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Abstract

Our focus here is on the infinitesimal model. In this model, one or several quantitative traits
are described as the sum of a genetic and a non-genetic component, the first being distributed
within families as a normal random variable centred at the average of the parental genetic
components, and with a variance independent of the parental traits. Thus, the variance that
segregates within families is not perturbed by selection, and can be predicted from the vari-
ance components. This does not necessarily imply that the trait distribution across the whole
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population should be Gaussian, and indeed selection or population structure may have a sub-
stantial effect on the overall trait distribution. One of our main aims is to identify some general
conditions on the allelic effects for the infinitesimal model to be accurate. We first review the
long history of the infinitesimal model in quantitative genetics. Then we formulate the model
at the phenotypic level in terms of individual trait values and relationships between individuals,
but including different evolutionary processes: genetic drift, recombination, selection, muta-
tion, population structure, ... We give a range of examples of its application to evolutionary
questions related to stabilising selection, assortative mating, effective population size and re-
sponse to selection, habitat preference and speciation. We provide a mathematical justification
of the model as the limit as the number M of underlying loci tends to infinity of a model with
Mendelian inheritance, mutation and environmental noise, when the genetic component of the
trait is purely additive. We also show how the model generalises to include epistatic effects.
We prove in particular that, within each family, the genetic components of the individual trait
values in the current generation are indeed normally distributed with a variance independent
of ancestral traits, up to an error of order 1{

?
M . Simulations suggest that in some cases the

convergence may be as fast as 1{M .

Keywords: infinitesimal model, selection, epistasis, quantitative genetics.

1 Introduction

The infinitesimal model is a simple and robust model for the inheritance of quantitative traits, in
which these are the sum of a genetic and a non-genetic (environmental) component, and the ge-
netic component of offspring traits follows a normal distribution around the average of the parents;
this distribution has a variance that is independent of the parental trait values, and, in a large
outcrossing population, the variance remains constant despite selection. With inbreeding, the vari-
ance decreases in proportion to relatedness. Of course, selection may cause the distribution across
the whole population to deviate from normality. The crucial point is that under the infinitesimal
model, the distribution of genetic components within families remains normal, with variance that
evolves in a way that is entirely determined by relatedness.

This model has its roots in the observations of Galton (1877, 1885, 1889), and their analysis by
Pearson (1896, 1897). Fisher (1918) showed that trait values and their (co)variances can be broken
down into components, and that the phenotypic observation of constant within-family variance is
consistent with a large number of Mendelian factors, with additive effects. The limiting infinitesimal
model can be extended to include all the main evolutionary processes: recombination, mutation,
random sampling drift, migration and selection. The model is hardly new, yet there seems to be
no agreement on what precisely is meant by the infinitesimal model, nor on the conditions under
which it is expected to apply. Moreover, although it has long been central to practical breeding,
where it forms the genetic basis for the animal model, it is relatively little used in evolutionary
modelling (see Kruuk 2004 and Hill & Kirkpatrick 2010 for a review).

This paper provides a summary of the model, together with a rigorous derivation, including
control over its accuracy as an approximation. We show that its predictions about within-family
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variance can be accurate even with epistasis. The reason can be understood intuitively, as follows.
The classical theory of quantitative genetics gives a remarkably general description of evolution,
in which the covariance in the values of a trait across individuals is a linear combination of a
set of variance components, with coefficients determined by the probability of identity of sets of
genes. Selection rapidly changes the trait mean, at a rate proportional to the additive genetic
variance. However, when the trait depends on large numbers of genes, each of which makes a
small contribution, selection has a negligible effect on the variance contributed by any individual
locus. At the individual level, conditioning on the trait value hardly alters the distribution of
effects of any one gene, at least in the short term; therefore, this distribution can be assumed
constant. Importantly, it is not that allele frequencies do not change under the infinitesimal model:
allele frequencies may change substantially due to random drift, mutation and migration; the key
assumption is that selection only slightly perturbs the neutral distribution at any particular locus
(Fisher 1918; Robertson 1960; Kimura 1983, Ch. 6).

Our results here incorporate not only selection, but also mutation, random drift, population
structure and some forms of epistasis. Dominance is left to future work. The evolutionary forces
at work are captured by the actual pedigree of the population. Indeed, selection and structure
pick out a particular pedigree, biased according to the trait values and the possible interactions
between individuals. Thus, by conditioning on this pedigree and on the trait values in all previous
generations, we are able to capture arbitrary forms of selection and population structure. The
distribution of traits within families in the population is a multivariate normal distribution in which
covariance is determined entirely by the pedigree and is independent of ancestral trait values. If
some part of the pedigree or ancestral traits is unknown, then averaging with respect to the expected
ancestral distribution, this multivariate normality is preserved. For example, it follows directly that
conditioning on knowing just some of the trait values in the pedigree shifts the mean trait values
in other families by a linear function of the conditioned values, but leaves variances within families
unaltered.

After outlining the history of the infinitesimal model, we define it directly as a model for the
distribution of phenotypes in a population; such a formal definition seems to be new. Initially, we
implicitly assume an additive trait, but include all the usual evolutionary processes. For simplicity,
we neglect linkage throughout. Having explained the phenotypic model, not only defining it at the
level of the individual, but also showing how it can be simulated at the level of the population, we
outline some of its applications. We then show that we can derive this infinitesimal model as the
limit of a model of Mendelian inheritance, showing the conditions under which it is accurate and
obtaining explicit bounds on the error. Finally, we show how the infinitesimal model extends to
allow for epistasis, before presenting simulations that illustrate the main results.

We emphasise that our derivation of the infinitesimal model is distinct from earlier work, which
used multi-locus models to analyse the effects of selection on complex traits (e.g. Bürger, 2000;
Turelli and Barton, 1994; Kirkpatrick et al., 2002). The aim there was to connect population with
quantitative genetics, and specifically, to find ways to approximate the effects of selection on the
genetic variance, given a finite number of loci. In particular, Turelli and Barton (1994) investigated
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whether the trait distribution across the whole population could be approximated by a normal
distribution. In contrast, here we aim to show that in the infinitesimal limit, the trait distribution
within families is normally distributed, with a variance that is determined by the variance in the
ancestral population and the pedigree relating individuals in those families, without making any
detailed assumptions about the genetic basis of the trait, or about the form of the distribution of
the trait across the population. Thus, we aim at a radical simplification of quantitative genetics.

2 The classical model

2.1 History

Although the infinitesimal model is named for its justification as the limit of infinitely many
Mendelian genes, it can be defined purely phenotypically, and its origins trace back well before
the rediscovery of Mendel’s work in 1900. Here, we summarise the origins of the infinitesimal
model, after which we will formulate a precise definition at the phenotypic level, with no explicit
genetic assumptions.

In one of the earliest quantitative discussions of heredity, Fleeming Jenkin (1867) argued that
blending inheritance could have no effect in the long term: a white man stranded on an inhabited
tropical island would leave offspring who, over successive generations, would approach ever closer to
the dark-skinned native population. Davis (1871) pointed out that in a large and stable population,
an individual is expected to leave two children, four grandchildren, and so on, so that his total
expected contribution is constant through time. Nevertheless, if offspring are precisely intermediate
between their parents, the range of variation in the population must necessarily decrease. Darwin
saw this as a serious problem for his theory, which required a source of variation to counter blending
inheritance. (See Bulmer, 2004, for a detailed discussion of Jenkin’s argument).

Francis Galton gathered extensive data on the inheritance of continuous traits, and introduced
many ideas that are now central to quantitative genetics. In experiments with sweet peas, he
showed that seeds of offspring grown from seeds of different weights followed a normal distribution
with a mean that reverted towards the population mean, and with variance independent of the
parents’ weight: “I was certainly astonished to find the family variability of the produce of the
little seeds to be equal to that of the big ones, but so it was, and I thankfully accept the fact,
for if it had been otherwise, I cannot imagine, from theoretical considerations, how the problem
could be solved” (Galton, 1877, p.513). (In Galton’s experiments with sweet peas, plants were self-
fertilised, so that the variance in families is, in fact, expected to decrease.) He saw a similar pattern
for human height, and showed that the joint distribution of offspring and mid-parent is bivariate
normal (Galton, 1885). Moreover, he understood that the variance of the population could remain
stable under the joint influence of random mating, reversion of offspring towards the population
mean, and generation of variance amongst offspring. Galton (1877) calculated the equilibrium
variance, allowing for Gaussian stabilising selection, a calculation next made by Bulmer (1971) and
Cavalli-Sforza & Bodmer (1971), nearly a century later.
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Galton (1885, 1889) tried to explain his observations by formulating his ‘law of ancestral hered-
ity’, which divided an individual’s phenotype into geometrically declining contributions from par-
ents, grandparents, great-grandparents, ... ; he interpreted this contribution from distant ancestors
as being due to inherited factors which have some probability, p, of being expressed in each gen-
eration. Bulmer (1998) shows that Galton’s law is equivalent to the quantitative genetics of an
additive trait, with p being replaced by the heritability, h2 “ VA{VP (where VP is the total pheno-
typic variance and VA the additive genetic variance of the trait); however, h2 may vary from trait
to trait, whereas Galton assumed that it is a constant parameter of the mechanism of inheritance.
Galton’s model explains reversion of offspring towards the population mean as being due to expres-
sion of factors inherited from earlier generations (Lush, 1937, p. 47). In contrast, under Mendelian
inheritance, reversion to the mean arises because selection acts on the phenotypic variance, VP ,
whereas only additive genetic variation, VA, is passed on; the deviation of offspring is therefore
h2 “ VA{VP times that of the selected parents. Pearson (1896, 1897) introduced matrix algebra
and multiple regression, to put Galton’s ancestral law on a firm mathematical basis. However, he
treated the problem as the statistical description of a population of relatives, rather than following
Galton in devising a mechanistic explanation of heredity (Magnello, 1998).

After 1900, there was a bitter dispute between those studying the Mendelian inheritance
of discrete characters, and those biometricians who studied the inheritance of continuous traits
(Provine, 1971). Pearson (1904a, 1904b, 1909) understood that Mendelian factors could account
for continuous variation, but found that if there were complete dominance, correlations between
relatives did not agree with observations (see Magnello, 1998). Yule (1902, 1906) showed that if in-
complete dominance and random ‘environmental’ variation are included, then arbitrary correlations
could be explained. However, these ideas were not developed further until Fisher’s definitive (1918)
paper.

During the following years, quantitative genetics developed quite separately from the population
genetics of discrete genes. Fisher and Wright established the basic theory for correlation between
relatives and for the effects of inbreeding, Wright was involved in practical animal breeding, and
Haldane (1931) showed how selection on a trait affects the constituent alleles. However, the bulk
of their work was on the evolution of single loci, and even the basic theory for the response of
continuous traits to selection developed slowly. The change over one generation is implicit in Gal-
ton’s regression of offspring on mid-parent, and the multivariate version is given by Pearson (1896).
However, the classic ‘breeders’ equation’ was only written in its modern form by Lush (1937); see
Hill & Kirkpatrick (2010). Fisher’s (1918) analysis of genetic variance was developed into a so-
phisticated theory in the 1950’s (e.g. Henderson, 1953; Cockerham, 1954; Kempthorne, 1954; see
Hill, 2014), but this did not become widely known. Quantitative genetics came back into contact
with evolutionary questions through Robertson (1966), who formulated the ‘secondary theorem’,
which states that the rate of change of a trait’s mean due to selection equals its covariance with
relative fitness. Robertson (1960) also showed that under the infinitesimal model, the ultimate
cumulative response to selection equals the response in the first generation, multiplied by twice the
effective population size; he showed that this can be understood through the increase in fixation
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probability of individual alleles caused by weak selection (Ns ! 1). (We discuss this in more detail
when we discuss applications of the infinitesimal model in Section 2.3 below.) Bulmer (1971) and
Lande (1975) investigated the effect of stabilising selection and mutation on trait variance. It is
striking that though these methods trace back to Galton and Pearson, they did not become widely
used in evolutionary biology for more than 70 years. Indeed, the sophisticated ‘animal model’,
widely used in animal breeding, has only been applied to analyse natural populations over the past
15 years (Kruuk, 2004).

Despite the revival of interest (both theoretical and empirical) in ‘evolutionary quantitative
genetics’ in recent decades, the infinitesimal model itself has received little attention. Indeed, its
origins are lost in the mists of time (M. Bulmer, W.G. Hill, pers. comm.). Bulmer (1971) showed
that assuming a large number of unlinked loci with additive effects, the joint distribution of a set
of relatives is multivariate normal, conditional on the parents; Lange (1978) gave a more detailed
derivation. His aim was to find general mathematical conditions under which a polygenic model,
based on a large number of loci, each having a small additive impact on a trait, implies a multivariate
normal distribution for trait values of indiviuals in a group. Assuming either no inbreeding or no
dominance variance, he provides conditions for a central limit theorem for polygenic-trait values in
a pedigree. He assumes that all loci are in linkage equilibrium, that there is no assortative mating
or epistasis and that the number of chromosomes goes to infinity. In contrast to our work here, he
considers only one generation of reproduction and he does not control the rate of convergence, nor
the impact of conditioning on trait values of parents. Again assuming additivity, Dawson (1997)
showed that certain kinds of linkage disequilibrium could cause the distribution amongst offspring to
depend on the parental values. Bulmer (1974) and Santiago (1998) extended the infinitesimal model
to allow for linkage. Appendix B of Turelli & Barton (1994) gave a general treatment of epistasis,
which allows for linkage and multiple alleles. They showed that provided that kth order epistatic
coefficients scale correctly with the number of loci, M , then the effect of selection on the trait
depends only on the variance of effects at each locus, and the linkage disequilibria between them.
The additive genetic variance will change slowly under selection, and can be assumed constant for
op
?
Mq generations. However, their treatment did not include mutation, population structure, or

random drift.

2.2 Definition of the phenotypic model

We begin by defining the infinitesimal model in terms of the phenotypic distribution. In Section 3.1,
we derive it as the limit of a large number of Mendelian alleles with additive effects, and that
underlying additivity will be implicit in our discussion in this section. However, in Section 3.2 we
show that under some conditions the model can be extended to include epistasis and the phenotypic
model will, just as in the classical case which we now describe, be determined by systems of
recursions for the segregation variance between siblings.

For simplicity, in this section, we ignore non-genetic contributions to the trait; an environmental
noise will be explicitly incorporated in our derivations in Section 3.1. We also consider a single
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trait, but it is straightforward to extend the analysis to multiple traits.

2.2.1 The basic model

Consider first the simplest case, of a purely additive trait in a large outcrossing population. Then,
the infinitesimal model states that offspring follow a Gaussian distribution around the mean of the
two parents, with a variance V0, that is constant, independent of the parents’ values. With random
mating, the population as a whole rapidly converges to a Gaussian with variance 2V0. To see this,
note that if the variance in the parental population is V1, then that of the mean of two parents
sampled at random is V1{2, and so that of the offspring generation is V1{2 ` V0: at equilibrium,
V1 “ 2V0; that is half the variance is between families, and half within them. Selection can readily
generate arbitrary non-Gaussian distributions: for the population as a whole, we are free to choose
any distribution of phenotypes (but within families the distribution remains Gaussian). However,
in the absence of selection such a distribution rapidly relaxes back to a Gaussian with variance 2V0;
the kth order cumulants decay by a factor 21´k per generation, for k ě 3 (Bulmer, 1980). This is
illustrated in Figure 1.

2.2.2 Haploids versus diploids

In this simplest case, it makes no difference whether we follow haploids or diploids. However, the
distinction becomes evident when we consider inbreeding and random drift. We can choose to follow
haploid individuals, which mate to produce diploids that immediately undergo meiosis to produce
the next haploid generation. Alternatively, we can follow diploid individuals, which produce haploid
gametes via meiosis, and then immediately fuse to produce the next diploid generation. This results
in two distinct approaches to modelling, both of which we describe below.

