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DEGENERACY CURVES IN THE SPECTRA OF DIRICHLET PARALLELOGRAMS

. This set of parameters determines a unique parallelogram as well as a unique triangle. Equivalently a unique parallelogram can be characterized by knowing two of the side lengths and the included angle between them.

Using the first method of characterization the parameters of the family of triangles and those of the parallelogram can be made the same. However the addition of the fourth boundary, and the fact that the parallelogram has an extra 180 degree rotation symmetry or Z 2 freedom introduces quite a difference in the degeneracies found for the two different families of shapes.

Specifically the degeneracies occurring in the spectra of the space of all parallelograms subject to Dirichlet boundary conditions appear to form degeneracy curves as opposed to isolated points. For most adjacent normalized eigenvalue levels of the family of parallelograms, the number of degeneracies between levels appears to be uncountably infinite. There are two notable exceptions -the 2, 3 eigenvalue levels and the 4, 5 eigenvalue levels. These levels have only isolated degeneracies associated with the rectangle, the rhombus, or the square. No other general parallelogram degeneracies have been determined for these levels. But all other levels (within the lowest ten eigenvalue levels) contain at least one degeneracy curve.

Introduction

Based on an old argument of Von Neumann and Wigner [START_REF] Neumann | On the behavior of eigenvalues in adiabatic processes[END_REF], and revisited by Berry [START_REF] Berry | Aspects of Degeneracy[END_REF][START_REF] Berry | Diabolical points in the spectra of triangles[END_REF], it is known that for real operators (such as the Helmholtz operator) two changing parameters are necessary to produce accidental degeneracies. This need for two changing parameters to produce degeneracies was demonstrated specifically by Berry and Wilkinson [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF] who solved the Helmholtz equation on the space of all triangles subject to Dirichlet boundary conditions. For this family of planar shapes a number of accidental degeneracies were found. These degeneracy points or degenerate triangles were relatively rare; they were isolated points in the space of all triangles and the number of them for each set of adjacent eigenvalue levels was finite. These same characteristics were noted for the problem of solving the Helmholtz equation over the space of all triangles subject to Neumann boundary conditions [START_REF] Overfelt | Degeneracies in the Spectra of Neumann Triangles[END_REF].

In this paper we consider the problem of solving the Helmholtz equation over the space of all parallelograms subject to Dirichlet boundary conditions [START_REF] Korsch | On the nodal behavior of eigenfunctions[END_REF] and determining the accidental degeneracies occurring in their spectra upon changing the two parameters, angle and side ratio, using the finite element method (FEM) [8]. The space of all parallelograms consists of those quadrilaterals that have two sets of equal length parallel sides and two sets of identical angles. We can specify uniquely the family of parallelograms (which contains the rectangle, the rhombus, and the square as special cases) in two different but equivalent ways. Because the parallelogram is composed of two congruent triangles, we can specify this family in the same way Berry and Wilkinson specified the family of triangles using the area and two of the angles [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF]. This set of parameters determines a unique parallelogram as well as a unique triangle. Equivalently a unique parallelogram can be characterized by knowing two of the side lengths and the included angle between them.

Using the first method of characterization the parameters of the family of triangles and those of the parallelogram can be made the same. However the addition of the fourth boundary, and the fact that the parallelogram has an extra 180 degree rotation symmetry or Z 2 freedom introduces quite a difference in the degeneracies found for the two different families of shapes.

Specifically the degeneracies occurring in the spectra of the space of all parallelograms subject to Dirichlet boundary conditions appear to form degeneracy curves as opposed to isolated points. For most adjacent eigenvalue levels of the family of parallelograms, the number of degeneracies between levels may be uncountably infinite. Because the eigenvalues can only be found numerically, it is difficult to determine whether or not there exist gaps in the degeneracy curves. There are two notable exceptions to the rule of degeneracy curves: the 2, 3 eigenvalue levels and the 4, 5 eigenvalue levels. These levels have only isolated degeneracies associated with the rectangle, the rhombus, or the square. No other general parallelogram degeneracies have been determined for these levels. But all other levels (within the lowest ten eigenvalue levels) contain at least one degeneracy curve.

