
HAL Id: hal-02112963
https://hal.science/hal-02112963v1

Preprint submitted on 27 Apr 2019 (v1), last revised 20 Nov 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ϵ-TPN: definition of a Time Petri Net formalism
simulating the behaviour of the timed grafcets

Médésu Sogbohossou, Antoine Vianou

To cite this version:
Médésu Sogbohossou, Antoine Vianou. ϵ-TPN: definition of a Time Petri Net formalism simulating
the behaviour of the timed grafcets. 2019. �hal-02112963v1�

https://hal.science/hal-02112963v1
https://hal.archives-ouvertes.fr

ε-TPN: definition of a Time Petri Net formalism
simulating the behaviour of the timed grafcets

Médésu Sogbohossou — Antoine Vianou

Département Génie Informatique et Télécommunications
École Polytechnique d’Abomey-Calavi (EPAC), 01 BP 2009 Cotonou, BENIN
{medesu.sogbohossou,antoine.vianou}@epac.uac.bj

ABSTRACT. To allow a formal verification of timed GRAFCET models, many authors proposed to
translate them into formal and well-reputed languages such as timed automata or Time Petri nets
(TPN). Thus, the work presented in [Sogbohossou, Vianou, Formal modeling of grafcets with Time
Petri nets, IEEE Transactions on Control Systems Technology, 23(5)(2015)] concerns the TPN formal-
ism: the resulting TPN of the translation, called here ε-TPN, integrates some infinitesimal delays (ε)
to simulate the synchronous semantics of the grafcet. The first goal of this paper is to specify a formal
operational semantics for an ε-TPN to amend the previous one: especially, priority is introduced here
between two defined categories of the ε-TPN transitions, in order to respect strictly the synchronous
hypothesis. The second goal is to provide how to build the finite state space abstraction resulting from
the new definitions.

RÉSUMÉ. Afin de permettre la vérification formelle des grafcets temporisés, plusieurs auteurs ont
proposé de les traduire dans des langages formels de réputation tels que les automates temporisés
et les réseaux de Petri temporels (TPN). Ainsi, les travaux présentés dans [Sogbohossou, Vianou,
Formal modeling of grafcets with Time Petri nets, IEEE Transactions on Control Systems Technology,
23(5)(2015)] concernent le formalisme des TPN: le réseau résultant de la traduction, dénommé ici
ε-TPN, intègre des délais infinitésimaux (ε) pour simuler la sémantique synchrone du grafcet. Le
premier objectif de cet article est de définir la sémantique opérationnelle d’un ε-TPN afin d’améliorer
l’ancienne définition: spécifiquement, une priorité est introduite ici entre deux catégories de transitions
définies pour ces réseaux, dans l’optique de respecter rigoureusement l’hypothèse synchrone. Le
second but est de fournir une méthode de calcul de l’espace d’état fini qui découle des nouvelles
définitions.

KEYWORDS : Time Petri Net, timed grafcet, state class, partial order execution, synchronous mod-
elling

MOTS-CLÉS : Réseau de Petri temporel, grafcet temporisé, classe d’état, exécution ordre partiel,
modélisation synchrone

1. Introduction
Formal specification of a critical system at the early stage of conception is often

needed to achieve their reliability in working, by means of languages allowing simula-
tion or formal verification on the established model of this system [8]. Graphical state-
transition modeling formalisms in engineering are appreciated because of their intuitive-
ness. They are based on the automata theory, ensuring an unambiguous description of the
behaviours of a system. Petri nets (PN) are one of these formalisms, used to model in a
compact and explicit way the concurrency and the synchronization between the dynamic
components of the so-called discrete-event systems [7]. In PNs, firing of transitions (with
possibly multiple concurrent firings in the same instant) changes the state and express the
dynamics of the modeled system. Time Petri nets (TPN) [2] are one of its extensions,
suitable when quantitative time analyses are required for the real-time specifications.

Otherwise, the engineering pratices often promote less formal graphical languages, be-
cause of their increased semantic richness (for instance, litteral formulae and hierarchical
modeling do not exist in the ordinary PNs) favoring more compact and fluent modeling to
the detriment of unambiguous interpretations. These are the cases of formalisms derived
from PNs, such as GRAFCET 1 (IEC 60848 standard) [9] and SFC (Sequential Function
Chart, IEC 61131-3 standard) [10], used mainly in the world of the manufacturing con-
trol. Whereas simultaneous fireable transitions are always done by their total interleaving
with PNs, the semantics of these two IEC standards considers only synchronous firings; a
consequence is that the notion of transitions in conflict does not exist in GRAFCET and
SFC formalisms. GRAFCET is intended for specification purposes (event-driven model-
ing), contrary to SFC for implementation uses (clock-driven modeling), and is considered
in the sequel.

