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RANDOM INTERPOLATING SEQUENCES IN
DIRICHLET SPACES

N. CHALMOUKIS, A. HARTMANN, K. KELLAY, AND B. D. WICK

Abstract. We discuss random interpolating sequences in weighted
Dirichlet spaces Dα, 0 ≤ α ≤ 1. Our results in particular imply
that almost sure interpolating sequences for Dα are exactly the
almost sure separated sequences when 0 ≤ α < 1/2 (which covers
the Hardy space H2 = D0), and they are exactly the almost sure
zero sequences for Dα when 1/2 < α < 1. We show that this last
result remains valid in the classical Dirichlet space D = D1 when
one considers a weaker notion of interpolation, so-called simple in-
terpolation. As a by-product we improve a sufficient condition by
Rudowicz for random Carleson measures in Hardy spaces.

1. Introduction

Understanding interpolating sequences is an important problem in
complex analysis in one and several variables. The characterization of
when a sequence of points is an interpolating sequence finds many appli-
cations to different problems in signal theory, control theory, operator
theory, etc. In classical spaces like Hardy, Fock and Bergman spaces,
interpolating sequences are now well understood objects, at least in
one variable [16, 25, 27]. In Dirichlet spaces, it turns however out
that getting an exploitable description of such interpolating sequences
is a notoriously difficult problem related to capacities. Crucial work
has been undertaken in the 90s by Bishop and Marshall-Sundberg (see
more precise indications below). However, while easier checkable suffi-
cient conditions were given by Seip in the meantime, no real progress
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in the understanding of these sequences has been made since those
works. In such a situation, a probabilistic approach can lead to a new
vision of these interpolating sequences. Note that besides the Hardy
and Bergman spaces, the Dirichlet space, and its weighted companions,
are beyond the most prominent spaces of analytic functions on the unit
disk. They appear naturally in problems on classical function theory,
potential theory, as well as in operator theory when one investigates
for instance weighted shifts.

Here we consider random sequences of the following kind. Let Λ(ω) =
{λn} with λn = ρneiθn(ω) where θn(ω) is a sequence of independent
random variables, all uniformly distributed on [0, 2π] (Steinhaus se-
quence), and ρn ∈ [0, 1) is a sequence of a priori fixed radii. Depending
on distribution conditions on (ρn) as will be discussed below, we ask
about the probability that Λ(ω) is interpolating for Dirichlet spaces Dα,
0 ≤ α ≤ 1. Recall that the weighted Dirichlet space Dα, 0 ≤ α ≤ 1, is
the space of all analytic function f on the unit disc D such that

‖f‖2
α := |f(0)|2 +

∫
D
|f ′(z)|2(1− |z|2)1−αdA(z) <∞,

where dA(z) = dxdy/π stands for the normalized area measure on D
(we refer to [15] for Dirichlet spaces). If α = 0, D0 is the Hardy space
H2, and the classical Dirichlet space D corresponds to α = 1.

Recall that in a Hilbert space H of functions analytic in the unit
disk D equipped with a reproducing kernel kλ, i.e. f(λ) = 〈f, kλ〉H
for every λ ∈ D and f ∈ H (a so-called reproducing kernel Hilbert
space), a sequence Λ of distinct points in D is called (universal) inter-
polating if {(f(λ)/‖kλ‖H)λ∈Λ : f ∈ H} = `2 (for the difference between
interpolating and universal interpolating sequences see below). Con-
cerning the deterministic case of interpolation in the classical Dirichlet
space D, in unpublished work Bishop [7] and, independently, Marshall-
Sundberg [17] characterized the interpolating sequences. The first pub-
lished proof was given by Bøe [10] who provides a unifying scheme that
applies to spaces that satisfy a certain property related to the so-called
Pick property (see [2, 25]), and Dirichlet spaces fall in this category.
For these spaces Λ is a (universal) interpolating sequence if and only
if Λ is H-separated (i.e supλ 6=λ∗∈Λ |〈kλ/‖kλ‖H , kλ∗/‖kλ∗‖H〉| < δΛ < 1)

and µ =
∑

λ∈Λ δλ/‖kλ‖2
H is a Carleson measure for H (i.e,

∫
D |f |

2dµ ≤
CΛ‖f‖2

H). Recently, Aleman, Hartz, McCarthy and Richter [1] have
shown that this characterization remains valid in arbitrary reproduc-
ing kernel Hilbert spaces satisfying the complete Pick property. Ste-
genga [26] characterized Carleson measures for Dirichlet spaces, but
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this characterization is based on capacities which are notoriously dif-
ficult to estimate for arbitrary unions of intervals. There are other
characterizations of Carleson measures in Dirichlet spaces, see [3, 4],
as well as [6, 15] and references therein, but which are not easily inter-
preted geometrically for interpolating sequences. Finally, we mention
related work by Cohn [14] based on multipliers.

In [25], Seip gave simple sufficient geometric conditions on a sequence
to be (universal) interpolating for the Dirichlet spaces see Theorems 3.3
and 5.1, which, surprisingly, will allow us to obtain sharp results for
random interpolating sequences in Dα for α ∈ (0, 1), α 6= 1/2. For
α = 1, the result by Bishop will give us the sharp result at least for
simple interpolating sequences in D.

We also would like to observe that more generally, when the de-
terministic frame does not give a full answer to a problem, or if the
deterministic conditions are not so easy to check, it is interesting to
look at the random situation. In particular, it is interesting to ask for
conditions ensuring that a sequence picked at random is interpolating
almost surely or not (i.e., which are in a sense “generic situations”?).
In this context, it is also worth mentioning the huge existing literature
around gaussian analytic functions which investigates the zero distri-
bution in classes of such functions [22].

The problems we would like to study in this paper are inspired by
results by Cochran [12] and Rudowicz [23] who considered random
interpolation in the Hardy space. Since interpolation in this space is
characterized by separation (in the pseudohyperbolic metric) and by
the Carleson measure condition (note that the Hardy space was the
pioneering space with a kernel satisfying the complete Pick property),
those authors where interested in a 0-1 law for separation, see [12], and
a condition for being almost surely a Carleson measure [23], which led
to a 0-1 law for interpolation. It is thus natural to discuss separation,
Carleson measure type conditions and interpolation in Dirichlet spaces.