With no selection, whether we track haploids or diploids makes no fundamental difference.
However, when we select, we condition the individual’s full genotype on the value of a polygenic
trait; it is then clearly important whether we measure the trait at the haploid or the diploid stage.
In principle, selection could act at both stages, but we do not consider this complication. For
simplicity, in our derivation in Section 3 we concentrate on the haploid case.

2.2.3 Identity by descent and the segregation variance

In this section, we show how to incorporate inbreeding into the infinitesimal model. We explain this
in modern terms, referring to genes, but emphasise that the formal definition of the infinitesimal
model does not require that discrete genes be specified - only inbreeding coefficients, which can be
calculated from the pedigree, are required.

As before, the mean trait value in offspring is the midpoint of the parents’ trait values. Variation
between siblings is generated by the random segregation of genes from the parental genotypes. To
the extent that the genomes that come together in meiosis are related, this segregation variance will
be reduced in proportion to the fraction of genes that they share. Imagine an ancestral population,
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Figure 1: Under the infinitesimal model, changes in the shape of the trait distribution across
the population are due to linkage disequilibrium. Top: A large random-mating population at
equilibrium, in the absence of selection. The genetic component of trait values follow a normal
distribution, with variance divided equally within and between families. Middle: After disruptive
viability selection (fitness shown by the dashed line), followed by random mating, the distribution
of trait values is bimodal (blue), with increased mean. The underlying genic component of the
distribution (red), which would be reached at linkage equilibrium, has the same (increased) mean,
but a variance unchanged from the initial value. Bottom: After a further round of random mating,
with no selection, allele frequencies, and hence the genic component (red) are the same. The
distribution of trait values (blue) has relaxed towards this underlying normal distribution, as linkage
disequilibria decrease as a result of segregation.
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whose members are all unrelated. We suppose that after one round of reproduction all families
segregate with variance V0. The current population descends from this reference population via
an arbitrary pedigree. The relation between haploid individuals i, j is described by Fi,j , the
probability that homologous genes descend from the same ancestral gene - that is, are identical by
descent from the reference population. Since we are ignoring linkage, and the trait is additive, the
variance amongst the haploid offspring from haploid parents i, j, is just V0p1´ Fi,jq.

For diploids, Fi,j is defined to be the probability of identity between two genes, one from i,
and one from j; when i “ j, Fi,i is defined to be the probability of identity by descent of two
distinct genes in the diploid individual i. Meiosis in i generates segregation variance proportional
to p1´ Fi,iq. The value of an additive trait in a diploid is the sum of equal contributions from
each haploid gamete, and so the segregation variance is V0 p1´ pFi,i ` Fj,jq{ 2q. To see this, one
can note that segregation occurs independently to create the two parental gametes and, for each
of them, conditional on not being identical by descent, the ancestral genes are two independent
samples from the initial population with variance V0. This yields an expression for the segregation
variance of the form

1

4
p1´ Fi,iq2V0 `

1

4
p1´ Fj,jq2V0 “ V0

ˆ

1´
pFi,i ` Fj,jq

2

˙

.

We have defined the infinitesimal model in terms of a constant genetic variance, V0, in a reference
population, together with a matrix of identity by descent. The entries in the matrix increase over
time, until they are all one, and all variation is lost. However, we could instead follow the matrix
of segregation variance between pairs of individuals. This process evolves with time, but it is
Markovian (i.e., depends only on the current state), and it has the advantage that it does not
require that we define an ancestral reference population at some arbitrary time in the past. As
we shall see below, when we derive the infinitesimal model as a limit of a model of Mendelian
inheritance, it is also convenient when we introduce mutation. For haploids, we define Ci,j as the
variance amongst offspring from two haploid parents, Ci,j “ V0 p1´ Fi,jq. For diploids, as we saw
above, the variance between siblings depends only on the identity between distinct genes in the
parents, and not on the relationship between the two diploid parents. We define Ci,j “ V0 p1´ Fi,jq,
just as for haploids, but now, the variance amongst the diploid offspring of diploid individuals i, j
is pCi,i ` Cj,jq{ 2.

Although Fi,j is defined through the probability of identity by descent of discrete genes, it
can (in principle) be measured purely through phenotypic measurements of the variance amongst
offspring; this is perhaps clearer if we work with the Ci,j . The classical infinitesimal model is
based on the assumption that the Ci,j depend only on the pedigree relationship between i and j,
and are independent of which trait is measured (to within the constant factor V0), and (given the
pedigree) of the trait values of the parents. In general, we think of a trait as being the sum of
a genotypic value and an environmental deviation, independent of the underlying genetic values.
We shall explicitly incorporate this non-genetic variation when we derive the infinitesimal model
as a limit of Mendelian inheritance in Section 3. For the moment, we assume additivity and ignore
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environmental variation, so that the trait value is equal to the genotypic value, which in turn equals
the breeding value. The breeding value of an individual is defined to be twice the mean deviation
from the average phenotypic value, when it is crossed with a randomly chosen individual. The
genotypic value can, in principle, be measured as the mean of large numbers of cloned individuals,
and the breeding value can be measured through the mean of offspring from crosses made with
randomly chosen mates. So, the infinitesimal model can be defined without identifying any specific
genes.

2.2.4 Recursions for identity by descent

In a randomly mating population of N haploid individuals, reproducing under the Wright-Fisher
model, the expected identity is F “ 1 ´ p1 ´ 1{Nqt after t generations. However, we consider the
general case, where Fi,j may vary arbitrarily between pairs. For haploids, Fi,i “ 1 by definition.
The recursion for F can be written in terms of a pedigree matrix, Pi,kptq, which gives the probability
that a gene in i in generation t came from parent k in the generation pt ´ 1q; each row has two
non-zero entries each with value 1/2, unless the individual is produced by selfing, in which case
there is a single entry with value 1. Thus,

Fi,jptq “
ÿ

k,l

Pi,kptqPj,lptqFk,lpt´ 1q pi ‰ jq, Fi,iptq “ 1. (1)

For diploids, the corresponding recursion for F is

Fi,jptq “
ÿ

k,l

Pi,kptqPj,lptqF
˚
k,lpt´ 1q, (2)

where

F ˚k,l “ Fk,l if k ‰ l, F ˚k,k “
1

2
p1` Fk,kq .

The quantity F ˚k,l is the probability of identity of two genes drawn independently from k, l; if k “ l,
then the probability of drawing the same gene twice is one half.

If we work with the segregation variances, Ci,j , then the recursion for haploids is

Ci,jptq “
ÿ

k,l

Pi,kptqPj,lptqCk,lpt´ 1q pi ‰ jq, Ci,iptq “ 0, (3)

and for diploids is
Ci,jptq “

ÿ

k,l

Pi,kptqPj,lptqC
˚
k,lpt´ 1q,

where

C˚k,l “ Ck,l if k ‰ l, C˚k,k “
1

2
Ck,k.
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Note that the variance in the base population, V0, does not appear explicitly: the future dynamics
are entirely determined by the variation that is released through recombination between any pair of
genomes. Although the precise recursions that we have written down are particular to the additive
model, analogous recursions characterise the segregation variance in our more complex models that
incorporate house of cards mutation and epistasis. The key fact will be that it is the pedigree
relatedness between individuals that drives the recursions. As long as the variances in the parental
population are sufficiently large relative to the effect of individual alleles, knowing the trait values
of the parents has a negligible effect on the segregation variance; in other words, the infinitesimal
model remains valid.

2.2.5 Simulating the infinitesimal

The infinitesimal model can be simulated either at the level of the individual, or the population.
An individual-based simulation must follow the breeding values of each individual, zi, and the
relatedness between individuals, Fi,j . Extension to multiple traits would require that we follow
vectors of breeding values. Since the main computational effort is in calculating the matrix of
identities, this is not much extra burden. The matrix of identities can be iterated efficiently by
representing Equations (1) and (2) in matrix form, but the size of the population is ultimately
limited by the memory needed to store Fi,j . However, in large populations Fi,j typically approaches
the same small value between almost all pairs; thus, it can be approximated as a constant plus a
sparse matrix that tracks close relatives. Populations of many thousands can then be simulated
(e.g. Barton and Etheridge, 2011).

Provided that the pedigree determined by the matrix Fi,j is not too skewed towards large
contributions from particular individuals, then we can also simulate very large populations by
following the distribution of the trait and the average value of Fi,j through time. To do this,
first, the continuous trait distribution must be approximated by a discrete vector; selection on the
trait is represented by multiplying the trait distribution by the fitness. Since reproduction involves
a convolution between the parents’ distributions and the Gaussian distribution of offspring, it is
convenient to follow the (discrete) Fourier transform: convolution of distributions corresponds to
multiplication of their transforms (e.g. Polechova and Barton, 2005). In each generation, there
must be a conversion between the distribution and its transform, which can be done efficiently
using the fast Fourier transform algorithm (Gauss, 1866; Cooley and Tukey, 1965). Evidently, the
approximation that all individuals are related by the same Fi,j will not always be realistic, in which
case an individual based approach becomes essential.

2.2.6 Mutation

Pragmatically, for traits determined by a very large number of loci, mutation can be included by
scaling the recursion to account for alleles that are replaced by mutants and adding a constant,
which may depend on t, to every element of the matrix Ci,j in each generation to account for the
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variance introduced by mutation (Wray, 1990). Mutation may be biased: in particular, we expect
mutation to decrease traits that have been under directional selection, and so to decrease fitness.
This can be described by scaling the mean of the offspring, by a constant p1´ µq say, and shifting
it by another constant δµ. Under this extension to the infinitesimal model, µ is assumed constant
and the distribution of offspring, conditional on their parents, is assumed Gaussian. Segregation
variance is partitioned into portions attributed to the variance present in the base population and
that attributed to mutations arising in successive generations. We shall see that we can obtain such
a model by introducing ‘house of cards’ mutation to our model of an additive trait determined by
a large number of Mendelian factors. The recursion for the segregation variance is then given by

Ci,jptq « p1´ 2µq
ÿ

k,l

Pi,kptqPj,lptqCk,lpt´ 1q ` µVm

(see equation (13) below), where µVm can be interpreted as the additive genetic variance introduced
by new mutations in each generation. Here µ is the probability of a mutation at a given locus in a
given individual in one generation of reproduction and so can be expected to be very small. In order
for mutation to have an appreciable effect on the overall trait over a small number of generations,
we must assume that Vm, the variance of the sum of the allelic effects of the new mutations arising
in a given generation, is large. Here we see a tradeoff: the larger the allelic effect of mutations, the
less accurate an approximation the infinitesimal model becomes.

2.2.7 Population structure and gene flow

When defined in terms of individual trait values and relationships, the infinitesimal model automat-
ically incorporates arbitrary population structure. For example, a well-mixed reference population
may split into separate demes, so that the probability of identity F between genes from within the
same population would increase relative to that between populations. If the demic structure were
permanent, then it would be more natural simply to follow the segregation variance Ci,j , which
would be higher from crosses between populations than within them. If, for whatever reason, the
sub-populations in different demes diverge, then the distribution of trait values within a single
deme will not be Gaussian, even though, under the infinitesimal model, the distribution amongst
offspring of given parents will always be Gaussian. The same is true for any pedigree which is
not ‘well-mixed’; the key point is that parental trait values determine the mean trait value among
offspring, but the segregation variances that determine the variance of offspring traits within each
family are completely determined by the pedigree, which can reflect arbitrary mating patterns,
family structure, and spatial subdivision.

The power of the infinitesimal model in capturing population structure comes at a price; for a
large population it may not be practicable to trace the breeding values and relatedness of all individ-
uals. In that case, one could try to approximate the infinitesimal model, for example by assuming
that the trait distribution within populations is approximately Gaussian, or that relationships (or
equivalently, segregation variance) between individuals within subpopulations are homogeneous.
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Such approximations may be delicate, since they might need to take account of the reduction in
effective migration rate, and the increase in the rate of random drift, due to selection. However, it
is important to realise that the infinitesimal model itself can be defined at the level of individuals,
even when trait distributions across the whole population are far from Gaussian, and relationships
are heterogeneous.

2.2.8 Multivariate normality

Even though the trait distribution across the whole population may be far from Gaussian, the
multivariate normal will play a central rôle in our analysis. The deviations of individual trait values
from their mid-parent value will be described by a multivariate normal whose variance-covariance
matrix is independent of the parental traits. We establish this result conditional on knowing the
pedigree and all ancestral traits within that pedigree, but equally we could have conditioned on
the values of any subset of relatives and the same would hold true: expected trait values would
be a linear functional (determined by the pedigree) of the values on which we conditioned, but
segregation variances would be unchanged.

Bulmer (1971) and Lange (1978) showed that the unconditional joint distribution of traits
converges to a multivariate normal. Lange also allows for some linkage among loci by allowing
inheritance to be dependent among loci at distance at most q from one another. We do not include
linkage in our analysis, although as long as recombination is sufficiently fast, our results should
hold true, but whereas the rate of convergence to the infinitesimal model when we have unlinked
loci is 1{

?
M , with linkage it will be 1{

?
M˚, where M˚ is an ‘effective’ number of loci. Bulmer

assumed random mating, while Lange’s proof is for individuals related through a given pedigree.
However, as Lange remarks, his result gives no control of the rate of convergence. This is essential
if we wish to approximate the conditional distribution, knowing some ancestral trait values. It is
also needed in assessing the accuracy of the infinitesimal model as an approximation, and is the
focus of our derivation.

2.2.9 Epistasis

Thus far, we have defined the infinitesimal model for the additive case. Evidently we cannot extend
it to arbitrary epistatic interactions. For example, if Z is a purely additive trait, then Z2 is a sum
of additive and pairwise epistatic components. Since the square of a normally distributed random
variable is not normally distributed, the infinitesimal model must clearly break down. However,
under some conditions (which we lay out in Section 3.2), even though there can be significant
variance due to epistatic components, and the mean trait value among offspring in a family will
no longer be the average of the parental traits, the key prediction of the infinitesimal model still
holds with epistasis: the variance of the trait distribution within a family will depend only on the
pedigree and the variance in the ancestral population.
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In general, with epistasis the individual phenotype is

z “ z0 `
ÿ

U

ηU ` E, (4)

where the sum is over the average effects ηU of all sets U of distinct loci, and E is a random non-
genetic component that is assumed to have a distribution independent of genotype, and independent
between individuals (see e.g. Chapter 7 in Lynch & Walsh, 1997). The sets of genes U descend from
a homologous set in the base population, which in general will be scattered over many individuals.
The ηU are defined as the marginal effects of the set of genes U , that remain after accounting for
the effects of all subsets of U . If the base population is in linkage equilibrium, then the ηU are
uncorrelated. The sum of the variances contributed by sets of size |U | “ k is the kth order epistatic
variance,

ř

|U |“k VU “ VApkq. In contrast to the additive case, we see correlations between the
deviations ∆Z from the mid-parental trait values of distinct individuals. The covariance between
two distinct individuals is

covp∆Z,∆Z 1q “
ÿ

|U |ě2

VUFU , (5)

where FU is the probability that the set of genes U in the two individuals are all identical by
descent. If loci are unlinked, then this depends only on the number of genes in the set, so that
FU “ Fk where k “ |U |; Fk is given by a recursion on the pedigree similar to that described above
for pairwise identities (corresponding to F1). It is more complicated, because we need to track the
probability of identity for genes in up to 2k individuals. However, if identity at different loci is
uncorrelated, then Fk “ F k1 , where F1 is the pairwise recursion defined above. Unless inbreeding is
intense, this is typically a good approximation (Barton and Turelli, 2004).

This partition of genetic variance into components applies regardless of the number of loci.
Crucially, however, if the joint distribution of the components of trait values across the pedigree
is multivariate normal, then the mean and covariance completely define that distribution. In the
following, we outline the proof that the distribution of trait values is indeed multivariate normal in
the case when we allow just pairwise epistatic interactions, provided that the total allelic effect of
any particular gene is not too large, and indicate how this could be extended to also include higher
order interactions.

