kernel and Green’s function

We denote by p,,(z) the probability that a random walk starting from the origin ends up at position
r € Z% after n steps, that is p,(z) := P[S, = x|, and note that for any z,y € Z¢, one has
P, [Sn = y] = pn(y — ). Recall the definitions of I and J* from the previous subsection, and define

B, (2) 1 _J*2<x)2 (2.1)
P, (x) = e no. .
" (27rn)%/2+/det T

The first tool we shall need is a local central limit theorem, roughly saying that p,(z) is well
approximated by P, (), under appropriate hypotheses. Such result has a long history, see in
particular the standard books by Feller [Fe71] and Spitzer [Spi76]. We refer here to the more recent
book of Lawler and Limic [LLIO], and more precisely to their Theorem 2.3.5 in the case of an
aperiodic random walk, and to (the proof of) their Theorem 2.1.3 in the case of bipartite walks,
which provide the result we need under minimal hypotheses (in particular it only requires a finite
fourth-moment for || X1|]).




Theorem 2.1 (Local Central Limit Theorem). There exists a constant C > 0, such that for
allm > 1, and all x € 72,

_ C
‘pn(x) —Pp(7)] < Wa

in the case of an aperiodic walk, and for bipartite walks,

B C
|Pn () + ppy1(x) — 2P, ()] < @

In addition, under our hypotheses (in particular assuming E[||X1]|¢] < co), there exists a constant
C > 0, such that for any n > 1 and any x € Z? (see Proposition 2.4.6 in [LLI10]),

n~4? i |z| < n
<(C- - ’ .
pnl) =€ { lall=® i [le]] > V. 22
It is also known (see the proof of Proposition 2.4.6 in [LLI0]) that
E[||Sa]1] = O(n?/?). (2:3)

Together with the reflection principle (see Proposition 1.6.2 in [LL10]), and Markov’s inequality,
this gives that for any n > 1 and r > 1,

P [ max || Syl > r} <C- (\f)d (2.4)

0<k<n

Now we define for £ > 0,

Go(z) := an(:v)

n>/¢

The Green’s function corresponds to the case £ = 0, and will also be simply denoted as G(z). A
union bound gives

Plz € R[¢,0)] < Gy(z). (2.5)
Moreover, by (2.2)) there exists a constant C' > 0, such that for any 2 € Z¢, and £ > 0,
C
Gg(x) < s . (2.6)

Szl e 41

It follows from this bound (together with the corresponding lower bound G(z) > c||x||*~¢, which

can be deduced from Theorem , and the fact that G is harmonic on Z¢\ {0}, that the hitting
probability of a ball is bounded as follows (see the proof of [LLI0, Proposition 6.4.2]):

Td72

P, [n, < =0 ———
i < o] <1+||m|d—2

) , with 7, :=inf{n >0 : ||S,] <r}. (2.7)
We shall need as well some control on the overshoot. We state the result we need as a lemma and
provide a short proof for the sake of completeness.

Lemma 2.2 (Overshoot Lemma). There exists a constant C' > 0, such that for all v > 1, and

all x € 74, with ||z| > r,

C
P < oo, |9, £7/2) £ ————.
x[nr || 'r|| / ] 1+ ||.fL'”d72



Proof. We closely follow the proof of Lemma 5.1.9 in [LLI0]. Note first that one can alway assume
that r is large enough, for otherwise the result follows from (2.7). Then define for k > 0,

Nr
Y=Y Mr+k<|[Spll <7+ (k+1)}

n=0
Let

gl k) =EulYi] =D Pulr+k < |Sall v+ k+1,n <l
n=0

One has

Polny < 00, Syl < 7/2] =Y Pulny =n+1, 1Sy, |l < 7/2]

n=0

=S S Pulne = A L (1S, S 7/2, r 4k < Sl <7k 1]
n=0 k=0

0o oo
r
k=0 n=0

3ol )P [BAEETE

oK) Y PG HE< X <5+ e]
=k

M T

P[gws 1X1]| < g+e+1} kzz:og(x,k).

~
Il
o

Now Theorem [2.1| shows that one has P,[||.Syz|| < 7] > p, for some constant p > 0, which is uniform
in 7 (large enough), £ > 1, and r < ||z|| < r 4 £. It follows, exactly as in the proof of Lemma 5.1.9
from [LLI0], that for any ¢ > 1,

max Z g(z, k) <

<
l=ll<r+€ ) Tz

>

Using in addition (2.7)), we get with the Markov property,

(r+£)1=2

~ 2
1 [|f|*=2

> gl@k)y<C

0<k<t

for some constant C' > 0. As a consequence one has

C > r r
P,ln, < oo, |S, | <r/2] < — = P[f e<IXil< S 40 1] 0)32(0 4 1)2
sl < oo, | rll_r/]_H”x”“§ s HESIX] <G +e+1] (r+ )T +1)

C C
<7E[Xd_2X —r/2)21{||X >r2]<7,
< e A2 = /2P0 2 /2] €

since by hypothesis, the d-th moment of X is finite. O



2.3 Basic tools

We prove here some elementary facts, which will be needed throughout the paper, and which are
immediate consequences of the results from the previous subsection.

Lemma 2.3. There exists a constant C > 0, such that for all x € Z%, and ¢ > 0,

C
244+ £

D Gi(2)G(z— =) <

Proof. Assume first that £ = 0. Then by (2.6]), for some constant C' > 0,

|l z—a) <12l

>2
z l[zl>2]]

z€2% lIzl<2fj]l

< ¢
R

Assume next that £ > 1. We distinguish two cases: if ||z|| < v/, then by using (2.6) again we
deduce,

C 1 C
ZGK Zﬁx)—m' Z - ||d2+c Z E ||2d2S P
z€Z4 ||zH§2\[ l|=l>2ve
When ||z]| > V¢, the result follows from the case £ = 0, since Gy(z) < G(z), for any £ > 0. O
Lemma 2.4. One has,
1
sup E[G(S, —2)] =0 <H> , (2.8)
zezZd nz
and for any o € [0,d),
1 1
sipE | ————— | =0 ———— | . 2.9
o= 5= =© (57) 29

Moreover, when d =5,

(Sas)) | =0 (;) . (2.10)

n>k

Proof. For (2.8), we proceed similarly as in the proof of Lemma If ||z|| < y/n, one has using

and 23)

1 2-d
E[G(S), — x)] an Glz—xz)=0 i Z P _x”d2+ Z Iz ”2d2 =0(n2),

z€zs IIZHS2f l[zl>2v/n

while if [|z] > \/n, we get as well

1 1 2-d
BC -0 =0m X gt X ) 0w
lzII<v/n/2 lzI>+/n/2

C

C 1 1
G(2)G(z — 1) < ————— — — —
> GG —x) < 1+ [|z[@2 > 1+ ||z]]92 + D 1+ ||z — af|d2 + ) 11 [[2]20@2)



Considering now ([2.9), we write

E 1 < C I Z Pn(2)
L+ 1Sy —zl|*] = 1+ [zl 1+ ||z — =
lz—zl|<[|z]l/2

(2.2) C C 1 1
= L+ HO‘+1+H | Z L+ lz - HO‘:O(lJrH IIC“)'
“ R T e A R *

Finally for (2.10]), one has when d = 5,

(S es) | =X 6@ewE | Y 1(S, = 2.5, = v)

n>k Ty n,m>k
<23 600 T T nelnty ) =23 GO~
Ty n>k £>0
Lemmam . ( )
= @)
<Z R ) k
using the Markov property at the second line. O

The next result deals with the probability that two independent ranges intersect. Despite its proof
is a rather straightforward consequence of the previous results, it already provides upper bounds
of the right order (only off by a multiplicative constant).

Lemma 2.5. Let S and S be two independent walks starting respectively from the origin and some
x € Z%. Let also £ and m be two given nonnegative integers (possibly infinite for m). Define

=inf{n >0 : S, € R[(,{+m]}.
Then, for any function F : 7Z¢ — R,

l+m
Eoo[1{r < 0o} F(S;)] < > E[G(S; — 2)F(S;)]. (2.11)
=L
In particular, uniformly in £ and m,
1
Pg . = —_— . 2.12
o< 1= () 212

Moreover, uniformly in x € Z¢,

0 m-E%) ifm < oo
P07x[7'<00]: 47d>

o 55 (2.13)

if m = oo.

Proof. The first statement follows from ([2.5)). Indeed using this, and the independence between S
and S, we deduce that

+

{+m l+m
Eoo[1{T < 00}F(S;)] < > Eou[1{Si € R} F(S)] < E[G(S; — 2)F(S;)]-

=0 i

For (2.12)), note first that it suffices to consider the case When ¢ =0 and m = oo, as otherwise the
probability is just smaller. Taking now F =1in , and using Lemma gives the result.

Similarly - 2.13)) directly follows from and . O

B
(@1

I
~



3 Scheme of proof of Theorem A

3.1 A last passage decomposition for the capacity of the range

We provide here a last passage decomposition for the capacity of the range, in the same fashion as
the well-known decomposition for the size of the range, which goes back to the seminal paper by
Dvoretzky and Erdés [DE51], and which was also used by Jain and Pruitt [JP71] for their proof of
the central limit theorem. We note that Jain and Orey [JOG9] used as well a similar decomposition
in their analysis of the capacity of the range (in fact they used instead a first passage decomposition).

So let (Sy,)n>0 be some random walk starting from the origin, and for 0 < k < n, set
op = Pg, [Hf = 00| Ral,
and
Zp =1{Sp # Sy, forall ¢t =k +1,...,n}.

By definition of the capacity (1.1)), one can write by recording the sites of R,, according to their
last visit,

Cap(Ra) = ) Z - .
k=0

Now a first simplification is to remove the dependance in n in each of the terms in the sum. To
do this, we need some additional notation: we consider (Sy,),ecz a two-sided random walk starting
from the origin (that is (S, )n>0 and (S—_y)n>0 are two independent walks starting from the origin),
and denote its total range by Roo := { S, tnez. Then for k > 0, let

(P(k) = ]P)Sk [H%Oo =00 | (Sn)nEZ]7
and
Z(k) := 1{Sp # Sk, for all £ > k + 1}.

We note that ¢(k) can be zero with nonzero probability, but that E[o(k)] # 0 (see the proof of
Theorem 6.5.10 in |[LL10]). We then define

Coi=_ Z(k)p(k), and W, = Cap(Ry) — Cn.
k=0

We will prove in a moment the following estimate.

Lemma 3.1. One has
E[W7] = O(n).

Given this result, Theorem A reduces to an estimate of the variance of C,. To this end, we first
observe that

Var(Cp) =2 Y Cov(Z(0)p(l), Z(k)p(k)) + O(n).
0<l<k<n

Furthermore, by translation invariance, for any ¢ < k,
Cov(Z(0)p(0), Z(k)p(k)) = Cov(Z(0)¢(0), Z(k — O)p(k — 1)),
so that in fact

n £
Var(Cn) =2 ) Cov(Z(0)p(0), Z(k)e(k)) + O(n).
(=1 k=1
Thus Theorem A is a direct consequence of the following theorem.



Theorem 3.2. There exists a constant ¢ > 0, such that

Cov(Z(0)(0), Z(k)p (k) ~ o

This result is the core of the paper, and uses in particular Theorem C (in fact some more general
statement, see Theorem [7.1). More details about its proof will be given in the next subsection, but
first we show that W, is negligible by giving the proof of Lemma [3.1

Proof of Lemma[3.1. Note that W,, = W, 1 + W, 2, with

n n

Wai =Y (ZF = Z(k)¢h, and Wua = (¢} —o(k)Z (k).
k=0 k=0

Consider first the term W,, ; which is the easiest of the two. Observe that Z;'! — Z(k) is nonnegative
and bounded by the indicator function of the event {S}, € R[n+1,00)}. Bounding also ¢} by one,
we get

> El(Z} — 2(0)(Z} — Z(k)))

0 k=0

NE

EW;,] <

~

3

NE

P[Sy € Rln+1,00), S € R[n+ 1,00)].

b
Il

=0 k=0

Then noting that (Sp4+1-% — Sn+1)k>0 and (Sp414% — Sn+t1)k>0 are two independent random walks
starting from the origin, we obtain

n+1n+1

EWz,] <> ) P[Hs, < 00, Hg, < o
(=1 k=1
n+1n+1

< 2221@[}[&Z < Hg, < 0]
{=1 k=1

<2 ) P[Hs, < Hg, < oo +P[Hg, < Hs, < o).
1<l<k<n+1

Using next the Markov property and (2.5), we get with S and S two independent random walks
starting from the origin,

EWr) <2 >, E[G(S)G(Sk = S0)] + E[G(Sk)G(Sk — Su)]
1<t<k<n+1
n+l n
<23 STEG(S0)] - EIG(Sk)] + EIG(Se + Sk)G(Sk)]
=1 k=0
2

<4 sup Y E[G+ 50) o(1).
CEEZ5 ZZO

We proceed similarly with W, . Observe first that for any £ > 0,

0 <@ — (k) <Ps, [Hr(—0,0) < 00 | ST+ Ps, [HR[pn,oc) < 00 | S].

10



Furthermore, for any 0 < ¢ < k < n, the two terms Pg,[Hr (o0 < 00 | S] and Pg, [Hr[p,00) < o |
S] are independent. Therefore,

Wil <D0 El(e] —o(0) (e} — (k)]

(=0 k=0

n 2
<2 (ZP [HRjto0) < oo]) +4 > PRI N(Se+RY) # @, RN (Sk+R%) # 2], (3.1)

£=0 0<e<k<n

where in the last term R, R%, and R2, are the ranges of three (one-sided) independent walks,
independent of (S, )n>0, starting from the origin (denoting here (S_n)n>0 as another walk (S2),,>0).
Now already shows that the first term on the right hand side of (3.1]) is O(n). For the second
one, note that for any 0 < ¢ < k < n, one has

PR3, N (Se+RE) # @, RE, N (Sk +RE) # 2] <E[|R3, N (Se+RL)|- R N (S +R)|]
=E [E[|R3, N (Se + R | S, S*]-E[[R3, N (Sk +RZL)| | S, 57

Dy (> Gesi—sn) (ZGS3 D) | =B (X GSn—se0) - (D Gsw)

m>0 m>k m>k
1/2 1/2
2 2 210) 1
(Zoww)| =|(Zoen)| Fo(rm)

using invariance by time reversal at the penultimate line, and Cauchy-Schwarz at the last one. This
concludes the proof of the lemma. O

3.2 Scheme of proof of Theorem

We provide here some decomposition of ¢(0) and 1(0) into a sum of terms involving intersection
and non-intersection probabilities of different parts of the path (.S, )nez. For this, we consider some
sequence of integers (ey)r>1 satisfying k > 2¢, for all k£ > 3, and whose value will be fixed later.
A first step in our analysis is to reduce the influence of the random variables Z(0) and Z(k), which
play a very minor role in the whole proof. Thus we define

Zo:=1{Sy #0, forall ¢ =1,...,ex}, and Zy:=1{Sp# Sk, forall{=k+1,... . k+ex}.

Note that these notation are slightly misleading (as in fact Zy and Zj depend on e, but this shall
hopefully not cause any confusion). One has

(2-5) - -
E[|Z(0) — Zo|] = P[0 € Rlex + 1,00)] < G, (0) O(e;, 3/2)7
and the same estimate holds for E[|Z (k) — Zj|], by the Markov property. Therefore,

Cov(Z(0)(0), Z(k)p(k)) = Cov(Zow(0), Zrp(k)) + O(e /).

Then recall that we consider a two-sided walk (S),)necz, and that ¢(0) = IP)[H,E( s0,00) = | S].
Thus one can decompose ¢(0) as follows:

©(0) = o — w1 — @2 — w3+ Y12+ Y13+ Y23 — V123

11



with
po =PlHY i =00|S], ¢ :=PH}

R(—oor—e—1] < 0 Hp_\ oy =001 S],
p2 = PIHY g <oo, H o y=00|8], w3=PH, | <o, Hf _ =00l
Y12 = P[H;&fooﬁsk ) < 00, HR[E 1 <00 HR[ eren] = P | 5],
013 = P[H’I—g(foo,fek ) < 00, HR[kJr1 00) < 00, HR[ epen] = P | ST,
P23 1= P[H§[6k+1,k] < 00, HR[k+1, ) <9, HR[ erer] = 1 S]
and
P123 = P[H’E(—oo,—sk ) <00, HR[e w1k <00 HR[kH 00) < 09 HE[ cper] = | S].

We decompose similarly

o(k) =0 — Y1 — Y2 — Y3+ Y12+ V13 + V23 — Y123,

where index 0 refers to the event of avoiding R[k — ek, k + £i], index 1 to the event of hitting
R(—00, —1], index 2 to the event of hitting R[0,k — ¢, — 1] and index 3 to the event of hitting

Rlk + e + 1,00) (for a walk starting from Sy this time). Note that ¢ and 1 are independent.
Then write

3 3
Cov(Zop(0), Zre(k)) = — Y _ (Cov(Zopi, Zktbo) + Cov(Zogo, Zihi)) + Y Cov(Zogi, Zit;)
i=1 ij=1
Z COV Zo(pzj, ka()) + COV(Z()QO(), kaz])) + RO,k7 (3.2)
1<j<3

where Ry j is an error term. Our first task will be to show that it is negligible.

[Rosl =0 (7).

Proposition 3.3. One has

The second step is the following.
Proposition 3.4. One has

(i) | Cov(Zow1,2, Zio)| + | Cov(Zowo, Ziia3)| = O (ﬁ);

(ii) |COV(ZO<P1,3,ZW0)|+\COV(Z0<P07ZW1,3)\_O<,;/3€7§ log(£) + o7 f)

5

(i) | Con(Zagaa Zuto)| + | Cov(Zagn, Zun)] = O (15 1085 + 7t ).
k

In the same fashion as Part (i) of the previous proposition, we show:

Proposition 3.5. Forany 1 <i<j <3,

€k
| Cov(Zowi, ZKj)| = O (;:;/3;> :

Furthermore, for any 1 < j <i <3,

| Cov(Zowi, Zip;)| = O <1) )

€k

12



The next step deals with the first sum in the right-hand side of (3.2]).

Proposition 3.6. There exists a constant o € (0, 1), such that

Cov(Zop1, Zrbo) = Cov(Zowo, Zyiz) =

| Cov(Zoa, Zitho)| + | Cov(Zowo, Ziip2)| < >

| Cov(Zops, Zio)| + | Cov(Zopo, Ziir)| (k”a)

Note that at this point one can already deduce the bound Var(Cap(R,)) = O(nlogn), just applying
the previous propositions with say ej := |k/4].

Now in order to obtain the finer asymptotic result stated in Theorem it remains to identify the
leading terms in (3.2)), which is the most delicate part. The result reads as follows.