To allow a formal verification of GRAFCET (or SFC) models integrating quantitative
time informations, many authors proposed to translate them into formal and well-reputed
languages such as timed automata [11] or TPN [13, 12]. The work in [12] is focused on
defining some transformation rules which are used to translate the entities composing a
timed and not necessarily sound grafcet chart (steps, transitions, literal variables, actions)
into connected blocks to obtain the resulting TPN. The method exploits the similarity
between TPN and GRAFCET to avoid exponential size of the translation, and implicitly
relies on a clear choice about the GRAFCET semantics.

To deal with synchronous firings inherent to GRAFCET formalism, the authors [12]
introduced transitions with infinitesimal ε delays, however without redefining formally the
resulting extended TPN. The first goal of this paper is to palliate this lack, by specifying
a formal semantics for the so-called ε-TPN; the slight differences with the definition in
[12] are also presented. Basing on this new definition, the second goal is to provide how
to build the state space abstraction of an ε-TPN (which is just sketched in [12]) with the ε
delays. Particularly, it is shown how to take advantage from this kind of TPN to cope with
the state-space explosion problem, by avoiding useless interleaving of concurrent firings
and by abstracting some state classes during the state-space construction.

In the next section are mainly recalled definitions about TPNs and GRAFCET charts.
Section 3 summarizes and illustrates how the entities of a grafcet are converted into the
connected subnets forming the corresponding TPN; also, a rule of translation is enhanced
(concerning stored action modelling), and various definitions used in the subsequent sec-

1. Acronym in French: GRAphe Fonctionnel de Commande Etape Transition.

tions are introduced. Formal definitions about the syntax and semantics of ε-TPN are
given in Section 4, completed with a characterisation of the ε-TPN model in the form of a
list of features used in the next section throughout the proposal of state-space abstractions.
Then, Section 5 extends the definition of a TPN state class and justifies the partial-order
approach to compute a ε-TPN state-space abstraction, before presenting the algorithm
of the all situations state-space and the stable situations state-space. Finally, this paper
contribution is summarized and some perspectives are sketched in Section 6.

2. Definitions: time Petri nets and GRAFCET charts
In this section is recalled the syntax and semantics definitions about (classic) time Petri

nets (TPN). Then, GRAFCET charts are presented and the related semantics choices are
remembered, concerning especially the synchronous assumptions on which the subse-
quent sections are relied on.

2.1. Time Petri nets (TPN) and state-space abstractions

2.1.1. Syntax
Structurally, a time Petri net is defined as follows:

Definition 1. A Time Petri net (TPN) is a tuple (P, T,W,WI ,WR, ED,LD,M0) such
as:

1) the nodes: P is the set of places and T is the set of transitions (P ∩ T = ∅);
2) the regular arcs and the corresponding weights between nodes, W : P ×T ∪ T ×

P −→ N;

3) the read arcs, WR : P × T −→ N;

4) the inhibitor arcs, WI : P × T −→ N∗ ∪ {∞};
5) the TPN initial marking, M0 : P −→ N;

6) the earliest firing delays of transitions, ED : T −→ Q+;

7) the latest firing delays of transitions, LD : T −→ Q+ ∪ {∞}.

The classic definition about Petri nets with no time information ranges from items 1
to 5.

Graphically, no regular arc between two nodes (one place and one transition) means
that the weight is 0, and a regular arc without a weight label means that the weight is 1.
Similarly, no read arc directed from p ∈ P to t ∈ T meansWR(p, t) = 0, and no inhibitor
arc directed from p ∈ P to t ∈ T means WI(p, t) =∞.

A transition t is enabled by a marking M : P −→ N when: ∀p ∈ P, (M(p) ≥
W (p, t)∧M(p) ≥WR(p, t))∧@p ∈ P,M(p) ≥WI(p, t). The set of transitions enabled
by M is denoted En(M).

Items 6 and 7 add quantitative time informations: each transition t bears a static inter-
val [ED(t), LD(t)], with ED(t) ≤ LD(t), specifying the delay after which t is fireable
since the instant it becomes enabled or re-enabled.

2.1.2. Semantics
The chosen operational semantics of TPN is the standard semantics (as in the refer-

ences [2, 6]).

The well-known two characterizations of TPN state [5] are interval state and clock
state: the second one is used here since it is more general than the first one for building
all kinds of abstractions.

TPN semantics is formally defined by means of a timed transition system. Let be a
vector v ∈ (R+)T : v(ti) denotes the local clock of transition ti ∈ T , that is the quantity
of elapsed time since transition ti becomes fireable 2. q = (M, v) is a state of the timed
transition system.