We emphasise that the components of phenotype, ηU , and the corresponding variances, VU , are
defined relative to the base population. In any particular descendant population, the trait mean will
differ as a result of mutation (which we exclude from our analysis in the epistatic case), selection
and random drift. With epistasis, the effects relative to the new population will be different, and
so the variance components defined for this descendant population will also differ. This can lead to
the ‘conversion’ of epistatic variance into additive variance (Barton and Turelli, 2004). We do not
consider this issue here, since we always define variance components relative to the base population.
However, it is straightforward to change the reference point.
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2.3 Applications of the infinitesimal model

We have defined the infinitesimal model in terms of individual trait values and relationships between
individuals, without referring explicitly to discrete genes. This is essentially the ‘animal model’,
which is the basis for practical animal breeding, though extended to include mutation. In practical
applications, the ‘animal model’ is typically applied to a given pedigree, and is used to estimate
breeding values and genetic variances conditional on that pedigree (Hill, 2014). In recent years,
it has also been applied to parameter estimation in natural populations (Kruuk, 2004). However,
it has been surprisingly little used for addressing evolutionary questions. Here, we illustrate the
power of the infinitesimal model as a tool for understanding aspects of evolution, by presenting a
range of examples related to stabilising selection, assortative mating, effective population size and
response to selection, habitat preference and speciation.

Perhaps the simplest non-trivial application of the infinitesimal model is to understand sta-
bilising selection (Galton, 1877; Slatkin, 1970; Bulmer, 1971; Cavalli-Sforza and Feldman, 1976;
Lande, 1975). Suppose that the distribution of a trait in a parental population is Gaussian with
mean z̄ and variance Vg. If fitness is a Gaussian function of trait value, with mean z0 and variance
Vs, then after selection the new trait distribution is obtained by multiplying the density of a trait
by the fitness of that trait and renormalising to have total mass one, resulting in a Gaussian with
mean

z̄ ` pz0 ´ z̄q
Vg

Vg ` Vs
,

and variance
VsVg
Vs ` Vg

.

After random mating and reproduction under the infinitesimal model (without mutation), the mean
remains the same, and the variance is

ˆ

V0 `
VsVg

2 pVs ` Vgq

˙

,

where V0 is the segregation variance, and
VsVg

2pVs`Vgq
is the variance of the mean of two randomly

mated parents. Therefore, at equilibrium, the genetic variance across the population immediately
after reproduction is

Vg “
Vs
4

¨

˝2

ˆ

V0
Vs

˙

`

d

1` 12

ˆ

V0
Vs

˙

` 4

ˆ

V0
Vs

˙2

´ 1

˛

‚, (6)

which decreases from 2V0 (the value we obtained for a neutral population) when stabilising selection
is weak (Vs " V0), to V0 when stabilising selection is so strong as to eliminate all variation (Vs ! V0).
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The effect of assortative mating is more surprising. Suppose that the relative contribution to
the next generation of pairs of individuals with trait values z1, z2 is proportional to

exp

˜

´
pz1 ´ z2q

2

2Va
`

`

z21 ` z
2
2

˘

2ω

¸

,

where ω is chosen so that there is no direct selection on individuals (i.e., there is no marginal effect
of the trait on individual fitness; see, for example, Appendix 4 of Polechova & Barton 2005 for
an expression for the ω that achieves this). The mean does not change, but assortment results
in a higher variance in the mid-parent value than under random mating (Fisher, 1918; Crow and
Felsenstein, 1968). To understand this, note that because the contribution of pairs of individuals
is greater for individuals with similar trait values, more extreme traits are less likely to be pulled
towards the mean; indeed in the most extreme case, individuals would only reproduce with others
with an identical trait value and so the distribution of mid-parent values would have the same
variance as that of the whole parental population. Provided that assortment is not too strong (Va ą
4V0), there is an equilibrium genetic variance across the population 2V0 pVa ´ 2V0q { pVa ´ 4V0q.
However, if assortment is very strong, (Va ă 4V0), the variance increases without limit. In reality,
either the infinitesimal model would break down as genetic limits to the trait are approached, or
stabilising selection would prevent indefinite divergence.

This simple model makes the important point that assortative mating alone can lead to indef-
inite divergence, and, ultimately, speciation (Polechova & Barton, 2005). The infinitesimal model
can also be extended to model the joint evolution of habitat preference and viability in two different
niches, both being represented as continuous traits (Barton, 2010). Assortative mating, and even-
tual reproductive isolation, then arise as a by-product of preferences for different habitats, provided
mating occurs within those habitats (Diehl & Bush, 1989).

In a random-mating population of effective size Ne of diploid individuals, the segregation vari-
ance decreases by a factor p1´ 1{2Neq per generation. The infinitesimal model predicts that the
response to steady directional selection will decrease at the same rate and so, summing over gen-
erations (a geometric sum), Robertson (1960) found the total response to selection to be just 2Ne

times the change in the first generation. He also found an alternative derivation of the same result
(for Nes small), by considering the increase in fixation probability of neutral alleles. Hill (1982)
extended Robertson’s work to include mutation that introduces genetic variance at a rate Vm. The
genetic variance then reaches an equilibrium between mutation and random drift, Vg “ 2NeVm,
and the response to directional selection is proportional to this variance. In large populations,
selection will tend to reduce genetic variance that is due to alleles with large Nes; however, some
component of the genetic variance will be due to more weakly selected alleles with Nes small. In a
survey of selection experiments, Weber & Diggins (1990) showed that the ratio of the response to
selection after fifty generations to that after just one generation is somewhat less than predicted
by the infinitesimal model. Zhang and Hill (2005, Fig. 6) showed that, at least for Drosophila
experiments, this reduced response can be explained either by alleles of large effect or by linkage.
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Thus in these experiments the response to selection is largely explained by the infinitesimal model.
Selection on heritable traits can greatly inflate the rate of random drift: genes that find them-

selves in a fit genetic background in one generation will tend to be in a fitter background in
subsequent generations, even if all loci are unlinked; this correlation in fitness across generations
increases the rate of sampling drift (Robertson, 1961). The infinitesimal model can be used to
estimate this inflation, by finding the variance in reproductive value (Barton & Etheridge, 2011),
and the decrease in fixation probability of favourable alleles (Weissman & Barton, 2012).

Apart from these few examples, the infinitesimal model has hardly been used in evolutionary
modelling. It should not be confused with two other models that have been used more extensively.
Kimura (1965) investigated the distribution of effects of alleles at a single locus, and approximated
this continuum-of-alleles model by a Gaussian; Lande (1975) developed this model to investigate
maintenance of variation by mutation, despite stabilizing selection. This is a quite different ap-
proach from the infinitesimal model, which requires no strong assumptions about the distribution
of effects at each locus, and which does not assume a Gaussian distribution of trait values. A
second model that bears a superficial resemblance to the infinitesimal model is the hypergeometric
or symmetric approximation, which assumes that the trait is determined by additive loci of equal
effect, and that all genotypes that give the same trait value are equally frequent (Kondrashov, 1984;
Doebeli, 1996; Barton & Shpak, 2000). This is a very strong assumption; the symmetry between
genotypes may hold under disruptive selection, but is unstable under stabilising selection, when
any one of the many optimal genotypes tends to fix (Wright, 1935).

3 The infinitesimal model as the limit of Mendelian inheritance

In this section, we turn to a justification of the infinitesimal model as a limit of a model of Mendelian
inheritance, when trait values are determined by a large number of Mendelian factors, each of
small effect. By performing the analysis carefully, we determine the accuracy of the infinitesimal
approximation as the number of loci tends to infinity. We start in the classical setting, in which
traits are additive. Using the same arguments we also include ‘house of cards’ mutation, but we
see a tradeoff: for the infinitesimal model to apply with mutation, there must be a large number
of mutant loci each of small effect, but the overall effect is then proportional to the probability
of mutation per locus, per individual, per generation, which should typically be very small. We
then indicate how the results can be extended to include some forms of epistasis. In all cases,
observed trait values are assumed to be composed of a genetic component plus an independent
environmental noise. It is the genetic component that follows the infinitesimal model, that is for
which the distribution of trait values within families follows a multivariate normal distribution with
a variance that depends on the pedigree, but not on the trait values of ancestors in the pedigree.
The observed trait values will not follow the infinitesimal model, but in the special case where
the noise is itself normally distributed, the observed traits within families will be asymptotically
normally distributed as the number of loci tends to infinity, and we shall write down recursions for
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the mean vector and the variance-covariance matrices.
In all cases, the key issue is this: knowing the segregation variance V0 in our base population and

the pedigree F (or, equivalently, the matrices C of segregation variances in previous generations),
how close is the segregation variance of the offspring of parents i and j to being independent of
the trait values of those parents? It is important to note that this does not say that the pedigree is
independent of the trait value; indeed, for a population undergoing artificial selection, for example,
one can expect a strong dependence between trait values and pedigree. We also emphasize that
trait values across the whole population can be very far from normal; it is the offspring within
families that follow a multivariate normal distribution.

One necessarily expects some dependence of segregation variance on trait values: if the possible
trait values are bounded, with a single genotype giving the largest value, say, then meiosis between
two copies of this most extreme haploid type, or the products of meiosis from a diploid with the
most extreme value, would have zero variance. For any trait values that are close to the extremes of
what is possible, so that few genotypes produce these values, segregation variance will be radically
reduced; the derivation of the infinitesimal model depends on there being a very large number
of genotypes compatible with each trait value, so that conditioning on the trait does not give
significant information about the underlying genotype frequencies.

In order to understand why for ‘typical’ trait values, knowing the trait value for an individual
provides very little information about the allelic effect at a particular locus, it is instructive to
consider a simple example. The argument we use is similar to that on p.402 of Fisher (1918), where
it is expressed in terms of a regression. Suppose that a particular trait is determined by the sum of
allelic effects at M independent loci, with the allelic effect at the lth locus being ηl{

?
M “ ˘1{

?
M

with equal probability. Now suppose that we condition on the trait value being k{
?
M . For

definiteness, we take M and k both to be even. What is the conditional probability that η1 “ 1?
An application of Bayes’ rule gives

P

«

η1 “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

l“1

ηl
?
M
“

k
?
M

ff

“

P
”

řM
l“1 ηl “ k

ˇ

ˇ

ˇ
η1 “ 1

ı

P
”

řM
l“1 ηl “ k

ı P rη1 “ 1s

“

P
”

řM
l“2 ηl “ k ´ 1

ı

P
”

řM
l“1 ηl “ k

ı P rη1 “ 1s

“

1
2M´1

1
2M

`

M´1
pM`k´2q{2

˘

`

M
pM`kq{2

˘ P rη1 “ 1s

“

ˆ

1`
k

M

˙

P rη1 “ 1s .

For large M , a ‘typical’ value for k is Op
?
Mq, and then this calculation says that, for any particular

locus, the chance that it ‘notices’ the conditioning is Op
?
M{Mq “ Op1{

?
Mq. On the other hand,
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at the extremes of what is possible (k “ ˘M) the value of the trait gives complete information
about the allelic effect at each locus.

As we see below, essentially the same argument applies to much more general models for the
allelic effects at each locus: for the infinitesimal model to be a good approximation, the observed
parental trait values must not contain too much information about the allelic effect at any given
locus, and for this to hold true, the parental traits must not be too extreme.

3.1 The additive case with mutation and environmental noise

Once we have established our notation, we shall set out the derivation in the strictly additive case.
To simplify notation we omit mutation in this outline, only indicating its effect on the statement
of the results. The details of the proofs are provided in the appendices, where we do incorporate
(house of cards) mutation. We also suppose that the observed trait value is a combination of a
genetically determined component and an environmental noise which, for simplicity, we take to be
an independent draw from a mean zero Gaussian distribution for each individual in the population.

Laying out this argument carefully enables us to identify conditions under which our results
can be modified to include epistasis, which we illustrate through a simple example. In this case,
even for the genetic component of the trait, the mean value among offspring in a family will not
simply be the average of the parental values; what we can prove is that the variance of trait values
within the family is independent of the parental trait values and is determined by the segregation
variance in the base population plus the pedigree.

Throughout we concentrate on the haploid case, although, at the expense of more complicated
notation and formulae, the approach extends to the diploid case. Indeed, following Lange (1978)
and Abney et al. (2000), we anticipate also being able to include dominance. A more detailed study
of epistasis and dominance is deferred to later work.

The formulae that follow are, at first sight, a little daunting. To make them slightly easier to
navigate, we impose some conventions in our notation. Table 1 summarises all our notation.

Assumptions and Notation

We reserve the indices i and j for individuals in our population, whereas l and m are used for
loci, of which there are M . Generation number will be indexed by t (but will mostly be implicit).
The total population size in generation t is Nt.

1. Allelic effect at locus l. We denote the allelic effect at locus l in the jth individual by ηjl {
?
M .

We centre ηjl relative to the mean allelic effect at locus l in the ancestral population. The
scaling of 1{

?
M ensures that the additive genetic variance is of order one. The random

variable ηjl is assumed to be uniformly bounded over all loci, with |ηjl | ď B. We sometimes
refer to it as the scaled allelic effect.
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Table 1: Notation

Phenotypic model
F matrix of expected identity by descent, equations (1), (2)
C matrix of segregation variances, equation (3)

Traits

ηl (or ηjl ) scaled allelic effect at locus l (in individual j)
pηl ” in ancestral population
qηl ” after mutation
z̄0 mean trait value in ancestral population

z̄µ z̄0 ` Er
řM
l“1 qηl{

?
M s

pσ2M
řM
l“1 Varppηlq{M Ñ pσ2

qσ2M
řM
l“1 Varpqηlq{M Ñ qσ2

Zj genetic component of trait in individual j
Ej environmental component of trait in individual j
rZj “ Zj ` Ej observed trait of individual j
ηlm scaled epistatic effect of loci tl,mu
ZAp2q total pairwise epistatic effect

Inheritance
jr1s, jr2s labels of first and second parents of individual j

Xj
l indicator random variable that individual j inherits locus l from ‘first parent’

Mj
l indicator random variable that there is a mutation at locus l in individual j

µ mutation probability per locus per generation

Conditioning
Pptq the pedigree up to generation t
rZptq observed traits of all individuals up to generation t

Rj Zj ´ µz̄µ ´ p1´ µqpZ
jr1s ` Zjr2sq{2 (in main text µ “ 0)

ΣM
t , ΣM,µ

t variance-covariance matrix of Rj , equations (11) and (24)

Σt, Σµ
t limit as M Ñ8 of ΣM

t , ΣM,µ
t respectively

Cpσ2, |z|q c.f. equation (12)
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2. Genetic component of the trait value. The genetic component of the trait value in the jth
individual in the present generation will be denoted by Zj . It will always be written as z̄0,
its average value in the ancestral population, plus a sum over loci of allelic effects.

That is, in the notation just defined, the genetic component of the trait of the jth individual
is

Zj “ z̄0 `
M
ÿ

l“1

1
?
M
ηjl . (7)

3. Environmental noise and observed trait value. We suppose that the observed trait value is

rZj “ Zj ` Ej ,

where the Ej are independent normally distributed random variables with mean zero and
variance σ2E . The assumption of normality is not compulsory here. It has the advantage that
the observed trait value will also follow a normal distribution in the limit as M Ñ 8, which
we can therefore characterize easily by its mean and variance.

4. Ancestral population. Although it is not strictly necessary, we assume that in generation zero,
the individuals that found the pedigree are unrelated. They are sampled from an ancestral
population in which all loci are assumed to be in linkage equilibrium.

The genetic component of the trait value in the jth individual in generation zero is written
as

Zj “ z̄0 `
M
ÿ

l“1

1
?
M

pηjl , (8)

where the pηjl are independent for different values of j, with the same distribution as pηl where
Erpηls “ 0 for all l. The random variables pηl are assumed to be independent but not necessarily
identically distributed.

We shall write

pσ2M “
1

M

M
ÿ

l“1

Varppηlq

and assume that pσ2M converges to a finite limit pσ2 as M Ñ8.