In the following the eigenvalues, λ i , and the eigenfunctions, ψ i (x, y) are computed numerically by solving the Helmholtz equation [START_REF] Neumann | On the behavior of eigenvalues in adiabatic processes[END_REF] ∆ψ i (x, y)

+ λ i ψ i (x, y) = 0; (x, y) ∈ Ω with (2) ψ i (x, y) = 0; (x, y) ∈ ∂Ω
where (2) refers to the Dirichlet boundary condition. Ω is the interior of any parallelogram while ∂Ω is its boundary.

Degeneracies of the Rectangle

The rectangle shape is one of the few planar domains for which the eigenvalues and eigenfunctions of the Laplacian are known exactly. As a result degeneracies of the adjacent eigenvalue levels for the rectangle can be found exactly also. Assuming a standard rectangle as in Figure 1 with dimensions a = 1 and 0 < b ≤ 1, and area, A = ab, the normalized eigenvalues Λ = λA 4π as functions of the side ratio, b a , can be determined both numerically and exactly. Figure 2 shows the lowest ten normalized eigenvalue levels of the rectangle vs. b a . Figure 2 (top left) shows eigenvalue levels 1 -4, Figure 2 (top right) shows levels 4 -7, and Figure 2 (bottom left) shows levels 7 -10.

The points of degeneracy for the rectangle occur near the close approaches of adjacent eigenvalue levels (see Figure 2) and can be found exactly using the normalized eigenvalue formula

(3) Λ m,n (a, b) = πa 4b m 2 b a 2 + n 2 with m, n ∈ Z. For a = 1, (4) Λ m,n (1, b) = π 4b m 2 b 2 + n 2
There have been several papers on the accidental degeneracy of the impenetrable rectangular and square-well potentials (i.e., the particle in a rectangle/square box), particularly for b a rational [START_REF] Lemus | Accidental degeneracy and hidden symmetry: Rectangular wells with commensurate sides[END_REF][START_REF] Leyvraz | Accidental degeneracy in a simple quantum system: A new symmetry group for a particle in an impenetrable square well potential[END_REF][START_REF] Shaw | Degeneracy in the particle in a box problem[END_REF]. However b a can be the square root of a rational number also and still produce degeneracies [START_REF] Overfelt | Rings, quadratic forms, and complete degeneracy for a subclass of highly overmoded waveguides[END_REF].

Considering Figure 2 (top left), the lowest rectangle degeneracy occurs for normalized eigenvalue levels 2, 3 at b a = 1 (the square). The 3, 4 eigenvalue levels have one degeneracy which occurs at b a = 3 8 = .61237... The rectangle degeneracies for the lowest ten eigenvalue levels are given in Table 1. There is one degeneracy for the 2, 3 levels, one for the 3, 4 levels, two for the 4, 5 levels, three for the 5, 6 levels, four for the 6, 7 levels, five for the 7, 8 levels, five for the 8, 9 levels, and seven for the 9, 10 levels. There is a total of 28 rectangle degeneracies for the lowest ten eigenvalue levels. These degeneracies in the spectra of rectangles are isolated points and for all degeneracies ( b a ) 2 is rational. 
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Degeneracies of the Rhombus

The rhombus shape is any parallelogram with l2 l1 = 1 (see Figure 3). Assuming a rhombus with l2 l1 = 1 and an opening angle of α (where 0 < α ≤ 90 deg), by plotting the adjacent normalized eigenvalue levels versus the opening angle, degeneracies (if they are present) are found at those points where close approaches of adjacent eigenvalue levels occur (see Figure 4). A root finding technique was used to compute the rhombus degeneracies accurately (see Table 2).

For the lowest ten eigenvalue levels of the rhombus shape, there are 19 total degeneracies. This number does not include the degeneracies of the square since these are already included with the rectangles and are shown in Table 1 It is important to know the rhombus and rectangle degeneracies for each set of adjacent eigenvalue levels because they are often the limiting cases for the degeneracies of the family of all parallelograms.