Concerning separation in Dirichlet spaces Dα, 0 < α < 1, this turns
out to be the same as in the Hardy spaces (see [25, p.22]), so that in
that case Cochran’s result perfectly characterizes the situation. The
separation in the classical Dirichlet space, however, is much more del-
icate than in the Hardy space. We establish here a 0-1-type law for
separation in D. While our proof of this fact is inspired by Cochran’s
ideas, our proof requires a careful adaptation to the metric in that
space.

Concerning Carleson measure type results in Dirichlet spaces, 0 <
α < 1, we will first discuss the situation in the Hardy space and improve
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Rudowicz’ result simplifying his proof. Our new proof carries over
to the Dirichlet situation and allows, together with a 1-box condition
by Seip (which requires itself separation), to discuss the results on
interpolation in D1 = D. For the spaces Dα, 0 < α < 1 we will present
a different approach. As it turns out, we are able to exhibit a peculiar
breakpoint in the behaviour of such interpolating sequences depending
on the weight α: for 0 ≤ α < 1/2, almost sure separation corresponds
to almost sure interpolation, while for 1/2 < α < 1, almost sure zero
sequences correspond to almost sure interpolating sequences. Partial
results are given also for α = 1/2.

The natural endpoint α = 1 of the scale of Dirichlet spaces under
consideration here follows more or less the same scheme as above, but
requires to work with a weaker notion of interpolation if one asks for
an if and only if statement. More precisely, in the classical Dirichlet
space D we are able to show that, almost surely, a sequence is simple
interpolating (see definition below) if and only if it is almost surely a
zero sequence for D. For universal interpolation (see definition below)
we still obtain an almost optimal result. We insist that the condition
for almost sure separation in D is much weaker than the Carleson-
measure type condition so that we cannot hope for optimality from the
separation (as was the case in the Hardy space). It can already be seen
from our improvement of the sufficient condition for Carleson measures
in Hardy spaces, that the Carleson measure condition is not sufficient
to obtain a 0-1 law in H2.

Since zero sequences are of some importance as we have just seen,
another central ingredient of our discussion is a rather immediate adap-
tion of Bogdan’s result on almost sure zero sequence in the Dirichlet
space to the case of weighted Dirichlet spaces which we add for com-
pleteness in an annex.

As usual, the definition of interpolating sequences is based on the
reproducing kernel of Dα:

(1.1) kz(w) =


1

zw
log

1

1− zw
if α = 1,

1

(1− z̄w)1−α , if 0 ≤ α < 1.

Contrarily to the Hardy space situation, it turns out that in certain
spaces (e.g. the Dirichlet space) there exist two notions of interpolation
depending on whether the restriction operator RΛ : H −→ `2, RΛf =
(f(λ)/‖kλ‖H)λ∈Λ takes values in `2 or not.
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Definition. Let 0 ≤ α ≤ 1. A sequence Λ of distinct points in D said
to be

• a (simple) interpolating sequence for Dα if RΛ : f → (f(λ)/‖kλ‖α)λ∈Λ

is onto `2, i.e. the interpolation problem f(λ) = aλ has a so-
lution f ∈ Dα for every sequence (aλ) with (aλ/‖kλ‖α)λ∈Λ ∈
`2(Λ).
• a universal interpolating sequence for Dα if it is interpolating

and moreover RΛ is well defined from Dα into `2.

Sequences which are interpolating for the Dirichlet space but not
universally interpolating were discovered by Bishop in [7], and they
were further analyzed in [5] and [13].

Throughout this paper, even when not stated explicitly, when speak-
ing about interpolation we mean universal interpolation. In the only
case we work with simple interpolating sequences this will be stated ex-
plicitly. In all other cases, in our theorems on interpolation, sufficient
conditions always imply universal interpolation, while for necessary
conditions it suffices to only impose standard interpolation.

We will now discuss in details the results we have obtained in this
paper.

1.1. Back to the Hardy space. As pointed out in the introduction,
before considering the situation in the Dirichlet space, it seems ap-
propriate to re-examine the situation in the Hardy space. Recall that
Cochran established a 0-1 law for (pseudohyperbolic) separation (see
Theorem 1.3 below) and Rudowicz showed that Cochran’s condition
for separation implies almost surely the Carleson measure condition.
This implies that interpolation is characterized by the condition ensur-
ing almost sure separation. As it turns out the situation in Dirichlet
spaces is quite different. So, in order to get a better understanding we
start stating an improvement of Rudowicz’ results on random Carleson
measures in the Hardy space which will help to better understand the
case of Dirichlet spaces.

Recall that the measure dmΛ =
∑

λ∈Λ(1−|λ|2)δλ is called a Carleson
measure if there is a constant C such that for every interval I ⊂ T,

mΛ(SI) ≤ C|I|,
where

SI =
{
z = reit ∈ D : eit ∈ I, 1− |I| ≤ r < 1

}
is the usual Carleson window (see [16]). We will prove that a weaker
condition than Rudowicz’ leads to Carleson measures almost surely in
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the Hardy space. We first need to introduce a notation:

Nn = #{λ ∈ Λ(ω) : 1− 2−n ≤ |λ| ≤ 1− 2−n−1}, n = 0, 1, 2 . . . .

Theorem 1.1. Let β > 1 and suppose∑
n≥1

2−nNβ
n < +∞.

Then the measure dmΛ is a Carleson measure almost surely in the
Hardy space.

As a result, the Carleson measure condition alone is not sufficient to
give a 0-1 law for interpolation in the Hardy space.

Note that Rudowicz [23] showed that the above condition with β = 2
is sufficient. There is still a gap remaining between the above condi-
tion and the Blaschke condition which corresponds to β = 1. So a
priori there might be sequences which are almost surely zero sequences
without giving rise to almost sure Carleson measures.