5. Parents. To distinguish the parents of an individual we order them. The symbols r1s and

r2s will refer to the first and second parents of an individual, respectively. Thus η
jr1s
l is the

scaled allelic effect at locus l in the first parent of the jth individual. Similarly, Zjr1s will
denote the genetic component of the trait value of the first parent of individual j. Note that
we allow selfing, in which case parents 1 and 2 are identical.
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Centering allelic effects relative to their mean in the ancestral population may seem unnatural, since
these are quantities that we could never hope to measure, but in fact it is simply a mathematical
convenience: only the variances of these quantities appear in our results.

Inheritance

We use Bernoulli random variables to encode the parent from which a locus inherits its allelic
type. Thus we write Xj

l “ 1 if the allelic type at locus l in the jth individual is inherited from the
‘first parent’ of that individual; otherwise it is zero. In particular, under Mendelian inheritance,
PrXj

l “ 1s “ 1{2 “ PrXj
l “ 0s.

Of course, really there are independent Bernoulli random variables capturing the inheritance in
each generation, but, since we only discuss transitions one generation at a time, we suppress that
in our notation.

Conditioning

We shall use Pptq to denote the pedigree relationships between all individuals up to and including
generation t and rZptq will denote the observed traits of all individuals in the pedigree up to and
including the t’th generation. We shall be deriving the distribution of trait values in generation
t conditional on knowing Pptq and rZpt´ 1q. We distinguish P from the matrix of identities F ,
because conditional on rZptq, it is no longer true that tracing back through the pedigree, an allele is
equally likely to come from either parent; indeed proving that this is almost the case is a key part
of our derivation.

We note that, since selection acts on the trait, both the effect of selection and that of population
structure is captured by the pedigree. Moreover, although we obtain our result by conditioning on
knowing both the pedigree and all the observed traits of individuals in that pedigree up to and
including the parental generation, exactly the same argument shows that we can condition on a
subset of the trait values in the pedigree up to time pt´ 1q and still obtain a multivariate normal
for the distribution of traits within families in generation t, where the mean values are shifted by
a linear function of the conditioned values, but variances within families will be unaltered.

Main result in the additive case

Our first aim is to understand, in the additive case, the genetic component of the traits, con-
ditional on Pptq and rZpt´ 1q. The classical infinitesimal model deals with the genetic component
of the traits. There, the mean trait within a family will be the midpoint of the parental traits,
with a variance that is independent of their trait values. In our setting, since we only condition
on the observed traits rZpt´ 1q “ z, the conditioned quantities Zjr1s and Zjr2s are still random and
so we must be slightly careful in stating our result. We will show that conditional on Pptq and
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rZpt´ 1q “ z,

`

Rj
˘

j“1,...,Nt
:“

˜

Zj ´
Zjr1s ` Zjr2s

2

¸

j“1,...,Nt

(9)

converges (in distribution) to a multivariate normal random variable with mean zero and diagonal
covariance matrix Σt, with jth diagonal entry pΣtqjj given by the segregation variance among
offspring of the parents of individual j.

More precisely, we show that, writing Φ for the cumulative distribution function of a standard
normal random variable,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P

»

–

Zj ´ Zjr1s`Zjr2s

2
b

pΣM
t qjj

ď y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pptq, rZpt´ 1q “ z

fi

fl´ Φpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
t
?
M
C
`

ΣM
t , ∆̄

M
t pzq

˘

, (10)

where

pΣM
t qjj “

1

4M

M
ÿ

l“1

E
„

´

η
jr1s
l ´ η

jr2s
l

¯2
ˇ

ˇ

ˇ

ˇ

Pptq


, (11)

is the segregation variance among the offspring of the parents jr1s and jr2s of individual j in
generation t conditional only on the pedigree (not the traits), ΣM

t is the minimum segregation
variance of any family in the pedigree up to generation t, ∆̄M

t pzq is the maximum over the pedigree
up to time t´ 1 of

ˇ

ˇ

ˇ

ˇ

zj ´
zjr1s ` zjr2s

2

ˇ

ˇ

ˇ

ˇ

,

and

C
`

σ2, |z|
˘

“
C 1|z|

b

σ2E ` σ
2
`

C2

σppσ2E ` σ
2, |z|q

ˆ

1`
1

σ2

˙

, (12)

where ppσ2E ` σ2, xq is the density at x of a N p0, σ2E ` σ2q distributed random variable. The
constants C 1, C2 depend only on B, our bound on the scaled allelic effects.

In other words, we establish that the genetic components of the vector of traits in generation
t follows the infinitesimal model with an error of order t{

?
M . Moreover, we see that the approx-

imation breaks down if the segregation variance is too small in any family in our pedigree, or if
the trait of an individual somewhere in the pedigree is too extreme in a way that is quantified by
equation (12). Letting M Ñ 8 in (11), pΣM

t qjj converges to pΣtqjj , corresponding to V0p1 ´ Fjq,
where Fj is the probability of identity of the two parents of the jth individual, and so we recover
Equation (3).

We shall present an outline of the proof which is given in detail in the appendices. We start with
the ancestors in the pedigree at generation zero and then work recursively through the pedigree.
Crucially, we shall keep track of the rate of convergence to multivariate normality at each stage, as
it is this that allows us to move from one generation to the next.
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Mutation.
To keep formulae simple, in the outline that follows we shall ignore mutation, but in the detailed

derivation in the appendices we include house of cards mutation. Here we indicate how this changes
the statement of the result. We suppose that the mutation probability per locus, per generation,
is µ (independent of l). If there is a mutation at locus l, then the scaled allelic effect of the mutant
is given by the random variable qηl (also assumed to be bounded in modulus by B). We write
z̄µ “ z̄0 ` Er

řM
l“1 qηl{

?
M s and

qσ2M “
1

M

M
ÿ

l“1

Varpqηlq,

and we suppose that qσ2M Ñ qσ2 as M tends to infinity.
The convergence in (10) is now of

˜

Zj ´ µz̄µ ´ p1´ µq
Zjr1s ` Zjr2s

2

¸

j“1,...,Nt

.

The segregation variance of the family of parents of individual j takes the form

pΣM,µ
t qjj “ p1´ 2µqpΣM

t qjj ` 2µ
1

M

M
ÿ

l“1

Erppηl ´ qηlq
2s

2
, (13)

where, since µ (the mutation rate per locus per generation) is typically very small we have dropped
terms of order µ2, and ∆̄M

t pzq is replaced by ∆̄M,µ
t pzq, the maximum over the pedigree up to time

t of
ˇ

ˇ

ˇ

ˇ

zj ´ µz̄µ ´ p1´ µq
zjr1s ` zjr2s

2

ˇ

ˇ

ˇ

ˇ

.

3.1.1 Genetic component of the trait distribution in generation zero

The first step in our derivation is to show that as the number of loci tends to infinity, the distribution
of the genetic component pZ1, . . . , ZN0q of the traits in generation zero converges to that of a
multivariate normal with mean vector pz̄0, . . . , z̄0q and variance-covariance matrix pσ2 Id, where Id
is the identity matrix.

To prove this, it is enough to show that for any choice of β “ pβ1, . . . , βN0q P RN0 ,

N0
ÿ

j“1

βjZ
j Ñ Zβ,

where Zβ is normally distributed with mean z̄0
řN0
j“1 βj and variance pσ2

řN0
j“1 β

2
j . Of course, the

result will follow from the Central Limit Theorem, but we need to have some control over the
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rate of this convergence if we are to pass from one generation to the next. Moreover, although
in the ancestral population the allelic effects pηil are independent, they do not all have the same
distribution, and so we need an extension of the classical Central Limit Theorem. The version
that we use is Theorem A.2, due to Rinott (1994). It is convenient to write }β}1 “

řN0
j“1 |βj | and

}β}22 “
řN0
j“1 β

2
j . For generation zero, Theorem A.2 yields

ˇ

ˇ

ˇ

ˇ

ˇ

P

«

řN0
i“1 βipZ

i ´ z̄0q

}β}2pσM
ď z

ff

´ Φpzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

}β}2
?
MpσM

ˆ

1`
1

}β}22pσ
2
M

˙

(14)

where Φ is the cumulative distribution function of a standard normal random variable and the
constant C has an explicit expression (depending only on B, the bound that we imposed on the
scaled allelic effects, and }β}1). The details of the proof are in Appendix B. In particular, taking
βk “ 0 for k ‰ j and βj “ 1, we read off the rate of convergence to the normal distribution of Zj

as the number of loci tends to infinity.

3.1.2 Strategy of the derivation

Our proof will be recursive. Suppose that we have our result for generation pt´ 1q. The key step
is then to show that for individual j in generation t, conditioning on knowing Pptq and rZpt´ 1q

provides negligible information on the values η
jr1s
l , η

jr2s
l of the scaled allelic effects of locus l in its

parents. Through an application of Bayes’ rule, just as in our toy example at the beginning of the
section, this will essentially boil down to showing that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P
”

rZjr1s “ z1

ˇ

ˇ

ˇ
η
jr1s
l “ x,Pptq

ı

P
”

rZjr1s “ z1

ˇ

ˇ

ˇ
Pptq

ı ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
t
?
M
C
`

ΣM
t , ∆̄

M
t pzq

˘

, (15)

where, since rZ is a continuous random variable, the ratio on the left should be intepreted as a ratio
of probability density functions, and the quantity C on the right was defined in (12). The proof
depends crucially on knowing the rate of convergence of the distribution of the parental trait values
to a multivariate normal.

What (15) allows us to deduce (via Bayes’ rule) is that knowing the trait of an individual gives
very little information about the allelic state at a single locus. Although intuitively clear, since
all loci have a small effect on the trait, this is slightly delicate and, indeed, as we saw in our toy
example at the beginning of the section (c.f. (12)), will break down if the segregation variance
somewhere in our pedigree is small or if a trait in the pedigree is too extreme. Armed with (15),
we can approximate the distribution of the allelic effects conditioned on Pptq and Z̃pt´ 1q by those
conditioned just on Pptq and then it is an easy matter to identify the limiting variance-covariance
matrix of the random variables pRjqj“1,...,Nt (that we defined in (9)) in generation t.
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Convergence of the vector of the genetic components of the trait values in generation t to a
multivariate normal is then an application of Theorem A.2. Knowing the rate of this convergence
allows us to prove the analogue of (15) for generation pt` 1q, and so on.

3.1.3 One generation of reproduction

We have already proved the asymptotic normality for generation zero. To begin the recursion, we
consider the first round of mating.

We suppose that, for each j, we know the parents of individual j and their observed trait values,
rZjr1s, rZjr2s. In the notation defined above, this is precisely Pp1q and rZp0q “ z. Then we claim
that knowing this information,

˜

Zj ´
Zjr1s ` Zjr2s

2

¸

j“1,...,N1

converges in distribution to a mean zero multivariate normal random variable with diagonal variance-
covariance matrix Σ1, whose on-diagonal entries are given by pΣ1qjj , the segregation variance among
offspring of the parents of jth individual. By definition, for a given individual j in the first gener-
ation, we have

Zj “ z̄0 `
1
?
M

M
ÿ

l“1

 

Xj
l η
jr1s
l ` p1´Xj

l qη
jr2s
l

(

and so

Rj “
1
?
M

M
ÿ

l“1

ˆˆ

Xj
l ´

1

2

˙

η
jr1s
l `

ˆ

p1´Xj
l q ´

1

2

˙

η
jr2s
l

˙

.

Since Xj
l is independent of Pp1q and rZp0q, the random variable Rj satisfies ErRj |Pp1q, rZp0qs “ 0.

We must calculate its variance. First, we use the normal approximation to the distribution of
ancestral traits to show that

ˇ

ˇ

ˇ
P
”

η
jr1s
l “ x

ˇ

ˇ

ˇ
Pp1q, rZp0q “ z

ı

´ Prηjr1sl “ xs
ˇ

ˇ

ˇ
ď

1
?
M
Cppσ2M , ∆̄

M
1 pzqq,

where C was defined in (12). Since individuals in the ancestral population are assumed to be

unrelated, η
jr1s
l and η

jr2s
l are independent (provided the parents are distinct), and combining the

calculation above with the symmetric one for η
jr2s
l we can calculate that (for some α P r´1, 1s)

pΣM
1 qjj :“ E

”

pRjq2
ˇ

ˇPp1q, rZp0q “ z
ı

“ E
“

pRjq2
ˇ

ˇPp1q
‰

`
α
?
M
Cppσ2M ,∆pzjqq

Ñ
1

4
lim
MÑ8

1

M

M
ÿ

l“1

Erpηjr1sl ´ η
jr2s
l q2s,
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which is the limit of (11) with t “ 1. The details are in Appendix D. Since the Bernoulli random
variables that describe inheritance in different individuals are independent, it is easy to check that
ErRiRj |Pp1q, rZp0q “ zs “ 0.

To verify convergence to a multivariate normal, we mimic what we did in the ancestral popu-
lation: for an arbitrary vector β “ pβ1, . . . , βN1q we show that

řN1
j“1 βjR

j converges to a normal
random variable as M Ñ8. The details (including the effects of mutation) are in Appendix D.

3.1.4 Generation t

We now proceed to the general case. We want to show that conditionally on Pptq and rZpt´ 1q “ z,
Rj given by (9) converges in distribution as M Ñ8 to a mean zero, normally distributed random
variable with diagonal variance-covariance matrix Σt given by the limit of (11). Independence
of the Bernoulli random variables that determine inheritance in different individuals once again
guarantees that for i ‰ j, ErRiRj

ˇ

ˇPptq, rZpt´ 1q “ zs “ 0. As in generation one, the key is to
show that

pΣM
t qjj :“ E

”

pRjq2
ˇ

ˇPptq, rZpt´ 1q “ z
ı

is almost independent of z. Convergence to pΣtqjj given by the limit of the expression in (11) is
then straightforward (see Appendix E).

The involved step is to estimate

P
”

η
jr1s
l “ x

ˇ

ˇ

ˇ
Pptq, rZpt´ 1q “ z

ı

,

which, again by Bayes’ rule, reduces to checking (15). At first sight, it seems that knowing the
trait value of all the pedigree ancestors of the jth individual should give us much more information
about ηjl than just knowing the parental traits gave us in generation one. In Appendix E we show
that this is not really the case. The key is that the differences in trait values between individuals
that are identical by descent at locus l are independent of the scaled allelic effect at locus l, so we
don’t accumulate any more information by observing all of these individuals than by observing just
one of them.

We can perform entirely analogous calculations for the conditional joint law of η
jr1s
l and η

jr2s
l .

This enables us to identify the mean and the variance of the limiting distribution of traits in the
population and, once again, Theorem A.2 can be used to establish that it is indeed a multivariate
normal. In particular,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P

»

–

Zj ´ Zjr1s`Zjr2s

2
b

pΣM
t qjj

ď y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pptq, rZpt´ 1q “ z

fi

fl´ Φpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
t
?
M
C
`

ΣM
t , ∆̄

M
t pzq

˘

.

In other words, we have established that the genetic components of the vector of traits follows the
infinitesimal model with an error of order 1{

?
M per generation.
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Adding an environmental component to the observed traits in the population makes the model
more realistic; it also serves a mathematical purpose. As we explain in Remark C.1, without
environmental noise, some extra conditions are required to guarantee a rate of convergence of order
1{
?
M (which is the best possible) to the limiting Gaussian distribution. If they are satisfied,

then the calculations that we have just performed are unchanged if we condition on Zpt´ 1q, the
genetic components of the trait values of individuals in the pedigree up to time pt´1q, instead of the
observed values. Our assumption that the environmental noise is Gaussian is certainly unnecessarily
restrictive (it would serve the same mathematical purpose if it had any smooth density). It has the
advantage that we will be able to obtain explicit formulae for the distribution of observed traits.