Proposition 3.7. There exists § > 0, such that if e, > k'~ and 3, = o(k), then for some positive
constants (0; j)1<i<j<3,
Oi,j

L

Cov(Zopj, Zkibi) ~ Cov(Zopa—i, Zxpa—j) ~

Note that Theorem is a direct consequence of Propositions together with (3.2). We
now prove all these propositions in the following sections.

4 Proof of Proposition

We divide the proof into two lemmas.

Lemma 4.1. One has

Lemma 4.2. Forany1<i<j <3, andany 1 </{<3,

Elpi o = 0 (%), and Elpi;] Elvd = 0 (7).

One can now observe that the (¢;;)i; and (4;;);; have the same law (up to reordering), and
similarly for the (¢;); and (¢;);. Observe also that ¢; ; < ¢; for any 4, j. Therefore by definition of
Ry 1. the proof of Proposition readily follows from these two lemmas.

For their proofs, we will use repeatedly the following fact.

Lemma 4.3. There exists a constant C > 0, such that for any x,y € Z°, and any 0 < £ < m,

C 1 !
YIPICCIEIE SRR e e (e v R e i

1= 2€Z5

13



Proof. Consider first the case when ||z|| < y/m. One has by (2.2) and Lemma

[m/2|

C C
2 2 piAGG = ypmile = 2) < e D GG —y) S

=0 z€Z5 2€Z5

(say with the convention that the sum on the left hand side is zero when m < 2¢) and

¢ C
Z Z pl Z y Pm— z(z CU) ST 5 Z G Z y)G(z .CU) < =73 .
i=|m/2| z€Z> L+m / c75 (1+m / ) (1+Hy_x”)

Likewise, when ||z|| > \/m, applying again (2.2]) and Lemma we get
- C
pi(2)G(z = Y)pm—i(z — x) < Gi(2)G(z —y) < :
2 2 < o 2, 0 oI+ VET ol

2

= z—z|>

and
“ C C
pi(2)G(z = y)pm—i(z — ) < G(z—y)G(z — =) < ,
; p3 e 2 [P (1 + Ty — )
g? ze
which concludes the proof of the lemma. O

One can now give the proof of Lemma

Proof of Lemmal[{.1l Since 123 and 9123 have the same law, it suffices to prove the result for
©1,2,3. Let (Sp)nez and (Sy,)n>0 be two independent random walks starting from the origin. Define

mi=inf{n>1: 8, € R(—o0,—ex — 1]}, m:=inf{n>1: 5, € Rlep + 1,k},

and B
m3:=inf{n >1: S, € R[k+1,00)}.
One has
Elpros] < Y Pln, <7, < 7). (4.1)
i17#i2 703

We first consider the term corresponding to i1 = 1, io = 2, and i3 = 3. One has by the Markov
property,

212) <
P[T1§T2§7'3<OO] < l{Tl _NT2<OO}
L+ [[Sr, = Skl
u G(S; — S,
1=€g ¢

Now define G; := 0((Sj)j§¢)\/a((§n)n20), and note that 7 is G;-measurable for any i > 0. Moreover,
the Markov property and ([2.2)) show that

1 C
El——m—m il < .
[HHSZ-—SkH'g]— p—
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Therefore,

k ~
G(Si - 5,,)
]P’[71S72§73<oo]SCZE[1{71<OO}.{]
=, 1+vVEk—1
5 LRGES —2)] | o E[G(S — 2)]
<N Pl <, 8, =2 e A )| BlG(5: — 2)]
SO D PIn<oo Sn=z| 2 ==+ D S
=&l i=e i=k/2
28 (¢ < 1 )
< Jre; Flm <ol i

We consider next the term corresponding to ¢; = 1, i = 3 and ¢3 = 2, whose analysis slightly
differs from the previous one. First Lemma [.3] gives

k
Plr <713 <7 <oo] = Z E|:l{7'1<7'3<00 S’TS—y, Sk =z} - (ZG(&@/))]

RNYA 1=cg

- Z Zzpl Y)pr—i(® — 2) ‘P[71373<OO,§73=y|Sk:x}

x,y€Zs \i1=¢ck z€Z5

Z P <13 <oo| Sk =1z 1{r <73 < oo} Sk::z]> (4.2)
aczs Ul + \f Vek 1+ — 2|

We then have

e12) 1
Pn<m<oo|Sp,=z] < CE w]
L+ (|87 — ]
(2.11) Lemmam
? Z m C . Ge, ()G(y)
. 1+||y—90|| (1 + [lzl)ve 1+ ly — 2|
ver ly—all< 5t
Moreover, when |[|z|| > /), one has
3 Ge()Gly) B C 3 1 _C
g Yl ==l = [l IRl k] B
lly—=| <1k ly—al|< gk
while, when ||| < /ey,
G, (y)Gly) Y —3/2 _ C
Y GaWCW D o a2 < &
T+l —al -
ly—=z ST
Therefore, it holds for any =z,
C
Pn<m<oo|Syi=12< —F7—. (4.3)
0+ 2Dy

Similarly, one has

< _g _
1{m =7 < oo} ‘ Sp=z| <E Z G(y — Sr)G(y 95)1{7_1 < oo}
14 ||Sy, — | oz iyl
cp| Hn<oo} | _ 3 Go,()G(y) _ ¢ _ (4.4)
TS — ] T Sy el T Al ]?) Ve

15



Injecting (4.3)) and (| into (4.2)) finally gives

1
Pl <mn<m< =0 .
msmsm <o <6k\/E>

The other terms in (4.1]) are entirely similar, so this concludes the proof of the lemma. O

For the proof of Lemma one needs some additional estimates that we state as two separate
lemmas.

Lemma 4.4. There exists a constant C > 0, such that for any x,y € 72,

kt‘k

) 1 1
227 ||z xH+F> (1+rzx||+ﬁ—i>

i=¢gp z€Z5

_1_ 1 j
k572 <1+Hoﬁll2 + ) * k312602 (14 |y—|)) if all < V&

1 .
TelPex (1 + m) if ||zl > V.

<C-

Proof. We proceed similarly as for the proof of Lemma Assume first that |z|| < v/k. On one
hand, using Lemma we get

k)2
c
_ < -
Zmz (||z — $||+\/75_k32G6k y)_kﬁ/QM,
1=€} eZS ZEZ5
and,
k/2
D (2)G(z — ) Z —Y)
e acz5 (Hz—xl!+ﬁ) A+)z—z|) k5/2 1+Hz—x\|
5 (2)G(z — y) G (2)G(z — y)
<
- R eI e e
I~ IHZ% J—a< 2l
< + ! < ¢ 1 _|_i
<7 1+|le 1+ 2l?) = k52 \1+l? " e )

On the other hand, by .

k‘&‘k

=Y 1 1 C Glz—vy c
’%;2llz§f ‘x”“ﬁ)) <1+||z—fv|\+m>§k2nz|§ﬂ (“z”5 )S’W'
Furthermore,
k—zak 1 Z pi(2)G(z —y) - C Z Gz —y) . ¢ . |
e VR g (e —all V=00 = e i g1l =l = B 1ty =l
and
k—ep,

G(z —y) 1 C G(z—vy) C 1
Z Z —x||+m>51+||z—a:u< Z .

3/2.3/2 T+ lz —z|3 = 13/2:32 1+ ||y — =

16



Assume now that ||z|| > v/k. One has on one hand, using Lemma

k—eg
pi(2)G(z —y) 1 1 C
—Z Z o (= =l VB =8 (=t =) “

On the other hand,

k—eg

pi(2)G(z —y) 1 on
Z Z ol Iz — || +\/TZ) 1+ Hz—xH ’563/2 Z 1+ “Z—x|’3 < 3/2(

and
k
ik 1 pi(2)G(z — y) < CVk Z G(z —y) < CVk
vk Iz —zll + VE=10)5 ~ ll=lPPer = 1+ ly — =l> ~ llzlPer(l + ly — =]])’
1=¢ $|§T| 2€EL
concluding the proof of the lemma. O

Lemma 4.5. There exists a constant C > 0, such that for any x,y € Z°,

1 1 1 1 1 1
- : +
2 (ol + V&)? <1+H$—v\| 1+ ||93H> Iz = vl + V&) (1+ ly — | 1+||y—v||>

VEZS
S O 1 1 Ver .
Per gﬁ + o T e <1+||asu><1+||y—zn>) if loll < VE

log(J£1) 1 1 .
ERY <1+||y—x|| T ﬁ) if ||z > V.

<C-

Proof. Assume first that ||z|| < v/k. In this case it suffices to notice that on one hand, for any

a € {3,4}, one has
1
= O(Vk)
1 _ a)(1 _ d—a ’
P e (e P

and on the other hand, for any «, 8 € {0, 1},

1
= O(k™5/277F),
D e P )

Assume next that ||z| > v/k. In this case it is enough to observe that on one hand

* (wp=tm) (Fa=a o) -0 (=)
T+ le—oll " Tall) NI Ty =l " T Ty =l CEAPEFYA

vl < &
and on the other hand,

1 log(12})

||||Z PP+ ol O\ el )

and

[l]]

1 C(les(E) 1 1
Z - ol (Ve + llz = of])? Arly—oh O\ TP <\/E+1+Hy—x\>
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Proof of Lemmal[{.9. First note that for any ¢, one has E[¢y] = _1/ 2 ), by - Using also
similar arguments as in the proof of Lemma that we will not reproduce here, one can see that
Elp; ;] = (’)(5;1), for any ¢ # j. Thus only the terms of the form E[p; ji/] are at stake.

Let (Sp)nez, (§n)n20 and (§n)n20 be three independent walks starting from the origin. Recall the
definition of 7, 7o and 73 from the proof of Lemma and define analogously

71:=inf{n >1: S+ Sp € R(—o0,—1]}, Tp:=inf{n>1: Sk + S € R[0,k — e — 1]},

and R
T3:=inf{n >1: S+ Sp € R[k + e+ 1,00)}.

When ¢ # i, j, one can take advantage of the independence between the different parts of the range
of S, at least once we condition on the value of S. This allows for instance to write

E[p12¢3] <P < 00, 7o < 00, T3 < 00] = P[11 < 00, T2 < 0] X P[T3 < 0] = (’)(5;3/2),

using independence for the second equality and our previous estimates for the last one. Similarly,

-o(z):

using (4.3) and Lemma for the second inequality. The term E[p 31)1] is handled similarly. We
consider now the other cases. One has

E[g0173¢2] < ZP[TI <00, T3 <0 ’ Sk = .%'] X P[?Q < 00, Sk = x]
€L

1 1 1
- Z +Ha:|! (1 2] + V) <1+Hx|! " @)

€Z5

Elp2313] <Plm < 13 < 00, T3 < 00] + P13 < 15 < 00, T3 < 00]. (4.5)

By using the Markov property at time 79, one can write

P[TQ§T3<OO, ’/7'\3<OO]§ Z E (ZG(Sl—y-i-iL')) ZG(S]) P[T2<OO § =Y, Sk—x]
=0

x,y€Z5 J=¢k

Then applying Lemmas and we get

<Z G(Si —y + a:)) Y G| | =D E
=0

(Ek G(S y+az)> 1{S., =v}|E

i G(Sj + ’U)
=0

J=¢€k vEZS =0
k
<> 1+HUH (Zpi(Z)G(Z—erﬂ?)peki(v—z)>
VEZS 0
Z 1 < 1 n 1 )
ez5l+HvH o+ Ve \Ix o —yral "1+ y—zl
C
< . (4.6
N A PR )
Likewise,
e e G(z—y+=x) G(2) >
E G(S; — G(S; < G
2 CSiyra) || LGS | <2, o) (P Ty
1=€k J=¢€k 2€Z
¢ (4.7)



Recall now that by ([2.13]), one has P[m < oo] = (’)(5;1/ 2). Moreover, from the proof of Lennna

one can deduce that
5 [1{7'2 < oo}

157, — Sk

(=)

Combining all these estimates we conclude that

1
Pl <m <o, m3< =0 .
TS 0o TS o) <6k\/E>

We deal next with the second term in the right-hand side of (4.5)). Applying the Markov property
at time 73, and then Lemma we obtain

Plrs < 1o < 00, T3 < o0 < Z ZE y)1{Sk = x}] 'P[73<OO,?3<OO,§T3:3/‘S]€ZSU]
zT,YELS \i=¢k
C < 1 1 > - ~
+ ‘Pl <oo, T3<00, Sy, =y | S =1
< 2 Gy ver el * va) R
C (P[Tg<oo,?3<oo|5k:x] 1{m3 < 00, T3 < 00} ])
Z = Sp=uw
= (=l + VE)? Vek 1+ [|S7 — =
C 1 l{T3<OO, ?3<OO}
< +E = Sy ==x , 4.8
2 e+ iy <sk<1+ ED 15—l (48)

using also (4.6)) and (4.7) (with y = 0) for the last inequality. We use now ([2.7)) and Lemma [2.2[to
remove the denominator in the last expectation above. Define for » > 0, and z € Z°,

ne(x) :=inf{n >0 : ||S, —z| <rl}.

On the event When r/2 < ||S,]T(x) z|| < r, one applies the Markov property at time 7, (z), and we

deduce from and Lemma [2.2} - 2| that

l{Tg < 00, 7/:3 < OO}

= Sk =T
L4 (S, — 2|
Pl < o0, 7 < oo | Sp—a] | "Bl P[m <00 < o0, 2 < |5, — o <241 | Sy =]
= + ,
T+ 2 ]
l ~
< C T Ogi”:x” P [nyi+1(z) < 13 < 00, T3 < 00 | S = 7]
TR >
~ logy ||| ;
C P[Tg < OO] 92i
< - - R S el —_— x Po, [H < H < ]
S i e e D DR wa o R R Rl

where in the last probability, H and H refer to hitting times by two independent walks, independent
of S, starting respectively from the origin and z. Then it follows from and . ) that

1{m < o0, T3 < 00} o

= Sp=z| < ——————.
T+ 15— ] Ver(l + [2]?)

(4.9)
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Combining this with (4.8)), yields

1
Pl <13 <00, 3<00]=0 )
2 <7 3 < o) <5k\/E>

The terms E[pq 313] and E[pq 311] are entirely similar, and we omit repeating the proof. Thus it
only remains to consider the terms E[p 31)] and E[pq21p2]. Since they are also similar we only
give the details for the former. We start again by writing

Elpa,312] <Plme < 13 < 00, Tp < 00] 4+ P13 < 75 < 00, Tp < 00]. (4.10)
Then one has
P[Tg < 79 < 00, ’/7'\2 < OO] (4.11)
k k—eg B
< ZE ZG(Si ZG —x) | X{Sk =z}| - Pl < o0, Sry =y | Sk = ]
x,y€Z5 i=€p,
k k— €k

<SS D PSi=2 8 =w, S =aG(z—y)Gw—xz) | -Plrs < 00, Sy =y | S =21l

z,y€Z5 \i=¢r j=0 zweZb

Now for any z,y € Z°,

k— €kk €k

ZZ Z P[S; =z, Sj = w, Sk = z]G(z — y)G(w — z)

=€ j=€k z,wEZLO

k—Ek k—f;‘k
<23 Y p)Ge -y [ 3 piiw = 2)G(w - a)pr_s(x —w)
i=€y, z€Z5 Jj=t weZ>
k‘—&‘k
:22 Zp’i(z)G(Z Z ij pk i— j(w+x_z)
=€y z€Z5 Jj=¢€r weZd
k—eg y) 1 1
Lemma [4.3 <C + >
< LY i <1+HHH v
1 1 1 1 :
L (e + 2 ) + o flz] < V&
(Lemma[id) <C k5/12 <1+Hsc||2 Ekz k3/268% (14 |y—z|) 1 lzll <
e (1+ va=en) if o] > V.
We also have
k k—&k
Yoz, y) := Z P[S; =z, Sj = w, Sk = 2]G(z — y)G(w — z)
i=k—ep j=0 z,weZ5
k k—Ek
= Z P[S; =w, Sk—e, = v, S; =2, S, = 2]G(2 —y)G(w — )
i=k—e 7=0 z,0,wEZ5
k—Ek
= Pj(W)Pk—e—j (v — w)G(w : Z > piz = v)pe,—ilz — 2)G(z —y) | .
veZd \ j=0 weZd 1=0 275
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and applying then Lemmas [£.3] and [£.5] gives

Sae) < Y c ( 1 . > 1 < 1 N 1
2 4, >
(ol + VR \1+[lz =2l - T+l ) (lz = vl +vE)> \1+lly —z ~ 1+ ly—of

veEZS
o) P §r+ e+ e ) el < VE
=) les(e) 1 .

Tl ver (1+||y—xu + ﬁ) if [|lz]| > V.

Likewise, by reversing time, one has

ZZ Z P[Si =2, Sj = w, Sk = 2]G(z — y)G(w — z)

i=¢p j=0 z,weZb

€k k
Z Z PS;i=z—x, Sk—e, =v—2Sj =w—12x, S = —2|G(2 —y)G(w — x)

—&k 2,0,WwEZLS

= szz_fEPk civ = 2)G( ZZ}?] )y — (W) G (w — )

vEZ® =0 ze7Z5 j=0 wezd

I
J;M'

M

C < 1 n 1 > 1 ( 1 n 1 >
(o — 2|+ VE)S \1+lly—vl ~ T+lly—=ll/) (vl +vE)® \T+ |zl 1+ [z =)’

and then a similar argument as in the proof of Lemma gives the same bound for ¥3(z,y) as for
Yo(x,y). Now recall that (4.11)) yields

UEZ5

Plrs < 73 <00, T2 < o0 < Z (1(2,y) + Da(x,y) + a2, y)) - Plrs < 00, Sy =y | Sk = al.
z,y€Z5
Recall also that by (2.12)),

C
Pl <oo | S =a] < ——,
1+ ]

and

g | L{m <o} ‘Sk:x SZG(?J)G(?J—I)S ¢
1+ |8y, — | Ltfly—=] ~ 1+|=[?

YA

Furthermore, for any «a € {1,2,3}, and any 8 > 6,

||| =]l
1 . log(lzl) log(lely o
Y TR - OWE) ad 3 —pEes 3 e =0E’)
2| <v& 2>V [EIENG

Putting all these pieces together we conclude that

Plrs < 3 < 00, 7 < 00] = O(e; ).

We deal now with the other term in (4.10). As previously, we first write using the Markov property,

and then using (2.11) and Lemma

Pl <13 <00, o <00 <E

1{m < 00, T < 0}
1+ [|Sr, — Skll
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Then using (2.7) and Lemma [2.2| one can handle the denominator in the last expectation, the same
way as for (4.9)), and we conclude similarly that
~ —3/2
Plry <713 <00, Ty < 00] = O(g, 7).