1.2. Interpolation in Dirichlet spaces Dα, 0 < α < 1. For our
paper, a key result for interpolation in Dirichlet spaces is [25, Theorem
4, p.38] which shows that pseudohyperbolic separation (see definitions
below) and a certain 1-box condition are sufficient for (universal) inter-
polation in Dα, 0 < α < 1. As already mentioned in the introduction
above, separation in this case is as in the Hardy space, so that we es-
sentially need to discuss the Carleson measure part of Seip’s theorem.

1.2.1. Random zero sequences in Dirichlet spaces. A central role
in our interpolation results will be played by random zero sequences.
Indeed, for an interpolating sequence in the Dirichlet space it is neces-
sary to be a zero sequence (interpolation implies that there are func-
tions vanishing on the whole sequence except for one point λ, and
multiplying this function by (z − λ) yields a function in the Dirichlet
space vanishing on the whole sequence). We recall some results on
random zero set in Dirichlet spaces. Carleson proved in [11] that when

(1.2)
∑
λ∈Λ

‖kλ‖−2
α <∞

then the Blaschke product B associated to Λ belongs to Dα, 0 < α < 1
(for α = 0 this corresponds to the Blaschke condition for the Hardy
space). When α = 1, Shapiro–Shields proved in [24] that the condition
(1.2) is sufficient for {λ}λ∈Λ to be a zero set for the classical Dirichlet
space D1, see also [25, Theorem 1]. Note that if 0 ≤ α < 1 then∑

λ∈Λ

‖kλ‖−2
α �

∑
λ∈Λ

(1− |λ|)1−α �
∑
n

2−(1−α)kNn
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and if α = 1 then∑
λ∈Λ

‖kλ‖−2
1 �

∑
λ∈Λ

| log(1− |λ|)|−1 �
∑
n

n−1Nn.

On the other hand, it was proved by Nagel–Shapiro–Shields in [20]
that if {rn} ⊂ (0, 1) does not satisfy (1.2), then there is {θn} such
that {rneiθn} is not a zero set for Dα. Bogdan [10, Theorem 2] gives a
condition on the radii |λn| for the sequence Λ(ω) to be almost surely
zeros sequence for D:
(1.3)

P (Λ(ω) is a zero set for D) =

{
1
0

if and only if
∑
n

n−1Nn

{
<∞
=∞.

Bogdan’s arguments carry over to Dα, α ∈ (0, 1). For the sake of
completeness, we will prove in the annex, Section 6, the following result
on almost sure zero sequences.

Theorem 1.2. Let 0 ≤ α < 1. Then
(1.4)

P (Λ(ω) is a zero set for Dα) =

{
1
0

if and only if
∑
n

2−(1−α)nNn

{
<∞
=∞.

1.2.2. Interpolation in Dirichlet spaces Dα. As pointed out ear-
lier, interpolation is intimately related with separation conditions and
Carleson measure type conditions. Recall that a sequence Λ is called
(pseudohyperbolically) separated if

inf
λ,λ∗∈Λ
λ 6=λ∗

ρ(λ, λ∗) = inf
λ,λ∗∈Λ
λ6=λ∗

|λ− λ∗|
|1− λλ∗|

≥ δΛ > 0.

Since in Dirichlet spaces Dα, 0 ≤ α < 1, the natural separation (Dα-
separated sequence) is indeed pseudohyperbolic separation [25, p.22],
we recall Cochran’s separation result on pseudohyperbolic separation.

Theorem 1.3 (Cochran). A sequence Λ(ω) is almost surely (pseudo-
hyperbolically) separated if and only if

(1.5)
∑
n

2−nN2
n < +∞.

We should pause here to make a crucial observation. We have already
mentioned that interpolating sequences are necessarily zero-sequences.
Also separation is another necessary condition for interpolation. Now
the condition for zero sequences (1.4) depends on α while the separa-
tion condition does not, and it follows that depending on α, it is one
condition or the other which is dominating. From (1.4) and (1.5) it
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is not difficult to see that this breakpoint is exactly at α = 1/2 (for
α = 1/2, (1.4) still implies (1.5)). This motivates already the necessary
conditions of our next result. For the sufficiency we will need to appeal
to Seip’s one-box condition [25, Theorem 5, p.38].

Theorem 1.4.

(i) Let 0 < α < 1/2, then

P
(
Λ(ω) is interpolating for Dα

)
=

{
1
0

if and only if
∑
n

2−nN2
n

{
<∞
=∞.

(ii) Let α = 1/2. If there exists β > 2 such that∑
k

2−nNβ
n <∞

then P (Λ(ω) is interpolating for D1/2) = 1.
Conversely, If P (Λ(ω) is interpolating for D1/2) = 1 then∑

n

2−n/2Nn <∞.

(iii) Let 1/2 < α < 1. Then

P
(
Λ(ω) is interpolating for Dα

)
=

{
1
0

if and only if
∑
n

2−(1−α)nNn

{
<∞
=∞.

Our techniques, based on Seip’s one-box condition, do not provide a
complete answer in the case α = 1/2 which needs further investigation.

An interesting reformulation of the above results connects random
interpolation with random zero sequences and random separated se-
quences as stated in the following corollary.

Corollary 1.5. The following statements hold:

(1) Let 0 ≤ α < 1/2. The sequence Λ(ω) is almost surely interpo-
lating for Dα if and only if it is almost surely separated .

(2) Let 1/2 < α < 1. The sequence Λ(ω) is almost surely interpo-
lating for Dα if and only if it is almost surely a zero sequence.

1.3. Interpolation in the classical Dirichlet space. For the clas-
sical Dirichlet space we will first establish a result on separation, and
then use again a 1-box condition by Seip as stated in [25, Theorem 5,
p.39].
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1.3.1. Separation in the Dirichlet space. In the case α = 1, the
separation is given in a different way. Let

ρD(z, w) =

√
1− |kw(z)|2

kz(z)kw(w)
, z, w ∈ D.