3.1.5 Observed traits

In the presence of environmental noise, we cannot directly observe the genetic component of the
trait. The infinitesimal model as stated above does not apply to the observed trait values. To see
why, we write

´

∆ rZj
¯

j“1,...,Nt

:“

˜

rZj ´ µz̄µ ´ p1´ µq
rZjr1s ` rZjr2s

2

¸

j“1,...,Nt

“

˜

Rj ` Ej ´ p1´ µq
Ejr1s ` Ejr2s

2

¸

j“1,...,Nt

,

where µ “ 0 in the case with no mutation considered above. We have already checked that
pRjqj“1,...Nt is a multivariate Gaussian vector which is (almost) independent of rZpt´ 1q, and by
assumption the same holds true for pEjqj“1,...,Nt . The difficulty is that the environmental com-
ponents Ejr1s, Ejr2s are not independent of the observed traits in generation pt ´ 1q. However,
under our assumption that the environmental noise is normally distributed, p∆ rZjqj“1,...,Nt is still
asymptotically normally distributed and we can derive recursions for the mean vector and variance-
covariance matrices.

In what follows we assume that we are already in the asymptotic regime in which the genetic
components of the traits follow a multivariate normal distribution. In fact we are accumulating
errors of order 1{

?
M per generation in so doing.

To find the distribution of the observed traits in generation pt` 1q conditional on Ppt` 1q and
rZptq, we need to calculate the conditional distribution of the vector pEjqj“1,...,Nt . Evidently this

vector is independent of rZpt´ 1q and, granted that we have already calculated the corresponding
conditional distributions for the environmental noise in generation pt´1q, calculating the conditional
distribution of pEjqj“1,...,Nt is reduced to applying standard results on conditioning multivariate
normal random variables on their sum. In particular, the conditioned vector is still a multivariate
normal.



The infinitesimal model 29

We write Ecptq “ pE
j
c ptqqj“1,...,Nt for the random vector

pE1, . . . , ENtq
ˇ

ˇPptq, rZptq.

Notice that in contrast to what went before, we are conditioning on knowing all observed trait
values up to and including generation t. We derive a recursion for the mean vectors Acptq and
the variance-covariance matrices ΣE

c ptq of these conditioned random vectors. Since environmental
noise is not transmitted from parent to offspring, this is considerably more straightforward than
our previous recursions.

In order to keep track of generations, we suppose that in generation t we condition on rZj “ rzjptq.
In this notation, the mean of Ejc p0q is determined by

Ajcp0q “

ˆ

σ2E
pσ2 ` σ2E

˙

przjp0q ´ z̄0q,

and the variance-covariance matrix of Ep0q is

ΣEp0q “

ˆ

pσ2σ2E
pσ2 ` σ2E

˙

Id.

Now suppose that we have calculated Acpt´ 1q and ΣE
c pt´ 1q. Then to find Acptq, ΣE

c ptq, we first
calculate the mean vector and the variance-covariance matrix for ∆ rZptq conditional on Pptq and
rZpt ´ 1q. Denoting the corresponding quantities by Mptq and ΣBBptq respectively, the recursion
which allows us to pass to the next generation reads

Acptq “
`

σ2EpΣBBptqq
´1

`

∆rzjptq ´Mptq
˘˘

j“1,...,Nt
,

and, for the variance-covariance matrix,

ΣE
c ptq “ σ2EId´ σ4EpΣBBptqq

´1.

The details of this derivation can be found in Appendix F. Although not as simple as the
expressions one obtains for the genetic component of the trait alone, one can now read off the
multivariate normal distribution of the observed trait values in generation t conditional on Pptq
and rZpt´ 1q. Notice, in particular, that there will be correlations among individuals.

Accuracy of the infinitesimal model as an approximation

The infinitesimal model does not just say that the trait distributions in the population can be
approximated by a multivariate normal random variable, but it also asserts that the variance of the
genetic components of the traits is approximately independent of the trait values of the parents.
What our calculations show is that in approximating ΣM

t conditional on Pptq and rZpt´ 1q by the
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same quantity conditioned only on Pptq (that is the right hand side of (11)), we are making an
error of order (recall (15) in particular)

t
?
M

C
`

ΣM
t , ∆̄

M
t

˘

.

In other words, the infinitesimal model remains valid for Op
?
Mq generations, provided that the

minimum segregation variance in the pedigree is not too small and none of the traits are too
extreme, where both of these caveats are quantified by equation (12).

3.2 Beyond additivity: epistasis

In this section we outline how we can extend the infinitesimal model to capture some forms of
epistasis. Unlike the additive setting, the mean value of the genetic component of the trait across a
family will no longer be at the mean value of the genetic components of the parents’ traits as it will
also depend on epistatic components. In this sense, the classical infinitesimal model cannot apply.
However, under some conditions, it will still be the case that the variance of the trait distribution
within a family will depend only on the pedigree (and the segregation variance in the ancestral
population) and not on the observed traits.

We illustrate by considering only pairwise epistatic effects. We also ignore mutation and envi-
ronmental noise. We write the trait in individual j as

Zj “ z̄0 `
1
?
M

M
ÿ

l“1

ηjl `
1

M

ÿ

1ďlămďM

ηjlm. (16)

First observe that it cannot always be the case that the epistatic component of the trait is asymp-
totically normal. To see why, just take an additive trait, ZA, which is asymptotically normally
distributed and square it. Then pZAq

2 is of the form (16), but obviously does not have an asymp-
totically normal distribution.

On the other hand, one can write down easily interpretable conditions under which a quadratic
form will be asymptotically normal. We do this before turning to general pairwise epistatic ef-
fects (for which writing down a precise result is more mathematically involved). Suppose that
X1, X2, . . . , XM are independent identically distributed random variables with mean zero, unit
variance and finite fourth moment. Define

ZAp2q “
ÿ

1ďlďmďM

almXlXm,

for some real constants alm. We set alm “ aml and write AM for the real symmetric matrix
AM “ palmq1ďl,mďM . We assume that

lim
MÑ8

σ´4M TrpA4
M q “ 0, lim

MÑ8
σ´2M max

l

M
ÿ

m“1

a2lm “ 0, (17)
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where σ2M “ 1
2TrpA2

M q is the variance of ZAp2q. The first condition ensures that the fourth moment
condition is satisfied, that is

E

«

Z4
Ap2q

σ4M

ff

Ñ 3 as M Ñ8.

The second condition ensures that no single locus has too much influence on the value of the
trait. Under these conditions, Proposition 3.1 of Chatterjee (2008) tells us that the Kantorovich-
Wasserstein distance (see Appendix A) between the distribution of ZAp2q{σM and that of a standard
normal distribution is bounded above by

ˆ

TrpA4
M q

2σ4M

˙

1
2

`
5

2σ3M

M
ÿ

l“1

˜

M
ÿ

m“1

a2lm

¸3{2

.

If σ2M is order one and we assume further that |alm| ď B{M uniformly in l, m, and |
řM
m“1 alm| ď

B{
?
M uniformly in l, for some constant B, which ensures that the total allelic effect of locus l is

bounded in the same way as in our analysis of the additive case, then the rate of convergence is of
order 1{

?
M .

The form almXlXm is not particularly natural for the epistatic effect of the loci l and m,
but this result can be extended. For M unlinked loci, the genetic component of an arbitrary
trait can be expressed as a function fpχ1, . . . , χM q where the χl are independent (not necessarily
identically distributed) random variables representing the underlying allelic states. In Appendix A,
we explain the so-called Hoeffding decomposition of a general function of this form, but here we
focus on functions corresponding to traits with additive and pairwise epistatic effects only.

First recall that for a function flmpχl, χmq, the conditional expectation Erflmpχl, χmq|χls is a
function of χl, and similarly Erflmpχl, χmq|χms is a function of χm. Writing

αlmpχl, χmq “ flmpχl, χmq ´ Erflmpχl, χmq|χls ´ Erflmpχl, χmq|χms ` Erflmpχl, χmqs,

any trait involving pairwise epistatic interactions can be written in the form

Z “ z̄0 `
M
ÿ

l“1

αl `
ÿ

1ďlďmďM

αlm,

where
Erαlm|χls “ 0 “ Erαlm|χms. (18)

The sum over αlm is called a degenerate U -statistic of order two and a Central Limit Theorem
due to de Jong (1990) provides conditions under which it is asymptotically normally distributed as
M Ñ8. Döbler and Peccati (2016) establish the rate of convergence in the de Jong Central Limit
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Theorem. Some more detail is given in Appendix A. To apply their result in this context, let us
write σ2lm “ Varpαlmq and σ2M “ Varp

ř

1ďlďmďM αlmq, then provided

ρpMq2 :“ σ´2M max
1ďlďM

M
ÿ

m“1

σ2lm Ñ 0 as M Ñ8,

and

E

»

–

˜

1

σM

ÿ

1ďlďmďM

αlm

¸4
fi

flÑ 3 as M Ñ8,

de Jong’ result tells us that the sum
ř

1ďlďmďM αlm is asymptotically normal. Just as in our

example above, if we suppose that σ2M is order 1 and αlm “ ηlm{M with |ηlm| and |
řM
m“1 ηlm{

?
M |

uniformly bounded, then one can check that the rate of convergence is order 1{
?
M . In fact the

results of Döbler and Peccati (2016) are much more general than this and would allow us to state
an analogous result for a trait involving higher order epistatic interactions, but the statement of
the result becomes more mathematically involved.

The justification of the infinitesimal model follows a familiar pattern. What we have so far is
enough to prove asymptotic normality in generation 0. The analogue of (15) follows essentially
exactly as before. By analogy with what went before we write

∆Zj “
1
?
M

M
ÿ

l“1

˜

ηjl ´
η
jr1s
l ` η

jr2s
l

2

¸

`
1

M

ÿ

1ďlďmďM

˜

ηlm ´
η
jr1s
lm ` η

jr2s
lm

4

¸

.

But when we pass to later generations, we encounter two complications. First, it is no longer the case
that Er∆Zjs “ 0. Nonetheless, as we explain in more detail in Appendix G, a coupling argument,
which exploits the fact that conditional on the parental traits, the allelic states have almost the
same distribution as the unconditioned one, combined with (18) implies that its expectation is
order 1{

?
M .

The second complication is that the ∆Zj ’s are no longer asymptotically uncorrelated. In the
first generation, correlation comes about if two individuals share the same parents, are identical by
descent at two distinct loci tl,mu and neither individual inherited the alleles at both l and m from
the same parent. To see this, the chance that they did inherit both loci from the same parent, jr1s

say, is 1{4 and then this term is cancelled by the corresponding centering term, η
jr1s
lm . If for both

individuals the two loci are inherited from different parents, then no such cancellation takes place.
In particular, such correlation only arises because there are two loci involved in ηlm, which is why
it did not appear in the additive case. In later generations, correlation again comes from identity
at two distinct loci, but there may be multiple different routes through the pedigree that result in
this, so we no longer require that ir1s and ir2s are the same as jr1s and jr2s. However, just as in
generation one, for a given pair of loci tl,mu, the contribution to the correlation will be zero if the
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individuals share no pedigree ancestry or if one of the individuals inherited both loci from the same
parent. Thus the contribution from the loci tl,mu takes the form

1

4
VarppηlmqF2pir1s, ir2s, jr1s, jr2sq :“

1

2
Varppηlmq pF pir1s, jr1sqF pir2s, jr2sq ` F pir2s, jr1sqF pir1s, jr2sqq ,

where F pa, bq is the probability that individuals a and b are identical by descent at a given locus and
again we have exploited the fact that, knowing the pedigree, the pattern of inheritance is almost
unchanged by knowing trait values. Summing over pairs of loci tl,mu, we obtain that for i ‰ j, (in
the limit as M Ñ8),

pΣtqij “
1

2
F2pir1s, ir2s, jr1s, jr2sqVAp2qp0q.

A similar calculation shows that, in the limit as M Ñ8, the epistatic component contributes

ˆ

1`
1

8
p1` F pjr1s, jr2sq2q ´

1

4
p1` F pjr1s, jr2sqq2

˙

VAp2qp0q

to pΣtqjj . Although notationally complicated, the ideas are the same as in the additive case and we
can conclude that conditionally on Zpt´ 1q and Pptq, the vector p∆Z1ptq, . . .∆ZNtptqq converges
in distribution as M Ñ 8 to a multivariate Gaussian with mean zero and variance-covariance
matrix Σt. Armed with the speed of convergence (which is again order 1{

?
M) and Bayes’ rule,

we can prove that conditioning on trait values (in fact even conditioning on zA, zAp2q) provides
little information about the allelic state at any particular locus and then use the unconditioned
distribution of allelic states to estimate the variance-covariance matrix for the next generation, and
so on.

3.3 Numerical examples

In this section, we illustrate our results with some numerical examples. We focus on cases with no
environmental noise or mutation. We begin with an example that shows how the genetic variance
is much less sensitive to selection than the mean. We then show how the genetic variance scales
with the number of loci, and finally, show that the variance amongst offspring depends only weakly
on the parents’ trait values.

All our examples are based on simulations of a Wright-Fisher model of 100 haploid individuals.
With the exception of Figure 4, which investigates how rapidly the infinitesimal limit is approached
as the number of loci increases, we set the number of loci M “ 1000. Our choice of parameters
is constrained by computational limits. We mostly simulated equal ‘main’ effects, corresponding
to |ηl| in our derivation of Section 3 all taking the same constant value, because the infinitesimal
limit is then approached with a minimal number of loci. Exponentially distributed effects might
be more realistic, but require an order of magnitude more loci to approach the infinitesimal limit
(see Figure 4).
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Simulation of larger populations would be challenging, if very large numbers of loci are followed.
(As noted above, simulation of the infinitesimal is possible for large N provided that the related-
ness is approximated as the same for all pairs.) Following Roberston (1960), we expect that the
infinitesimal model will break down when Ns per locus becomes large.

We also consider pairwise epistasis. One situation in which we expect the infinitesimal model
to be an accurate approximation is if the epistatic effects are sufficiently sparse. Our example is
constructed in two stages. First, independently for each ordered pair pl,mq of loci with l ‰ m, with
probability 1{M we declare it to have a non-zero epistatic effect. Then, each non-zero interaction is
assigned an independent value γ, sampled from a normal distribution with mean zero and standard
deviation 4{

?
M . With this construction γlm ‰ γml. The trait is now defined as z “ δ ¨α`δ ¨γ ¨δT ,

where the entries in the vector δ, which records the genotype, are ˘1{2, the vector α records the
absolute magnitude of the allelic effects at each locus and ‘¨’ is dot product. The epistatic and main
effects were scaled with respect to the number of loci, M , so that both the additive and epistatic
variances are of order 1.

We chose N “ 100 haploid individuals, in order to be able to follow the matrix of identities.
Since we have no mutation, variation then dissipates over about N “ 100 generations. We ran
simulations either with no selection, or with directional selection β “ 0.2, so that fitness W is
proportional to eβz. Simulations were started with allele frequencies drawn from a Beta distribution
with mean p “ 0.2 and variance 0.2pq.

With selection on a heritable trait, fitness is also heritable, which speeds up the loss of genetic
variance due to random drift (Robertson, 1961); the variance declines in proportion to 1{Ne per
generation, where Ne is somewhat less than the census number. However, in our examples, the
variance in fitness, β2VG, is small, and so the relatedness, F , is not appreciably increased by
selection.

Figure 2 shows how selection affects the mean and the components of the variance of a trait
that is determined by M “ 1000 loci, in a population of N “ 100 haploid individuals. It is natural
to work with the dimensionless quantities z{

?
VA and β

?
VA (where VA is the initial additive

s.d.). Selection on an additive trait changes the mean by 4.5 genetic standard deviations over
100 generations whilst the additive genetic variance decreases by a factor 0.355 (top row). This
is almost the same as the decrease with no selection, 0.364, and close to the neutral expectation
p1 ´ 1{Nq100 “ 0.366. In fact, selection is expected to alter the pedigree and thus the rate of
loss of diversity, but the effect actually seems very small. The bottom row shows an example
with sparse pairwise epistasis. The additive variance is much higher, and the mean now changes
by 10.9

?
VA (where VA is again taken at time 0) over 100 generations. In both the additive and

epistatic examples, averaging the per-generation scaled variance β
?
VA over 100 generations gives

a good prediction of the change in (scaled) mean per generation. With epistasis, but no selection,
the additive variance decreases only by a factor 0.548 over 100 generations (upper dashed line at
bottom right), because non-additive variance is ‘converted’ into additive variance. Now, selection
does substantially reduce the additive variance, after about 30 generations.

