Random interpolating sequences in Dirichlet spaces - Archive ouverte HAL Access content directly
Journal Articles international mathematical research notices Year : 2022

Random interpolating sequences in Dirichlet spaces

Nikolaos Chalmoukis
  • Function : Author
  • PersonId : 1049413
Andreas Hartmann
Karim Kellay

Abstract

We discuss random interpolation in weighted Dirichlet spaces $\mathcal{D}_\alpha$, $0\leq \alpha\leq 1$. While conditions for deterministic interpolation in these spaces depend on capacities which are very hard to estimate in general, we show that random interpolation is driven by surprisingly simple distribution conditions. As a consequence, we obtain a breakpoint at $\alpha=1/2$ in the behavior of these random interpolating sequences showing more precisely that almost sure interpolating sequences for $\mathcal{D}_\alpha$ are exactly the almost sure separated sequences when $0\le \alpha<1/2$ (which includes the Hardy space $H^2=\mathcal{D}_0$), and they are exactly the almost sure zero sequences for $\mathcal{D}_\alpha$ when $1/2 \leq \alpha\le 1$ (which includes the classical Dirichlet space $\mathcal{D}=\mathcal{D}_1$).
Fichier principal
Vignette du fichier
HKW2020-09-22.pdf (487.63 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02113238 , version 1 (28-04-2019)
hal-02113238 , version 2 (06-07-2019)
hal-02113238 , version 3 (23-09-2020)

Identifiers

Cite

Nikolaos Chalmoukis, Andreas Hartmann, Karim Kellay, Brett D Wick. Random interpolating sequences in Dirichlet spaces. international mathematical research notices, 2022, 17, pp.13629-13658. ⟨hal-02113238v3⟩

Collections

CNRS IMB INSMI ANR
280 View
184 Download

Altmetric

Share

Gmail Facebook X LinkedIn More