Within the lowest ten eigenvalue levels of the rhombus (and omitting the degeneracies of the square), the lowest rhombus degeneracy occurs for the 3, 4 eigenvalue levels at α = 49.1836 deg. There is one rhombus degeneracy for the 3, 4 levels, one for the 4, 5 levels, two for the 5, 6 levels, three for the 6, 7 levels, two for the 7, 8 levels, five for the 8, 9 levels, and five for the 9, 10 levels (see Table 2). These degeneracies in the spectra of rhombi are isolated points. In Table 2, the square degeneracies are included for completeness.

Degeneracies of General Parallelograms

The family of parallelograms has a great deal of structure when compared with any general quadrilateral due to its two sets of parallel sides and equal opposite angles.

The parallelogram can be uniquely characterized using two sides, l 1 and l 2 , and the included angle, α (see Figure 5). Allowing l 1 = 1 and 0 < l 2 ≤ 1 with 0 < α ≤ 90 deg, the eigenvalues of this family can be considered as functions of the two parameters l2 l1 , the side ratio, and α, the opening angle. Equivalently the parallelogram which is composed of two congruent triangles could be characterized using the area and two of the angles of the geometry as in [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF] and [START_REF] Overfelt | Degeneracies in the Spectra of Neumann Triangles[END_REF]. These characterization methods give the same (to within the mesh size used) results. Before stating our results and conclusions, it is important to emphasize that the parallelogram family degeneracies are fundamentally different from the triangle family degeneracies [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF][START_REF] Overfelt | Degeneracies in the Spectra of Neumann Triangles[END_REF]. For the triangle the degeneracies were all isolated points attained by setting the area and the smallest angle to given values and searching via a numerical method for the second angle. The Dirichlet and Neumann triangles that produced degeneracies were somewhat rare (even for triangles with some symmetry), and for each pair of adjacent eigenvalue levels there were a countable finite number of these degeneracies. For the parallelogram this is not the case. Each pair of parallelogram adjacent eigenvalue levels appears to be composed of eigenvalue degeneracy curves (with the 2,3 levels and the 4,5 levels as notable exceptions), and for most levels there may be an uncountably infinite number of values of α vs. l2 l1 that produce degeneracies. Because the eigenvalues can only be found numerically, it is difficult to determine whether or not there exist gaps in the degeneracy curves. Because the adjacent levels behave somewhat differently from one another and because in general the degeneracy values must be determined numerically, and degeneracies can be determined only subject to the mesh size used, we will use conjectures to show our conclusions, and then offer the numerical evidence leading to these conjectures.

The following conjectures refer to the space of all general parallelograms governed by Dirichlet boundary conditions (Dirichlet parallelograms).

Conjecture 1 (2, 3 Eigenvalue Levels). The lowest eigenvalue degeneracy occurs at the 2, 3 eigenvalue levels for the square. There are no other 2, 3 level degeneracies.

Conjecture 2 (3, 4 Eigenvalue Levels).

(a) There is one 3, 4 level eigenvalue degeneracy for the rectangle at b a = 3 8 . (b) There is one 3, 4 level eigenvalue degeneracy for the rhombus at l2 l1 = 1, α = 49.1836 deg.

(c) If 0 < l 2 /l 1 < 3/8, then there are no 3, 4 level eigenvalue degeneracies.

(d) If (c

) If 0 < l2 l1 < 1 (2 √ 
2) , then there are no 5, 6 level eigenvalue degeneracies.

(d) If 1 (2 √ 
2) ≤ l2 l1 < 1 2 , then for every value of l2 l1 in this region there is one corresponding value of α that gives a 5, 6 level eigenvalue degeneracy.

(e) If , then there is a third degree eigenvalue degeneracy for levels 8, 9, and 10 at α = 90 deg (the rectangle).

Numerical Results Supporting the Conjectures for the Family of Parallelograms

Figures 6 -11 show the numerical results based on the FEM from which the conjectures in Section 4 were generated. Each adjacent pair of normalized eigenvalue levels is discussed separately.