A cornerstone of our derivation of the infinitesimal model was the result that the distribution of
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Figure 2: The effect of selection on the mean and variance components. Each panel
contrasts directional selection, β “ 0.2, on a trait (solid line) with the neutral case (dashed line);
shaded areas indicate ˘1 standard deviation. The top row shows the additive case, with equal
effects but random sign, η “ ˘ 1?

M
; in this example, M “ 1000 loci, N “ 100 haploid individuals.

The lower row shows an example of sparse pairwise epistasis, as described in the text. The left
column shows the change in mean from its initial value, and the right column shows the additive
variance, VA, and with epistasis, the additiveˆadditive variance, VAA (lower pair of curves at
bottom right). Only the genic components of variance are shown; random linkage disequilibria
produce substantial fluctuations, but make no difference on average (results not shown). Initial
allele frequencies are drawn from a U-shaped Beta distribution with mean p “ 0.2 and variance
0.2pq. Individuals are produced by Wright-Fisher sampling, from parents chosen with probability
proportional to W “ eβz. For each example, ten sets of allelic and epistatic effects are drawn and,
for each of those, ten populations are evolved; this gives 100 replicates in all.
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Figure 3: Allele frequency distributions for the examples in Fig. 2. The horizontal axis
shows the number of copies of the ` allele p0, . . . , Nq in a population of size N “ 100. The vertical
axis is the proportion of the M “ 1000 loci with that number of ` alleles. Top: Initial allele
frequency distribution, which is independent of allelic effect. Middle: Additive case, after 100
generations, with no selection (grey) or with selection β “ 0.2 (black). Bottom: With epistasis,
after 100 generations where an allele is defined to be ` if its marginal effect in the final generation
is positive (see main text).
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allele frequencies is hardly affected by selection. Figure 3 shows the change in allele frequency over
time. In the presence of epistasis, the marginal effect of an allele on the trait depends on current
allele frequencies at other loci. In particular, alleles that have a positive effect on the trait in the
initial population may have a different effect in the final generation. In order to determine whether
the allele frequency spectrum is substantially biased towards alleles that have a positive overall
effect on the trait, in the presence of epistasis we recalculate the marginal effects of each allele at
the final generation and relabel them accordingly. Over 100 generations, random drift fixes alleles
that are rare or common, leaving a flat distribution of frequencies of segregating alleles (grey lines
at middle and bottom). Selection shifts the distribution in favour of alleles with a positive effect
on the trait. In the additive case, the shift is symmetrical, so that there is virtually no change
in the additive genetic variance: Erpqs stays the same. In contrast, selection on an epistatic trait
reduces the overall frequency of segregating alleles. This may be because with epistasis, allelic
effects vary with allele frequency, so that alleles experience an additional random fluctuation that
reduces diversity.

With no selection, the rate of decrease of variance, ´Bt logpVAq, is close to 1{N , independently
of the number of loci (compare small dots with dashed line in Figure 4). With selection on a small
number of loci (M “ 30; left of Figure 4), the additive variance declines much faster, as favourable
alleles are swept to fixation. The excess rate of decrease is inversely proportional to the number
of loci: ´NBt logpVAq ´ 1 “ Op1{Mq; the exponent on the relation, estimated by regression on
a log-log scale, is ´1.007, ´1.019, ´0.965 for the three examples of equal effects, exponentially
distributed effects, and equal effects plus epistasis. Note that as in Figure 2, the additive variance
is much more sensitive to selection in the presence of epistasis (compare upper large dots with
medium black dots). However, in both cases the additive variance scales as close to 1{M .

This is a much faster approach to the infinitesimal model than the upper bound of 1{
?
M set by

our mathematical results. By considering the argument at the beginning of Section 3 for the additive
model with equal main effects, we can see that the rate 1{

?
M cannot be improved upon in our

general result (which applies even when we consider individual families and condition on ancestral
traits). However, when, as in Figure 4, we consider the variance across the whole population, we can
expect faster convergence. We can understand why this is as follows. The genic component of the
additive variance is VA “

řM
l“1 α

2
l plql. Since the rate of change of the allele frequency at locus l due

to directional selection β on the trait is βαlplql, we have ´BtVA “ β
řM
l“1 α

3
l plql ppl ´ qlq (ignoring

the change in the marginal allelic effect due to epistasis). We assumed that αl has random sign,
so that the expected initial rate of change is zero; indeed, when we sample replicates with different
effects, α, the rate of decrease measured over the first 10 generations is closely correlated with
β
řM
l“1 α

3
l plqlppl´qlq, and fluctuates in sign (results for M “ 30 not shown); the standard deviation

of this initial rate scales as 1{M . However, the rates of decrease measured over 100 generations are
almost all positive, and vary much less than does the initial prediction β

řM
l“1 α

3
l p0,lq0,lpp0,l ´ q0,lq,

based on the initial allele frequencies. This consistently positive rate of decrease arises because
the allele frequencies pl become correlated with the allelic effect, αl: with no mutation, favourable
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Figure 4: The effect of selection on the genetic variance decreases with the number
of loci, M . The rate of decrease of additive genetic variance, multiplied by population size,
NBt logpVAq, is plotted against M on a log-log scale. The neutral rate of decrease of variance is
indicated by the dashed line at NBt logpVAq “ 1. Small dots show the neutral case, with equal
and additive effects and random sign, α “ ˘1{

?
M . Medium black dots show directional selection

β “ 0.2, again with equal and additive effects, α “ ˘1{
?
M . Medium grey dots show β “ 0.2, with

additive effects drawn from an exponential distribution with mean α “ 1{
?
M and random sign.

Large dots show β “ 0.2, with equal allelic effects α “ ˘1{
?
M , plus sparse pairwise epistasis,

as described in the text. Initial allele frequencies are drawn as in Figure 2. The rate of decrease
of variance is estimated by regression over 100 generations, VA being averaged over 10 replicates.
These replicates are evolved independently, starting from the same randomly chosen allelic effects,
α, γ, and initial allele frequencies. Only the genic component of the additive variance is shown.
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alleles eventually become common, so that the additive variance decreases as they move to fixation.
For the rest of our examples, we simulated a population of N “ 100 haploid individuals with

M “ 1000 loci. The main allelic effects at each locus are taken to be 1{
?
M , and examples

with sparse epistatic interactions are constructed exactly as above. Simulations were run for 100
generations, tracking the full pedigree. We then calculated the matrix of pairwise identity by
descent, F , relative to the initial population, and also relative to generation 80. We assume that
the probability that two pairs of genes at different loci are both identical by descent is F 2.

In Figure 5, we plot the mean and variance within families of the additive and non-additive
components against the average of the corresponding components in the two parents; parameters
are as in the epistatic example shown in Figure 2. We choose pairs of unrelated parents so that
under the infinitesimal model the variances should be constant across pairs. Even in the presence
of epistasis, the mean of the additive component in the offspring must be precisely the mean of
the additive component in the parents (top left). The mean additiveˆadditive component in the
offspring equals half of the mid-parental value of that component, plus a random component that
varies between pairs of parents. The slope of the regression line in the top right panel is 0.58,
reasonably close to the expectation. The variance of the additive and non-additive components
amongst offspring is independent of the mean parental components (bottom row).

Finally, in Figure 6, we plot the decline of the additive and non-additive variance with relat-
edness, F . Under the infinitesimal model, the within-family additive variance is VA

2 p1´ F q, where
F is the probability of identity between the genomes that unite at meiosis. With sparse pairwise
epistasis, the within-family non-additive variance is VAA

4 p1 ´ F qp3 ` F q (this expression can be
obtained by the same analysis as in Section 3.2, where we compute the non-additive variance due
to groups of genes inherited from different parents). Figure 6 is based on a population of 100,
simulated for 20 generations under selection β “ 0.2, as for Figure 5; the average relatedness is
then F “ 0.18 « 1´ p1´ 1{Nq20. The theoretical predictions shown by the solid curves are based
on the additive and non-additive variance components in the base population. There is a small
deviation from these predictions, because the observed genetic variances include random linkage
disequilibria amongst the 100 sampled individuals, whereas the predictions are based on the allele
frequencies in the base population.

4 Discussion

Typically, the distribution of a quantitative trait amongst offspring is Gaussian, with a mean
intermediate between the parents’ trait values, and a variance that is independent of those values.
This observation goes back to Galton (1877), and was explained by Fisher (1918) as being the result
of a large number of unlinked loci with additive effects. The variance amongst offspring depends on
the relatedness of the parents, which can be predicted from the pedigree. This infinitesimal model
thus provides a complete description of the short-term evolution of quantitative traits, which is
independent of any knowledge of the genetics.
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Figure 5: The mean and variance of offspring traits, plotted against components of
the parents’ trait values. Top left: Additive component of offspring, AO, against the mean of
the parents’ additive component, AP . The line represents AO “ AP . Top right: The same, but
for the additiveˆadditive components. The line shows a linear regression. Bottom left: Additive
variance amongst offspring, VA,O against the mean additive components of the parents, AP . Bottom
right: Additiveˆadditive variance of offspring against the mean additiveˆadditive component of
the parents. Lines in the bottom row show quadratic regressions. The example shows a non-additive
trait under selection β “ 0.2, with M “ 1000 loci and N “ 100 haploid individuals, as in Figure 2
(bottom row). At generation 20, 100 pairs of minimally related parents (F “ 0.16) were chosen,
and 1000 offspring were generated for each pair. For each offspring, the components of trait value
were calculated relative to the allele frequencies, p in the base population. Defining genotype by
X P t0, 1u, these components are A “ ζ.pα ` pγ ` γT q.pp ´ 1

2qq, AA “ ζ.γ.ζT , where ζ “ X ´ p,
and the allelic effects α, γ are drawn as for Figure 2.
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Figure 6: Additive and non-additive variance amongst offspring declines with pairwise
relatedness between parents. Solid lines show the theoretical expectations: VA

2 p1´F q,
VAA
4 p1´

F qp3 ` F q. Values are based on a population of 100 individuals, generated as in Figure 5. The
4950 distinct pairs of parents are pooled according to their relatedness, and the variance amongst
offspring is estimated from 1000 offspring produced by each pair.

We have set out a rigorous justification for the infinitesimal model, which clarifies some of the
conditions under which it holds. These are surprisingly general. In the additive case, we can include
arbitrary selection and population structure, provided that the segregation variance is not too small
and traits are not too extreme in a sense that is made precise by equation (12). The derivation
includes (house of cards) mutation and environmental noise. Most surprising, the argument that
the variance of the distribution of the trait amongst offspring is insensitive to selection carries
over to allow some forms of epistasis. With epistasis, we must now specify a set of variance
components, which predict the variance amongst offspring on an arbitrary pedigree. In all cases,
the mathematical analysis shows that the infinitesimal model holds up to an error which is at most
of the order of 1{

?
M , where M is the number of loci, while Figure 4 suggests that in some cases

the error could be as small as order 1{M .
We have not considered dominance here. With dominance, the variance components no longer

suffice to predict the offspring distribution: more complex quantities are involved (Barton and
Turelli, 2004). Nonetheless, the proof of convergence of trait values on a given pedigree to a
multivariate normal given by Lange (1978) does include dominance and we anticipate that our
central result still holds in the limit of a large number of loci: the variance of the traits among
offspring is independent of the parents’ trait values, and hence insensitive to selection. This,
along with a more thorough mathematical investigation of the most general conditions under which
epistatic interactions do not disrupt the infinitesimal model, will be the subject of future work.

We have assumed throughout that all loci are unlinked. This is of course inconsistent with
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assuming a very large number of loci on a finite genetic map. Linkage will reduce the rate at which
segregation variance will be released, and more seriously, the breeding value and within-family
variance are no longer sufficient to predict the evolution of the population: associations will build
up between linked loci, and will only slowly be dissipated. However, in the limit of a long genetic
map, selection still has negligible effect on the genetic variance (Bulmer, 1974; Santiago, 1998).

One can imagine an extension of the infinitesimal model to linear genomes, which can readily
be implemented in an individual-based simulation. Imagine two long genomes of map length R,
which initially have a certain total effect on the trait, z1pr0, Rsq, z2pr0, Rsq. Recombination between
these genomes generates a gamete that is a mosaic of blocks derived from one or other parent,
tz1pr0, x1qq, z2prx1, x2qq, . . .u. Conditional on the breakpoints, the values associated with the seg-
ments ziprxi, xi`1qq, form a multivariate Gaussian, conditioned on the sum zipr0, Rsq. At the level
of the population, this model is implicit in studies of the effects of background selection, in which
heritable fitness variance due to deleterious mutations is spread over the genome (e.g. Good and
Desai, 2014).

The infinitesimal model requires that a sufficient number of loci contribute to the trait. With
strong inbreeding, the number of contributing loci may become too small for the model to be
accurate. This may be a particular problem if variance is contributed by rare recessive alleles: only
a few such alleles may contribute in a cross between two close relatives. Thus, the infinitesimal
model may break down under strong inbreeding between particular individuals or in particular
subpopulations.

For how long can we expect the infinitesimal model to be accurate? The wide use of the model
in animal breeding suggests that it is accurate (or at least, useful) for many tens of generations.
Indeed, the sustained response to artificial selection that is typically seen is the strongest support
for the infinitesimal approximation (Barton and Keightley, 2002). Remarkably, Weber and Diggins
(1990, Fig. 4) found that for a wide range of traits and model organisms, the response to selection
over 50 generations is close to the infinitesimal prediction. Responses tend to be slightly below the
prediction, suggesting that selection is reducing the variance faster than expected by random drift,
but the closeness of the fit implies that most of the selection response is due to alleles that are
influenced mainly by random drift (i.e., that Nes ă 1 or less).

This evidence comes from relatively small populations, and short timescales. In the longer
term, mutation becomes significant, and the infinitesimal model predicts a genetic variance in a
balance between mutation and drift of NeVm for a haploid population. This cannot plausibly
explain observed heritabilities in large natural populations, since genetic variances do not show a
strong increase with population size. (Though, we note that sequence diversity also shows a weaker
increase with census population size than expected from naive neutral theory. It is not clear whether
quantitative genetic variance increases in proportion with sequence diversity; Frankham, 1996; Willi
et al., 2006). It is widely believed that genetic variance is due to a balance between mutation and
selection against deleterious mutations. However, it is not clear whether selection acts on the trait
or on the pleiotropic effects of the alleles involved, and the contribution of balancing selection
of various kinds is unknown (Johnson and Barton, 2005). The infinitesimal model may remain
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accurate at least for times shorter than 1{s; however, the effects of selection at the underlying loci
need further theoretical investigation. Estimates of the distribution of fitness effects (largely based
on evidence from Drosophila) suggest that there may be a significant fraction of very weakly selected
alleles (e.g. Loewe and Charlesworth, 2006); if these contribute to traits as well as to fitness, then
the infinitesimal model may hold for long times. However, Charlesworth (2015) concluded that
the quantitative genetics of fitness variation in Drosophila can only be reconciled with estimates of
fitness effects from population genomics if most fitness variance is either due to relatively strongly
selected mutations (Nes " 1), or to the side-effects of balancing selection.