Definition 2. The timed transition system (Q, {q0}, T,→) of a marked TPN is defined
by:

1) the initial state is q0 = (M0, v0) ∈ Q, with v0
def
= (0)T ;

2) the set of the states reachable from q0 are Q ⊆ (N)P × (R+)T ;

3) the alphabet of the discrete transitions is T ;

4) the relation of the timed and instantaneous transitions is→⊆ Q×(T ∪R+∗)×Q,
with:

a) a timed transition by a delay d ∈ R+∗ such as (M,v)
d→ (M, v′) iff:{

v′(ti)
def
= v(ti) + d, ∀ti ∈ T

ti ∈ En(M)⇒ v′(ti) ≤ LD(ti)

b) and an instantaneous firing by a transition ti ∈ En(M) such as (M,v)
ti→ (M ′, v′)

iff:
M ′

def
=M\•ti ∪ t•i

ED(ti) ≤ v(ti) ≤ LD(ti)

∀tj ∈ T, v′(tj)
def
=

 0 if tj ∈ En(M ′)
∧ (tj /∈ En(M\•tj) ∨ tj = ti)

v(tj) else

In Item 4.b of the definition 2, the notation •ti (resp. t•i) represents the multiset 3 of
the input (resp. output) places for transition ti, by the relation W of the regular arcs.

In a state q, any enabled transition is fireable (item 4.b) if its clock value is within the
static interval. Thus, an enabled transition ti must be fired with no more delay if the clock
reaches LD(ti) (item 4.a); otherwise each enabled transition ti may be delayed by d, as
long as any local clock is not increased beyong LD(ti).

After a firing of some transition ti, the clock value of each transition in En(M ′) is
updated (item 4.b): it is reset for a newly enabled transition tj /∈ En(M\•tj) ∨ tj = ti,
and it is not changed for a persistent enabled transition tj ∈ En(M\•tj).

Notice that the clock value of disabled transitions in a state does not mind.

2.1.3. State space abstractions
When time progression is continuous (or dense), the representation of the state-space

by a timed transition system is generally infinite. For a bounded TPN (i.e. a marking
of a place is always finite), different finite abstractions were proposed [3, 5] by hiding

2. If transition ti is not enabled, v(ti) does not mind: this value will not be of no use, to decide
equality between two states for instance.

3. A multiset on a set X is a function Y : X → N; an equivalent notation is Y ∈ (N)X .

state reachable by timed transition, according to properties to preserve (especially LTL
and CTL). Several states sharing the same marking are agglomerated into a state class (a
marking with a set of binary time constraints called a domain), basing on various condi-
tions of state equivalence. The resulting state-space abstraction is called state class graph
(SCG): notably, LSCG (Linear SCG) preserves LTL properties, and ASCG (Atomic SCG)
preserves CTL properties.

2.2. Grafcet
A GRAFCET chart [9] is a graphical representation to model the behaviour of an

automation control part. A GRAFCET chart is made up of two components:
– the structure comprises the steps, the transitions and the directed links. The structure

describes the possible evolutions between the situations, a situation being the set of active
steps at a given time;

– the interpretation is allowed by the literal variables (inputs, outputs, delays, internal
variables, ...) related to the structural elements (steps and transitions). It is done through
the transition conditions (containing: inputs, rising/falling edges of boolean inputs, de-
lays, ...) and the actions (continuous or stored actions attached to steps) updating output
or internal variables.

Figure 1. An example of grafcet.

The simple example of grafcet Fig. 1 has two steps (square blocks numbered 1 and 2,
Step 1 with double square being an initial step), two transitions (1) and (2) respectively
with conditions I1 (an input variable) and 1s/X2 (a timed variable on Step 2), and a
continuous action block which sets the outputO1 when Step 2 is active. The four directed
links connect a step to a transition, or a transition to a step.

Some syntax restrictions are applied to the grafcets for the translation into TPN previ-
ously proposed: no hierarchical concepts of forcing and enclosure, no source transition,
predicates concern only positive counters (as internal variables), timed variables of the
simple form T1/Xn/T2 or T1/Xn.

A grafcet transition is enabled when each of its input steps is active, and is fireable 4

when it is enabled with a true transition condition: the firing provokes simultaneously the
activation of all the output steps, and the deactivation of all the input steps (which are
not reactivated by the same firing stage). Several simultaneously fireable transitions are
simultaneously fired, in the so-called same firing stage: this synchronous property is to
oppose to the asynchronous firings with Petri nets.