A sequence Λ is called D–separated if

inf
λ,λ∗∈Λ
λ6=λ∗

ρD(λ, λ∗) > δΛ > 0

for some δΛ < 1. This is equivalent to (see [25, p.23])

(1.6)
(1− |λ|2)(1− |λ∗|2)

|1− λλ∗|2
≤ (1− |λ|2)δ

2
Λ , λ, λ∗ ∈ Λ.

For separation in the Dirichlet space D we obtain the following 0-1
law.

Theorem 1.6.

P (Λ(ω) is D–separated for ) =


1, if ∃γ ∈ (1/2, 1) such that

∑
n

2−γnN2
n <∞,

0, if ∀γ ∈ (1/2, 1) such that
∑
n

2−γnN2
n =∞.

We observe that in both conditions we can replace the sum by a
supremum (this amounts to replacing γ by a slightly bigger or smaller
value). The lower bound 1/2 for γ is not very important, since it is the
behavior close to the value 1 which counts.

1.3.2. Interpolation in the Dirichlet space D. Recall that Bogdan
showed that Λ(ω) is almost surely a zero sequence for D if and only if∑

n n
−1Nn < +∞. This motivates already the necessary part of the fol-

lowing complete characterization of almost surely simple interpolating
sequences for D.

Theorem 1.7.

P
(
Λ(ω) is simple interpolating for D

)
=

{
1
0

if and only if
∑
n

n−1Nn

{
<∞
=∞.

We can reformulate the above result in the same spirit as Corollary
1.5

Corollary 1.8. A sequence is almost surely simple interpolating for D
if and only if it is almost surely a zero sequence for D.

Translating Theorem 1.1 to the Dirichlet space, we get the following
result for universal interpolation which is optimal in a sense.
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Theorem 1.9. If there exist γ ∈ (0, 1) such that

(1.7)
∑
n

n−γNn <∞,

then P
(
Λ(ω) is an interpolating sequence for D

)
= 1.

1.4. Organization of the paper. This paper is organized as follows.
In the next section we present the improved version of the Rudowicz
result concerning random Carleson measures in Hardy spaces which is
the guideline for the corresponding result in the Dirichlet space. In-
deed, this largely clarifies and simplifies not only the situation in the
Hardy space, but also indicates the direction of investigation for the
Dirichlet space. In Section 3 we prove the sufficient condition for in-
terpolation in Dα, 0 < α < 1. Here, we will also prove Corollary 1.4.
In the following section we show the 0-1 law on separation in the clas-
sical Dirichlet space. This requires a subtle adaption of the Cochran
discussion in the Hardy space to the much more intricate geometry
in the Dirichlet space. Section 4 is devoted to the characterization of
separated random interpolating sequences in the Dirichlet space. The
proofs of the results on interpolating sequences in the classical Dirichlet
space are contained in Section 5. Actually, as in the Hardy space, the
core of the proof being probabilistic, we are able to get rid of analytic
functions. In the final Section 6, we give some indications to the 0-1
law on zero-sequences in weighted Dirichlet spaces based on Bogdan’s
proof in the classical Dirichlet space.

A word on notation. Suppose A and B are strictly positive expres-
sions. We will write A . B meaning that A ≤ cB for some positive
constant c not depending on the parameters behind A and B. By
A ' B we mean A . B and B . A. We further use the notation
A ∼ B provided the quotient A/B → 1 when passing to the suitable
limit.

2. Carleson condition in the Hardy space

Before considering Carleson measure conditions in the Dirichlet space,
we will discuss the situation in the Hardy space, in particular we will
prove here Theorem 1.1.

2.1. Proof of Theorem 1.1. We start introducing some notation.
Let

In,k = {e2πit : t ∈ [k2−n, (k + 1)2−n)} n ∈ N, k = 0, 1, . . . , 2n
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be dyadic intervals and Sn,k = SIn,k the associated Carleson window.
In order to check the Carleson measure condition for a positive Borel
measure µ on D it is clearly sufficient to check the Carleson measure
condition for windows Sn,k:

µ(Sn,k) ≤ C|In,k| ' C2−n,

for some fixed C > 0 and every n ∈ N, k = 0, . . . 2n. Given n, k and
m ≥ k let Xn,m,k be the number of points of Λ contained in Sn,k ∩ Am
(we stratify the Carleson window Sn,k into a disjoint union of layers
Sn,k ∩Am). Since Am contains Nm points and the (normalized) length
of Sn,k is 2−n, we have Xn,m,k ∼ B(2−n, Nm) (binomial law). In order
to show that dmΛ is almost surely a Carleson measure we thus have to
prove the existence of C such that

mΛ(Sn,k) =
∑
m≥n

2−mXn,m,k ≤ C2−n

almost surely, in other words we have to prove

sup
n,k

2n
∑
m≥n

2−mXn,m,k ≤ C

almost surely (in ω). The estimate above had already been investigated
by Rudowicz [23]. Here we will proceed in a different way with respect
to Rudowicz’ argument to obtain an improved version of his result and
which allows to better understand the Dirichlet space situation.

Proof of Theorem 1.1. In view of our preliminary remarks, we need to
look at the random variable

Yn,k = 2n
+∞∑
m=n

2−mXn,m,k,

where, as said above, Xn,m,k ∼ B(2−n, Nm). Hence, saying that Yn,k ≥
A means that there are Carleson windows for which the Carleson mea-
sure constant is at least A. Also denote by GYn,k the probability gen-

erating function of the random variable Yn,k, i.e. GYn,k(s) = E(sYn,k).
It is well known that for a random variable X which follows binomial
distribution with parameters p,N we have that GX(s) = (1−p+ps)N .

By the hypothesis, for n sufficiently large, Nn ≤ 2(1−ε)n, ε = 1 −
1/β. Introduce now two parameters A, s > 0 to be specified later. By
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Markov’s inequality we have that

logP (Yn,k ≥ A) = logP (sYn,k ≥ sA)

≤ log
( 1

sA
GYn,k(s)

)
=
∑
m≥n

Nm log(1− 2−n + 2−ns2n−m)− A log(s)

≤ 2−n
∑
m≥n

Nm(s2n−m − 1)− A log(s)

=
∑
m≥0

Nn+m2−(n+m)2m(s2−m − 1)− A log(s).