The enormous efforts put into mapping quantitative trait loci (QTL), and more recently, to
finding associations between genome-wide markers and quantitative traits (GWAS), have identified
many QTL, but typically, have not explained much of the genetic variance. There is no mystery
about this “missing heritability”: it is to be expected if genetic variance is due to large numbers
of alleles of small effect. In addition, SNP markers may not be in complete association with causal
alleles, especially if the latter are at more extreme frequencies (Yang et al., 2010). Thus, it may only
be possible to identify the small fraction of individual alleles in the upper tail of the distribution of
effects, even if the whole genome and the whole population are sequenced. Nevertheless, a regression
of trait on sequence can significantly improve predictions of breeding value, even when individual
loci cannot be identified: this is the basis of “genomic selection” (Meuwissen et al., 2013). It may
be that natural selection is in just the same position as a breeder: selection may change the mean
rapidly and predictably, even when the probability distribution of any particular allele frequency
is hardly perturbed.
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A Generalised Central Limit Theorems

There is now a huge literature on rates of convergence in the Central Limit Theorem, mostly de-
pendent upon Stein’s method. Here we present two forms. We use the first, due to Rinott (1994),
in the additive case. Although we don’t use this property here, it allows some dependency between
elements in the sum, which would be useful if we wanted to think of loci grouped on chromosomes,
for example. From our perspective it is convenient as, not only does it allow non-identically dis-
tributed summands, but also we can apply it without directly checking a fourth moment condition.
The second result, due to Döbler and Peccati (2016) develops quantitative central limit theorems for
so-called degenerate U -statistics that do not have the form of homogeneous sums. This is what is
required to go beyond the somewhat contrived example in the main text in which pairwise epistatic
effects are determined by a quadratic form and are therefore amenable to the analysis (developed
in a completely different setting) of Chatterjee (2008). Although this result would apply in the
additive case, its application would require us to establish control of the rate of convergence of the
fourth moment of Rj to 3pΣtq

2
jj .
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First we present a theorem from Rinott (1994). At the expense of stronger conditions (which for
us are fulfilled as a result of putting a uniform bound on scaled allelic effects), this result improves
the rate of convergence in the corresponding result in Baldi & Rinott (1989). In contrast to the
classical result, it allows for sums of non-identically distributed random variables with some local
dependence structure which is most conveniently expressed through what is known as a dependency
graph.

Definition A.1 Let tXl; l P Vu be a collection of random variables. The graph G “ pV, Eq, where
V and E denote the vertex set and edge set respectively, is said to be a dependency graph for
the collection if for any pair of disjoint subsets A1 and A2 of V such that no edge in E has one
endpoint in A1 and the other in A2, the sets of random variables tXl; l P A1u and tXl; l P A2u are
independent.

To establish the rate of convergence in Lange (1978) one would take the connected components of
the dependency graph to be the chromosomes. The degree of a vertex in the graph is the number
of edges connected to it and the maximal degree of the graph is just the maximum of the degrees
of the vertices in it.

Theorem A.2 (Theorem 2.2, Rinott (1994)) Let Y1, . . . , YM be random variables having a de-
pendency graph whose maximal degree is strictly less than D, satisfying |Yl ´ ErYls| ď B a.s., l “

1, . . . ,M , Er
řM
l“1 Yls “ λ and Var

´

řM
l“1 Yl

¯

“ σ2 ą 0. Then

ˇ

ˇ

ˇ

ˇ

ˇ

P

«

řM
l“1 Yl ´ λ

σ
ď w

ff

´ Φpwq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

σ

#

c

1

2π
DB ` 16

ˆ

M

σ2

˙1{2

D3{2B2 ` 10

ˆ

M

σ2

˙

D2B3

+

, (19)

where Φ is the distribution function of a standard normal random variable.

In particular, when D and B are order one and σ2 is of order M , as is the case in our applications,
this yields a bound of order 1{

?
M . Although much of the appeal of this result is that it allows

dependence between the variables, we use it in the independent case, when the dependency graph
has no edges, and so the maximum degree of any vertex is zero and we may take any D ą 1.

Rate of convergence in de Jong’s CLT

We now turn to a version of the Central Limit Theorem due to de Jong (1990) and its refinements
(to include, in particular, the rate of convergence) due to Döbler and Peccati (2016). This result
is particularly well-suited to the analysis of epistatic interactions. Consider independent random
variables χ1, χ2, . . . , χM on a probability space pΩ,F ,Pq. We write rM s “ t1, 2, . . . ,Mu and for
each I Ď rM s, FI “ σptXi : i P Iuq.

Suppose that W “ fpχ1, . . . , χM q satisfies ErW s “ 0 and ErW 4s ă 8, then writing

WJ “
ÿ

LĎJ

p´1q|J |´|L|ErW |FLs,
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we have the Hoeffding decomposition

W “
ÿ

JĎrMs

WJ , (20)

in which ErWJ s “ 0, ErW 2
J s “ σ2J ă 8 and ErWI |FJ s “ 0 unless I Ď J . In the special case in

which WJ “ 0 unless |J | “ d, W is called a degenerate U -statistic of order d.
Suppose that W is a degenerate U -statistic of order d, normalised to have variance one. Define

ρpMq2 “ max
1ďiďM

ÿ

iPK,|K|“d

σ2K .

Then de Jong’s Central Limit Theorem (de Jong, 1990) says that if ErW 4s Ñ 3 and ρpMq2 Ñ 0
as M Ñ 8 then W converges to a standard normal random variable. Döbler and Peccati (2016)
establish the rate of this convergence. They also prove a multi-dimensional version of the result
showing, in particular, that for a vector of degenerate U -statistics based on the same set of random
variables tχ1, . . . , χMu, joint convergence to normality follows from convergence of the marginals.
This result is precisely of the right form to extend our results to more complicated epistatic inter-
actions. Since the statement of the multi-dimensional result is rather involved, we satisfy ourselves
by stating the one-dimensional result, that is the result applying to a single U -statistic.

The rate of convergence is described in terms of the Kantorovich-Wasserstein distance between
the distribution of W and a standard normal distribution. For two probability measures µ and ν
on the real line, this is defined as

dWpµ, νq “ sup

"ˇ

ˇ

ˇ

ˇ

ż

hdµ´

ż

hdν

ˇ

ˇ

ˇ

ˇ

: h Lipschitz with Lipschitz constant }h}Lip ď 1

*

.

This metric (sometimes called transport distance) is a very natural way to compare the distributions
of two random variables when one is derived from the other by small non-uniform perturbations.
It is well known, see e.g. Shorack and Wellner (1986) p.64, that if the cumulative distributions
functions corresponding to µ and ν are F1, F2 respectively, then

dWpµ, νq “

ż 8

´8

|F1ptq ´ F2ptq| dt.

Theorem A.3 (Döbler and Peccati (2016), Theorem 1.3) In the setting above, there are uni-
versal (and explicit) constants C1 and C2 such that writing Z for a standard normal random vari-
able,

dWpW pMq, Zq ď C1

a

|ErW pMq4s ´ 3| ` C2ρpMq.

This is the analogue of Proposition 3.1 of Chatterjee (2008) for more natural formulations of the
epistatic interaction.
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B Trait distribution in the ancestral population

In this section, we show that as the number of loci tends to infinity, the distribution of the traits
pZ1, . . . , ZN0q in the ancestral population converges to that of a multivariate normal with mean
vector pz̄0, . . . , z̄0q and covariance matrix pσ2 Id. To this end, take β “ pβ1, . . . , βN0q P RN0 and
recall our notation }β}1 “

řN0
j“1 |βj | and }β}22 “

řN0
j“1 β

2
j . We consider Zβ “

řN0
j“1 βjZ

j .
To apply Theorem A.2, we must first identify the mean and the variance of Zβ. Since we are

considering the ancestral population, we have

N0
ÿ

j“1

βjZ
j “ z̄0

N0
ÿ

j“1

βj `
1
?
M

N0
ÿ

j“1

M
ÿ

l“1

βjpη
j
l .

The double sum has mean zero and, since the summands are all independent, variance

Var

˜

1
?
M

N0
ÿ

j“1

M
ÿ

l“1

βjpη
j
l

¸

“
1

M

N0
ÿ

j“1

M
ÿ

l“1

β2jVarppηlq “ }β}
2
2pσ

2
M .

We shall apply Theorem A.2 to the quantities Yl “
řN0
j“1 βjpη

j
l . Since they are independent, we can

take D “ 2 and since, by assumption, the scaled allelic effects are bounded by B, |
řN0
j“1 βjpηjl| ď

B}β}1 for all l. Then,

ˇ

ˇ

ˇ

ˇ

ˇ

P

«

řN0
j“1 βjpZ

j ´ z̄0q

}β}2pσM
ď z

ff

´ Φpzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

}β}2
?
MpσM

ˆ

1`
1

}β}22pσ
2
M

˙

, (21)

where Φ is the cumulative distribution function of a standard normal random variable and the
constant C has an explicit expression (depending on B and }β}1), which can be read off from
Theorem A.2. In particular, in the special case when βj “ 0 for all j ‰ k and βk “ 1, so that
řN0
j“1 βjZ

j “ Zk, the genetic component of the trait of the kth individual, the constant C is
independent of N0.

Since the vector β is arbitrary, this proves convergence of the joint distribution of traits in the
ancestral population to a multivariate normal with the given mean vector and covariance matrix.

C Observed traits and scaled allelic effects in the ancestral popu-
lation

When we condition on the observed trait values in our pedigree, we gain some information on the
scaled allelic effect at each locus. In order to control the magnitude of this effect we use Bayes’
rule to turn it into a question about the effect of knowing the allelic effect at a given locus on the
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probability of observing a particular trait. We then need to be able to control

Pr rZjr1s ´ 1?
M
η
jr1s
l “ z1 ´

x?
M
s

Pr rZjr1s “ z1s
,

where we are interpreting the probabilities as density functions.
We begin with the case in which the parents are from the ancestral population. Using the

result of Appendix B, the observed trait in each individual is, up to an error of order 1{
?
M ,

(independently) distributed according to the sum of a normal random variable with mean z̄0 and
variance pσ2M and an independent normal with mean zero and variance σ2E .

Let us write ppσ2, µ, yq for the density function of a normally distributed random variable with
mean µ and variance σ2. Then, taking βk “ 0 for k ‰ j and βj “ 1 gives

ˇ

ˇ

ˇ
Pr rZjr1s “ z1s ´ ppσ

2
E ` pσ2M , z̄0, z1q

ˇ

ˇ

ˇ
ď

C
?
MpσM

ˆ

1`
1

pσ2M

˙

,

Remark C.1 The Central Limit Theorem A.2 of Appendix B only gives convergence of the cumu-
lative distribution functions of the genetic component of the ancestral traits with a rate 1{

?
M . If

there is a differentiable density function for each M then we can deduce the same order of conver-
gence for the density function. If, for example, allelic effects are discrete, then additional conditions
would be required to approximate this ratio of probabilities by the corresponding normal distribution
with this degree of accuracy as we need a local limit theorem to hold. McDonald (2005) surveys
results in this direction. Without such conditions, the rate of convergence can be shown to be at least
1{M1{4, but simple counterexamples show that this is optimal. Convolution with the environmental
noise rescues us and gives the faster rate of convergence of densities reported here.

The same result applied to rZjr1s´ ηjl {
?
M , gives, up to an error of order 1{M which we ignore,

ˇ

ˇ

ˇ

ˇ

P
„

rZjr1s ´
1
?
M
ηjl r1s “ z1 ´

x
?
M



´ p

ˆ

σ2E ` pσ2M , z̄0, z1 ´
x
?
M

˙ˇ

ˇ

ˇ

ˇ

ď
C 1

?
MpσM

ˆ

1`
1

pσ2M

˙

,

where we recall that z̄0 is the mean of the genetic component of the trait in generation zero.
Performing a Taylor expansion of ppσ2E ` pσ2M , z̄0, z1 ´ x{

?
Mq around z1 ´ z̄0 and using that

p1pσ2, 0, yq

ppσ2, 0, yq
ď
|y|

σ2
,

we see that for parents of individuals in the first generation,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pr rZjr1s ´ 1?
M
η
jr1s
l “ z1 ´

x?
M
s

Pr rZjr1s “ z1s
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
?
M
Cppσ2M , |z1 ´ z̄0|q,

where Cpσ2, |z|q was defined in equation (12). Just as with our toy model at the beginning of
Section 3, we see that the approximation requires that the trait we are sampling is not ‘too extreme’.
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D One generation of reproduction

In order to include (house of cards) mutation, we introduce another collection of Bernoulli random
variables. We write Mj

l “ 1 if there is a mutation at locus l in individual j; otherwise it is zero.

Under our assumption of a constant probability of mutation across all loci, we have PrMj
l “ 1s “

µ “ 1´ PrMj
l “ 0s.

We now establish that after one round of mating, conditional on knowing Pp1q and rZp0q “ z,

˜

Zj ´ µz̄µ ´ p1´ µq
Zjr1s ` Zjr2s

2

¸

j“1,...,N1

converges in distribution to a mean zero multivariate normally distributed random variable with
diagonal variance-covariance matrix Σµ

1 with on-diagonal entries pΣµ
1 qjj given by the limit of (13)

(or rather the full version, equation (24), which includes terms of order µ2).
The ‘remainder term’ Rj in (9) is given by

Rj “
1
?
M

M
ÿ

l“1

´

Mj
l qη
j
l ´ µErqηls

¯

`
1
?
M

M
ÿ

l“1

ˆ

p1´Mj
l qX

j
l ´

1´ µ

2

˙

η
jr1s
l

`
1
?
M

M
ÿ

l“1

ˆ

p1´Mj
l qp1´X

j
l q ´

1´ µ

2

˙

η
jr2s
l . (22)

The Bernoulli random variables Mj
l and Xj

l are independent of both Pp1q and rZp0q and so

ErRj |Pp1q, rZp0q “ zs “ 0. Moreover, since the Bernoulli variables in different individuals are
independent, for i ‰ j, ErRiRj |Pp1q, rZp0q “ zs “ 0. To establish ErpRjq2|Pp1q, rZp0q “ zs, first we

use Bayes’ rule to control the conditional distribution of η
jr1s
l . We condition on the whole vector of

observed traits rZp0q “ z, but since individuals in our ancestral population are assumed unrelated,

from the perspective of η
jr1s
l , this is equivalent to conditioning on the observed trait rZjr1s of the

first parent of the jth individual. It is convenient to write z1 for the corresponding coordinate of z.

P
”

η
jr1s
l “ x

ˇ

ˇ

ˇ
Pp1q, rZp0q “ z

ı

“ P
”

η
jr1s
l “ x

ˇ

ˇ

ˇ

rZjr1s “ z1

ı

“
Prηjr1sl “ x, rZjr1s ´ x?

M
“ z1 ´

x?
M
s

Pr rZjr1s “ z1s

“ Prηjr1sl “ xs
Pr rZjr1s ´ 1?

M
η
jr1s
l “ z1 ´

x?
M
s

Pr rZjr1s “ z1s
,

where we have used independence of inheritance at different loci and the ratio on the right should
be interpreted as a ratio of probability density functions. We showed in Appendix C that the ratio
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in the last line differs from one by at most

1
?
M
Cppσ2M , |z1 ´ z̄0|q.

Since individuals in the ancestral population are assumed to be unrelated, η
jr1s
l and η

jr2s
l are inde-

pendent and so combining the calculation above with the symmetric one for η
jr2s
l we can calculate

that for some α P r´1, 1s,

ΣM,µ
1 :“ E

”

pRjq2
ˇ

ˇPp1q, rZp0q “ z
ı

“ E
“

pRjq2
ˇ

ˇPp1q
‰

ˆ

1`
α
?
M
Cppσ2M , |z1 ´ z̄0|q

˙

.

Noting that inheritance at different loci is independent, the variance of Rj will be the sum of the
variances at each locus. We consider the summand corresponding to a single locus, l say. Omitting
the factor of 1{M , the square of the first term, corresponding to mutation, contributes

µp1´ µqErqηls2 ` µVarpqηlq.

Since the variances of p1 ´Mj
l qX

j
l and p1 ´Mj

l qp1 ´Xj
l q are both p1 ´ µqp1 ` µq{4, the squares

of the next two terms contribute

p1´ µ2q

4
Erpηjr1sl q2 ` pη

jr2s
l q2s.