4. The concept of fireability with grafcets is thereby to be differentiated from the one of TPNs.

A situation is stable when no transition is fireable. Only external events may cause
an evolution, meaning iterated firing stages, from a stable situation. An external 5 event
is either an input change, or a timed variable change (after some corresponding delay)
called timed event (or delay event).

The algorithm describing the succession of the execution phases of a grafcet is re-
called in the work [12]. Likewise, some ambiguous aspects of the standard [9] requiring
clarifications and how to carry out stored and continuous actions were presented in this
reference.

2.3. About synchronous assumption
Some assumptions about synchronous semantics found the translation principle and

are reminded here to prelude the summary about the translation rules.
Every external event may start an evolution, a succession of transition firing stages. An

evolution is achieved instantaneously to reach a stable situation, before any next external
event which may occur. Thus, the control part of the system which fulfils an evolution,
is supposed to be infinitely faster than the rhythm of the environment producing external
events. Consequently, the elementary time elapse of the control part is inconsiderable
compared to the one of the external clock governing the environment rhythm.

Another consequence of this assumption is that two external events may not occur
in the same instant: the reaction of the control part is always completed between two
consecutive occurrences of external events. In the specific case when two timed events
are synchronous, it is supposed that the control handles them in a total order. It should be
noticed that this assumption does not call into question the possibility of parallel execution
of several grafcet branches derived from a selection divergence, if the transition conditions
allow it.

3. Translation of grafcet into TPN

3.1. The principle
With Petri nets, firings must always be done in a total order: so, the transitions of a

firing stage are totally interleaved in the same instant. To allow the simulation of consec-
utive synchronous firing stages without interference between them, an infinitesimal delay
(ε) is introduced, without calling into question the infinitely faster character of the control
part [12].

Concretely, two consecutive synchronous firing stages of grafcet transitions are sepa-
rated by a delay 2ε0, and the updating of variables (step variables and variables updated
by stored actions) occurred ε0 delay after each instant of firing stage of grafcet transi-
tions, and so occurred ε0 delay before the next firing stage of grafcet transitions in the
same evolution phase.

When no more firing stage is possible (meaning the end of an evolution phase), the
stable situation is reached a delay 3ε0 after the last firing stage (that is a delay 2ε0 after
the last updating): only one occurrence of an external event allows returning to a new
evolution phase, possibly empty of firing stage.

To help an overall understanding of the translation rules reminded in the sequel, a
Petri net at Fig. 2 depicts how a grafcet dynamic is interpreted. For the transitions with

5. external to the processor of the control part of the system.

Figure 2. A Petri net simulating a grafcet behaviour.

structural conflict in Fig. 2, the choice condition is indicated into brackets. An italic text
shows the action of a transition to perform within some delay. Notice that an input rising
or falling edge state is just available a delay 2ε0, thereby only for the conditions of the
first firing stage of the next evolution phase.

Let make clear the general concept of stage after the translation into TPN. A TPN
firing stage is a set of firings performed in the same instant which simulates a grafcet
firing stage. More generally, a stage may also correspond to:

– the set of TPN firings done as variables updating (related to step states or stored
actions) during an evolution phase: it is called update stage,

– or the synchronous firings done in the instant of coming into a stable situation, to
set outputs for continuous actions: it is called into-stability stage,

– or in the instant of leaving a stable situation, to set an external event occurrence and
to reset outputs for continuous actions: it is called out-stability stage.

Thus, a grafcet execution is a cyclic succession of an occurrence of an external event
followed by an evolution phase. This cyclic execution is broken down into the four kinds
of stages. At the system start-up, a early evolution phase is computed: a first update stage
initializes diverse variables, which may trigger a firing stage, then another update stage,
and so on, until reaching a stable situation. Entering a stable situation allows setting
the outputs for continuous actions via the into-stability stage. At the occurrence of an
external event, the out-stability stage updates related variables (changing an input or a
timed variable) before beginning a new evolution phase: a sub-cycle of a firing stage
followed by the subsequent update stage, and so on.

The head firing of a stage is the first firing to begin this stage.
These new denominations are used in the sequel to manage the state-space abstrac-

tions.

3.2. Translation rules
The application of translation rules follows a suitable order to complete the resulting

ε-TPN of a grafcet: the grafcet elements are converted into connected TPN modules com-
posing the ε-TPN. An additional and first module called phase sequencer (Fig. 3) allows
alternation between an occurrence of an external event (the place Stable is marked to
denote a stable situation before producing an external event) and the subsequent reaction
phase (marking of the place Evolution denotes the transient evolution phase following

the external event occurrence), without any interference: especially, no input as external
event may not be modified during a transient evolution. The placeOccurrence is marked
every time a grafcet transition model is fired or when a timed event occurs, allowing to
stay in (or to restart) an evolution phase.