This finishes the proof of Lemma O

5 Proof of Propositions [3.4 and [3.5|

For the proof of these propositions we shall need the following estimate.
Lemma 5.1. There exists a constant C > 0, such that for all x,y € Z5,

log(2 + ”y%/—xu) log(2 + llny)
(el + VRl — 2l + van)® (Ul + vER)P (]l + Vi

k
Z E[G y)1{Sk = x}] < Cey,

i=k—eg

Proof. One has using (2.2) and ({2.6]),

k k
Y EGS —p{Se=a}= > Y pi(2)G(z - y)pr_i(z — 2)
i=k—eyp i=k—eg z€7Z5

C&‘k
> (2l + V&P + llz = ylI*)(lz = 2l + VEr)?

2€75

C 1
3/2 E 1 —ull3
(lall + VE) s e L 2= vl

C'Ek 1
(Hx||+f) 2 o T+ =ylP) A+ 2 —2[?)
VER<|z—a| <Lzl

C&k 1
ICENCE 2 (=l + VEP (L + ||z = yl®)

x|
2
Then it suffices to observe that
5/2

> 1 z
_ 3 — _
foaeve LIz “y ol + V/ER)*

1 log(2 + H?il/}:ll)

Z <C 7
oy 1+ 12 = gIP) A1z = 2l2) = dlly = 2l + VEr)?
VER<|z—a||<13E

2 llyll
Y
log(2 + ﬁ)

1
C—X
2 T e —o®) = € Tl 5 iy

€75
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Proof of Proposition (1). This part is the easiest: it suffices to observe that ¢ 2 is a sum of one
term which is independent of Z;1y and another one, whose expectation is negligible. To be more
precise, define

<oo| S|,

90(1),2 =P [H+

_ + +
Rl—eper] = 0 Hr( ] <00, H

00,—egp—1 Rlex+1,k—er—1]

and note that Zogotl)z is independent of Zpg. It follows that
| Cov(Zopr,2, Zibo)| = | Cov(Zo(1,2 — €1 2), Zrtho)| < P < 00, T < o7,

with 71 and 7, the hitting times respectively of R(—oc0, —¢;] and R[k — &y, k] by another walk S
starting from the origin, independent of S. Now, using (2.2]), we get

k
Pln <7 <oo] <E |[L{n <o} | > G(Si—85)

i:k—ek

k
<D 1Y ) pi()G(z—y) | Pln < 00, S, =1y
yEZS \ z€Z5 i=k—ey,

13) er
< Xt

€k
~ WP[Tl < OO]

Likewise, using now Lemma [2.3

Plre <711 <o0] <E |1{7 < o0} Z G(S-; — 57*)

’i:&‘k

<3S Y G (2)G(z —y) | Pln < 00, 8y, =y
yeZs \z€Z5

C \/Ek
< —— P71 < C -,
<= [T <<>o]_Ck3/2

and the first part of (i) follows. But since Zy and Zj, have played no role here, the same computation
gives the result for the covariance between Zypg and Z;1o 3 as well. ]

Proof of Proposition (ii)-(ii1). These parts are more involved. Since they are entirely similar,
we only prove (iii), and as for (i) we only give the details for the covariance between Zyps 3 and
Zyabo, since Zy and Zj, will not play any role here. We define similarly as in the proof of (i),

@31 =P | HY — oo, Hj < oo, Hj

R[—¢€kEr] » T R[ew k—ek] ) <ool|S],

[k+eg,00

but observe that this time, the term @873 is no more independent of 1y. This entails some additional
difficulty, on which we shall come back later, but first we show that one can indeed replace 23 by
cpg’z,, in the computation of the covariance. For this, denote respectively by 7o, 73, 7% and 7y, the

hitting times of Rlex, k], R[k, 00), R[k — ek, k], and Rk, k 4 ] by S. One has

E[lp2,3 — g0(2)73|] < Plra < 00, T < 0] + P13 < 00, T < 0.
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Using (2.2), (2.11)) and Lemma we get

1{r < oo} i Si)
B 1+ ||S,, — sk||] ZZ [HIIS Sk|]

€k

) " pi(2)G(2)
Z [l—i-\/ —Z]SCZ. 1+vk—1

Plr <13 < o0] <

=k— 2€75 i=k—¢y,
\/»
<C <CY¥—=:
f%z: (Il= ||+f @)=

Next, applying Lemma 5.1} we get

Plrs < 7 < o0] < Z IE|:(Z (Siy)>l{5kx}]-IP’[73<oo,§T3ySkx]

x,yELS i=k—¢ey
1{m3 < oo} log(2 + ”S:‘?’ﬁx”) 1{m3 < oo} log(2 + ”i%”)
<Ce ) | B 3 ‘ =Tt 5 e ’ -
gt (2]l + VE)S (Vex + [|Sr — =) (]l + vEr)>(VE + [|1S5))
Moreover,
||Srs || lly—z|
1{m3 < co}log(2 + =) @11) G(y)G(y — x)log(2 + £ =1) C
: T ] B P e (R E
(V& + 1ISr — 2]|)? - Ve 1y Vek
and
|| S I _ llwll
1{m3 < oo}logN(2 + 7 ) ‘Sk . 221 Z G(y)G(y — z)log(2 + \/E) - C |
(VE + [[S7]1)? - (VE+ [lyl)? VEQ+ [[2)(VE + [[])?

Furthermore, it holds

1 C
2 U2l + VP + )~ B

T€Z5

and

2 1 < ?
(el + Va1 + e+ )2~ Ve

x€LS
]P’[TgST*<OO]=O(\/a>.

which altogether proves that

k3 /2
Likewise,

€k

> G(Si—y+a)

=0

Py < Ty < 00] < Z E ‘Pl < 00, S;, =y, Sk = x],

z,yeZ>
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and using (2.6)), we get

Ek €k
E ZG(Si—y—I—x) :ZZpi(z)G(z—y+x)
i=0 =0 2€75
< Y GEGE-y+ra)+Ce Y (W
lzlI<vex 21> +Ex
lly—=|l
Cep, L Ce log (2+ VEk )

(Ily—$||+f) (1 +lly — ) * (ly = =l + vzr)®

log (2 + %)
(ly = zll + vER)* (L + [ly — =)

Therefore, using the Markov property,

< Cgy,

log <2+ S?ﬁskl) 1{r < oo}

(15, = Skl + vER)2(1 + 1|57, = Sill)

1Sk —ll
<CekZIE { 10g<2+ \/ch) ]

Plre < Tus < 0] < Ce - E

(ISk—ill + vEx)? (1 + [ Sk—ill)

= =€k
Furthermore, using (2.2) we obtain after straightforward computation,
[ISk— 1H> ( @)
log(2+ NG <0 log (2 + =
(ISk=ill + v/ER)? (1 + [ Sk—ill) Vk—i(ep+k—1i)

and using in addition ({2.8]), we conclude that
VE k
Plry < Tas < 00] = O <’“ : log()> .

]{33/2 €k

Similarly, using Lemma [£.3] we get

Plris <19 < o0 = ZIP’T**<OO S, =y|S,=a]

Z G(S; — y)1{S) = x}]

x,y€Ls -
" Sl + VR 1+ )5 — sl Vo
Moreover, one has
€k ek C
Plru <oof Sp=a] < ) E[G(S: +2)] <
; ;z:(“r\ I+ Vi3 (1 + ||z + z]3)
C Ce’fk
< Z Z
B L 1 3 51 3
s IR A+ 2+ 2] ) Sy E NG ERFTR
Ceplog(2 + \Lﬂ)
(\F+lel) 1+ z])’
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and likewise

{7 < o0} C
1+||§m—$||’ ] Z;%: 1+ |lzll + Vi)5(1 + [z — =]1®)(1 + ||2])
C CEk
< + Z
1 H1 —z||3 6(1 — I3
e AT =al) | 2 TR [ = 2lF)
Cy/er

= Tl + vE @+ 2l?)

Then it follows as above that

Plr. < < o] =0 ¥k - 1ox D).

k3/2 Ek

In other words we have proved that
€k k
Elleas - ehall = 0 (5 ow(2)).

We then have to deal with the fact that Z0g0873 is not really independent of Zy1y. Therefore, we
introduce the new random variables

7 =1{S; # Sy foralli=k+1,...,¢}, and 150 =Pg, [H =00 | S|,

Rlk—e) k+el] —

where (],)x>0 is another sequence of integers, whose value will be fixed later. For the moment we
only assume that it satisfies €}, < e1,/4, for all k. One has by (2.6) and ([2.13),

E[|Zytbo — Zitbol] < \/» (5.1)
Furthermore, for any y € Z°,
E [90(2),3 ’ Sk-‘rfk - Sk—&k = y} = Z E [@g,3l{sk—€k = x} | Sk+5k - Sk—€k = y] (5'2)
T€Z5
<> P[ﬁooﬁR[Ek,k—Ek] 43, Roo N (x+y+Roo) # D, Spe, = |,
T€Z5

where in the last probability, R oo and 7%00 are the ranges of two independent walks, independent
of S, starting from the origin. Now « and y being fixed, define

mi=inf{n>0:S, € Rlep, k—ex]}, and m:=inf{n>0: 5, € (x+y+Ra)}

Applying (2.11) and the Markov property we get

]P)[Tl < 19 < 00, Sk,&—k = x} <E

k
1{r < o0, Sp_., = =} Zsk 3 pi(2)G(2)Ph—ep—i(z — 2)
148, — (z+9)| 1+||Z—(x+y)||

i=¢gp z€ZO

< C ( 1 n 1 >
T (el 4+ VEP \VER [z +yl) - 1+ [l

26



using also similar computation as in the proof of Lemma for the last inequality. It follows that
for some constant C' > 0, independent of y,

C
ke

Z P[Tl <m< o, Sk—&‘k = ZL'] <
x€Z5

On the other hand, by Lemmas [4.3] and 2.5

=

C 1{7'2 < OO} P[TQ < OO]
Pl <7 <00, Sk—e, = x| < E — +
= o umu+¢m5( 1+«&Q—MJ Vek

C 1 1
Sqmuﬂ@w<¢%a+w+mn+1+ww>’

and it follows as well that

C
k

Z Plry <11 <00, Spg, = 2] <
z€Z5

™
N

Coming back to (5.2)), we deduce that for some constant C' > 0, independent of y,

Q

E [#95 | Skier — Sk-e, =] < T (5.3)
Together with (5.1]), this shows that

E [wg,glzkl/}o — Zklzo\] = Z E [‘Pg,3 | Skter — Sk-e, =y] - E [!ZMDO — ZkQZO‘l{SkJrsk — Sk—e, = Y}
yEeZd

C
< .
 Vkere),

Thus at this point we have shown that

k3/2 keye)

- ~ k 1
Cov(Zop23, Zktho) = Cov(Zogh 3, Zrtho) + O (\F 108;( )+ ) :
k

Note next that

COV(ZO(pg’g’kaO) - Z E [Zo(pg,?) ‘ Sk+€k - Sk—E;C = y}
y,z€L5

x E [Zk{/;Ol{Sk—i-s;C - Sk—s;c = Z}] (pek—e;c (y - Z) - pek—i-sgc (y)) .

Moreover, one can show exactly as (5.3]) that uniformly in y,

0 —
E [@2,3 | Skte, — Sk—e), = y} < N

Therefore by using also (2.4) and Theorem we see that

Z Z Dae), (2) ’T’ak—aﬁg(y —2) - T)E’H'Sk yl+0 <€k\f>
||y||<sk1° o<1/,

’COV(ZOSOQ 2> Ztho)|

27



Now straightforward computation show that for y and z as in the two sums above, one has for some
constant ¢ > 0,

_ _ Izl | k) -
‘psk—sk (y—2)— Dey+ef, )| <C <\/<§ + ; Dej—e, (cy),

at least when €}, < /e, as will be assumed in a moment. Using also that >, [2]lp2e; (2) = O(\/€},),
we deduce that

~ ~ I
Cov(ZoeY s, Z =0 k.
| Cov(Zows 3, Zbo)| <€k\/E>

This concludes the proof as we choose €}, = | /€. O
We can now quickly give the proof of Proposition [3.5]

Proof of Proposition[3.5. Case 1 <i < j < 3. First note that Zyp; and Zy13 are independent, so
only the cases ¢ =1 and j = 2, or ¢ = 2 and j = 3 are at stake. Let us only consider the case i = 2
and j = 3, since the other one is entirely similar. Define, in the same fashion as in the proof of

Proposition [3.4]

0 =P [HJr

_ +
Rl—eper] = 0 H

R[ak-i-l,k—ak,] <0 | S:| :

One has by using independence and translation invariance,

€k
Blles — ¢8lta] < PlHrg—cs g < ] PlHri, ) < o0l = O (54 ).

which entails

€ €
Cov(Zopa, Zps) = Cov(ZoeY, Zips) + O (g) —0 <;/32) ’

since Zy@) and Zj1)3 are independent.

Case 1 < j <4 < 3. Here one can use entirely similar arguments as those from the proof of Lemma
and we therefore omit the details. O

6 Proof of Proposition (3.6

We need to estimate here the covariances Cov(Zypi, Zi1o) and Cov(Zopo, Zxta—;), forall 1 < i < 3.

Case 1 = 1. It suffices to observe that Zyp; and Zx1g are independent, as are Zypg and Zx1s. Thus
their covariances are equal to zero.

Case © = 2. We first consider the covariance between Zyps and Zpig, which is easier to handle.
Define

P2 =P |H}: = o0, Hf,

[—er,k—ex—1] — R[k—ep k] < o0 ’ S|

and note that Zy(¢2 — @2) is independent of Zj1g. Therefore

Cov(Zop2, Zkbo) = Cov(Zopa, Ziko)-
Then we decompose g as 1y = ¥} — 18, where

Vo = Pg, [H

Rikke, = 1S5], and Vg = Pg, [HY = o0, Hf,

Rikkter] — <oo| S

[k_ek 7k_1}
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Using now that Zx{ is independent of Zypo we get
Cov(Zow2, Zktbo) = — Cov(ZoBa, Zy)-
Let (§n)n20 and (§n)n20 be two independent walks starting from the origin, and define
mi=inf{n>0: Sp_p € R[1,00)}, and 7 :=inf{n >0 : Si_, € (Sp + R[1,00))}.
We decompose
Cov(Zo@2, Zkdg) = E [Zop2Zi§1{m < 1}] + E [Zo@2 Zih§1{m1 > m2}] — E[Zo2] - E[Z15).
We bound the first term on the right-hand side simply by the probability of the event {7 < 75 < g;},

which we treat later, and for the difference between the last two terms, we use that

<1{n <1 < e}

ek
< <ep}-— Zl{’TQ =1, H Rlb—ep omio1] < oo}
i=0
Using also that the event {7 = i} is independent of (Sy,)n<k—i, we deduce that

€k
| Cov(Zoa, Ziu)] < 2Pln S 2 < eyl + 3 Pl =il [P [,y < o0] —F [Higy 4y < oo
=0
€k
<Pm <m<ep]+ Y Plp=i-P [Hﬁ[k ik < OO}
=0
2.13

C ) C .
2P[n < <l + 57 ZzP[Tz =i 2PN <7 <+ 55> Pl > ]
: 1=0

2.13]

IN =

C
< 2P <1 < eg] + Ve

QP[Tl S T2 S kj3/2 .

k3/2 Z \[

Then it amounts to bound the probablhty of 1 belng smaller than 7. We write

Pl <m <egl= ZZ]P’Tl—z i <71 <eg, Sg=x, Sk =1z +1Y]
z,y€Z5 =0

ek
< Z ZP [71 =i, Sg—i =T+ Y, (T+ Roo) NRk — ep, k —i] # 2, S :1;,]
=

&€
< Z ka[ﬁooﬂ(ac%—?%[(),i—l]) =9, 8 =y, :v+y67§oo}
z,yeZb =0

Xp[ﬁooﬂ(y+7?’[0a€k_z])7égv Sk—i:_l'_y:|a

using invariance by time reversal of S, and where we stress the fact that in the first probability in
the last line, R and R are two independent ranges starting from the origin. Now the last probability
can be bounded using ([2.5) and Lemma which give

er—1

P [Roo N (y + RI0. 5 — i]) # 8, Spi =~z —y] < ZE (S + ) L{Sk—s = — — y}]

Ek—i
:Z ij(z) Z+?J)Pk i— ](Z—i-a:—Fy Z Zp] Z—x)pk_i_j(z—x—y)
j:() 2€Z5 ] k— €k 2€7Z5

_ C < Lo, >
“(le+yll FVES \T+ Yyl VE+ |2
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It follows that

G(z +y)pi(y) ( 1 1 )
P[Tl < Ty <6k + ,
Ze: — (lz+yll +VEE \1+ 1yl VE+ ||

and then standard computation show that

P[Tl < T < Ek] =0 <l\€/3&7;) . (6.1)

Taking all these estimates together proves that

9
Cov(Zopa, Ziibg) = O <;§7§> :

We consider now the covariance between Zypy and Ziis. Here a new problem arises due to the
random variable Zj, which does not play the same role as Z;, but one can use similar arguments.
In particular the previous proof gives

COV(Zo(p(), Zk¢2) = — COV((l - ZO)9007 kaQ) +0 (;7;)

Then we decompose as well pg = @} — 2, with

py == PHf,

Rlk—ck K] =o0|S], and <p0 —IP’[H

Rlk—en,k] — = 00, Hj

Rkt 1+ey] < 00 ST

Using independence we get
Cov((1 — Zo)gh, Ziain) = Elil] - Cov((1 — Zo), Ziabn).
Then we define in the same fashion as above,
For=inf{n>1:8,=0}, and 7 :=inf{n>0: S, € (S + R[L, )},

with R the range of an independent walk starting from the origin. Recall that by definition
1 —Zy = 1{7 < ex}. Thus one can write

Cov((1 — 2o), Zip2) = E[Zkho1{T2 < 7o < ex}] + E[Zipo1{70 < T2}] — P70 < ;] - E[Zgt)2].
Now on one hand, using (2.5, the Markov property, and (2.8]),

E(Zypol{Ta < To < ex}] SPR < Fo < ex] < Y PR < &4, S, =y - G(y)

S C &1 C
: ZE[G(Si — S)G(S)] < ZE (-] - E[G(S)] < 157 ; T2 = e
On the other hand, similarly as above,
ElZx21{7T0 < To}] — P[70 < ex] - E[Z)1)o]

<P[R <7 < e+ iﬂ’% =il (B[(S1+ RlL.oo) Rl + L] £ 0] ~ Pl72 < 1))

ED ¢ O &
—i—ZPTQ—Z] P[TQ ] < 74‘727;]?[7'0:2']

- k3/2 k3/2 k3/2
=1

C CZ ]-<-c+ci1<c
< 32 T Pl > S BR T RREELL PR PR
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In other terms, we have already shown that

C
| Cov((1 = Zo)pp, Zrtha)| < =

The case when ¢} is replaced by 3 is entirely similar. Indeed, we define
Fli=inf{n>0: S, € R[1,00)},

with R the range of a random walk starting from the origin, independent of .S and R. Then we set