2, 3 Eigenvalue levels: The 2, 3 levels start off exactly like the results for the family of triangles. There is one 2, 3 level degeneracy which occurs for the square. (Recall that the triangle family had one 2, 3 level degeneracy that occurred for the equilateral triangle). For the 2, 3 level there is only the one eigenvalue degeneracy and it is an isolated point.

3, 4 Eigenvalue Levels: The 3, 4 level eigenvalue degeneracies of the space of Dirichlet parallelograms consists of one degeneracy curve in α vs. l2 l1 space (see Figure 6). The top left plot of Figure 6 shows the values of α vs. Each point along this curve (to within the mesh value) is a 3, 4 level eigenvalue degeneracy. The top left and top right plots in Figure 6 show the degeneracies that occur for 0 < l2 l1 ≤ 1 and 0 < α ≤ 90 deg. Going outside of these regions does not produce any new degeneracies. But it is important to remember that we obtain the same degeneracy angles for l1 l2 that we obtain for l2 l1 . Also we could allow α to run from 0 < α < 180 deg and again obtain the same respective degeneracies. Thus the bottom left plot of Figure 6 shows the entire two dimensional curve of parallelogram 3, 4 level degeneracies for 3 8 ≤ l2 l1 ≤ 8 3 with 0 < α < 180 deg. The bottom right plot of Figure 6 shows the entire three dimensional curve of parallelogram 3, 4 level degeneracies with normalized eigenvalues, Λ vs. α vs. l2 l1 with their values the same as for the bottom left plot. As far as we have been able to determine there are no other 3, 4 level degeneracies in Figure 6 other than along the curves shown. Both lower plots in Figure 6 do not provide any new information but are included for completeness. all use this same format for each set of adjacent normalized eigenvalue level degeneracies. In each plot (whether two-or three-dimensional) the dots are the actual computed values.

To insure that our results are not an artifact of the characterization method used, we have also chosen the parallelogram parameters to be A, the area, and α and γ, two of the angles as in Figure 5. After assuming values for the area and the smallest angle γ, we find the angle α that gives the closest approach of the 3, 4 eigenvalue levels. At some minimum value of γ, γ min , we can obtain a degeneracy for every value of γ in some region, γ min < γ < γ max . Thus in this region there appear to be an uncountably infinite number of degeneracies. By computing l 1 and l 2 as functions of A, α, and γ, we can fit these points into the l2 l1 , α space. All points fall along the curve shown in Figure 6, top left. There is one degeneracy curve for the 3, 4 level normalized eigenvalues of the family of parallelograms. 7 shows these same two degeneracy curves three-dimensionally as functions of l2 l1 and α vs. the normalized eigenvalues, Λ. The normalized eigenvalues of each curve are at different heights along the Λ axis. The leftmost curve in the top right plot of Figure 7 runs between (rectangle) 9.1634 ≤ Λ ≤ 9.9504 (rhombus), while the rightmost curve runs between 7.8540 ≤ Λ ≤ 8.4644 in the top right plot of Figure 7. The lower left plot in Figure 7 shows all possible values of α and l2 l1 that produce 5, 6 level degeneracies with 0 < α < 180 deg and

1 8 ≤ l2 l1 ≤ √ 8.
The lower right plot in Figure 7 shows all possible values of Λ associated with the values of α vs. l2 l1 as given above. We have been unable to find 5, 6 level eigenvalue degeneracies anywhere except on these two curves.

6, 7 Eigenvalue Levels: Figure 8 the degeneracy curve for the 6, 7 eigenvalue levels. Although there are four 6, 7 level eigenvalue degeneracies for the rectangle and three for the rhombus, there is only one degeneracy curve for these levels as far as we have determined. No degeneracies have been found for the region 0 < l2 l1 < 5 8 except for the rectangle and the rhombus. For the region 5 8 ≤ l2 l1 < 1, there is only one corresponding value of α that produces a degeneracy. This curve is shown in the top left plot of Figure 8. It runs between the fourth rectangle degeneracy at b a = 5 8 and runs to the rhombus degeneracy ( l2 l1 = 1 and α = 68.2162 deg). The top right plot of Figure 8 shows this curve in the three-dimensional l2 l1 , α, Λ space. For the 6, 7 levels, Λ ranges between 8.8742 (rhombus)≤ Λ ≤ 9.5620 (rectangle). As previously this curve seems to be composed of an uncountably infinite number of values. The lower left plot in Figure 8 shows all possible values of α and l2 l1 that produce 6, 7 level degeneracies with 0 < α < 180 deg and 5 8 ≤ l2 l1 ≤ 8 5 . The lower right plot in Figure 8 shows all possible values of Λ associated with the values of α vs. l2 l1 as given above. Except for the remaining rectangle and rhombus degeneracies (not shown in Figure 8) no other parallelogram degeneracies have been found that are not on the single 6, 7 level degeneracy curve.