At this point notice that x(a1/x − 1) ≤ a, for all x ≥ 1, a > 0, which
together with the hypothesis on Nn gives

logP (Yn,k ≥ A) ≤
∑
m≥0

2−ε(n+m)s− A log(s) =
2ε

2ε − 1
s2−εn − A log(s).

Now set s = 2
εn
2 , A = 4

ε
in the last inequality to get

logP (Yn,k ≥ A) ≤ 2ε

2ε − 1
2−

εn
2 − 2n log(2).

Hence, P (Yn,k ≥ 4
ε
) ≤ C(ε)2−2n.

In view of an application of the Borel-Cantelli Lemma we compute

∑
n≥0

2n∑
k=1

P (Yn,k ≥ A) ≤ C(ε)
∑
n≥0

2n × 2−2n <∞.

Hence, by the Borel-Cantelli Lemma, the event Yn,k ≥ A can happen
for at most a finite number of indices (n, k). In particular the Carleson
measure constant of dmΛ is almost surely at most A except for a finite
number of Carleson windows. �

3. Proof of Theorem 1.4

We start with the following elementary lemma which is well known
in probability theory and which will be very useful in the proof below
of Theorem 3.2. (it is essentially approximation of the binomial law by
Poisson law). We refer for instance to [8] for the material on probability
theory — essentially elementary — used in this paper.
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Lemma 3.1. If X is a binomial random variable with parameters p,N ,
then for every s = 0, 1, 2 . . .,

lim
N→∞
pN→0

P (X = s)

(pN)s
= lim

N→∞
pN→0

P (X ≥ s)

(pN)s
=

1

s!
.

The proof of Theorem 1.4 is based on the following seemingly more
general result.

Theorem 3.2. Let 0 < α < 1. Suppose Λ(ω) is almost surely separated

and almost surely a zero sequence. If there exists β >
3− 2α

2− 2α
such that

(3.1)
∑
n

2−nNβ
n <∞

then P
(
Λ(ω) is interpolating Dα

)
= 1.

As we have already mentioned in Subsection 1.2.2, imposing simul-
taneously Λ being a zero sequence and separated is rather artificial.

One could be tempted to repeat the proof used above in the Hardy
space. However, it turns out that this does not give the best result, in
particular when α > 1/2. Our proof of Theorem 3.2 will be based on
the following one-box condition introduced by Seip ([25, Theorem 4,
p.38]), and on Tchebychevs inequality instead of Markovs. Note that
Rudowicz already used Tchebychevs inequality, but his reasoning in
the Hardy space worked only for β ≥ 2 in Theorem 1.1. We introduce
a refinement of his argument which yields a more precise Carleson
measure estimate, and which allows to obtain the sharp statements in
Theorem 1.4.

Theorem 3.3 (Seip). A separated sequence Λ in D is a universal in-
terpolating sequence for Dα, 0 < α < 1, if there exist 0 < κ < 1 − α
and C > 0 such that for each arc I ⊂ T∑

λ∈Λ∩SI

(1− |λ|)κ ≤ C|I|κ.(3.2)

Observe in particular that the above condition implies∑
n

2−nκNn < +∞,

so that in particular
∑

n 2−n(1−α)Nn < +∞, and thus that (3.2) implies
that Λ is a zero sequence almost surely.
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We have to show that the conditions of Theorem 3.2 imply (3.2)
almost surely for some fixed κ ∈ (0, 1). We use the same reasoning as
in the preceding section. In particular with the same notation we have
to prove

sup
n,k

2κn
∑
m≥n

2−κmXn,m,k ≤ C

almost surely. Again Xn,m,k ∼ B(2−n, Nm), where we can now assume
Nm ≤ 2m/β for some β > (3 − 2α)/(2 − 2α) (at least for sufficiently
large m).

The key idea here is now to split this sum into two pieces. The first
piece can be estimated with the aid of binomial law, and for the second
one we will use Tchebychevs inequality. For γ > 0 to be fixed later, we
will write

Yn,k = 2κn
n(1+γ)∑
m=n

2−κmXn,m,k︸ ︷︷ ︸
Y 0
n,k

+ 2κn
+∞∑

m=n(1+γ)+1

2−κmXn,m,k︸ ︷︷ ︸
Rn,k

.

We also use the notation

Zn,k :=

n(1+γ)∑
m=n

Xn,m,k,

so that now we get

P (Y 0
n,k ≥ A/2) ≤ P (Zn,k ≥ A/2) ∼ (pN)A/2

(A/2)!
=

(2−n
∑n(1+γ)

m=n Nm)A/2

(A/2)!
.

It can be observed that we now have less points Nm as in the Hardy
space situation (where Nm ≤ 2m/β with β > 3/2, while now we have
Nm ≤ 2m/β with β > (3−2α)/(2−2α) > 3/2). It is thus clear that for
sufficiently large A we again conclude P (Y 0

n,k ≥ A/2) ≤ 2−4n. To be

more precise, with Nm ≤ 2m/β in mind, we see that 2−n
∑n(1+γ)

m=n Nm .
2−n(1−(1+γ)/β) so that we get the same condition on γ as before: (1 +
γ)/β < 1

(3.3) γ < β − 1.

In that case, setting η = 1− (1 + γ)/β > 0 we have P (Y 0
n,k ≥ A/2) ≤

2−η×A/2 ≤ 2−4n for sufficiently large A.
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We estimate Rn,k using Tchebychev’s inequality:

P (Rn,k ≥ A/2) . Var(Rn,k) = 4κn
∑

m≥n(1+γ)

4−κmV ar(Xn,m,k)

. 4κn
∑

m≥n(1+γ)

4−κm × 2−nNm ≤ 2(2κ−1)n
∑

m≥n(1+γ)

2−2κm+m/β

≤ 2n(2κ−1−2κ(1+γ)+(1+γ)/β) = 2−n(1+2κγ−(1+γ)/β).

We will need η := 1+2κγ−(1+γ)/β > 1, equivalently 2κγ > (1+γ)/β,
or 2κβγ > 1 + γ, i.e.