To,1 := max(7p, 71), and exactly as for (6.1]) and (6.2)), one has

o 5
Pl <791 <ex) =0 (ﬁ) ;

and
E [(1 - Z())SO(Q)Zk:w2l{7~'O,1 < ?2}] —E[(1 — Zo)p] - E[Zxtpe]

€k \/»
<PFH<Fo1 <e]+ Y PlFog =i PR <i < Ck3/2
=0

Altogether, this gives
€k
| Cov(Zowo, Zrip2)| = O <l\<<’>;) :

Case © = 3. We only need to treat the case of the covariance between Zyps and Zig, as the other
one is entirely similar here. Define

+
p3 =P HR[ ererURE+ept1,00) = 09 Hypo iy <00 |51
The proof of the case i = 2, already shows that
5 N
| Cov(Zops, Zyipo)| = O (kg/g :
Define next
e = + +

Assume for a moment that ¢ > k2. We will see later another argument when this condition is
not satisfied. Then define €}, := LE}CO/ v /k'?], and note that one has ¢} < 5. Write 1o = ¥} + ho,
with

=B [Hyr v =015

and
ho :=P H;%F[k—s;—&-l,k—&—s;—l} = 09, H;i[k—ak,k—s;]uR[k+e;,k+ak] < oo S] '
Define also
Zp:=1{Sy # Sk, forall d =k +1,....k+¢, —1}.
One has

COV(Z()hg, Zkl/J()) = COV(Z()hg, Z]/c”(ﬂ(l)) + COV(Z()hg, Z;i;ho) + COV(Z()hg, (Zk — Z]/f)l/Jo)
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For the last of the three terms, one can simply notice that, using the Markov property at the first
return time to Sy (for the walk 5), and then (2.5)), (2.6), and (2.13)), we get

/ / -~ 1 1 1
E[hs(Zr—2})] < E[Zk—Z]XP[RoNR [k, 00) # @] = O (W) =0 (52/314;1/3> =0 (ﬁ%) ,

using our hypothesis on ¢ for the last equality. As a consequence, it also holds

’COV(Z[)hg, (Zk — Z,lg)w()” = O <k113) .
Next we write
Cov(Zohs, Ziho) = Y (Ph—2e,(x — y) — pi(@)) H (y) Ha(x), (6.3)

T,yeZ>

where
Hi(y) := E [Z},ho1{Skte, — Sk—c, =y}], and Ha(z) :=E[Zohs | Skie, — Sep = 1]
Define ry := (k/¢] )1/ 8. One has by using symmetry and translation invariance,
> Hiy <P {HR[—sk,—a;]un[a;,ak] <00, |8, = S—c,ll > \/?krk}
lyll=vERTe
< 2P [Hry ey < 00, 1S0,]l 2 VR | +2P [HR[sk o <09 1S-e, ]l 2 VER S|

em), 29 "k
< 2P |:HR[a;€,8k] <00, |15, = \/55] + m

Considering the first probability on the right-hand side, define 7 as the first hitting time (for S),
after time €}, of another independent walk S (starting from the origin). One has

r r r
P [Hri e < o0, I15ell 2 VERZ| S PUS | 2 VERE, 7 < 2] +PlISe, = Srll 2 VEr L, 7 < &4l

Using then the Markov property at time 7, we deduce with 2.13 and ( ,

[IISsk—5||>\f* T<ex <

Ve rk
Likewise, using the Markov property at the first time when the walk exit the ball of radius /g7y /4,
and applying then (2.4) and (2.12)), we get as well

,
PlIS:| > VERE, 7 < e <

T VERT
Furthermore, for any y, one has
€2.e.12) 1 c
Pr—2e, (T —y)Ha(z) < C <—
gz; ' gzé (L +[lz +ylDzl +vE)S ~ vk

with a constant C' > 0, which is uniform in y (and the same holds with py(x) instead of py_oc, (x
y)). Similarly, define r}, := (k/sk)lo One has for any y, with ||y|| < \/Exr,
EDED

—2¢,(x —y)Ha(x < _— .
||w|§/ET§€pk ! YR \//;(7’;6)6
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Therefore coming back to (6.3), and using that by (2.12)), one has } >, Hi(y) = O(1/\/g}), we get

1 1
Cov(Zohs, Ziho) = Z Z (Ph—2e,, (x — y) — pr()) Hi (y) Ha(z) + O ( L. | 5)
|| <VErs, YlI<vERTR \/E(rk) \/ark

= > > (P, (z — y) — pr(x))Hi(y)Ha(x) + O <(5;€1>11°) ,
|zl <VEr), IYlI<vERTE

10

Now we use the fact Hi(y) = Hy(—y). Thus the last sum is equal to half of the following:

Z Z (Pr—2¢, (T — Y) + Pr—2e,, (x +y) — 2pp(x)) Hi (y) Ha ()
llz||<vEr, lVll<vEETk

Theorem
< > >

rl )4
(Ph—22, (& = Y) + Prosge, (& +y) = 2P (2)) Hi(y) Ha(2) + O (’ﬂ?’(/?k\)/;’) 7
|zl <vEr, IYI<vEERTs A

(with an additional factor 2 in front in case of a bipartite walk). Note that the error term above is
O(k~11/19) by definition of .. Moreover, straightforward computation show that for any = and y
as in the sum above,

_ _ - Iyll* +ex)
Bz =) + P o+ 0) 2ol < © (22 ) g ),
In addition one has (with the notation as above for 7),

> llyll? Hi(y) < 2B [||Se, — S—e, [IP1{r < &x}] < 4E[| S, IPIP[r < ek +4E [||Sc, [IP1{7 < &4 }]

yEZ>S

ED.ED |
€k

€9.E) E9.E1
ST 48 S RS zr <] < 0%

Ve Sk TVE

using also the Markov property in the last two inequalities (at time 7 for the first one, and at the
exit time of the ball of radius r for the second one). Altogether, this gives

1 1
/ _ €k (dc)ﬁ _ (gk)g
|COV(Z()h3, Zkho)’ =0 <k3/2\/% + k% =0 km .

In other words, for any sequence (gj)r>1, such that e, > k920 one has

One can then iterate the argument with the sequence (¢}) in place of (), and (after at most a
logarithmic number of steps), we are left to consider a sequence (), satisfying e < k%20 In this
case, we use similar arguments as above. Define Hy(y) as Hi(y), but with Zy1 instead of Z, ho in

+8E [|IS- I°1{7 < ex}] + 8E [|IS:, — S-I°1{7 < ex}]

—_

1o (@c)é
Cov(Zohs, Zyo) = Cov(Zohs, Ziby) + O | —5— +

cle

ko k
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the expectation, and choose 7, := \/k/e, and 7}, = k5. Then we obtain exactly as above,

- 1 .
Cov(Zohs, Zibo) = Z Z (Pr—2¢, (x — y) — pr(x))H1(y)Ha(x) + O ( b >

= Y Y el n) - R@HWHRE 0 ()
HxHS\/ET;C llyll<vk 10

_ €k 1 _ 1
”(w%)”(ag)

which concludes the proof of the proposition.

7 Intersection of two random walks and proof of Theorem C

In this section we prove a general result, which will be needed for proving Proposition and
which also gives Theorem C as a corollary. First we introduce some general condition for a function
F : 7% — R, namely:

there exists a constant Cr > 0, such that

[F(y) - F(2)] < Cp il - |F(@)], for all 2,y € 27

(7.1)

Note that any function satisfying is automatically bounded. Observe also that this condition
is satisfied by functions which are equivalent to ¢/J(x)®, for some constants « € [0, 1], and ¢ > 0.
On the other hand, it is not satisfied by functions which are o(1/||z||), as ||z|| — co. However, this
is fine, since the only two cases that will be of interest for us here are when either F' is constant,
or when F(z) is of order 1/||z||. Now for a general function F : Z¢ — R, we define for r > 0,

F(r):= sup [|F(z)].
r<||zf|<r+1

Then, set

lo 2—|—7" r _ © F(s) 1o 2+S
Ir(r) ::g7(41—2)/0 S'F(S)ds+/ ”sf_g)ds,

and, with xq(r) := 1+ (log(2 + 7)) 1{4=5},

Jp(r) = Xfli(j;) /OT F(s)ds + /roo F(zle;l(S) ds.

Theorem 7.1. Let (Sy,)n>0 and (gn)nzo be two independent random walks on Z¢, d > 5, starting
respectively from the origin and some x € Z%. Let £ € NU {00}, and define

T:=inf{n >0 : S, € R[0,/]}.
There exists a constant v € (0,1), such that for any F : Z¢ — R, satisfying (7.1]), one has

14

> G(Si —x)F(S))

=0

Eo.e [F(@) 1{r < oo}} - % E

I () o

(7.2)
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where 4 is as in (1.2)), and K is some positive constant given by
. + _ )
K= [(Za(sn)) -}P’[Hﬁw _+oo|7zoo} 1{S, £0,¥n > 1}|,

with (Sp)nez a two-sided simple random walk starting from the origin and Reo := {Sn nez.-

Remark 7.2. Note that when F(x) ~ ¢/J(x)®, for some constants « € [0,1] and ¢ > 0, then Ip(r)
and Jp(r) are respectively of order 1/r¢=4+® and 1/r9=3+ (up to logarithmic factors), while one
could show that

14

> G(Si — z)F(S))

1=0

C/

~————— as|z| = oo and ¢/|z||* = oo,

E j(x)d74+a )

for some other constant ¢ > 0 (see below for a proof at least when ¢ = oo and a = 0). Therefore
in these cases Theorem provides a true equivalent for the term on the left-hand side of (|7.2)).

Remark 7.3. This theorem strengthens Theorem C in two aspects: on one hand it allows to
consider functionals of the position of one of the two walks at its hitting time of the other path,
and on the other hand it also allows to consider only a finite time horizon for one of the two walks
(not mentioning the fact that it gives additionally some bound on the error term). Both these
aspects will be needed later (the first one in the proof of Lemma and the second one in the

proofs of Lemmas and .

Given this result one obtains Theorem C as a corollary. To see this, we first recall an asymptotic
result on the Green’s function: in any dimension d > 5, under our hypotheses on pu, there exists a
constant c¢g > 0, such that as ||z| — oo,

G(z) = m—;l“ +O(||z)*~9). (7.3)

This result is proved in [U98] under only the hypothesis that X; has a finite (d — 1)-th moment
(we refer also to Theorem 4.3.5 in [LL10], for a proof under the stronger hypothesis that X; has a
finite (d + 1)-th moment). One also needs the following elementary fact:

Lemma 7.4. There exists a positive constant ¢, such that as ||x| — oo,

1 c 1
2 T2 Ty a2~ gt O <||x|rd3> '

y€Z4\{0,z}

Proof. The proof follows by first an approximation by an integral, and then a change of variables.
More precisely, letting u := x/J (), one has

1 1 1
2 T2 Ty —2)2 "~ Jpa T(y)2 Ty — 2)42 @+0 (\\xlld‘?’)

yeZN{0,2}

- ! d +0< ! )
T@T Je T2 Ty — w2 YT [l )
and it suffices to observe that by rotational invariance, the last integral is independent of x. ]

Proof of Theorem C. The result follows from Theorem by taking F' =1 and £ = oo, and then
by using ([7.3]) together with Lemma O
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It amounts now to prove Theorem For this, we need some technical estimates that we gather
in Lemma [7.5] below. Since we believe this is not the most interesting part, we defer its proof to
the end of this section.

Lemma 7.5. Assume that F satisfies (7.1). Then

1. There exists a constant C > 0, such that for any x € Z¢,

S ([ Sas - )22 psyieis - 0| <caetlah. @
i=0 j=0 J

2. There exists a constant C' > 0, such that for any R > 0, and any = € Z°,

DE[ D G =8| IF(S)IG(S; —a)| < 5;4 Ir(]]), (7.5)
i=0 li—i|>R ] R

and _ :
DE[[ D G = SHES) ] -GS —2)| < R§_4 e ((])- (7.6)
i=0 lj—il>R 1 ’

One also need some standard results from (discrete) potential theory. If A is a nonempty finite
subset of Z¢, containing the origin, we define

rad(A) :== 1+ sup ||z,
zEA
and also consider for z € A,

ea(z) =P, [H =o0], and ex(z):= (;;\IEZ’X)

The measure €, is sometimes called the harmonic measure of A from infinity, due to the next result.

Lemma 7.6. There exists a constant C' > 0, such that for any nonempty finite subset A C Z%
containing the origin, and any y € Z%, with ||y| > 2rad(A),

Cap(A)

P,[Hy < 0] <C - —————. (7.7)
! 1+ y)9-2
Furthermore, for any x € A, and any y € Z¢,
rad(A
By[Si, = | Hy < oc] —ea(x)| < C- HM (7.8)

This lemma is proved in [LLI0] for finite range random walks. The proof extends to our setting,
but some little care is needed, so we shall give some details at the end of this section. Assuming
this, one can now give the proof of our main result.
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Proof of Theorem [7.1. The proof consists in computing the quantity

{ oo
A= ng Z Z l{SZ = gJ}F(S@) y (79)

i=0 j=0

in two different Way On one hand, by integrating with respect to the law of S first, we obtain

l

Y G(Si - x)F(S))

=0

A=E (7.10)

On the other hand, the double sum in ([7.9) is nonzero only when 7 is finite. Therefore, using also
the Markov property at time 7, we get

{ oo
A=Eou || YD) 1{Si = S;}F(S) | 1{r < o0}

i=0 j=0

)4 ¢
= Boa || Y_G(S; = S)F(S)) | Z{ - 1{r < 00,8, = S;} | ,
i=0 j=0

where we recall that Zf =1{S; # S;,Vj =i+1,...,¢}. The computation of this last expression
is divided in a few steps.

Step 1. Set

‘ ¢
B:=) Eo. || D G(S;—S) | F(S)Z{ - 1{r < o0, 5: = Si}|,
=0 j=0

and note that,

‘ ‘ S; — S ~
4-B]'Z Cr Y B | [ D608 - s lE S pisy) s € Ruc)

2 2 (1+ 1551

‘ ‘ o IS =S ‘ .

< Cr ;E j:ZOG(S] - Sz)m |F(S:)] - G(Si — x)
D o (p(2)))

Step 2. Consider now some positive integer R, and define

¢
Dp = ZEO,x [gi,R,EF(Si)ZiZ 1{r < o00,5; = Si}] ’
i=0
with
(i+R)AL
gi,R,K = Z G(Sj - 5).
j=(i—R)VO

3This idea goes back to the seminal paper of Erdés and Taylor [ET60], even though it was not used properly there
and was corrected only a few years later by Lawler, see [Law91].
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One has

@ c

l
B=Dr| < Y E|| Y G(S;=S) | IF(S)GS;—2)| < —= - Ie(lz]).

i=0 J—il>R R

Step 3. Let R be an integer larger than 2, and such that ¢ A ||z||> > RS. Let M := |[¢/R°] — 1, and

define for 0 <m < M,

Im:={mR>+ R ... .(m+1)R° - R*}, and J,:={mR’ ... (m+1)R°—1}.

Define further u
ER:= Z Z Ko,z [Qz’,RF(Sz‘)Zf - 1{7 < 00,8, = Si}} ;
m=01i€l,,
with
i+R
Gir = Z G(Sj — Si)-

j=i-R
One has, bounding G; g by (2R + 1)G(0),

14

M
|Dr— Ep| < 2R+ 1)G0){ Y Y E[IFS)IGSi —2)]+ >, E[F(S)IG(S;

—ZL')] )
m=04i€Jp\Im i=(M+1)R5
with the convention that the last sum is zero when £ is infinite. Using £ > RS, we get
14 (M+2)R®
Y. E[F(S)IGS <Y IFEIGE-2) Y pil?)
i=(M+1)R5 z€Z4 i=(M+1)R5
,< CR® 3 |F(2)] _OR° Ie(lz])
: x||).
= R ER o I P e
Likewise, since ||z||* > RS,
M
Yo >T EFS)IGS —2) <Y 1+||z—:c!|d 5 Z Y. nilz
m=Oz€Jm\Im ZGZd m= OZEJNL\IWL
k9 ¢ 1 i< =07} | 1{i > [l=[*)
2_C oy Loy >y ( ;
d—2 d—2 T+ 2 — plld—2 d id/2
T+l oo TH IR T 2 T+ B o e it i
CR® C
< —_ .7 7.11
=15 Hde_Q + R2 F(HxH)) ( )

using for the last inequality that the proportion of indices 7 which are not in one of the I,;,’s, is of

order 1/R2.
Step 4. For 0 <m < M + 1, set

RM™ .= RImR®, (m +1)R® — 1], and 7, :=inf{n >0 : S, e R(™}.
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Let then
M

Fr = Z Z Eo . [Qi,RF(Sz‘)Zf 1{rm < 00,8;, = Si}| -

m=0 ielm

Since by definition 7 < 7,,,, for any m, one has for any i € I,

[Poo|r < 00,8, = Si | S]=Pgu[tim < 00,55, = Si | S]] < Pou|r < 7 < 00, Sy, = Si | S]

< Y Poulr < Tm <00, S, =8;, S, = Si | 9]
¢ Tm
(2.5)
< ) G(S; - 2)G(Si - 8;).
¢ Tm

Therefore, bounding again G; r by (2R + 1)G(0), we get

) _
|[Er— Frl|<CR Y Y E (Z G(Si — S;)G(S; — x)) |F(S)]
m=0i€lm, ¢ Jm |
<03§ﬁ{( 3 m&&mwjmg-F@>
=0 jili—il>R? |

= e Irllel) € 2 Tr(lel)

Step 5. For m > 0 and i € I,,,, define

mo._ + _ smo._ e’
ej’ :=Pg, [H’R(m) o0 | S} , and e": Cap(R0™)’
Then let
M
HR = Z Z E()’x [QZ,RF(SZ)Zfézn . l{Tm < OO} .
m=01:i€1,

Applying (7.8)) to the sets A,, := R(™ — S; . we get for any m > 0, and any i € I,,,

~ _ rad(A,)
Poo[S, = Si| T < 00,8] — ™| < ¢ —o2m) 12
[PoalSr, = i | 7m < 00, 8]~ €| < C o = (7.12)
By (7.7)), it also holds
CRS 5 Am d—2
Po[m < 00 | S] < F 1z = Si || < 2rad(Ay)} < S HTadAn)TT) o)

T 14 [l = S, )19 1+ [lz = S;,, [|472

using that Cap(A,,) < |A,| < R5. Note also that by (2.3]) and Doob’s LP-inequality (see Theorem
4.3.3 in [Durl0]), one has for any 1 < p <d,

5p

Efrad(An)?] = O(RT). (7.14)
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Therefore,

|Fr — Hpg| 7<12 CR Z Y Eoe [ 1(ii|)|‘$. r_ad( N )l{ Tm < oo}]
m=0¢€lp,
= ops ZIE [ im) | 12 (Arm)° {7, < oo}}

1+Hﬂf— i

), C10 s P (Si,.) e [F(2)|G(2)
- CR6+7 E im <CR6+7 L A S Bt S
: 2 [1+||x—sim||d1} SCRTE D T a
m= 2€74
26) ORS+%
< Ip(|l])
L+ ]

Step 6. Let

M
Kpi= Y > E|GrZe"| - EIF(S,)1{rn < oo}

m=0 ’ielm

One has, using the Markov property and a similar argument as in the previous step,

K Ha| C CRZZEM['F Sip )|+ (1L 11Si = m|>,l{Tm<oo}]

22 A
M
= 2 E T8 D+ e = 50,72

d
< CR™% - Jp(||z]).