7, 8 Eigenvalue Levels: Figure 9 shows the degeneracy curves for the 7, 8 eigenvalue levels. The 7, 8 level degeneracies are quite complicated and follow some of the behavior of lower levels but also are anomalous in certain ways. The top left plot in Figure 9 shows the three eigenvalue curves in α, l2 l1 space. The leftmost curve runs between the first rectangle 7, 8 level degeneracy and the first rhombus 7, 8 level degeneracy. The second curve from the left runs between the second rectangle 7, 8 level degeneracy and the second rhombus 7, 8 level degeneracy. The rightmost curve runs between the third rectangle 7, 8 level degeneracy and the start of the very small region within which five degeneracies occur for every value of l2 l1 . The region where five 7, 8 level degeneracies occur is at .7230 ≤ l2 l1 ≤ .7297. Once past l2 l1 = .7297 the number of degeneracies reduces to three in the region .7297 < l2 l1 < . A closeup of this region is shown in the middle plot of Figure 9.

The top right plot in Figure 9 shows these same three degeneracy curves threedimensionally as functions of l2 l1 and α vs. the normalized eigenvalues, Λ. As previously the normalized eigenvalues of each curve are at different heights along the Λ axis. The leftmost curve in the top left plot of Figure 9 runs between (rectangle) 12.7627 ≤ Λ ≤ 14.4023 (rhombus), while the next leftmost curve runs between (rectangle) 11.2223 ≤ Λ ≤ 12.1431 (rhombus) in the top right plot of Figure 9. The rightmost curve in the top left plot of Figure 9 runs between 10.2562 ≤ Λ ≤ 11.2347. The lower left plot in Figure 9 shows all possible values of α and l2 l1 that produce 7, 8 level degeneracies with 0 < α < 180 deg and 1 4 ≤ l2 l1 ≤ 4. The lower right plot in Figure 9 shows all possible values of Λ associated with the values of α vs. l2 l1 as given above. We have been unable to find 7, 8 level eigenvalue degeneracies anywhere except on these three curves.

The middle plot of Figure 9 shows a closeup of the unusual region between .721 ≤ l2 l1 < .731. The transition from three degeneracies to five degeneracies and back to three again is clearly seen.

8, 9 Eigenvalue Levels: Figure 10 shows the 8, 9 level eigenvalue degeneracies as functions of α and l2 l1 . Although there are five rectangle degeneracies, and five rhombus degeneracies for the 8, 9 levels, few of them appear to play any role in the 8, 9 level degeneracies of general parallelograms. In the top left plot of Figure 10, for 0 < l2 l1 < .7819 no 8, 9 level parallelogram degeneracies have been determined aside from the rectangle and rhombus ones. For .7819 ≤ l2 l1 < 1 there are two values of α for each value of l2 l1 that produce degeneracies. The top right plot of Figure 10 shows this curve in the three-dimensional l2 l1 , α, Λ space. For the 8, 9 levels, Λ ranges from 11.6344 ≤ Λ ≤ 12.9202. The lower left plot in Figure 10 shows all possible values of α and l2 l1 that produce 8, 9 level degeneracies with 0 < α < 180 deg and .7819 ≤ l2 l1 ≤ 1 .7819 . The lower right plot in Figure 10 shows all possible values of Λ associated with the values of α vs. l2 l1 as given above. Except for the remaining rectangle and rhombus degeneracies, no other parallelogram degeneracies have been found that are not on the single 8, 9 level degeneracy curve. 9, 10 Eigenvalue Levels: Figure 11 shows the degeneracy curves computed for the 9, 10 normalized eigenvalue levels of Dirichlet parallelograms. The 9, 10 level degeneracies consist of five separate degeneracy curves in α vs. 11 shows all values of Λ associated with the values of α and l2 l1 as given above.