(3.4) γ >
1

2κβ − 1
.

Now the two conditions on γ, (3.3) and (3.4), require

1

2κβ − 1
< β − 1⇐⇒ 1 < 2κβ2 − β − 2κβ + 1⇐⇒ β(1 + 2κ) < 2κβ2

⇐⇒ β >
1 + 2κ

2κ
= 1 +

1

2κ
.(3.5)

Observe that Seip’s result requires 0 < κ < 1 − α and that the above
expression is decreasing in κ so that:

1 + 2κ

2κ
>

1 + 2(1− α)

2(1− α)
=

3− 2α

2− 2α
.

By assumption, we have β > (3 − 2α)/(2 − 2α) so that there exists
κ ∈ (0, 1− α) with (3.5). And for that κ we can find γ satisfying (3.3)
and (3.4). From here, the proof follows the same lines as in the Hardy
space discussed in the preceding section. This proves Theorem 3.2. �

Let us give the proof of Theorem 1.4.

Proof of Theorem 1.4. (i) Let 0 < α < 1/2.
If Λ is interpolating almost surely, then it is separated almost surely,

which implies
∑

n 2−nN2
n < +∞.

If
∑

n 2−nN2
n < +∞, then Λ is almost surely separated. Moreover,

we can pick β = 2 in (3.1). Hence

3− 2α

2− 2α
= 1 +

1

2(1− α)
< 2 = β.

Also, in this case
∑

n 2−(1−α)Nn < +∞, which gives (1.4) and hence,
by Theorem 1.2 that Λ is a zero sequence almost surely. We conclude
from Theorem 3.2 that Λ is almost surely interpolating.

(iii) Consider the case 1/2 < α < 1.
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If Λ is interpolating almost surely, then it is a zero sequence almost
surely, which implies

∑
n 2−(1−α)nNn < +∞ by Theorem 1.2.

Suppose
∑

n 2−(1−α)nNn < +∞. Then Λ is a zero sequence almost
surely by Theorem 1.2. Also it is clear that the condition implies that∑

n 2−nN2
n < +∞, which further implies that the sequence is almost

surely separated. Pick

β = 1 +
1

2(1− α)
+ ε > 1 +

1

2(1− α)
=

3− 2α

2− 2α
,

for some ε > 0 to be fixed. The distribution condition implies Nn ≤
2(1−α)n (at least for sufficiently large n). Hence

Nβ−1
n ≤ 2(1−α)×(β−1)n = 2(1−α)×( 1

2(1−α)
+ε)n = 2(1/2+(1−α)ε)n.

Then

2−αn ×Nβ−1
n = 2(−α+1/2+(1−α)ε)n.

Now since α > 1/2, there exists ε > 0 such that −α+1/2+(1−α)ε < 0.
Hence ∑

n

2−nNβ
k =

∑
n

2−(1−α)nNn × 2−αnNβ−1
n <∞.

We conclude from Theorem 3.2 that Λ is interpolating almost surely.
If
∑

n 2−(1−α)nNn = +∞. Then Λ is not a zero sequence almost
surely by Theorem 1.2, and hence it is almost surely not interpolating.

Conversely, we need to check that if Λ is almost surely not inter-
polating, then we have

∑
n 2−(1−α)nNn = +∞. By contraposition, if

the sum is bounded, we have to show that the probability that Λ is
interpolating is stricly positive. But we already know that in that case
this probability is 1 > 0.

(ii) α = 1/2: In this case we only have a sufficient condition which
follows by direct application of Theorems 1.2 and 3.2. �

4. Separated random sequences for the Dirichlet space

We will now prove the separation result in D.

Proof of Theorem 1.6. Separation with probability 0. Assume that for
all γ ∈ (1/2, 1) we have supk 2−γkN2

k = ∞. As it turns out, under
the condition of the Theorem, separation already fails in dyadic annuli
(without taking into account radial Dirichlet separation).

Assume now that γl → 1 as l→∞ and supk 2−γlkN2
k =∞ for every

l. For each k = 1, 2 . . ., let Ik = [1− 2−k+1, 1− 2−k). Define

Ω
(l)
k = {ω : ∃(i, j), i 6= j with ρi, ρj ∈ Ik and |θi(ω)−θj(ω)| ≤ π2−γlk}.
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In view of (1.6), if ω ∈ Ω
(l)
k , this means that in the dyadic annulus

Ak there are at least two points close in the Dirichlet metric. To be

more precise, if ω ∈ Ω
(l)
k , then there is a pair of distinct point λi(ω)

and λj(ω) such that |λi|, |λj| ∈ Ik and | arg λi(ω)−arg λj(ω)| ≤ π2−γlk.
Hence

(1− |λi|2)(1− |λj|2)

|1− λiλj|2
≥ c

2−2k

2−2k + π2−2γlk
,

where the constant c is an absolute constant. Hence

(1− |λi|2)(1− |λj|2)

|1− λiλj|2
≥ c

1

1 + π2k(1−γl)
≥ c′2−k(1−γl) ≥ c′′(1− |λi|)1−γl .

Absorbing c′′ into a suitable change of the power δ2
l := 1 − γl into δ′l

2

(which can be taken by choosing for instance 2δl > δ′l > δl provided k
is large enough), then by (1.6)

ρD(λi(ω), λj(ω)) ≤ δ′l.

Our aim is thus to show that for every l ∈ N, we can find almost surely

λi(ω) 6= λj(ω) such that ρD(λi(ω), λj(ω)) ≤ δ′l, i.e. P (Ω
(l)
k ) = 1. (Note

that δ′l → 0 when l→ +∞.)

Let us define a set E := {j : 2−γlj−1Nj ≤ 1}. Observe that when
k /∈ E, then at least two points are closer than π2−γlk (this is completely

deterministic), so that in that case P (Ω
(l)
k ) = 1. Hence if E $ N, then

we are done.
Consider now the case E = N, and let k ∈ E = N. We will use the

Lemma on the probability of an uncrowded road [12, p. 740], which
states

P (Ω
(l)
k ) = 1− (1−Nk2

−γlk−1)Nk−1

(since E = N this is well defined).
We can assume that Nk ≥ 2 (since obviously

∑
k:Nk<2 2−γlkNk <∞).