Step 7. Finally we define

A=" By, [F(gT)l{T < oo}
Yd

We recall that one has (see Lemmas 2.1 and 2.2 in [AS19]),
E [(Cap(Rn) - 7dn)2] = O(n(logn)?). (7.15)
It also holds for any nonempty subset A C Z¢,
Cap(A) > ¢|A]'" 7 > ¢|AJ%, (7.16)

using d > 5 for the second inequality (while the first inequality follows from [LIL10), Proposition 6.5.5]
applied to the constant function equal to ¢/|A[*¢, with ¢ > 0 small enough). As a consequence,
for any m > 0 and any i € I,

C
R4

E[GirZiel"]| _
Yal®

|Cap(R(™)) — 747
Cap(R<m))

- C logR

1 1/2
-E
= S ey

Clog R [ P[Cap(RM™) < ~v4R5/2] 1 - ClogR ((logR)? 1 \? e
RS T Rio RI10 = R3/2 RI1 + RI10 = R6"
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Next, recall that Z(i) = 1{S; # S;, Vj > i}, and note that

N o @D C
E|[GinZlel’| ~ElGirZ(@)ef)| < o5

Moreover, letting e; := Pg, [H% = 00 | Roo] (With we recall R, the range of a two-sided random
walk), one has

C
|E(Gi rZiej"] — E[Gi rZie;]| < ik
and
C
E(GirZie] — 5| < 2E | D> G(S)| < —=
, R
>R
Altogether this gives for any m > 0 and any i € I,,,
I K C
) bem | _ <~
'E Guntter YaR?| T oty
and thus for any m > 0,
K C
> s lanrer]) - 2| <
(ie[m \F
Now, a similar argument as in Step 6, shows that
Z [Eo [F(Si,,) 17 < 00}] = o [F(5r, ) 1{7m < o}] | < CR% - Ji(|al])-
Furthermore, using that
_ M+1 M4l
F(S;)1{r < 0} = Z F(S:,) {1t =7Tm < o0} = Z F(S:,)({1m < oo} — L{7T < 7y, < 00}),
m=0 m=0

(with the convention that the term corresponding to index M + 1 is zero when ¢ = c0) we get,

Z Eo.s [ VL < oo}} Eo.e [F(§T)l{7 < oo}} ‘

M
< CPolrurs1 < 0]+ Bog [|F(Sr,)IL{T < 7 < 0} .

m=0
We bound the first term on the right-hand side using (7.13)), (7.14) and (2.9)):
5(d—2)
Po o[ < oo < CR >
T. T N Nd—o>
0,2 [T M+1 > 1+ ||.’L‘”d_2

and concerning the sum, we write for any m > 0,

[yF( So VL{T < 7 < oo}} Z Z B[ F(S;)|G(S: — S;)G(S; — z)]

<Y > E[F(S)IG(S: - S;)G( + > Y R[IF(S)IG(Si — S5)G(Si — x)] .

J€Im |j—i|>R3 F€EIm\Im i¢Jm
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The first sum is handled as in Step 4. Namely,

SY Y EIRGICE-S)Gs- )<Y Y EIFS)CE - S)G - o)
m=0j€Ip |j—i|>R3 720 |j—i|>R3
I (ll)

Similarly, defining J,, := {mR®,...,mR®> + R} U{(m+1)R> — R,...,(m+1)R® — 1}, one has,

Z > D EF(S)IGS: — S5)G(Si — )]

m= OJEJm\Im i€ Jm

M
<Z Y. D, EIFS)IGE —S)GSi—ol+), >, >, E[F(S)IGS: - 5)G(S:

m=0 j€Jp\Im |i—j|>R m=0j€Jm\Im i¢Jm, [i—j|<R

..} S S Y EIRSIGS - o)

m=0 j€J\Im i&Jm, |i—j|<R

7ﬁ F(ll=]) +CRZ Y E[F(S — )]
m=0
ZEJ’m
C CR®
< .7 ozt
< o= el +

using for the last inequality the same argument as in ((7.11)). Note also that

B1F(5,)|1{r < o}] ZE [F'(S — )] < CIp([l])-
>0

Therefore, putting all pieces together yields

5(d—2)

~ C 5d CR
Kr— Al < — -Ip(lz|) + CR= - Jp(||z||) + ——5—.

Step 8. Altogether the previous steps show that for any R large enough, any ¢ > 1, and any z € Z¢,
satisfying £ A ||z||? > RS,

1 RS+ CRYT? 5d
Ip(|x]]) + CR 2 - Jp(||z|)).

A-A<C|—=+—- o
A= <m T+ o] T+ o2

The proof of the theorem follows by taking for R a sufficiently small power of ||z|| A ¢, and observ-
ing that for any function F' satisfying (7.1), one has liminf|,_, [F'(2)|/[|z]| > 0, and thus also
Ip(|[=]]) = W O

It amounts now to give the proofs of Lemmas [7.5 and
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Proof of Lemma[7.5 We start with the proof of (7.4)). Recall the definition of x4 given just above
Theorem One has for any ¢ > 0,

2 15,-50 ] @& i
E G(S; —S;)—2——15; CE S;
2 G STy 2 T - SIS
1 xa(llSil)
<cSa < ¢ Xalll2ill)
<02 COTTREwa s+ - C1+(sd

and moreover,

=SS JEE D g,

;;E{ TS o) - 2 GO )
@ | xallsl) P PEED) . xallel) O
SOVTHIAr? 2 T 2 T T e 2 Tl
@, F (@) xalel)
¢ {eialy2) + EEAQE < 0o, (7.17)

where the last inequality follows from the fact that by ((7.1)),

[V Ty r@blleh ) g,
I |

o2 8972 I L G R o [P [Ty

Thus o e
E |G(S; — S; uFS-GS— =0O(J
> P IFSIIGS: = 2)| = Ok ().
i=0 j=i+1 L+ 15511
On the other hand, for any j > 0,

26 (S )
z%%G SOIS; = - F(S)IG(S: )| S c7§; s
26 Z\FS +2)|G(Sj + 2z —x)
2 IR
@, | 5- F ()] L1 5 LACOI
= N & TP+ 1S, 47— a8 T TR S 2o Tl ]2

C{\F(Sjﬂch(HSj — ) | LIS < flzl/2} - [F(S;)]
B L4 (IS5 — =142 (L4 [z 2) (1 + [[5;]17?)
1{||S;] > ||x]|/2
U2 B2 (ayiia o ety + 1810+ 1151P)
1+ 155l
[E (S xallS; —=l) | LSl < llll} - [FS)E | LS50 = (=]} - |F(Sj)|}
< C + + (718
< {5 e I+ ol I+ 512 )
where for the last two inequalities we used that by (7.1), if |lu|| < ||v|, then |F(u)| < C|F(v)|(1 +
lvl)/(1 + ||ul]), and also that d > 5 for the last one. Moreover, for any r > 0

L{ISill < 7} IFSHI] _ 5~ CEIFEI @ ([ F o as
Zﬂ et = X S Po(f Few).

ll=ll<r
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and

ZE{1{||51H+>”;}W|§< >q:2 <?|u|ﬂ’d1 X < gt >

lIzl>r

Using also similar computation as in ((7.17) to handle the first term in ([7.18)), we conclude that
155 = Sill
> 3 wfacs - sl S r e - 0] = 0wr(e),
j=01=75+1 J

which finishes the proof of ((7.4)).
We then move to the proof of ([7.5)). First note that for any i > 0,

> G(Sjsosil —E|Yas)| P o (rT),

j>i+R Jj>R

E

and furthermore,

Zw = S IF)GG - 06(:) BB o)), (7.19)

z€74

which together give the desired upper bound for the sum on the set {0 <i < j — R}. On the other
hand, for any j > 0, we get as for (7.18)),

S G(S; - S)IF(S)IG(S; ) S] S GR)IF(S; +2)|G(S; + = — 2)Gr()

1>j+R 2€74
2o C |F'(S; + 2)]
SR L TR I8+ = el
R sezd z j Tz xH )
c [~ F(S))] Ly W
R B (O e e R TN - e P
C {!F(Sj)\log(2+HSj—xH)+ [F'(S55)] }
- R% 14|85 — |42 L [lzf| =2 + || ]*2
Then similar computation as above, see e.g. (7.19), give
| F(S;)[log(2 + |55 — «])
E =01 7.20
Sr | R (1 (1), (7.20)

7>0

and

F(S;
ZE [1 + ”;U’|d—(2 j_):‘sj‘|d—2:| = OIr([|=]])),

Jj=0

which altogether proves (7.5)).
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The proof of ([7.6) is entirely similar: on one hand, for any i > 0,

o = S = 8.
B| > 6ls—SIFS) S| T CE| 3 605, -8yt 8- IF(s)

j=i+R j=i+R

(i)

<C Gr(z

Ezzd ") T T W+ TS+ 41D

F(S; C

<02 o e < g5 0l

G (R 4 2L+ 23+ 1S+ 2) RS

and together with (7.20)), this yields

SO S E[G(S; - S)IF(S)|G(S: - 2)] < —or - Tr([]).

i=0 j=i+R Rz
On the other hand, for any j > 0, using ({2.6]),

C GSj+z—=x C  log(24||S; — =

2 e A E FL AR e Rl
and we conclude the proof of ([7.6]) using (7.20)) again. O

Proof of Lemma[7.6. The first statement follows directly from (7.3)) and the last-exit decomposition
(see Proposition 4.6.4 (c) in [LLI0]):

Py[Hp < o0] = ZG —x)ep(T).
TEA

Indeed if [|y|| > 2rad(A), using (2.6) we get G(y — ) < C||y||>~¢, for some constant C > 0
independent of x € A, which gives well (7.7)), since by definition ) _., ea(z) = Cap(A).

The second statement is more involved. Note that one can always assume J(y) > Crad(A), for some
constant C' > 0, for otherwise the result is trivial. We use similar notation as in [LL10]. In particular
G 4(z,y) denotes the Green’s function restricted to a subset A C Z¢, that is the expected number
of visits to y before exiting A for a random walk starting from x, and H(z,y) = Py[Hac = y]. We
also let C,, denote the (discrete) ball of radius n for the norm J(-). Then exactly as in [LL10] (see
Lemma 6.3.3 and Proposition 6.3.5 thereof), one can see using that for all n > 1,

Ge (2, w) — G, (0,w)] < -2

n < Ge, (0,w), 7.21
T+ o] (0, w) (7.21)

for all z € C,,/4, and all w satisfying 27 (z) < J(w) < n/2. One can then derive an analogous
estimate for the (discrete) derivative of He, . Define A,, = Cy, \ Cy, 2, and p = H.. By the last-exit
decomposition (see [LL10, Lemma 6.3.6]), one has for = € C,,;3 and z ¢ Cy,

|ch(l‘, Z) - ch(07 Z)| < Z |Gcn(wi) - GCn(O>w)| ']P)w[sp = Z]

wECn/g

X
‘He,(0,2)+C Y Hﬂ'JHC'l’lIPw[Sp = 2]

27 (2)<J (w)<%

1 1
+C ) < — + d_2>1@w[sp_z].
Fwiearw T v =] 1+ [|wll

20, @9 |z
< o
n
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Now, observe that for any y ¢ Cy, any w € C,, 4, and any A C Z4,
D Galy, 2)Pu[S, = 2] < C > Py[S, = 2] < Pu[T(S1) > n/2] <P[T(X1) > n/4] = O(n™?),
chn Z¢C'n

using that by hypothesis 7(X1) has a finite d-th moment. It follows from the last two displays that

Z Gal(y,z)He, (z,2) = Z Gal(y,z)He, (0, 2) (1 + (’)(HZH>> + 0O ( HIH1> ) (7.22)

Z¢Cn Z¢Cn

Now let A be some nonempty finite subset of Z?¢ containing the origin, and let m := sup{J (u) :
|lul| < 2rad(A)}. Note that m = O(rad(A)), and thus one can assume J(y) > 16m. Set n :=
J(y) — 1. Using again the last-exit decomposition and symmetry of the step distribution, we get
for any x € A,

Py[SH, =z, Hy < 00] = Z Gae(y, 2)Py[Sy, = z, 7o < H{, (7.23)
2¢Cn,

with 7, :== Hce. We then write, using the Markov property,

Pu[Sr, =2 T < H{]= Y Pulrm <Hj, S, =2']-PulS,, =2, 7 < Hf]
Z‘lécn/g\cm
P, [j(STm) > g, S, =z|, (7.24)

with 7, 1= Hee . Concerning the last term we note that

n £3)
D Gaely, 2)Ps [J(Sfm) > g0 S = z} < ) Gla—y)PuS, =21+ D Pu[S,, =ulG(z —u)
z2¢Cn 2¢Cnp, u€CR\Cp /g
Lemmam Px [ STm — u]
> G- =40 > T
2¢Cr, uECH\Cp /8
< CP,[7(Sy,) >n/8 < Y Ge, (2, u)PlJ(X )>g—m]
UECm
m*\ _ m
2o (% _O<nd*1)’ (7.25)

applying once more the last-exit decomposition at the penultimate line, and the hypothesis that
J(X1) has a finite d-th moment at the end. We handle next the sum in the right-hand side of

(7.24). First note that (7.22)) gives for any 2’ € C,, s,
Z Gae (ya Z)Px’ [STn = Z] = Z Ghe (y, Z)ch (33‘,, Z)

Z%Cn chn

= | > Gac(y,2)He, (0, 2) <1 + 0(”?”)) + 0O ( I’ > . (7.26)

2¢Cn

Observe then two facts. On one hand, by the last exit-decomposition and symmetry of the step
distribution,

(2.9)), (2.6} _
S Gae (9, 2)He, (0,2) < 3 G oy (s 2) He, (0, 2) = PIH, < o] BB op2-ay  (7.97)
Z%Cn Z¢Cn
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and on the other hand by Proposition 4.6.2 in [LLI10],

> Gacly,2)He, (0,2) = Y Gga\ oy (4, 2) He, (0, 2) Z <GAc Y, 2 sz\{o}(yaz)) He, (0, 2)

(2.7
> P[H, < o0] — O | Py[Hx < o0] Y G(2)He, (0, 2) 9 P[H, < o0] n? 4N Gz
¢
> 5 (7.28)

This last fact, combined with (7.26)) gives therefore, for any z’ € C,, /s,

S Gacly, 2)Pu[Sr, =2 = [ 3 Gacly. 2)He, (0, 2) (1 + o(”“')) . (7.29)

n
Z¢Cn Z¢Cn

By the Markov property, we get as well

3 Gacly. 2 = 2| Hy <] = | Y Gacly, 2)He, (0.2) | (1+0())

Z¢Cn Z¢Cn

since by definition A C C;, C Cy,/5, and thus

Z GAC(yaz)]P)x’[STn =z, HA < Tn] = Pz/ {HA < Tn] Z GAC(%Z)HCH(O,Z) (1 -+ O(%)) .
2¢Cn z¢Cn

Subtracting this from (7.29)), we get for 2’ € Cny/s \ Cm,

[l
gézc Gae(y, 2 Sr, =2, Tn < Hp] = Py, < Hyp ¢ZC Gae(y,z)He, (0, z) <1 +(’)( ~ ) ,

since by (2.7)), one has P,/[r, < Hj] > ¢, for some constant ¢ > 0, for any 2’ ¢ C,, (note that the
stopping time theorem gives in fact P,/[Hy < oo] < G(2')/ inf|y)<raqa(a) G(u), and thus by using
(7.3), one can ensure P,/[Hy < oo] < 1 — ¢, by taking ||2’|| large enough, which is always possible).

Combining this with (7.23)), (7.24)) and (7.25)), and using as well (7.27)) and (7.28)), we get

Py[Su, =2, Hy < 00] =Pa[r, < Hal [ Y Gae(y, 2)He, (0, 2)
2¢Cn

vol by Y RS, =] )] o)

x'€Cyp, /8\Cm.
n/8
&1 ea(x) (Z GAC(yaz)HCn(O’Z)) (1+O(%>) ( d—1 Z ) (%)
oy r—2m |

=ea(z) | Y Gaely, 2)He, (0, 2) (1 + O<@)> ’

n
2¢Cn
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using the same argument as in (7.25)) for bounding P,/[J(S7,,) > r], when r > 2m. Summing over
x € A gives

Py[Hy < o] = Cap(A) [ 3 Gae(y, 2)He, (0.2) | (1+ o(%)) ,
2¢Crn

and the proof of the lemma follows from the last two displays. O

8 Proof of Proposition

The proof is divided in four steps, corresponding to the next four lemmas.
Lemma 8.1. Assume that e, — o0, and € /k — 0. There exists a constant 013 > 0, such that

g
COV(Z()(pg, Zk”l/}l) ~ ;{;3.

Lemma 8.2. There exist positive constants 6 and 01,1, such that when e, > B0, and ex/k — 0,

o
Cov(Zop1, Zy1) ~ Cov(Zops, Zi)z) ~ ;’1_

Lemma 8.3. There exist positive constants & and o2, such that when e, > k=9, and ex/k — 0,

01,2
Pt

Cov(Zopa, Zyb1) ~ Cov(Zops, Zpha) ~

Lemma 8.4. There exist positive constants § and o22, such that when ej, > B0 and ex/k — 0,

02,2
e

Cov(Zopa, Zih2) ~

8.1 Proof of Lemma [8.1]

We assume now to simplify notation that the distribution u is aperiodic, but it should be clear
from the proof that the case of a bipartite walk could be handled similarly.

The first step is to show that

2

CovZogs, Zitn) = 24 3 me)g? — | 3 pe@ee +(,1€) (8.1)

TE€Z5 T€Z5

where p and @, are defined respectively as

p=E [IP [H%oo — | (Sn)nez} C1{S, £ 0,V > 1}} , (8.2)
and N
Pz = ]P)O,CE[ROO NRoo # @]

To see this, one needs to dissociate Zp and Z, as well as the events of avoiding R[—eg, ex] and
Rk — ek, k+¢ex] by two independent walks starting respectively from the origin and from Sy, which
are local events (in the sense that they only concern small parts of the different paths), from the
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events of hitting R[k + 1,00) and R(—o0, —1] by these two walks, which involve different parts of
the trajectories.