Conclusions

We have considered the problem of solving the Helmholtz equation over the space of all parallelograms subject to Dirichlet boundary conditions and determining the accidental degeneracies occurring in their spectra upon changing the two parameters, angle and side ratio, using the finite element method (FEM). In comparison with the family of triangles, the addition of the fourth boundary, and the fact that the parallelogram has an extra 180 degree rotation symmetry or Z 2 freedom introduces quite a difference in the degeneracies found for the two different families of shapes.

Specifically the degeneracies occurring in the spectra of the space of all parallelograms subject to Dirichlet boundary conditions form degeneracy curves as opposed to isolated points. For most adjacent eigenvalue levels of the family of parallelograms, the number of degeneracies between levels may be uncountably infinite. There are two notable exceptions, the 2, 3 eigenvalue levels and the 4, 5 eigenvalue levels. These levels have only isolated degeneracies associated with the rectangle, the rhombus, or the square. No other general parallelogram degeneracies have been determined for these levels. But all other levels (within the lowest ten eigenvalue levels) contain at least one degeneracy curve.

The 3, 4 eigenvalue levels are characterized by a single degeneracy curve. The 5, 6 eigenvalue levels are characterized by two degeneracy curves. The 6, 7 eigenvalue levels and the 8, 9 eigenvalue levels are each characterized by one degeneracy curve. The 7, 8 eigenvalue levels contain three degeneracy curves with an unusual region at .7230 ≤ l2 l1 ≤ .7297 with five degeneracies. The 9, 10 eigenvalue levels contain five degeneracy curves.

At this time it is unknown whether there are degeneracy gaps in the above curves. But preliminary work on the Neumann boundary condition case indicates that gaps in such degeneracy curves can appear. 
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 31335 l2 l1 space. The top left side of Figure 11 shows the five degeneracy curves and where they occur in relation to the seven rectangle degeneracies and the five rhombus at the 9, 10 levels. The top left plot shows those values of α vs. l2 l1 that produce these 9, 10 level parallelogram degeneracies. The leftmost curve on this plot begins at the first rectangle degeneracy (first in terms being the lowest value of the side ratio) which occurs at b a = , α = 90 deg and runs to the rhombus degeneracy with smallest angle, α = 11.1815 deg. The next leftmost curve begins with the second rectangular degeneracy ( b a = , α = 90 deg) and runs to the second rhombus degeneracy at α = 17.7264 deg, l2 l1 = 1. The third curve from the left runs begins with the third rectangular degeneracy at b a = , α = 90 deg and runs to the third rhombus degeneracy at α = 30.1687 deg, l2 l1 = 1. The fourth curve from the left begins at the fourth rectangular degeneracy at b a = , α = 90 deg and runs to the fourth rhombus degeneracy at α = 41.5932 deg, l2 l1 = 1. Note that the fifth rectangle degeneracy occurs at b a = 1 3 , α = 90 deg and that there is no degeneracy curve from the fifth rectangle degeneracy to the fifth rhombus degeneracy. Instead there is a point of inflection for the fourth degeneracy curve at α = 60.6084 deg, l2 l1 = 1 3 . There is a fifth degeneracy curve that runs between the sixth rectangular degeneracy at b a = , α = 90 deg and the fifth rhombus degeneracy at α = 80.3125 deg, l2 l1 = 1. The top right plot in Figure 11 shows these same five curves three dimensionally as functions of α, l2 l1 , and Λ. As previously each of these five three-dimensional curves occurs at different heights along the Λ axis. The highest degeneracy curve in terms of Λ runs from 16.3752 ≤ Λ ≤ 18.8983. (This is the leftmost curve in the top left plot of Figure 11.) The second highest curve in the top right plot of Figure 11 runs from 14.7521 ≤ Λ ≤ 16.3497. (This is the second curve from the left in the top left plot of Figure 11.) The third highest curve in the top right plot of Figure 11 runs from 13.4073 ≤ Λ ≤ 14.7243. (This is the third curve from the left in the top left plot of Figure 11.) The fourth highest curve in the top right plot of Figure 11 runs from 12.9785 ≤ Λ ≤ 13.9828. (This is the fourth curve from the left in the top left plot of Figure 11.) The lowest curve in the top right plot of Figure 11 runs from 12.9785 ≤ Λ ≤ 13.5079, and it is the fifth curve from the left in the top left plot of Figure 11. The lower left plot shows all possible values of α and l2 l1 that produce 9, 10 level degeneracies with 0 < α < 180 deg and 3 80 ≤ l2 l1 ≤ 80 3 . Similarly the lower right plot in Figure
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Table 1 .