Figure 3. Phase sequencer.

After adding this first module, creation of the TPN modules may follow this suitable
order: steps, inputs, timed variables, outputs, counter variables, continuous actions, stored
actions, grafcet transitions.

The static time interval beared by every transition t of a module get the form of a sim-
ple delay δ(t): δ(t) = ED(t) = LD(t); except for the transiion named Change_input
in Fig. 3: the firing of this transition with interval [0,∞[allows the occurrence of an input
change at any time.

The given (non exhaustive) elements of translation are respectively, at Fig. 4:
– (a): a step i with state variables Xi and Xi,
– (b): an input Ix with rising edge ↑ Ix and falling edge ↓ Ix,
– (c): a timed variable Tj/Xi such as the firing T_j_X_i_to_true expresses an ex-

ternal timed event,
– (d): an example of two continuous actions, with the condition X1 in step 3,
– (e): an example of two transitions, with one shared input step and the condition

I1 + I2 on transition (2).
For each figure, elements in gray are already contained in a previously generated module.

Here, the translation rules are not modified, except slighty for the extra module of the
phase sequencer (Fig. 3): ED(Change_input) which previously has ε0 value is now
replaced by 0. The former value was a trick to make firings related to continuous actions
to occur ε0 delay before a next input change, which is useless now since the transition
Change_input has lesser priority (see Section 4). Moreover, in the previous work [12],
it was possible in a stable situation for an input event to occur just before a timed event in
the same instant to start a subsequent evolution phase, whereas the converse (i.e. a timed
event followed in the same instant by an input event) was not possible. This contradiction
is emended here, since the respect of the synchronous assumptions (cf. subsection 2.3)
prevents multiple occurrences of external events between two evolution phases.

3.3. An example of translation
As an illustration, the translation into TPN of the example of grafcet at Fig. 1 is

provided Fig. 5(b). Two modules are simplified to get the resulting TPN: the step modules

Figure 4. Examples of translated elements of grafcet.

because the grafcet model is safe, and the input module for I1 since the rising and falling
edges are useless.

Definition 3. Tinput and TG denote respectively the transitions modelling input changes
and grafcet transitions.

For the given example, Tinput = {I_1_to_true, I_1_to_false} and TG = {tr_1, tr_2}.
Incidentally, TT = {1s_X_2_to_true}.

3.4. Enhancement on stored action modeling
Here, the goal is to modify the modelling of the ordering of a stored action on a

boolean variable (internal or output). Indeed, the actual model given at Fig. 6(c) al-
lows an unpleasant behaviour: when the grafcet contains undesirably contradictory or-
ders on set and reset the boolean variable Bi in a same situation (one token marking of
the places Set_B_i and Reset_B_i at Fig. (b) corresponds to the orders in Fig. (a)), the
TPN translation at Fig. (c) allows to fire consecutively the transitions B_i__to_true and
B_i__to_false in an infinite loop (in zero time), meaning that an evolution phase may
last indefinitely.

Figure 5. The example of grafcet at Fig. 1 (a) and the translation into ε-TPN (b).

To avoid such a behaviour involving specifically a non-finite update stage, two in-
hibitor arcs are added at Fig. 6(d) representing the new modelling: a set (resp. reset)
order prevents now resetting (resp. setting) Bi in a current update stage. Of course, the
model checking should spot the problem for afterward corrective action in the grafcet
model.

4. Formal definitions on ε-TPN
In this section is formally defined the TPN extension, called ε-TPN, used as the target

model of the grafcet to translate. Moreover, the specificity of the grafcet semantics and
how the ε-TPN modules translate the entities of a grafcet justify some stated features: the
subsequent algorithms about state-space abstraction are based on these features.

4.1. Syntax

Let ε0 be an infinitesimal constant delay comparable to 0+. For n ∈ N, εn
def
= ε0 ×

(n + 1), and E def
= {εn | n ∈ N}. For εn ∈ E and any d ∈ R+∗, it is assumed that:

0 < εn < d and d± εn ≈ d. And E0
def
= E ∪ {0} by extension.

Definition 4. An ε-TPN is a TPN with specific static firing intervals for transitions:

1) the earliest firing delays of transitions, ED : T −→ E ∪ Q+;

2) the latest firing delays of transitions, LD : T −→ E ∪ Q+ ∪ {∞};
3) the set of transitions is made of three subsets, T = TE0 ∪ TT ∪ T∞ such as:

a) ED(t) = LD(t) ∈ E0 when t ∈ TE0 ;

b) ED(t) = LD(t) ∈ Q+∗ when t ∈ TT ;

Figure 6. Stored action.

c) ED(t) = 0 and LD(t) =∞ when t ∈ T∞.