To be more precise, consider (S}),>0 and (52),>0, two independent random walks starting from
the origin, and independent of (S,,)nez. Then define

m=inf{n > e, : SL € Rk +¢e,00)}, and 7 :=inf{n>ep : Sp + S2 € R(—o0, —ex]}.
We first consider the term E[Zyps]. Let
70,1 = inf {n >ep 0 Se R[—ek,ek]} ,
and
Aoz =E[Zy  L{R'[1,e] N R[—¢ep,ex] = @} - L{r1 < o0}].
One has,

IE[Zows] — Nos| < P01 < 00, 71 < 00] + P [R0, 4] N R[k,00) # @] + B[R N Rk, k + &) # 2]

2.13 €k
P[Tl < 70,1 < OO] +P[7‘01 << OO] + 0O <k‘3/2>

Next, conditioning on R[—ej,ex] and using the Markov property at time 791, we get with X =
S., — Sk

70,17

. €3 [T01 < o0]) E13) 1
Plro) < 711 < 00] < E |Pox[R[k, 00) N Reo # ] - L{r01 < }} o <‘”ﬁ> = 0 (\/a) .

Likewise, using the Markov property at time 71, we get

@11 Ck
Plr <711 <o00] < E Z G(S; - S7,) | 1{m < oo}

J=—¢k

Z Z Si)G(S; — SL)]

i=k+ep J=—¢€k

< (2e+1) sup Y E[G(S)G(S; — )]
TEE? =k

< (2er 4+ 1) sup Y G(2)G(z — x)Gi(2)
S 5z€Z5

BB )

Now define for any y;,vys € Z5,
H(y,y2) ==K [Zo - L{R'[1,ex] N R[—ek, €] = @} - L{S-, = 1, SL, = 1a}] - (8.3)

One has by the Markov property

Nos=> Y Hyy)pe(r +y2— y1)pa-

TEZLS y1,y2€Z5

Observe that typically ||y1]| and ||y2|| are much smaller than ||z||, and thus px(x + y2 — y1) should
be also typically close to pi(z). To make this precise, consider (xx)x>1 some sequence of positive
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integers, such that e X} < k, for all k > 1, and xx — 00, as k — co. One has using Cauchy-Schwarz
at the third line,

Yoo > Hunwne@+y =)o < Y, D> Doy (02)Phier (8)Pr—y,

=2 <k/xr y1,y2€Z° =2 <k/xK y2€Z°

A [1{|!Sk+ek\l2 < k/xzc}]
= 1+ |[Skte, — SL ||

1 1/2 1/2 22) 1
<SCE|——— | P[ISec > <k = o
<CE[ ] Pl <t Vi)

Likewise, using just (2.4)) at the end instead of (2.2)), we get

Yoo > Hynw)pe(+ye —y1)ee = (\f 1X5/4>

lz12>kxk y1,y2 €25

and one can handle the sums on the sets {||y1||* > exxx} and {||y2||*> > exxx} similarly. Therefore,
it holds

Nopz = Z Z Z H(y1,y2)pr(z +y2 — y1)ps + O <\f 1X5/4)

k/xe<llz|?<kxk lly1ll?2<exxw lly2lI? <erxr

Moreover, Theorem shows that for any x,y1,y2 as in the three sums above, one has

ok +y2 — y1) — pr(x)| = O <\/ET’“@X’“ -pr(z) + k71/2) :

Note also that by (2.12)), one has

Y Hyuy)pe(@)ee < ) pile <\}%> : (8.4)

x,y1,y2 L5 TEZ5

Using as well that /xxr < v/k/xk, and ZH!EIIQSka 0z = O(K*X3), we get

1 X2
Ags3 = E: s+ O —— + 2E ),
08 =Pk 2 Prle)pe + <m+/€3/2>

T€Z5

with
> H(yi,y2) =E[Zo- L{R'[L,ex] N R[—ep, k] = 2}] .
yl:y2€Z5

Note furthermore that one can always take xj such that x; = o(v/k), and that by (2.5)), (2.6) and
(2.13]), one has

\%—m—o(jﬁ)

Altogether this gives

1
E[Zops] =p > pr(@)pz +o| —= |- (8.5)
o QE;% k (\/k)
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By symmetry the same estimate holds for E[Zy1;], and thus using again (8.4)), it entails
2

E[Zoes] - BlZiyn] = p* | D prl(@)pa | +o0 <;> :

z€Z5
The estimate of E[Zop3Zk11] is done along the same lines, but is a bit more involved. Indeed, let
A1z :=E [ZOZk . l{Rl[l,sk] N R[—Ek,é‘k] =, (Sk+ Rz[l,ék]) N R[k — &k, k+ Ek] =d, 1 <00, o< OO}] .

The difference between E[Zyp3Z;1)1] and A; 3 can be controlled roughly as above, but one needs
additionally to handle the probability of 79 being finite. Namely one has using symmetry,

E[Zops Zip1] — Ai3] <2 (P[ro,1 < 00, 71 < 00, T2 < 00] + P [R1[0,e] N Rk, 00) # @, T2 < 0]
+ PR NRE k +ex] # @, T2 < 7)), (8.6)

with
=inf{n >0 : Sy + S € R(—o0,0]}.
The last term in is handled as follows:

PR NREk+ex] # @, Ta <o) = Y PRLNRIk,k+ex] # @, T2 < 00, S = 2]

T €75
£k €8, @12, @9 pk(z) @2 €k
D 5 i Szt PP S 5 2 Bo()
T€eZ5 1=0 T€Z5

The same arguments give as well
P [R[0, 4] N R[k, 00) # @, 7 < 00] = O (%) ,
and

g
P[T071<OO,T1<OO,72<OO]:]P)[T01<OO 71 < 00, TZ<OO]+O<I{:];>

Then we can write,

Plro1 <11 <00, o <oo] =E [PO,SH%*STOJ [Roo N ﬁoo # 0] - 1{rp1 < 00,72 < oo}]

11, E12) Ck G(S; — St
< C Z E 1 . ( €k)
A | T ISkre, = Sl T+ 118k — S
. C & E { 1 1 }
< Ei/z e 1+ [|Sk = Sill 1+ ISk — S—c, |l

< C B [ 1 1 ] 0 ( 1 )

— max su : = —,

Ven ke taShren ool ST IS T+ 11S; + ul k/Zr

where the last equality follows from straightforward computation, using (2.2)). On the other hand,

- - Si)G(S; — SL,
Pln < 701 <00, 72 < oo Z Z 1+IISZ —(S [ )]
i=k+ep, j=—¢k ~Ek
¢y ZE[ G(S; ~ 5) ]
2 2 ST ISP+ 18— 52,1
G(Z—i—Sk—Sj) :|
<C G-, ( .
]Z_;;kzgz:d k |: 1+||Z+Sk”3)(1+ ||Sk_S—Ek||)
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Note now that for z,y € Z5, by (2.6]) and Lemma

(;ak(z) C 1 1
2 A+ Tz —aP) L+ —9P) ~ 1+ [P <\/5+ 1+ Hy—xH>'

ze74

It follows that

€k

1 1 1
P < <00, Ty < <C E
[71 < 70,1 < 00, Tp < 00 < Z [(1 + [|Sk]IP) (1 + ||Sk — S—c,|) <ﬁ 1 + ”S]’>:|

J=—¢€k

0

&9 NG 1 o 1
< ote ]+ 2 F TS D) tOE T

C k 1 \/Ek
< — [ — yr
<iE Vet 2 =) ) o ()
=—ck

using for the third inequality that by (2.2)), it holds uniformly in = € Z° and j < ¢y,

1
(T4 1Sk [P) (T + 115k + =])

IE[ ! ]:0(k‘2), and IE[

_ -2
1+ 1Sk — S + «|* =O(k™7).

Now we are left with computing Ay 3. This step is essentially the same as above, so we omit to
give all the details. We first define for vy, 2, y3 € Z°,

H(y17y27y3) =K [ZO . l{R1[17€k] N R[_Eka Ek] =, Sek = Y1, Salk = Y2, S—Ek = y3}] 5
and note that

Az = E E E H(y1,y2,y3)H (21, 22, 23)Pk—2¢, (T — Y1 + 23) - Patz1—ys * Patza—ys-
Y1,Y2,Y3€ZL5 21,22,23E€ L5 x€LS

Observe here that by Theorem C, @u4.,—y, is equivalent to ¢,, when ||21]| and ||y2|| are small
when compared to ||z||, and similarly for ¢, .,—y,. Thus using similar arguments as above, and in

particular the fact that by and ,
1
> mia=0(3), (8.7

TEZS
we obtain .
Az =p> ) pr(@)gl+o <k> :
TEZS

Putting all pieces together gives (8.1). Using in addition ({2.2)), (2.12) and Theorem we deduce

that
2

Cov(Zogs, Zin) = 4 3 Bu@)e? — | 3 pele)n +o(1).

€L TEZS k
Then Theorem C, together with (8.4)) and (8.7)) show that

2

D D 1
COV(ZOSD?M kal) =0 Z 1_61?17('%(')33)2 - lf—k\% +o <k> )
TEZS A
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for some constant ¢ > 0. Finally an approximation of the series with an integral and a change of
variables give, with co := (27)~%/2(det T)~1/2,

ocC 6-5](7))2/2 6_5J(I)2/2 2 1
COV(ZQQOE}, Zk'(/]l) = ?0 s W dr — Co /R5 W dx +o <k> .

The last step of the proof is to observe that the difference between the two terms in the curly
bracket is well a positive real. This follows simply by Cauchy-Schwarz, once we observe that
co Js e37(®)*/2 gz = 1, which itself can be deduced for instance from the fact that 1 = Y wezs Pe(T) ~

co fR5 e=57(2)*/2 dx, by the above arguments. This concludes the proof of Lemma (|

8.2 Proof of Lemma [8.2]

Let us concentrate on the term Cov(Zyps, Zi13), the estimate of Cov(Zyp1, Zx1)1) being entirely
similar. We also assume to simplify notation that the walk is aperiodic.

We consider as in the proof of the previous lemma (S}),>0 and (52),>0 two independent random
walks starting from the origin, independent of (Sy,)necz, and define this time

m=inf{n > k+e; : Sy € RYep,00)}, and 1 :=inf{n>k+e; : Sy € Sp + R2[Ves, 00)}.
Define as well
Tro=inf{n>k+e : S, eRLY, and To:=inf{n >k+e : S, €S+ R}
Step 1. Our first task is to show that

k

with p as defined in (8.2]). This step is essentially the same as in the proof of Lemma but with
some additional technical difficulties, so let us give some details. First, the proof of Lemma [8.1
shows that (using the same notation),

Cov(Zops, Ziabs) = p* - Cov (L{T) < oo}, 1{Ty < 00}) 40 <1> , (8.8)

1 €k
E[Zops] = A O —+ -2,
[Zops] 03+ (J@+k3/2>

941
and that for any sequence (xx)r>1 going to infinity with 5k;Xk+4 < k, one has

Apz = > > > Hyny)pe(e+y2 — y1)ps + O (W) '

k/xr<llz|?<kxg lly1l1%<exxw lly21I?<erxr k

Observe moreover, that by symmetry H(y1,y2) = H(—y1, —y2), and that by Theorem for any
x, Y1, and y2 as above,

€ 1
lpe(x +y2 — 1) + pr(x +y1 —y2) — pe(z)| = O ( kgkﬁk(cx) + k7/2> ,

for some constant ¢ > 0. It follows that one can improve the bound ({8.5)) into

2
EkXk | Xk 1 1 Ek
E[Zowsl =p » pr(x)ps+ O + + + +
[ ] mgz% k3/2 k3/2 \/E ) XZ/4 /kfk: k3/2

2
EkXk | Xk 1 1 €k
+ + + + :
k3/2 k3/2 \/E‘X2/4 /k:sk k3/2>

= pP[F) < 00] + O ( (8.9)
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Since by (2.13]) one has

E[Zyys] < Efys] = O <\/1€—k> ;

this yields by taking precisely Xi+1/4 .= k/ey, and g, > k?/3 (but still g, = o(k)),
1
E[Zops] - E[Zky3] = pP[T1 < o0] - E[Zp1p3] + 0 (k) . (8.10)

3/4

We next seek an analogous estimate for E[Zy3]. Define Z}, := 1{Sk4; # S, Vi =1,.. }, and

Ag:=FE [Z,; 1 {R[k: — e k4N (Sk+ R VER) = @, 7 < oo}] .
Note that (with R and R two independent walks),
E[Zyibs] — Ao| < P [o e R[N e ]} +P [R NRIE/
P [R[o, VER N Rlek, 00) # @} +P [R[@, 00) N R[—ex, ] # B, RV/Er, 00) N Rlex, 00) # @} .

Moreover,

,E k] 7é J, 7%00 ﬂR[Ek,OO) 75 @}

P[0 RN <) BD.CD 5 9% and P (R0, V&R N Rl 00) # 2] B2 0. (8.11)

Using also the same computation as in the proof of Lemma we get

P [Roe MRV 24] # 8, Roo NRex,00) # 2] = O, * ),
and
P [RIVER 00) N Rl~ek, 2k # 8, RIVER, 00) N Rler, o0) # 2] = O(e; 172, (8.12)
As a consequence
E[Zyts] = Ao+ 0 (5,°%). (8.13)

Introduce now
H(y1,y2) =E [Z,; CL{R[k — e,k + e N (S + R2[1, Ver]) = 2} {8, , o = Sk =1, Sy =12} |

and note that

Z Z (y1,92)p_ 2/4(3: + Y2 — Y1) Pa-

TEZY y1,y2€Z4

1/8

Let x1 :=¢,/". As above, we can see that

5 1
Bo = > > H(yla?JZ)pak_az/4(x+92_yl)sﬁx-i-(’)( 5/4>

2 3/4 \% X
e/ xuSl2lP<erxn ||y, [|2<ed*yy, ly2 12 </Erxn

2
_ Xk X 1
= E y17y2 E Pei (2 +0 ( 3/4 + 3/2 + 5/4)
y1,y2€Z4 z€Z4 € €L VEEX

— p- Py < 00] + O(c;, ).
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Then by taking ), > k5%/6, and recalling (8.10]) and ( -, we obtain

E[Zops] - E[Zris] = p* - P71 < o0] - P[72 < o0] + 0 (i) : (8.14)

Finally, let
As3:=E [Zoz,gl {Rl[l,ak] N R[—¢ek, e] = D, (Sk + R*[1, Ver]) N R[k 5k,k + ak] D, 71 < 00,Te < oo}] .

It amounts to estimate the difference between Az s and E[Z)Z;p31)3]. Define
=inf{n>k+ex : Sy € Rl[O,&?k]}, and Ty:=inf{n >k+ep : S, € Sk + RQ[O, VEr }-

Observe first that

1{7 < 0} ] €D o)
PIH <79 < < CE|——M——— C E|—% —*T%k/
M <72 <o S [1+Hsﬁ sku] Z [Hnsl skn}
2= Spie, )} 22 NG [G(z—skﬂ )]
<C ; S Pkt | T2 o E a
zng’ [1+uz—5ku S v ] e P
) FA=Y/A z2€EZ
3 N H [ NG }- (r)
< CE < CE|——— (@) 8.15
< [<1+|rsk+sk112><1+rrskrr> < CE T 5P % (8.15)
and likewise,
B @-11) k 9 )
P <R <oo] < > Y E[G(Sk+ 57— S])G(S] — Ske,)]
720 =0
€k
=D D E[GRIG(Sk + 5 = 2)G(2 = Stz )]
=0 z€Z5
€k
1 1 1
<o ; )
Zz; [1+|sk+sz||3<1+||sk+ak| 1+ [[Sksen — Sk — 2]
< CE|——— CE|l——— | =0Y—=].
= [1+||sku4}+ [1+usku3] (k:?*/?)

Additionally, it follows directly from (2.13|) that

P[T2§;1<OO]—O<]::/;7;>, and P[7~'2 §T1<OO]—O<8ki/E>,

which altogether yields

_ _ \/Ek 1 >
P71 <00, Ta < — Pl < o0, 9 < =0 | %5 .
IP[T1 < 00, T2 < o] [T1 < 00, T2 < o0 <k3/2 + h

Similar computations give also

P[T1 < 00, T2 < 00] = O <\/]1?k> . (8.16)
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Next, using (8.11)) and the Markov property, we get

1
EHZk — Z]/Jl{Tl < OO}] =0 ——1.
si/sx/E
Thus, for e > k5/6,

|E[Z0Zip313] — As 3| < Plrp,1 < 00,71 < 00,7y < 00] + Pl < 00,7 < 00,72 < 09

~ 1
+ P[70,2 < 00,71 < 00, T2 < 0]+ 0 7

where 701 is as defined in the proof of Lemma
10,2 :=inf{n > /e : Si + 5'721 € Rlk — eg, k + €k},

and
Foo = inf{n < e : Sp+ 2 € Rk —epk—e JURk+e* k + 4]}

Applying (2.13) twice already shows that
1 1
rrei=o(2) o)
) /8
Ve, k

]P)[7~'0,2 <00, T < OO] <

S0

Then, notice that (8.15]) entails

€k
P[R[k + €k, 00) N R! [0,70,1] # 2, S‘%o,l € Rl-er, 0] =0 </¥72> '

On the other hand,

S
PRIk + ek, 00) VR0, 70.] # @, S5, € RI0,exl] < Y D EG(Si — Si4))G(Skj — S
1=0 j=k+eg
k Ce Lemma 2.3 Ek
=> ) E[G(Si — Sk + 2)G(2)Ge,(2)] < kg—/’; G(2)G., (z) “E0 (]\Cé;) .
1=0 2€7Z5 2€75

Moreover, by (2.11)) and (2.8), one has with Roo an independent copy of R,

Plro,1 < 00, T2 < 00, Rk + &k, 00) N R} 10,1, 00) # 2]

C ~ 1
< — i 00 g = )
= TE 78111;;}5% P[TQ < 00, R[k‘ + €k, OO) N (S +R ) 7& ] @ (e’ik\/E)

where the last equality follows from ([8.16)). Thus

1
P11 < 00,71 < 00,72 < 00] =0 (k:) .

In a similar fashion, one has

E12 1
Plro2 <00, o <71 < o00] < Plros < 00, T3 < o] o |

C
N ELNT
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as well as,

P [7‘02 <00, T T2 <00, STQ € (Sk +R2[0,7_0’2]):|
k+ep

S SSRGS~ § - SHG(E, + 5! SIG(S! — Skr)

i=k—gp 70 £>0

k+ep

< Y D DT EGEIGS: — S - 2)G(z + S}~ S)G(SE— Skizy)]

i=k—gp £>0 z€7Z5

LemmaIZ{I kf“ ZE[ — Sktey,) < 1 N 1 >}
i 50 Hw9 SelP \1+[SE= 5] 1+ 1S: — Skl
—3/2 1 )
_|_

Zo; 1+|!51 Skl[? <1+||Sel_5k—i|| 1+|!Sk_i—sk||)

1 1 1
‘ E[ ( ‘ ))}
(1+ 1S} = Skewil )X+ 1157 = Sell*) N1+ 1157 — Sl 1+ [[Sh4i — Skl

ZZ e/ ( 1 Lo ) (1+4)"1/2
DD E e A S e ey ) R Fe A
N
<
and

P [T072 < 00, T < 79 < o0, 57—2 S (Sk +R2[T0’2,OO))]

23 ) -
< S E [G(Sk+i — 85— 822 L{m < 00, Rlr1,00) N (Spsi + Rec) # @}}

z‘:—ak
= [ 1{m < oo} - G(Sk+i — Sk — S?/?)G(Sj)

< C E |G(Skti — Sk — S ] < C E -
:Z_: (ke Ve T 1% = Serd] :Z_:Q%: L+ [1S) = Sieal

Sk G(Sk—i — Sk — S?/Q)G(Sk + 2)G(z) G(Skyi — Sk — S\Q/a)G(Sk_H +2)G(z)
<022 \F N PR i

22 e+ S =S P

€ 2 2
<C Zk: E G(Sk—i — Sk _25\/5) G(Sk-l—i =Sk — f\/a)

- A 5 [Shail
E9.E9 ¢ ﬁE[ 1 1 ]+c Z [G(Ski—Sk) +G(Sk+i—5k)]

S =l N R ) P e B R A R B A
- ed ¢ x 1 1 1
0 B e o) O\
€k i=/e% ki k ek
Thus at this point we have shown that
1
|E[Z[)Zk(p3w3] — A373’ =0 <k> . (817)
Now define

ﬁ(zl,ZQ,Zg) =P|0 ¢ R[l 83/4], ﬁ[l,y/&k QR[ 62/4,62/4] g, 553/4 =z, 5—53/4 = z3, §\/§ = 23] s
k k
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and recall also the definition of H(y1,y2) given in (8.3). One has
Azz = Z Z Z H(y1,y2)H(21, 22, Z3)pk7€k782/4 ($—y1+y2+23—22)p8k782/4 (u—21+22)Pz,u;
T, UEZLS y1,y2 €L 21,22,23EZLO
where
Opu i=P[T1 <00, Tog <00 | S =z, Sgye, =+ ul.