 1 Rectangle Degeneracies

	3, 4 4, 5 4, 5 5, 6	, 1), (1, 2) (3, 1), (1, 2) (4, 1), (1, 2) (2, 2), (3, 1) (1, 2), (5, 1)	5π/4 35π/(8 √ 21π/(4 √ 8π/ √ 15 6) 5) 33π/(8 √ 2)	3.927 5.611 7.376 6.489 9.163	1 3/8 1/5 3/5 1/(2 √ 2)	1.0 .6124 .4472 .7746 .3535
	5, 6	(2, 2), (4, 4)	5π/2	7.854	1/2	.5000
	5, 6 6, 7 6, 7 6, 7 6, 7	(1, 3), (3, 1) (6, 1), (1, 2) 143π/(4 5π/2 √ (5, 1), (2, 2) 8π/ √ 7 105) (3, 2), (4, 1) 55π/(4 √ 21) (1, 3), (3, 2) 77π/(8 √ 10)	7.854 10.961 9.499 9.426 9.562	1 3/35 1/7 3/7 5/2/2	1.0 .2928 .3780 .6546 .7906
	7, 8 7, 8 7, 8 7, 8	(1, 2), (7, 1) (2, 2), (6, 1) (5, 1), (3, 2) (1, 3), (4, 1) 143π/(8 65π/16 35π/(4 √ 6) 91π/(16 √ 3) √ 30)	12.763 11.222 10.316 10.253	1/4 3/2/4 √ 3/4 2 2/15	.2500 .3062 .4330 .7303
	7, 8 8, 9 8, 9	(2, 3), (3, 2) (1, 2), (8, 1) (2, 2), (7, 1)	13π/4 85π/(4 √ 21) 16π/ √ 15	10.210 14.568 12.978	1 1/21 1/15	1.0 .2182 .2582
	8, 9 8, 9 8, 9 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10	(6, 1), (3, 2) (1, 3), (4, 2) (2, 3), (4, 1) (1, 2), (9, 1) 323π/(16 15π/4 7π/ √ 3 35π/(4 √ √ 6) 15) (2, 2), (8, 1) 21π/(2 √ 5) (3, 2), (7, 1) 187π/(8 √ 30) (4, 2), (6, 1) 16π/ √ 15 (4, 2), (5, 1) 7π/ √ 3 (2, 3), (4, 2) 16π/ √ 15	11.781 12.697 11.222 16.375 14.752 13.407 12.978 12.697 12.978	1/3 1/3 2/3 3/5/4 1/(2 √ 5) 3/10/2 3/5/2 1/3 5/3/2	.3333 .5774 .8165 .19365 .2236 .2739 .3873 .5774 .6455
	9, 10	(1, 4), (4, 1)	17π/4	13.352	1	1.0

Table 2 .