In particular N2
k/2 ≤ Nk(Nk− 1) ≤ N2

k . Since log(1−x) ≤ −x, we get∑
k:Nk≥2

(Nk − 1) log(1−Nk2
−γlk−1) ≤ −

∑
k:Mk≥2

(Nk − 1)Nk2
−γlk−1

≤ −1

2

∑
k:Nk≥2

N2
k2−γlk−1

= −∞
by assumption. Hence, taking exponentials in the previous estimate,∏

k∈E,Nk≥2

(1−Nk2
−γlk−1)Nk−1 = 0,
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which implies, by results on convergence on infinite products, that∑
k

P (Ω
(l)
k ) =∞.

Since the events Ω
(l)
k are independent, by the Borel–Cantelli Lemma,

P (lim sup Ω
(l)
k ) = 1,

where

lim sup Ω
(l)
k =

⋂
n≥1

⋃
k≥n

Ω
(l)
k = {ω : ω ∈ Ω

(l)
k for infinitely many k}.

In particular, since the probability of being in infinitely many Ω
(l)
k is

one, there is at least one Ω
(l)
k which happens with probability one. So

that again P (Ω
(l)
k ) = 1.

As a result, the probability that the sequence is δ′l-separated in the
Dirichlet metric is zero for every l. Since δ′l → 0 when l → +∞, we
deduce that

P (ω : {λ(ω)} is separated for D) = 0.

Separation with probability 1. Now we assume that
∑

k 2−γkN2
k <

+∞ for some γ ∈ (1/2, 1). Let us begin defining a neighborhood in the
Dirichlet metric. For that, fix η > 1 and α ∈ (0, 1). Given λ ∈ Λ, so
that for some k, λ ∈ Ak. Consider

T η,αλ = {z = reit : (1− |λ|)η ≤ 1− r ≤ (1− |λ|)η, |θ − t| ≤ (1− r)α}.
Figure 1 represents the situation.

Our aim is to prove that under the condition
∑

k 2−γkN2
k < +∞,

there exists η > 1 and α ∈ (0, 1) such that T η,αλ does not contain
any other point of Λ except λ, and this is true for every λ ∈ Λ with
probability one. For this we need to estimate

P (T η,αλ ∩ Λ = {λ}).
Let us cover

T η,αλ =

ηk⋃
j=k/η

(T η,αλ ∩ Aj),

and we need that for every j ∈ [k/η, ηk] \ {k}, (T η,αλ ∩Aj)∩Λ = ∅ and
(T η,αλ ∩Ak)∩Λ = {λ}. Note that Xj = #(T η,αλ ∩Aj∩Λ) ∼ B(Nj, 2

−αj),
j 6= k, and Xk ∼ B(Nk−1, 2−αk) (since we do not count λ in the latter
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Figure 1. Dirichlet neighborhood.

case). Hence, since the arguments of the points are independent, we
have

P (T η,αλ ∩ Λ = {λ}) = P
(( ηk⋂

j=k/η,j 6=k

(Xj = 0)
)
∩ (Xk = 1)

)

=

j=ηk∏
j=k/η,j 6=k

(
P (Xj = 0)

)
× P (Xk = 1).

From the binomial law we have P (Xj = 0) = (1 − 2−αj)Nj , for j ∈
{k/η, ηk}\{k}. Also, assuming 0 < γ < α < 1, we have Nj2

−αj = o(j),
so that

P (Xj = 0) = (1− 2−αj)Nj ∼ 1−Nj2
−αj.

Moreover

P (Xk = 1) = Nk2
−αk(1− 2−αk)Nk−1 ∼ Nk2

−αk.

Hence we get

P (T η,αλ ∩ Λ = {λ}) ∼ exp
( j=ηk∑
j=k/η,j 6=k

ln(P (Xj = 0)
)
×Nk2

−αk

∼ (1−
j=ηk∑

j=k/η,j 6=k

Nj2
−αj)×Nk2

−αk.

Again we use γ < α < 1 to see now that the sum
∑ηk

j=k/η,j 6=kNj2
−αj

is convergent and goes to zero when k →∞. This shows in particular
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that the fact of considering the event of having points in neighboring
annuli of Ak containing λ can be neglected. Hence

P (T η,αλ ∩ Λ = {λ}) ∼ Nk2
−αk.

We now sum over all λ ∈ Λ by summing over all dyadic annuli Ak and
the Nk points contained in each annuli:∑

λ∈Λ

P (T η,αλ ∩ Λ = {λ}) ∼
∑
k∈N

Nk ×Nk2
−αk =

∑
k∈N

N2
k2−αk.

For α > γ, this sum converges by assumption. Using the Borel-Cantelli
lemma we deduce that T η,αλ ∩Λ = {λ} for all but finitely many λ with
probability one. Obviously these finitely many neighborhoods T η,αλ

contain finitely many points between which a lower Dirichlet distance
exists. This achieves the proof of the separation. �

It should be observed that the above proof only involves α but not η,
so that it is the separation in the annuli which dominates the situation.

5. Proof of Theorem 1.9 and Theorem 1.7

In order to prove Theorems 1.9 and 1.7 we will use Seip’s one box
condition [25, Theorem 5, p.39] as well as the corollary below which
follows from a theorem of Bishop ( [7, Theorem 1.3]).

Theorem 5.1 (Seip). A D-separated sequence Λ in D is a universal
interpolating sequence for D if there exist 0 < γ < 1 and C > 0 such
that for each arc I ⊂ T∑

λ∈Λ∩SI

(
log

e

1− |λ|

)−γ
≤ C

(
log

e

|I|

)−γ
.(5.1)

Theorem 5.2 (Bishop). A D-separated sequence Λ in D is a (simple)
interpolating sequence for D if

(1)
∑

λ∈Λ

(
log e

1−|λ|

)−1

< +∞ (zero sequence), and

(2) ∃η ∈ (0, 1) such that for all ν ∈ Λ, we have∑
λ∈Λ∩S(Iην )

(
log

e

1− |λ|

)−1

≤
(

log
e

1− |ν|

)−1

where Iην is the interval centered at ν/|ν| of length (1− |ν|)η.