The cross terms are also non-trivial.

2E
„

pMj
l qηl ´ µErqηlsq

ˆ

p1´Mj
l qX

j
l ´

1´ µ

2
η
jr1s
l

˙

“ ´µp1´ µqErqηlsErη
jr1s
l s.

Similarly,

2E
„

pMj
l qηl ´ µErqηlsq

ˆ

p1´Mj
l qp1´X

j
l q ´

1´ µ

2
η
jr2s
l

˙

“ ´µp1´ µqErqηlsErη
jr2s
l s.

Finally,

2E
„ˆ

p1´Mj
l qX

j
l ´

1´ µ

2

˙

η
jr1s
l

ˆ

p1´Mj
l qp1´X

j
l q ´

1´ µ

2

˙

η
jr2s
l



“ ´
p1´ µq2

2
Erηjr1sl η

jr2s
l s.

Combining these, we obtain

µp1´ µqErqηls2 ` µVarpqηlq `
p1´ µq2

4
Erpηjr1sl ´ η

jr2s
l q2s

` µp1´ µq
´

Erpηjr1sl q2s ´ 2ErqηlsErη
jr1s
l s ` Erqη2l s

¯

´ µp1´ µqErqη2l s

“ µ2Varpqηlq `
p1´ µq2

4
Erpηjr1sl ´ η

jr2s
l q2s ` µp1´ µqErpηjr1sl ´ qηlq

2s
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and, since η
jr1s
l is sampled from the ancestral population and so is a copy of pηl, this yields

µ2Varpqηlq `
p1´ µq2

4
Erpηjr1sl ´ η

jr2s
l q2s ` µp1´ µqErppηl ´ qηlq

2s.

(Note that if the individual was produced by selfing, the second term is 0.) It is immediate from
this calculation that the variance of our limiting distribution of traits is Σµ

1 , as claimed. To check
that the limit is a multivariate normal, we mimic what we did in the ancestral population: for an
arbitrary vector β “ pβ1, . . . , βN1q we show that

řN1
j“1 βjR

j converges to a normal random variable
as M Ñ8. As before the strategy is to apply Theorem A.2. This time

N1
ÿ

j“1

βjR
j “

1
?
M

M
ÿ

l“1

Yl,

where

Yl “
N1
ÿ

j“1

βj

"

Mj
l qη
j
l ´ µErqηls

`

ˆ

p1´Mj
l qX

j
l ´

1´ µ

2

˙

η
jr1s
l `

ˆ

p1´Mj
l qp1´X

j
l q ´

1´ µ

2

˙

η
jr2s
l

*

. (23)

Each such term is bounded by B}β}1 and inheritance is independent at distinct loci and so Theo-
rem A.2 yields convergence (in law) of

řM
l“1 Yl{

?
M “

řN1
j“1 βjR

j to a mean zero normal random
variable with variance

N1
ÿ

j“1

β2j pΣ
µ
1 qjj ,

from which, since β was arbitrary, we deduce convergence of pR1, . . . , RN1q, conditional on knowing
Pp1q (the parents of each individual in the population) and rZp0q (the observed traits of all parents)
to a multivariate normal with mean zero and diagonal variance-covariance matrix with on-diagonal
entries identically equal to Σ1. More precisely, just as in (21),

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P

»

–

řN1
j“1 βjR

j

b

řN1
j“1 β

2
j pΣ

M,µ
1 qjj

ď y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pp1q, rZp0q “ z

fi

fl´ Φpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C 1

b

M
řN1
j“1 β

2
j pΣ

M,µ
1 qjj

˜

1`
1

řN1
j“1 β

2
j pΣ

M,µ
1 qjj

¸

`

1` Cppσ2M , |z1 ´ z̄0|q
˘

.
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E Generation t

We now provide the missing steps in the general case. We proceed by induction.
Suppose that we have proved the asymptotic normality of the vector of genetic components of

trait values and (15) (that conditioning on the pedigree and the observed ancestral traits provides
negligible information about the distribution of allelic types at a given locus) for all generations up
to and including pt´ 1q. We have already checked generation one.

We first prove (15). Let us write A „ η
jr1s
l to mean that A is the set of individuals in Ppt´ 1q

that are identical by descent at locus l with the first parent of individual j in generation t. Note
that A depends on the pedigree and the Bernoulli random variables that determine inheritance at

the lth locus, but not on the value η
jr1s
l and so partitioning on the set A,

P
”

rZpt´ 1q “ z
ˇ

ˇ

ˇ
Pptq, ηjr1sl “ x

ı

“
ÿ

A

P
”

rZpt´ 1q “ z
ˇ

ˇ

ˇ
A „ η

jr1s
l ,Pptq, ηjr1sl “ x

ı

P
”

A „ η
jr1s
l

ˇ

ˇ

ˇ
Pptq

ı

.

We write a for the eldest individual in A and |a| for the generation in which it lived. Evidently the

trait values in Ppt´ 1qzA do not depend on η
jr1s
l . Moreover, if we further partition on the value

of Za (the genetic component of the trait of the eldest member of A), we see that for all a1 P Aza,

the probability that rZa
1

´ za “ za1 ´ za is independent of the value of η
jr1s
l . In other words, the

dependence of the trait values in the pedigree on η
jr1s
l is entirely captured by

P
”

rZa “ za

ˇ

ˇ

ˇ

rZp|a| ´ 1q,Pp|a|q, ηal “ x
ı

.

Since a lives at the latest in generation t´ 1, we can use our inductive hypothesis to write that

P
”

rZa “ za

ˇ

ˇ

ˇ

rZp|a| ´ 1q “ zp|a| ´ 1q,Pptq, ηal “ x
ı

“ P
”

rZa “ za

ˇ

ˇ

ˇ

rZp|a| ´ 1q “ zp|a| ´ 1q,Pptq
ı

ˆ

ˆ

1`
α
?
M
CpΣM

t , ∆̄
M
t pzqq

˙

.

Since we have successfully eliminated all the conditioning on the value of η
jr1s
l , we can now rearrange

our calculations to give Equation (15) and

P
”

η
jr1s
l “ x

ˇ

ˇ

ˇ
Pptq, rZpt´ 1q “ z

ı

“ P
”

η
jr1s
l “ x

ˇ

ˇ

ˇ
Pptq

ı

ˆ

ˆ

1`
α
?
M
CpΣM

t , ∆̄
M
t pzqq

˙

.

We can perform entirely analogous calculations for the joint law of η
jr1s
l and η

jr2s
l .
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Now consider the mean zero random variable Rj . That ErRiRj |Pptq, rZpt´ 1qs “ 0 for i ‰ j
follows exactly as before and the calculation of ErpRiq2|Pptq, rZpt´ 1qs also proceeds almost exactly
as for generation one. The only distinction is that

Erηjr1sl |Pptqs “ p1´ µqt´1Erpηls ` p1´ p1´ µqt´1qErqηls,

and similarly

Erpηjr1sl q2|Pptqs “ p1´ µqt´1Erpη2l s ` p1´ p1´ µqt´1qErqη2l s,

and so the contribution to ErpRiq2|Pptq, rZpt´ 1qs from the lth locus becomes

p1´ p1´ µq2qVarpqηlq `
p1´ µq2

4
Erpηjr1sl ´ η

jr2s
l q2|Pptqs ` 2µp1´ µqt

ˆ

Erppηl ´ qηlq
2s

2
´Varpqηlq

˙

.

Summing over loci yields

pΣM,µ
t qjj “

p1´ µq2

4

1

M

M
ÿ

l“1

E
„

´

η
jr1s
l ´ η

jr2s
l

¯2
ˇ

ˇ

ˇ

ˇ

Pptq


` p1´ p1´ µq2qqσ2M

` 2µp1´ µqt
1

M

M
ÿ

l“1

ˆ

Erppηl ´ qηlq
2s

2
´Varpqηlq

˙

, (24)

which for small µ becomes (13).
Now, exactly as we did for generation one, we can fix β1, . . . , βNt P R and apply Theorem A.2

to Yl given by (23) (with the same bound) to deduce that conditional on Pptq and rZpt´ 1q “ z,

`

R1, . . . , RNt
˘

Ñ N p0,Σµ
t q.

In particular,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P

»

–

Zj ´ µz̄µ ´ p1´ µq
Zjr1s`Zjr2s

2
b

pΣM,µ
t qjj

ď y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pptq, rZpt´ 1q “ z

fi

fl´ Φpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
?
M
CpΣM

t , ∆̄
M,µ
t pzqq. (25)

F Environmental noise: conditioning multivariate Gaussian vec-
tors

In order to estimate the proportion of an observed trait that is due to environmental noise, and
thus make predictions about offspring traits, we need a standard result for conditioning multivariate
normal random vectors on their marginal values which, for ease of reference, we record here.
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Theorem F.1 Suppose that

„

xA
xB



„ N
ˆ„

µA
µB



,

„

ΣAA ΣAB

ΣBA ΣBB

˙

.

Then
xA|xB „ N

`

µA ` ΣABΣ´1BBpxB ´ µBq,ΣAA ´ ΣABΣ´1BBΣBA

˘

.

The proof can be found e.g. in Brockwell & Davis (1996) (Prop. 1.3.1 in Appendix A). We
write Ecptq “ pEjc ptqqj“1,...,Nt for the conditioned vector pE1, . . . , ENtq|Pptq, rZptq. To see how
Theorem F.1 leads to a recurrence for the mean and variance of Ecptq, we begin with generation
zero. In this case there are just two components to consider, pRjqj“1,...,N0 and pEjqj“1,...,N0 , each of
which is (at least asymptotically) a mean zero Gaussian with diagonal variance-covariance matrix.
We wish to calculate xA|xB where xA “ pE

jqj“1,...,N0 and xB “ p rZ
j ´ z̄0qj“1,...,N0 . We have

„

xA
xB



„ N
ˆ„

µA
µB



,

„

ΣAA ΣAB

ΣBA ΣBB

˙

where ΣAA “ σ2EId, ΣBB “ ppσ2 ` σ2EqId and ΣAB “ ΣBA “ σ2EId. Applying Theorem F.1,

pEjc p0qqj“1,...,N0 (as M Ñ8) is a Gaussian random variable with mean vector

Acp0q “

ˆ

σ2E
pσ2 ` σ2E

przj ´ z̄0q

˙

j“1,...,N0

and variance-covariance matrix

ΣE
c p0q “

pσ2σ2E
pσ2 ` σ2E

Id.

For the recursive step, we now set

xA “ pE
jqj“1,...,Nt , xB “ p∆ rZjptqqj“1,...,Nt .

Then, writing Ec to indicate that we are conditioning on Pptq and rZpt´ 1q,

EcrxAs “ p0, . . . , 0q, EcrxBs “

˜

´p1´ µq
Ajr1spt´ 1q `Ajr2spt´ 1q

2

¸

j“1,...,Nt

,

ΣAA “ σ2EId, ΣAB “ ΣBA “ σ2EId.

The more complex term is

ΣBB “

´

Covp∆ rZiptq,∆ rZjptqq|Pptq, rZpt´ 1q
¯

i,j“1,...,Nt

.
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We treat the cases i “ j and i ‰ j separately. In the expression below, iras is the ath parent of
individual i (with a P t1, 2u). First suppose that i ‰ j, again conditionally on Pptq and rZpt´ 1q,

Ecr∆ rZiptq∆ rZjptqs ´ Ecr∆ rZiptqsEcr∆ rZjptqs

“ p1´ µq2Ec

«

pEir1sptq ` Eir2sptqq

2

pEjr1sptq ` Ejr2sptqq

2

ff

´ p1´ µq2Ec

«

Eir1sptq ` Eir2sptq

2

ff

Ec

«

Ejr1sptq ` Ejr2sptq

2

ff

“
p1´ µq2

4

ÿ

a,bPt1,2u

CovpEirasc ptq, Eirbsc ptqq “
p1´ µq2

4

ÿ

a,bPt1,2u

pΣE
c pt´ 1qqiras,jrbs.

If i “ j,

Ec
„

´

∆ rZiptq
¯2


´ Ec
”

∆ rZiptq
ı2
“ σ2E `

`

Σt´1

˘

ii

` p1´ µq2Ec

»

–

˜

Eir1sptq ` Eir2sptq

2

¸2
fi

fl´ p1´ µq2Ec

«

Eir1sptq ` Eir2sptq

2

ff2

“ σ2E `
`

Σt´1

˘

ii
`
p1´ µq2

4

ÿ

a,bPt1,2u

`

ΣE
c pt´ 1q

˘

iras,irbs
.

Again applying Theorem F.1, we obtain that Ecptq has mean vector

Acptq “

˜

σ2EΣ´1BB

˜

∆rztj ` p1´ µq
Ajr1spt´ 1q `Ajr2spt´ 1q

2

¸¸

j“1,...,Nt

,

and variance-covariance matrix
ΣE
c ptq “ σ2EId´ σ4EΣ´1BB.

G A coupling argument

We do not spell out all of the details of the proof of convergence to a multivariate normal in the
presence of epistasis. However, we illustrate a useful coupling argument by explaining how to use
it to prove that in generation one, Er∆Zjs is of order 1{

?
M . Recall that

∆Zj “
1
?
M

M
ÿ

l“1

˜

ηjl ´
η
jr1s
l ` η

jr2s
l

2

¸

`
1

M

ÿ

1ďlďmďM

˜

ηlm ´
η
jr1s
lm ` η

jr2s
lm

4

¸

.
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We use the notation 1UÐjr1s for the Bernoulli random variable which takes the value 1 when all
the loci in U were inherited from jr1s. Then

∆Zj “
1
?
M

M
ÿ

l“1

˜

ηjl ´
η
jr1s
l ` η

jr2s
l

2

¸

`
1

M

ÿ

1ďlďmďM

ˆ

η
jr1s
lm

´

1tl,muÐjr1s ´
1

4

¯

` η
jr2s
lm

´

1tl,muÐjr2s ´
1

4

¯

˙

`
1

M

ÿ

1ďlďmďM

ηjlm
`

1´ 1tl,muÐjr1s ´ 1tl,muÐjr2s
˘

.

Because the Bernoulli random variables that determine inheritance are independent of the parental
allelic effects, the expectation of the first sum is zero. A priori, the second term could be order one,
but we now argue that it is order 1{

?
M . The idea is a simple coupling argument. The analogue

of (15) tells us that even conditioned on the values zA, zAp2q in the ancestral population, for any
fixed pair of loci tl,mu, the allelic state of the parents jr1s, jr2s at those loci have the original
distribution pχ with probability 1´Op1{

?
Mq. We can couple the conditioned distributions of the

allelic states for the loci tl,mu in each parent in such a way that (independently at the two loci),
with probability 1´ C{

?
M , χl (resp. χm) is drawn from the unbiased distribution pχl (resp. pχm)

and with probability C{
?
M , χl (resp. χm) is drawn from some modified distribution χ˚l (resp.

χ˚m), which is independent of pχl, pχm. We now sum over all admissible inheritance patterns.

Erηjlm
`

1´ 1tl,muÐjr1s ´ 1tl,muÐjr2s
˘

s “
1

4
E
”

φlmpχ
jr1s
l , χjr2sm q

ı

`
1

4
E
”

φlmpχ
jr1s
m , χ

jr2s
l q

ı

`
1

4

#

ˆ

1´
C
?
M

˙2

Erφlmppχl, pχmqs `
C
?
M

ˆ

1´
C
?
M

˙

Erφlmppχl, χ˚mqs

`
C
?
M

ˆ

1´
C
?
M

˙

Erφlmpχ˚l , pχmqs `
C2

M
Erφlmpχ˚l , χ˚mqs

+

.

The first term is zero by assumption and (18) guarantees that so are the second and third terms. We
must multiply the final term by 1{M and sum over all loci. The uniform bound on

řM
m“1 ηlm{

?
M

is enough to guarantee that the result is a term of order at most 1{
?
M .