Note that the same argument as for (8.16[) gives also

—0< 1 ( 1 >) (8.18)
e = E T o \T+ e +ul] " T+]2)) '

Using this it is possible to see that in the expression of Ag3 given just above, one can restrict all
the sums to typical values of the parameters. Indeed, consider for instance the sum on atypically

large values of x. More precisely, take xx, such that skxiﬂ/ - k, and note that by (8.18]),

Z Z H(y1,y2)H (21, 22, 23)pk_€k_62/4 (T —y1+y2+23— ZQ)pEk_azﬂl (u— 21+ 22)Pzu
lz2>kxk w,y1,y2,21,22,23 EZP

<P[ISk =S4 = VExg, 71 < 00, 72 < 00| <P [k = SL Il = VExe, 71 < 00, 72 < o]

{1k = 82,1 = VExk} | < 1 . 1 > o 1
L+ [[Sk4e, — Skl T+ 1Sk = SEN - 1+ 11Skve, — S X VEE )

where the last equality follows by applying Cauchy-Schwarz inequality and (2.4). The other cases
are entirely similar. Thus A3 3 is well approximated by the sums on typical values of the parameters
(similarly as for Ag for instance), and then we can deduce with Theorem and (8.18)) that

< CE

1
A373:p2‘]P’[7’1<OO,T2<OO]+O<).

k
Together with and this proves .
Step 2. For a (possibly random) time T', set
TioT :=inf{n >T Ve, : S, € Réo}, and TooT :=inf{n >T Ve, : S, € (Sk—l—RZO)}

Observe that

P71 <Ta<oo|=P[T1 <Ta0T; <o0] —P[Ta <T1 07Ty <Tg0T10Tg < 9, (8.19)
and symmetrically,

PTe <71 <00 =P[Ta <T10T2 <o0] —P[T1 <To0T1 <T10T307] < 9. (8.20)

Our aim here is to show that the two error terms appearing in (8.19) and (8.20) are negligible.
Applying repeatedly (2.11]) gives

E; :ZP[?l <T90T1 <T10T90Tq <OO]

<CY S S E[G(S} - 8 — SC(S) + 57— Sk)G(Sh, — Siey)]

§>0 £>0 m>0

CY N D E[G(S] - Sk — S})G(Sk + S7 — Sy,)G(Sh, — Sp)]

§>0 £>0 m>0

<CY Y GRE[G(S} - Sk — 2)G(Sk + 2 — Sp,)G(Sh, — Si)] -

Jj20m=0
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Note also that by using Lemma and ([2.6)), we get

1 1 1
2 Gz —n)G(z=y)G(x) = 0 (1 P <1 P —mu>) |

Thus, distinguishing also the two cases j < m and m < j, we obtain

BECY Y E

— Sk) 1 N 1
1+||51 SkllP \ 1+ 11S% = Skl 1+[Sh, = S}

720 m>0
G(z+ St — Sy) 1 1
<C G(z)RE J +
Z;)ZZ: { L+ 1S5 = Sell® \1+ 2+ 57 =Sl 1+ ]z]

G(S] — Sk) 1 L1
1+||z+Sl—SkH3 L+ S} =Skl 1+

log(1 + [|Sk|) log k
- | <copr| =WV o .
L+ |ISf - Sk||5] B [ L+ Skl k3/2

< CZE

7>0

Similarly,

P[?Q <T107T9<T90T7T10T9 < oo]
<COY Y Y E[G(S] + S = SHO(S] = Sk — Sp)G(Sp + Sk = Sirey)]

§>0 €>0 m>0

-. C ZZZ

]>0 £>0 m>0

G(S? + S — SHG(S} — S — 52)
L+ (152,12

= 722 1 . + !
T Ve, LSRR+ ST+ Skl \ 1+ 1S5 + Sl ~ 1+ 1157, = S5
1 1
<—>E n
\/?k; L+ ISFNA+ 187 +Skl®) -~ (L +[[SFI2)(L + 157 + skyp)]
< C B [log(1+\|5k||)} _0 <10gk>
T Ve 1+ [|:Skf? ky/Ek

Step 3. We now come to the estimate of the two main terms in (8.19) and (8.20). In fact it will be
convenient to replace 71 in the first one by

71:=inf{n >k : S, e RL}.

The error made by doing this is bounded as follows: by shifting the origin to S, and using symmetry
of the step distribution, we can write

P71 < T2071 < o00] =Pl <Too7y < oo]| <P[RLNR[k, K +ep] # D, T2 < 0]
<Z G(S; — §k)> : (Z G(Sj)) (Z G(Si — §k)) : (Z G(2)G(z + Ssk))]
=0 J=¢k =0 2€7Z5

Ek ~
G(S; — Sp) | B Cg, 1 VEE
E:E —= =R < ‘E = Y2
Cz’:O L+ |ISe,ll | — k32 L+ [[Se, |l MV

Lemma
<
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Moreover, using Theorem C, the Markov property and symmetry of the step distribution, we get
for some constant ¢ > 0,

P STQO?1<OO]—0E[ {7 < oo} }—i—o(l) = cE [l{ﬂ“’o}} +0<1>

14+ J(S7 — Sk) k 14+ J(5%) k
= Zpk )Eoz [F )l{T<oo}]—|—o<]1>,
z€LS

where 7 denotes the hitting time of two independent random walks, starting respectively from the
origin and from x, and F(z) := 1/(1+ J(z)). Note that the bound o(1/k) on the error term in the
last display comes from the fact that

1{7 < o} G(S; — Si) G(z)G(z—SK)] (1
2Ty = oxE 1+]H§j”]§(j§zﬂ ] e h):

320

Then by applying Theorem we get

N T . G(2)G(z — x) o 1
P[7 < F207 < o] Om§5pk()zgzsl+~7(z) + (k> (8.21)

for some constant cg > 0. Likewise, by Theorem one has for some constant v € (0, 1),

P[Te <T107T9 < 0] =cE [M} +O<E {MD

I+J(57) T+ J(57)1 7
Furthermore,
1{7y < oo} 52 + Sk — Skte,) | 3. @I 1
E |:1+y] CZ 2 1+v < 72 5 5 o
L+J(8 1+HS + Sl VEr g | AF ISTIR A+ 187 + Sel+)

o C g [ls HISkII) _ 0 log k
Ve L L[Sk k2 e )

Therefore, taking e, > k'~/2, we get

<<t [l o (2) e S ot [ o ()

Ny

= ¢ pe,(w)Eo., [ (S,)1{r < oo}] to (;) , (8.22)

uEZd

with 7 the hitting time of two independent walks, independent of .S, starting respectively from the
origin and from w, and

P[]

We claim that this function F satisfies (7.1), for some constant Cz which is independent of k.
Indeed, first notice that

- 1 1 1
F(z)x———— and E = ,
) 1+ ||zl + vk [1+J(Z—Sk)2] L+ [|z]2 + &
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which can be seen by using Theorem Moreover, by triangle inequality, and Cauchy-Schwarz,

1
~ ~ ly — 2| } { 1 } { 1 }
F(y)— F(z)| <CE <Clly—z||E E
[F(y) = F(2)] < A+ ly=SDA+1z=SD] = ly ==l L+ [ly — Sk|? 1+ ||z — Sil?

ly — 2| ly ==l =
<c < F()

L+ [lyl + VR + Izl + V) L+ yll
which is the desired condition (|7.1]). Therefore, coming back to (8.22)) and applying Theorem

once more gives,

1
P[?2§?10?2<oo]:c(]2p5k ZG (z —u) (z)+0<k>

ueZ® 2€Z5
. (o) S ERGE—w) (1
_ ou§5x§5pak( )pi( )Z%Z:S T (P <k> (8.23)
Similarly, one has
- S . Ve
[T1 < o0 - P[Ty < o0] = P[] < 00] - P[Te < 00| + O (]{:3/2)

u€Zd xeZs Z€Z5
Note in particular that the constant ¢y that appears here is the same as in (8.21)) and ({8.23]).

Step 4. We claim now that when one takes the difference between the two expressions in (8.23]) and
(8.24]), one can remove the parameter u from the factor G(z — u) (and then absorb the sum over
u). Indeed, note that for any z with 7(z) < J(x)/2, one has

s e Bk

1+J(z+z) 1+J(z—2z) 14+J(x) 1+ ||z

It follows that, for any xi > 2,

1 1 2
S o) Y. GG ) . B
u,z€L J(z)ﬁj(a:)/xk 1+J(z—z) 1+J(z+z) 1+J(2)
ElG(z - 5.)] @ ( )
<C) T > eee®o
1+ [z|3 1
= " H ” SEr AT o FXk

In the same way, for any z with J(z) > 27 (u), one has
|G(z —u) — G(2)| < Ciz

and
1 B 1
1+J(z—2) 14+J(x)
Therefore, for any xr > 2,

=]l
T+ =D + [z = =2l)

1 1
> ey (wpr() > G(Z)G(z—u)—G(zﬂ‘ —
u €8 ()><J<u>Xk>v<J<x>/Xk> 1+J(z—2) 1+ J(2)
NG 1 <x2\/a>
<C 29) 1 '
Z 1+\| |y ; 12[6(1 + ||z — || 132
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On the other hand by taking x; = (k/ex)/®, we get using and (2.4),

> D palup(z) Y G(2)G(z—u <1+J§z—x)+1+}7(w)>SXZSH:0<]1>’

T (u)>\/Erpxk TELD €75
as well as,
1 1 1
S Y e X e o ()
1 - 1
uEL? J () <VE/ Xk = +J(z—x) 1+7J(2) k

As a consequence, since J(u) < \/Exxx and J(z) > Vk/xk, implies J(u) < J(z)/xk, with our
choice of xj, we get as wanted (using also symmetry of the step distribution) that

P[Te <71 0Te < 0] — P[T1 < 00] - P[T2 < o0]

=co ) p(r) ) Gl2) <1+\7§Z—x)_1+\17($))+0<11€)

TEZ5 275
1 1 1 1
7aceZ5pk gz:oG <1+~7(Z—$)+1+J(z+m)_1+j(x>)+0<k)- (8.25)

Step 5. The previous steps show that

Z (G(z)G(z — ) N G(z)? B G(2)? > .

Cov (1{71 < o0}, 1{Ty < 00}) = co Y _ pr(x) 1+ J(2) 1+J(z—2) 1+J(2)

T€Z5 2€75

Now by approximating the series with an integral (recall (7.3])), and doing a change of variables,
we get with u := 2/J(x) and v := A=, and for some constant ¢ > 0 (that might change from
line to line),

G(2)G(z — x) G(2)? G(2)?
Z( 1+ J(2) +1+J<z—x>‘1+J<x>>

2€75

Nc/s{J(Z)“;(z—w)g +J(1Z)6 <J(z1—x) - sz)>} *
N J(cﬂc)2 /IR5{\7(Z)4'}(Z_U)3 +J(l»Z)6 (J(Zl—u) 1>} +

- 70 Je A= e (e =)
J(@)? Jgs U2l llz = ol> - [[2]1° \lz =] ‘

Note that the last integral is convergent and independent of v (and thus of = as well) by rotational
invariance. Therefore, since Y- ;5 pr(x)/J (z)* ~ o/k, for some constant o > 0 (for instance by
applying Theorem , it only remains to show that the integral above is positive. To see this,
we use that on one hand the map z ~ ||z||~2 is harmonic outside the origin, and thus satisfies the
mean value property on R\ {0}, and also that the function z + ||z||~! is convex on this domain
(its Laplacian is easily computed and shown to be equal to —2||z||~3).

Since in addition the integral is independent of v on the unit sphere, one has with By and 9B
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denoting respectively the unit ball and the unit sphere (for the Euclidean norm),

1 1 1
+ — 1) } dz
/Lsg{!\Z\\4'!!Z—v!!3 Bl (IIZ—UII
1 1 1
=c dz/ { + ( — 1> } dv
/g o, LIzl - 1lz = ofI3 26 \|lz — ]l
2 1 72 1
>c — dz:c/ <—>dr: )
/zsg { 1217 !Z\G} o\t 2

Likewise, using simply the convexity of the map z — 1/||z||, we get

1 1 1 1 1 1
/6<—1>dz:/ 6( + —2)dzzo,
B, 112]16 \ |z —v| 2 /g, 1211 \lz =] ||z +2]

and this concludes the proof of Lemma (8.2 d

Remark 8.5. Note that the estimate of the covariance mentioned in the introduction, in case (i),
can now be done as well. Indeed, denoting by

7o :=inf{n >k+1: S, € Sy + R%},
it only remains to show that

1
IP[7, < k + ex, 71 < 00] — B[R < k + &4] - P[7y <OO”:O<I<:>'

However, using similar estimates as above, one has with yj = (k/e)*/5,

P72 <k +ep, T1 <oo] =Pl <k +e] - P[T1 < oq

. ~ _ ~ _ 1
B2 < k+ i, 15, — Skll < vEXE 71 < o0l = Plfa < k+ 4] - BI71 < oc]| + O ()

Vi?

1 N 1
=5 Z Ipi(z 4+ vy) + pr(z —y) — 2pi(2)| P72 < k + €k, Sz, — Sk = yloa + O (5/2>
w€Z8, ||yl|<\/Exxn VEx,

C 9 1 1 VEEXK
< WE (157, = Skll*1{l[S7, — Skll < vErxx}] +O (‘/EXiﬂ) =0 <\/EX2/2 e ) ;

using that by (2.12) and the Markov property, one has P[||Sz, — Sk|| > t] = O(1/t).

8.3 Proof of Lemma [8.3]

We consider only the case of Cov(Zyp2, Zi11), the other one being entirely similar. Define
m=inf{n >0 : S} € Rlep, k]}, and m:=inf{n >0 : S, + 5% € R(—o0,0]},

with S' and S? two independent walks, independent of S. The first step is to see that

Cov(Zops, Zipz) = p* - Cov(1{m < oo}, 1{m < c0}) +o0 </1:> 7
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with p as in (8.2]). Since the proof of this fact has exactly the same flavor than in the two previous
lemmas, we omit the details and directly move to the next step.

Let n € (0,1/2) be some fixed constant (which will be sent to zero later). Notice first that

@D i E[ G(S)) H . Z’“: E [G(S))]

P[SL e RI(1 =)k, k], 7o < e
(S € RIL =k A, 72 < 0] T+ S G THVE-T

i=|(1-n)k]
(2-8)

=[(1-n
(8.26)

Next, fix another constant 6 € (0,1/4) (which will be soon chosen small enough). Then let N :=
|(1— n)k/e,i*‘sj, and for i =1,..., N, define

=inf{n >0 : S} € Rlk;, kiy1]}, with ki :=eg +ile)?].

We claim that with sufficiently high probability, at most one of these hitting times is finite. Indeed,
for i < N, set I; ;== {ki,...,kit1}, and notice that

Z ]P’[Tf<oo,7'f<oo,7'2<oo]§ Z (]P’[TliSTf<oo,7'2<oo]—|—IP’[7'1j§7f<oo,72<oo])
1<i<j<N 1<i<j<N

S5 95 I KLELTCLBIFEED 5 3 95 DR CORERICES)

i=1 j#i Lel; mel; i=1 j#i Lel; mel;

1 N(15/2 1
ZZZZ (1+|m — €|3/2)(m/\£3/2_ < 3/2f> O(/{:)’

1=1 j#i lel; mel;

..C

where the last equality follows by assuming €, > k'~¢, with ¢ > 0 small enough. Therefore, as
claimed

N
) 1
Plr < 00, 79 < 0] = g P[Tf<oo,7'2<oo]—|—o<k>,
=1

and one can show as well that,
N-2 1
Plr < o0] - P2 < o0 = ;Prl<oo [T2<OO]+O<k>.