 2 . Rhombus Degeneracies

	Levels α(deg)	Λ(FEM)
	2, 3	90	5π/4 = 3.9270...
	3, 4	49.1836	5.6538
	4, 5	32.0015	7.7853
	5, 6	90	5π/2 = 7.8540...
	5, 6	60	8.4644
	5, 6	23.5730	9.9504
	6, 7	68.2162	8.8742
	6, 7	38.9301	10.1453
	6, 7	18.5106	12.1798
	7, 8	90	13π/4 = 10.2102...
	7, 8	28.0661	12.1431
	7, 8	15.2282	14.4024
	8, 9	60.3126	11.6858
	8, 9	42.0697	12.9202
	8, 9	41.2598	13.0060
	8, 9	21.8212	14.2105
	8, 9	12.8974	16.6552
	9, 10	90	17π/4 = 13.3518...
	9, 10	80.3123	13.5079
	9, 10	41.5932	13.0347
	9, 10	30.1687	14.7243
	9, 10	17.7264	16.3497
	9, 10	11.1853	18.8983

  There are three 6, 7 level eigenvalue degeneracies for the rhombus at l2 l1 = 1 and α = 18.5106 deg, 38.9301 deg, and 68.2162 deg. There are five 8, 9 level eigenvalue degeneracies for the rhombus at l2 l1 = 1 and α = 12.8974 deg, 21.8212 deg, 41.2598 deg, 42.0697 deg, and 60.3126 deg.

	1 2 ≤ l2 l1 ≤ 1, then for every value of l2 l1 in this region there are two corre-sponding values of α that give 5, 6 level eigenvalue degeneracies. Conjecture 5 (6, 7 Eigenvalue Levels). (a) There are four 6, 7 level eigenvalue degeneracies for the rectangle at b a = 3 35 , 1 7 , 3 7 , and 5 8 . (b) (c) If 0 < l2 l1 < 5 8 , then there are no 6, 7 level eigenvalue degeneracies (other than those in (5a)). (d) If 5 8 ≤ l2 l1 < 1, then for every value of l2 l1 , in this region there is one corresponding value of α that gives a 6, 7 level eigenvalue degeneracy. Conjecture 6 (7, 8 Eigenvalue Levels). (a) There are five 7, 8 level eigenvalue degeneracies for the rectangle at b a = 1 4 , 3 32 , 3 16 , 8 15 , and 1. (b) There are two 7, 8 level eigenvalue degeneracies for the rhombus at l2 l1 = 1 and α = 15.2282 deg and 28.0661 deg. (c) If 0 < l2 l1 < 1 4 , then there are no 7, 8 level eigenvalue degeneracies. (d) If 1 4 ≤ l2 l1 < 3 32 , then for every value of l2 l1 , in this region there is one corresponding value of α that gives a 7, 8 level eigenvalue degeneracy. (e) If 3 32 ≤ l2 l1 < 3 16 , then for every value of l2 l1 in this region, there are two corresponding values of α that give 7, 8 level eigenvalue degeneracies. (f ) If 3 16 ≤ l2 l1 < .7230, then for every value of l2 l1 , in this region there are three corresponding values of α that give 7, 8 level eigenvalue degeneracies. (g) If .7230 ≤ l2 l1 ≤ .7297, then for every value of l2 l1 , in this region there are five corresponding values of α that give 7, 8 level eigenvalue degeneracies. (h) If .7297 < l2 l1 < 8 15 , then for every value of l2 l1 , in this region there are three corresponding values of α that give 7, 8 level eigenvalue degeneracies. (i) If 8 15 ≤ l2 l1 ≤ 1, then for every value of l2 l1 , in this region there are two corresponding values of α that give 7, 8 level eigenvalue degeneracies. Conjecture 7 (8, 9 Eigenvalue Levels). (a) There are five 8, 9 level eigenvalue degeneracies for the rectangle at b a = 1 21 , 1 15 , 1 3 , 1 3 , and 2 3 . l1 < .7819, then there are no 8, 9 level eigenvalue degeneracies (other than those in 7(a)). (d) If .7819 ≤ l2 l1 < 1, then for every value of l2 l1 , in this region there are two (b) (c) If 0 < l2 corresponding values of α that give 8, 9 level eigenvalue degeneracies.

  l2 l1 vs. Normalized Eigenvalues, Λ; (Middle Left) Inset of α vs. l2 l1 Region with .7230 < l2 l1 < .7297; (Bottom Left) All Values of α and l2 l1 for 7, 8 Levels; (Bottom Right) All Values of α, l2 l1 , and Λ for 7, 8 Levels
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