Thus, definition 4 extends the classic definition 1 with use of the infinitesimal delays
(here, E def

= {ε0, ε1, ε2}) in the transition bounds, but restricts the form of the static firing
intervals for transitions which mostly allow only fixed delays.

In the sequel, T∞ = {Change_input} is a single transition denoted by t∞: the
variable delay experienced before such a firing represents the time spent in a stable state
before the occurrence of the next external event.

Transitions in TE model synchronous firings done in an evolution phase. External
events to the control part depend on the transitions {t∞} (an input event occurs in the
same instant of this firing) and TT (delay events for the timed variables): two transitions
of these kinds may never occur simultaneously in the same instant, as imposed by the
operational semantics. Thus, only one firing in the set {t∞}∪TT should trigger a reaction,
that is a sequence of firings in TE0 . The transitions with zero delay value (i.e. with static
interval [0, 0]) may also be used to produce an external event, in order to update some
variables instantaneously.

Subsequently, the fixed delay of a transition t ∈ TE0 ∪ TT is denoted δ(t).

4.2. Operational semantics
If transitions are enabled in both the sets TE0 and T∞ ∪ TT , then transitions in TE0

always have priority to be fired, contrary to the previous work [12] which considers no
such priority. When a transition in T∞∪TT is really fireable, dense time elapse is allowed
in a stable state, by a non-infinitesimal delay. After such an external event, a reaction
phase is entered where only firings in TE0 are possible, before to reach a next stable state.

Compared to previous definition 2, a vector v gets its values in E∪R+: v ∈ (E∪R+)T .

Definition 5. (Q, {q0}, T,→) for a marked ε-TPN is defined by:

1) the initial state is q0 = (M0, v0) ∈ Q, with v0
def
= (0)T ;

2) the set of states reachable from q0 are Q ⊆ (N)P × (E ∪ R+)T ;

3) the alphabet of the discrete transitions is T ;

4) the relation of the timed and instantaneous transitions is→⊆ Q×(T ∪E∪R+∗)×
Q, with:

a) a timed transition by a delay d ∈ E ∪ R+ such as (M, v)
d→ (M,v′):

i) if ∃d ∈ E (infinitesimal time elapse), then:
∃t ∈ En(M) ∩ TE

∀tj ∈ T,

if tj ∈ TE0
then v′(tj)

def
= v(tj) + d,

else v′(tj)
def
= v(tj)

tj ∈ En(M)⇒ v′(tj) ≤ LD(tj)

ii) if ∃d ∈ R+∗ (non-infinitesimal time elapse), then:
@t ∈ En(M) ∩ TE0
v′

def
= v + d

∀tj ∈ En(M)⇒ v′(tj) ≤ LD(tj)

b) and an instantaneous firing by a transition ti ∈ En(M) such as (M,v)
ti→ (M ′, v′)

iff:

ti ∈ TE0 ∨ (@tj ∈ En(M) ∩ TE0)
∧(ti ∈ TT ∪ T∞)

M ′
def
=M\•ti ∪ t•i

ED(ti) ≤ v(ti) ≤ LD(ti)

∀tj ∈ T, v′(tj)
def
=

 0 if tj ∈ En(M ′)
∧ (tj /∈ En(M\•tj) ∨ tj = ti)
v(tj) else

Thus, when the set En(M) ∩ TE0 is not empty in a given state q, a transition t in this
set is fired instantaneously if the clock value v(t) = δ(t), or the least infinitesimal elapse
is observed to make one of them fireable. Meanwhile, clock values do not change for
enabled transitions in TT ∪ T∞. Otherwise, only transitions in TT ∪ T∞ are enabled, and
the common semantics for TPN is applied (definition 2). After a firing, the clocks value
of the transitions En(M ′) are updated in accordance with the standard semantics.

4.3. Adequate features on the ε-TPN
Here is highlighted some features resulting from the translated grafcet into ε-TPN,

features on which the subsequent developments rely on, the state-space abstractions es-
pecially.

The equivalence between a GRAFCET chart and the TPN resulting from the transla-
tion was shown [12]. In particular, an induced first feature is the boundness of the TPN,
which determines the construction of a finite state-space. Boundness implies that each
modelled variable ranges in a finite domain: only an unbounded counter in a grafcet may
call into question this feature.

4.3.1. Deadlock-freeness
This feature results from the phase sequencer (Fig. 3): evolution phase and stable

phase alternate indefinitely, even if an evolution phase between two external events may
be empty of grafcet transition firing (and so empty of internal variables updating): the
transition Evolution_End is just fired.