Corollary 5.3. A D-separated sequence Λ in D is a (simple) inter-
polating sequence for D if there exist C > 0 such that for each arc
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I ⊂ T ∑
λ∈Λ∩SI

(
log

e

1− |λ|

)−1

≤ C

(
log

e

|I|

)−1

.(5.2)

In order to deduce the corollary from Bishop’s theorem observe that
the first hypothesis of the Theorem follows immediately by choosing
I = T, and the second one from the observation that log(e/|Iην |) '
log(e/(1− |ν|)).

Observe that both conditions (5.1) and (5.2) imply in particular∑
n n
−1Nn < ∞ which by Bogdan’s result implies that Λ is a zero se-

quence almost surely.

Proof of Theorem 1.9 and Theorem 1.7. We proceed in a similar man-
ner as in the proof of Theorem 1.1. Using the usual dyadic discretiza-
tion the conditions in Theorem 5.1 and Theorem 5.3 translate to∑

m≥n

1

mγ
Xn,m,k ≤ C

1

nγ
almost surely,

where 0 < γ < 1 corresponds to Seip’s condition and γ = 1 to Bishop’s.
As usual we have to estimate the tail of the random variables

Yn,k =
∑
m≥n

( n
m

)γ
Xn,m,k.

To do that, introduce again two positive parameters s, A. Using the
formula for the generating function of a binomially distributed random
variable and Markov’s inequality we can estimate as follows

logP (Yn,k ≥ A) = logP (sYn,k > sA)

≤
∑
m≥n

Nm log(1− 2−n + 2−ns( n
m

)γ )− A log(s)

≤ 2−n
∑
m≥n

Nm

mγ

(m
n

)γ
(s( n

m
)γ − 1)nγ − A log(s)

≤ nγ2−ns
∑
m≥n

Nm

mγ
− A log(s).

Setting s = 2n/2 and A = 4 the above calculation gives

P (Yn,k > 4) . C2−2n.
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Again, an application of the Borel-Cantelli Lemma concludes the proof.
�

6. Annex : Proof of Theorem 1.2

Carleson proved in [11, Theorem 2.2] that, for 0 < α < 1, if∑
λ∈Λ

(1− |λ|)1−α <∞

then the Blaschke product B associated to Λ belongs to Dα. So the
sufficiency part of Theorem 1.2 follows immediately from this result
(and is moreover deterministically true).

For the proof of the converse we will need the following two lemmas.
The first one is a version of the Borel-Cantelli Lemma [8, Theorem 6.3].

Lemma 6.1. If {An} is a sequence of measurable subsets in a proba-
bility space (X,P ) such that

∑
P (An) =∞ and

(6.1) lim inf
n→∞

∑
j,k≤n P (Aj ∩ Ak)
[
∑

k≤n P (Ak)]2
≤ 1,

then P (lim supn→∞An) = 1.

The second Lemma is due to Nagel, Rudin and Shapiro [20, 21] who
discussed tangential approach regions of functions in Dα.

Lemma 6.2. Let f ∈ Dα, 0 < α < 1. Then, for a.e. ζ ∈ T, we have
f(z)→ f ∗(ζ) as z → ζ in each region

|z − ζ| < κ(1− |z|)1−α, (κ > 1).

Proof of Theorem 1.2. In view of our preliminary observations, we are
essentially interested in the converse implication. So suppose

∑
n 2−(1−α)nNn =

+∞ or equivalently

(6.2)
∑
n

(1− ρn)1−α = +∞.

We have to show that Λ is not a zero sequence almost surely. For this,
introduce the intervals I` = (e−i(1−ρ`)

1−α
, ei(1−ρ`)

1−α
) and let F` = eiθ`I`.

Denoting by m normalized Lebesgue measure on T, observe that

m(F`) = m(I`) = (1− ρ`)1−α.

We have for every ϕ ∈ F`, λ` ∈ Ωκ,ϕ = {z ∈ D : |z − eiϕ| <
κ(1−|z|)1−α}. By Lemma 6.2 it suffices to prove that | lim sup` F`| > 0
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a.s. (the latter condition means that there is a set of strictly posi-
tive measure on T to which Λ accumulates in Dirichlet tangential ap-
proach regions according to Lemma 6.2, which is of course not pos-
sible for a zero sequence). Let E denote the expectation with re-
spect to the Steinhaus sequence (θn). By Fubini’s theorem we have
E[m(Fj ∩ Fk)] = m(Ij)m(Ik), j 6= k, (the expected size of intersec-
tion of two intervals only depends on the product of the length of both
intervals). By Fatou’s Lemma and (6.2)

E
[

lim inf
n→∞

∑
j,k≤nm(Fj ∩ Fk)
[
∑

k≤nm(Fk)]2

]
≤ lim inf

n→∞
E
[∑

j,k≤nm(Fj ∩ Fk)
[
∑

k≤nm(Fk)]2

]
= lim inf

n→∞

∑
j,k≤nE[m(Fj ∩ Fk)]
[
∑

k≤nm(Fk)]2

= lim inf
n→∞

∑
j,k≤n,j 6=km(Ij)m(Ik) +

∑
k≤nm(Ik)

[
∑

k≤nm(Ik)]2

= lim inf
n→∞

(
1 +

∑
k≤nm(Ik)(1−m(Ik))

[
∑

k≤nm(Ik)]2

)
.

Now, since 1−m(Ik)→ 1, and by (6.2), keeping in mind that m(Ik) =
(1− ρk)1−α, we have

lim
n→∞

∑
k≤nm(Ik)(1−m(Ik))

[
∑

k≤nm(Ik)]2
= 0.

This implies that (6.1) holds on a set B of positive probability and
hence, by the zero-one law, on a set of probability one. From Lemma
6.1 we conclude P (lim supn→∞ Fn) = 1 a.s., which is what we had to
show. �
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