Next, observe that for any i < IV, using Hélder’s inequality at the third line,

kit1 2 1-6/2
; 25 102 @3, - G(Sj)L{[Skiyy — Sk:llI* =€, 7}
P [rf < 00, 72 < 00, |k = Skl 2 ] Y E T
J=FKq
k.
Ry ¢ 1—6/2
< UF B[00k - Skl 2 57
J=ki
kit1 3/4 1-6
c 1 52114 B Cep 1 1
Ao e B R [CWEE N R (%)
g=ki ! Vi e
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by choosing again ¢;, > k!'~¢, with ¢ small enough. Similarly, one has using Cauchy-Schwarz,

G(S/)1{||Sk — Sty |12 > key/*}
1+ [|Sk]

1+l

P[’7'1<OO Ty < 00, ||Sk — Skl+1||2>k:56/2} <C’ZJE

i=k;
z+1IE 1 g 1/2 Cé‘,{; 0 1 B 1
= 56/8 Z 5i) 1+ [|Sk|? |5 /Q\f 56/8 ~—°\ Nk /-

As a consequence, using also Theorem one has for ¢ < N, and with ¢ := k;;1 — k;,

P} < 00, T2 < ]

T PR RN £

75 1-6/2
TS lyl12<ey,

212 <ke/?

5 3 1
€L |y|2<e,

Izl2<kel/?

- Z Dk, (2)Po [Roo ﬂﬁ[o,f] + @} Pt (2) Pas + 0 <J\}k>

x,2€75

Moreover, Theorem yields for any nonzero = € Z°, and some v > 0,

¢
Po.» [Roo NR[0,4] # g] = % ‘E ;O Gz+S)| +0 (W) . (8.27)

Note also that for any ¢ € [0, 1],

_Pr(z) . _ 1 N e
Z 1+ ||x”1+5pk—ki( )pzyz =E [(1 TS0+ ||Sk:||)] O <\/k71+5\/E> ,

x,2€75

and thus

1
I ()]

=1 x,2€75

In particular, the error term in (8.27) can be neglected, as we take for instance § = v/2, and
er > k'7¢, with ¢ small enough. It amounts now to estimate the other term in (8.27). The fact
that G is harmonic outside the origin entails for any = € Z® \ {0}, and any j > 0,

E[G(z + 55)] = G(=).

Furthermore, similar computation as above show that for any j € {k;,..., ki+1},

1
> @G (e = 3 pi@GE@m e +o (57 )-
x,2€7Z5 ,2€75
Altogether, and applying once more Theorem this gives for some constant cg > 0,

N i (L—m)k 1 L(L—m)k] a(s;) 1
ZP[Tl <00, Ty < 0] = Z E[G(S))ps,] + o <k:> = Z E [14—\7(51@)} +o (k‘) (8.28)

i=1 Jj=¢k J=¢k
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We treat the first terms of the sum separately. Concerning the other ones notice that by ([7.3]) and
Donsker’s invariance principle, one has

] e[S e (1)< [ ] o (1)

with (8s)s>0 a standard Brownian motion, and ¢5 > 0 the constant that appears in (7.3). In the
same way, one has

N k]

2Pl < oc] Bl < o] = o ) BIG(S))]E [1 T }<Sk>] s /E [|/31||3] * Lwlln] dto @) ’

=1 j:{ik

with the same constant ¢y, as in (8.28]). We next handle the sum of the first terms in (8.28)) and show
that its difference with the sum from the previous display is negligible. Indeed, observe already
that with xx := k/(neg), one has

Lk 1/4
(SIS, = '/ VE) (SIS > vExe)
JZakE L+ J(5k) HE[ L+ 7 (Sk) ]— 7
Thus one has, using Theorem
Lnk) a(S;) )
2 [ww)} - EGE)L-E [wwﬂ ’ (8.20)
[nk] (G e »
<cy > ’W B (2 — ) + By (2 +2) — 25,(2)| + O (%) _0 (%) |
T e

Define now for s € (0, 1],

1 1 1
Hy =E | ——=—| —E CE|—].
|:||5s||3HB1”:| [I!Bs!‘"’] [”51”

Let fs(-) be the density of 85 and notice that as s — 0,

Hs: fs( )fl s( )d d _/ fs( )fl( )d dy
R

s Jrs 2]l + sJrs [zl lyl

_ 1 f1()f1()< 1 1>dd
372 /R5 ks |z|? lyvI—s+zvs| vl S

I A@AG [(1, e, @Y L s g
=7 o o e {(fznyn?* ||y|4> o )}d =7 100

with ¢ > 0. Thus the map s — H; is integrable at 0, and since it is also continuous on (0,1], its
integral on this interval is well defined. Since 7 can be taken arbitrarily small in and -,
in order to finish the proof now it just suffices to show that H; is positive for s € (O 1)

To this end, we use the independence between (s and 1 — s, as well as the convexity of the map
z + 1/||z|| on R®\ {0}. It implies, with 3 another standard Brownian motion independent of 3,
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and ¢ = E[1/]|8,]°), that

1 1{18, < 115 —&II}} L{1A.] < 1Bl
- E E =
[|msu3||ﬁ1||]> [ PR [ 1o P ]

1 1|8l < 1B1=sll} | = 5q 1 1Brsll/Vs 5
—F | — ‘E sl = E | — . 2" d
[Hﬁl—slr [ B ” 5372 [nﬁl_sn /o o
_ q 1 . o 7? ~ 21 — S
N e [HBlH {1 exp ( Sl — )}]

q 1 ° 3
= E|— —5q/ r3e=3s" dr
33/%1—3{ [I!Blll] 0 }

— 3 —77" dr ( )
53/2\/1—3 / 533/2\/1—3

On the other hand,

1 1] 2¢
B [HBSHP’} B Lmlu] =5

But since 1 — s2 > /T — s for s € (0,1), it follows that Hs > 0, for s € (0,1), and this concludes
the proof of the lemma. O

Remark 8.6. The value of Hy can also be directly and explicitly computed, and one can check
that it is also positive. On the other hand it could be interesting to know whether the map s — Hy
is decreasing or not.

8.4 Proof of Lemma [8.4]

We define here
=inf{n >0:S! € Rler, k —ex]}, and m:=inf{n>0: Sy + 52 € Rlex, k —ex]},

with S' and S? two independent walks, independent of S. As in the previous lemma, we omit the
details of the fact that

Cov(Zopa, Zktbe) = p* - Cov(1L{r < oo}, 1{ry < 00}) + o0 <11:) .

Then we define here N := | (k — 3¢y)/ex| and then let (7‘{')2‘:17._.7]\7 be as in the proof of Lemma
Define also (7'5)1:1 ~ analogously. Similarly as before one can see that

: . 1
Plm < 00, 7o < 0] = ZZPH < 00,7y <00 +o <k:> . (8.30)
i=1 j=1

Note also that for any ¢ and j, with |i — j| < 1, by (2.5)) and (2.8),
‘ £201-9)
Plri < 00, 7 <00l = O | s b |,
[ 1 2 ] (k?/Q(k_kl):g/z)
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so that in (8.30)), one can consider only the sum on the indices ¢ and j satisfying [i — j| > 2.
Furthermore, when i < j, the events {7] < co} and {73 < oo} are independent. Thus altogether
this gives
N-2 N . 1
Cov(1{m < oo}, 1{m < c0}) = > ( 7 < 00, T4 < 00] — P[r} < o0 - P[7d < oo]) +0 <k> .
=1 j=142

Then by following carefully the same steps as in the proof of the previous lemma we arrive at

Cov(1{m < oo}, 1{m < c0}) = / Hydt + o ( >

with ¢ > 0 some positive constant and,

~ ¢ 1 1 1
Ht“/o<E[||ﬁs51u3-||/8t||3}_ st ﬁﬂP]'ELWtHBD“’

at least provided we show first that Hj it is well defined and that its integral over [0,1] is convergent.
However, observe that for any ¢ € (0,1), one has with ¢ = E[||31]7?],

/t [ 1 ]E[ 1 ]_qQ/t 1 d_2q2(1—\/ﬁ)
185 = Bal® BE] ~ 82 )y A—spr ™" srja—t

and therefore this part is integrable on [0, 1]. This implies in fact that the other part in the definition
of Hy is also well defined and integrable, since we already know that Cov(1{r < oo}, 1{r < cc0}) =
O(1/k). Thus it only remains to show that the integral of H, on [0,1] is positive. To this end,
we write By = Bs + Yi—s, and 1 = Bs + y—s + 01—¢, with (u)u>0 and (0y)y>0 two independent
Brownian motions, independent of 3. Furthermore, using that the map z + 1/||z||* is harmonic
outside the origin, we can compute:

o [LUBsl = Nlve=sll > 11-ell} ] _ o [LLUBs I = [lve—sll = [[01—¢]}
L =E 3 3 =E 3 3
1Bs = Ball® - | Bel 1Ve—s + G1—¢]* - [|Bs
_ 5 | sl 2 o1ell} (% 502 q {l{II% sl 2 1012l — 5 s ]
s3/2 le—s + 01— sl ek 17— + 01—¢]®
q {lye=sll = [[01—l1} 2l 2] 5¢* /Oo —3p2(14=s
— E Vt—s 1 R r(14+5 )d
$3/2 [ s I3 $3/2(f — 5)3/2 1y re”2 r
2 e 3 00 2
_ ¢ | e e / R e = P L Gl )
Vs(t — 8)3/%t Vs(t —s)3/2t + AB/2
with
A=tl—t)+s(t—s)=(1—-t)(t—s)+s(1l—s).
Likewise,
_ g | LBl = lyeslls 181l = Hve—sl} | _ ¢ [LUve=sl < 101-ell} — 55,2
I=E 3 3 = 32k 3
1Bs = Ball® - 113l 5%/ [Ye—s + 1
_ 4 g [Hesll < 1ell} — e 5q* el [T 5
= ont [ [E = Sra e ¢ oot 767 AT
Vit
N [ heaPe] ¢’s(1—t)
$3/2(1 — 1)3/2 A5/2
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Define as well

L E [l{HﬁsH < sl < ral_tu}] |

18s = Ball* - 11Bell?

{01l < N1Bsll < llve—sll}
18s = Bull - 11Bell?

Note that by symmetry one has

/ Iidsdt = / Isdsdt, and / Iydsdt = / I5 ds dt.
0<s<t<1 0<s<t<1 0<s<t<1 0<s<t<1

and observe that,

I4 :E|:

] and I=E [1{uﬂ5n < Il < H%_su}] |

18s = Bull® - 11Bell?

q*s

I]_+12:m73/2.

Moreover, using symmetry again, we can see that
s—1t/2
ds =0,
/0 A3/2
t 2yt
_ T 1
/O(Il—l-fg)ds / A3/2d.

Likewise,

24(t — )2 1 24(t —
/ Ildsdt—/ stdt—/ T 5 gt
0<s<t<1 0<s<t<1 tA / 2 0<s<t<1 A /

2 2 7
(1 —1t)(t—s) / q°t(1—1) /
= dsdt = —— 2 dsdt = ds dt.
/O<s<t<1 2A5/2 o<s<t<1 AAD/2 0<s<t<1 6A3/2

It follows that

and thus

9 2
/ (I + I + I3) ds dt = ~L A=3/2 gs dt.
0<s<t<1

0<s<t<1

We consider now the term I, which is a bit more complicated to compute, thus we only give a
lower bound on a suitable interval. To be more precise, we first define for » > 0 and A > 0,

F(r) ::/ 346—552/2618, and  Fy(\,r) ;:/ F(>\8)84e_552/2d3,
0 0

and then we write,

[—E [l{lléltl < I8l < II%SII}} 5 E |:l{||ﬁs|| < ||7ts||}F< 18] )]
(

o G Ve
mn2 L Vs =sll\] . (59)? _/°° 6_5”2/2.
= (54) E[MHHG P\A= 5 )| "= )y B

S i C =
B [ ) I ()

B2

-5
r
v1i—t
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using that
1
Fy(\r) < gr?’F()\r)(l — e /2,
Therefore, if t/2 < s < t,
3 ) — -2 3 o] t—
Iy > 7(5(1) / rF <7° ¢ 8> 6_528t dr = 7(5(1) Vs rF 7"78( 5) e_5r2/2 dr
[s(t —s)]3/2 /g V1=t t2(t — 8)3/2 Jo t(1—t)
k2.3 [e%s} / _ . 330+ o0 2
> 2577V Vs F (rs(t )> re 2 dp = 2 5gs(t—s) (t 8)/ r%fﬁ(lﬁﬁ) dr
0

= 2—s)2 Jy o) 2l — O]

2¢%s3(t — s) _ ¢*s(t — s)
>
+2A5/2 — 9A5/2

and as a consequence,

2
/ I4dsdt2/ Lidsdt > L 5 —9) g ar
0<s<t<1 t/2<s<t<1 2 Jija<s<i<i A5/2
¢ s(t — s) g —3/2
-4 2V dsdt = —— A3/2 45 dt.
4 Jo<s<t<i A5/2 12 Jo<s<i<1

Putting all these estimates together yields

1
E ds dt =
/ st — B ||ﬂtu3]

Thus it just remains to show that

/ A=32 dsdt > 6/ A312 ds dt, (8.31)
0<s<t<1

0<s<t<1

5

Z/ Ikdsdt25/ A*?’/stdt_
i Jo<s<i<i 6 Jo<s<i<1

where A := #(1 — s). Note that A = A + (¢ — s)%. Recall also that for any a € R, and any
xz e (—1,1),

(1+2)" = 1+Za(a_1)"lf,(o‘_i+l)xi. (8.32)
i>1 )

Thus

A3/2  A3/2 k! Ak

1 1 2)(5/2)... 1/2 — 5)%k
1+23(3/ )(5/2)... (k+1/2) (t—s)

k>1

One needs now to compute the coefficients C} defined by

LGRS L
0

k! <s<t<1 AKk+3/2

We claim that one has for any k£ > 0,

(—1)F%, (8.33)

with X9 =1, and for £ > 1,

(k4 1/2)(k—1/2)... (k —i+3/2)
il '

S= 143 )
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We will prove this formula in a moment, but let us conclude the proof of the lemma first, assuming
it is true. Straightforward computation show by (8.33)) that

2
00:4, Clzg, and CQZTO,
and Cp + C1 + Cy > 6Cy/5, gives (8.31)) as wanted.
So let us prove (8.33)) now. Note that one can assume k > 1, as the result for k£ = 0 is immediate.

By (8.32)), one has

(g gy B HAGED. i)

i>1

Thus by integrating by parts, we get

/Ot ( (t—sk)j’;/2 ds = (21Y (k+3/2)...(k+i+1/2) PRt

1— ) 2 2k +it 1)
and then |
/ / tk+3/2t 1__5 syrarz s dt = (2K)! ; - 3/(22)l<:+ Z(TZ)Z'_ £,
As a consequence, :
6, - 21 > 5/206/2).. e i 172
- - (2k)! (k+1/2)(k = 1/2) ... (—k —i +1/2)]
C(k+1/2)(k—1/2)...(3/2)(1/2 k'z (2k+1i+1)!

_ 22k42 |(k:+1/2)(l<:—1/2)...(—k:i—|—1/2)|
_2k:+1i>0 (2k +i+1)! ’

and it just remains to observe that the last sum is well equal to X;. The latter is obtained by
taking the limit as ¢ goes to 1 in the formula (8.32) for (1 — ¢)¥+1/2. This concludes the proof of
Lemma 8.4 O

Remark 8.7. It would be interesting to show that the covariance between 1/||3s— 1 ||* and 1/]| 8¢
itself is positive for all 0 < s <t < 1, and not just its integral, as we have just shown.

9 Proof of Theorem B

The proof of Theorem B is based on the Lindeberg-Feller theorem for triangular arrays, that we
recall for convenience (see Theorem 2.4.5 in [Durl0]):

Theorem 9.1 (Lindeberg-Feller). For each n let (X, ; : 1 <i < n) be a collection of independent
random variables with zero mean. Suppose that the following two conditions are satisfied

(i) Yim  E[X2,] = 0% >0 asn — oo, and

(i) Y0 B [(X0,)21{| Xn,i| > €}] = 0, as n — oo, for all e > 0.

Then, Sp = Xn1 + ...+ Xpn = N(0,0?), as n — oo.
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In order to apply this result, one needs three ingredients. The first one is an asymptotic estimate for
the variance of the capacity of the range, which is given by our Theorem A. The second ingredient
is a decomposition of the capacity of two sets as a sum of the capacities of the two sets minus some
error term, in the spirit of the inclusion-exclusion formula for the cardinality of a set, which allows
to decompose the capacity of the range up to time n into a sum of independent pieces having the
law of the capacity of the range up to a smaller time index, and finally the last ingredient is a
sufficiently good bound on the centered fourth moment.

This strategy has been already employed successfully for the capacity of the range in dimension
six and more in [ASS18] (and for the size of the range as well, see [JOGI, [JPT71]). In this case
the asymptotic of the variance followed simply from a sub-additivity argument, but the last two
ingredients are entirely similar in dimension 5 and in higher dimension. In particular one has the
following decomposition (see Proposition 1.6 in [ASS19]): for any two subsets A, B C Z%, d > 3,

Cap(AU B) = Cap(A) + Cap(B) — x(A, B), (9.1)

where x(A, B) is some error term. Its precise expression is not so important here. All one needs

to know is that
IX(A4,B)[ <3) > Gla,y),
reAyEB

so that by [ASS18, Lemma 3.2], if R,, and R, are the ranges of two independent walks in Z°, then
E[X(Rn, Rn)"] = O(n?). (9.2)

We note that the result is shown for the simple random walk only in [ASSIS§|, but the proof applies
as well to our setting (in particular Lemma 3.1 thereof also follows from (2.8))). Now as noticed
already by Le Gall in his paper [LGS86|] (see his remark (iii) p.503), a good bound on the centered
fourth moment follows from and , and the triangle inequality in L*. More precisely in
dimension 5, one obtains (see for instance the proof of Lemma 4.2 in [ASS1§]| for some more details):

E | (Cap(Rn) — E[Cap(R.)))*| = O(n*(1ogn)?). (9.3)

Actually we would even obtain the slightly better bound O(n?(logn)?), using our new bound
on the variance Var(Cap(R,)) = O(nlogn), but this is not needed here. Using next a dyadic
decomposition of 7, one can write with 7 := |n/(logn)*],

Ln/T)
Cap(R Z Cap(Ry') — R, (9.4)

where the (Rg))izo,...,n /7 are independent pieces of the range of length either 7" or 7'+ 1, and

221

- (2i+1)

i+
Z 11/2[’73’71/2‘Z >’
/=1 i=0

is a triangular array of error terms (with L = logy(logn)?*). Then it follows from (9.2), that
22 1 L 22 1

Var(R,,) < LZVar Z x( n/QZ,RS/Z;l < LZ Z Var < 2/22@,727(12;;1)»
/=1 =1

= O(LZn) = O(n(loglogn)?).
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In particular (R,, — E[R,])/+v/nlogn, converges in probability to 0. Thus one is just lead to show
the convergence in law of the remaining sum in (9.4)). For this, one can apply Theorem with

. Cap(RY) —E [Cap(RY)]
e vnlogn

Indeed, Condition (i) of the theorem follows from Theorem A, and Condition (ii) follows from
(9.3)) and Markov’s inequality (more details can be found in [ASS18]). This concludes the proof of
Theorem B. g
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