4.3.2. A stage is finite
This feature results from the structure of the generated finite and bounded TPN. In-

deed, only a structural loop of transitions with zero static delay may cause an infinite

stage. That is to be check locally on modules of translation, because it is not difficult
to apprehend graphically that firings allowed by interconnections between two modules
always imply a non zero static delay transition. Modules with loop by zero static delay
transitions are:

– the phase sequencer, with the transition Firing (Fig. 3): only firings from a grafcet
transition or a transition in TT (in a timed variable module), which are in finite number,
allow this firing;

– an input module (Fig. 4(b)): one token put in the place One_Input_Changing by
the transition t∞ causes only one transition firing in all input modules (Tinput);

– a continuous action module (Fig. 4(d)): a firing depends on the related step state
(Xi or Xi), so only one is possible;

– a stored action module on a boolean variable (the new proposal at Fig. 6(d)): the
subsection 3.4 justifies the finiteness of a such execution.

4.3.3. A non-finite evolution phase is always detectable
A total instability is when an evolution phase lasts indefinitely. It compromises the

synchronous assumption since this evolution will not end before some next external event.
By saving and comparing states reached by each finite firing or update stage constituting
a current evolution, a loop is detectable.

4.3.4. Firings which are relevant to an evolution phase may not be
interfered with the occurrence of an external event

Initially, a first evolution phase is executed, and transitions TT∪Tinput are not fireable.
Then, every time a stable state is reached, an external event te ∈ TT ∪ {t∞} is produced
to begin a new evolution phase. No interference with the first firing stage (after a delay
ε0) of the evolution phase is possible because the remaining firings due to the produced
external event are done in the same instant of the related out-stability stage: the transition
Time_out if te ∈ TT , or one of the transition Tinput if te = t∞. In short, priority avoids
possible interference.

4.3.5. In a stable state, besides transitions TT ∪ {t∞}, only transitions with
static interval [0, 0] may be enabled

Before producing an external event in a stable state, one token in the place Stable
(caused by the transition Evolution_end, when leaving the evolution phase) may allow
firings of zero static delay transitions of continuous action modules 6. Indeed, no more
grafcet or update transition enabled in an evolution phase remains fireable before firing
Evolution_end.

Besides, a firing in TT makes the zero static delay transition Time_out to be enabled,
transition of which firing causes leaving the stable state; whereas the firing of t∞ causes
immediate leaving of the stable state.

4.3.6. When a transition in TT ∪ {t∞} is fired, then only transitions with
zero static delay are fireable in the same out-stability stage

It is contained in the development of the features 4.3.4 and 4.3.5.

6. Notice that in an evolution phase, a firing in a continuous action module is impossible because
it depends on the marking of the place Stable.

4.3.7. When the transition t∞ is fired, then one transition in Tinput for each
input defined in the grafcet is fireable in the same out-stability stage

It is contained in the development of the features 4.3.4 and 4.3.2.

4.3.8. When the transition t∞ is fireable, its clock value does not change
by a concurrent firing in TT

t∞ is fireable after zero-delay firings for stored actions (during an into-stability stage);
then, it remains a priori persistent when a transition in TT is fired at first (to head an out-
stability stage). But a firing in TT causes the enabling of Time_out having priority on
t∞ and fired without delay. Since this firing is in conflict with t∞ (by sharing the place
Stable), t∞ is disabled. Not doing a firing in TT means t∞ will necessarily be fired: an
observed delay is only due to waiting this firing.

5. State space abstractions

5.1. Specificity of ε-TPN abstractions
Each of the four kinds of stages, presented in subsection 3.1, is made of a finite number

of firings (sequential and/or concurrent) done in the same instant (according to feature
4.3.2 in the previous subsection), and the possible interleavings of the synchronous firings
should lead up to the same state. So, to manage the state explosion problem, only one
interleaving should be dealt with, while insuring (if necessary) that the stage always ends
up in a unique and coherent state, by an unexpensive way of checking it: subsection 5.5
suggests a way to check a coherent execution of a stage, so-called the consistency check.

The first level of abstraction, called partial-order state-space, consists in computing
all the reachable state classes by the computed stages, from the initial classC0. In addition
to this first level of abstraction, two subsequent levels more relevant for a grafcet point
of view are considered, by abstracting the informations too specific to the target ε-TPN
model:

– the all situations state-space, containing all the stable and unstable situations of the
grafcet: every firing stage followed by an update stage are merged into one stage,

– and the stable situations state-space, only containing the stable situations of the
grafcet: all consecutive stages between two stable states are merged into one.
In practice, informations in the classes and in the merged stages of these two kinds of
abstraction should be filtered and simplified (as far as renaming places and transitions
modelling the grafcet) to only keep relevant informations about the original grafcet. How-
ever, these conveniences which purpose is to improve the transparence of the state-space
towards the TPN formalism, are taken into account only partially in the sequel: namely
for the transitions of these two high level state-spaces.

The boundness of the ε-TPN may be called into question only by an unbounded
counter variable modelling. So, the test of the state-space finiteness in this eventuality
should be easily integrated in the algorithms, in the classical manner with TPNs [2]: here,
a state-space abstraction is finite iff the ε-TPN is bounded.

5.2. Composite classes
Before presenting the three levels of abstractions, some accommodations are neces-

sary on the usual ways to compute the state class graph (SCG), because of the specificity
of a ε-TPN.

So, an extended definition of class is justified by integration of discrete infinitesimal
time delay ε0 for TE transitions. In fact, for a domain interval such as [0, ε0], time could
only take two values, 0 or ε0, and intermediate values are nonsensical since time is no
more dense. Here, we choose to keep the classic definition of a class domain by con-
sidering 0 instead of εn for the enabled TE transitions. But, another time informations
about discrete clock values of the enabled transitions in TE0 are needed to know which
transitions are really fireable among ones having priority.

A composite state class C is a tuple of a markingM , a clock domainD (a conjunction
of dense time binary constraints between the clock values of all enabled transitions) and
a set of discrete clock values V for the enabled transitions in TE0 . The clock variable
of a transition ti appearing in a global domain D (resp. in the set V) is denoted by τi
(resp. νi). The initial class is C0 = (M0, D0, V0), such as D0 =

∧
ti∈En(M0)

τi = 0 and
V0 = {νi = 0 | ti ∈ En(M0) ∩ TE0}.

For a current class C, if En(M) ∩ TE0 is empty (the set V is empty), the fireability
check of each ti ∈ En(M) and the next class C ′ reached by fireable ti are computed as
usual [5]. Else (i.e. En(M) ∩ TE0 6= ∅), a transition tf having priority must be fired, in
the set {tf | ∀(tf , ti) ∈ (En(M)∩TE0)2, δ(tf)−νf ≤ δ(ti)−νi}; the next class domain
D′ is still computed as usual (by considering 0 bounds for TE transitions) and the set V ′

as follows: ∀ti ∈ En(M ′) ∩ TE0 , ν′i = 0 if newly enabled, ν′i = νi + (δ(tf)− νf) else.
Indeed, a discrete delay (δ(tf)− νf) is observed between the classes C and C ′.

An ε-TPN gets an unbounded static interval, the only one of the transition t∞. Thus,
the risk is an infinite SCG exits, justifying the relaxation operation when using clock state
based abstraction [3], which is necessary for ASCG. Fortunately, transition t∞ may not
induce an infinite number of domains: feature 4.3.8 justifies no need of relaxation, thanks
to mutual exclusion firing between t∞ and TT transitions.

As illustration, the SCG (without partial order execution of the stages) of the example
Fig. 5(b) is made of 41 classes and 50 transitions.

5.3. Abstraction of level 0: Partial-order state-space
To get the level 0 SCG (L0-SCG), a transition between two classes C and C ′ is a

multiset Ts of the firings in a stage (C Ts→ C ′): the intermediate states during a stage are
not saved.

The initial class C0 corresponds to the initial state of the grafcet (initial situation in an
evolution phase, with the setting of the initial value of the diverse variables). So, the first
stage to fire is a firing stage if the initial situation is not stable; otherwise, the transition
Evolution_end is fired to trigger the first into-stability stage. The head firing of a stage
is always the transition Evolution_end (denoted tε2 in the sequel) for an into-stability
stage, and is a transition t∞ or a delay transition in TT (modeling external events) for an
out-stability stage.

For a partial-order state-space of an unambiguous grafcet, it should be noticed that
only classes from which an external event is fireable may get multiple outgoing stage
transitions in L0-SCG. Every firing interleaving of a stage should lead up to the same
class, except when the head firing is a transition t∞ for an out-stability stage: the real input

event is produced by one change among the possibly multiple inputs in Tinput (feature
4.3.7). Therefore, a class from which a transition t∞ is enabled will get as many outgoing
transitions as the number of existing inputs.

1 Input: marked ε-TPN;
2 Output: sets CL0 and TL0 for L0-SCG;
3 CL0 := {C0}; TL0 := {};
4 Stack C0;
5 while the stack is not empty do
6 Unstack C = (M,D, V);
7 if ∃t ∈ En(M) ∩ TE0 then
8 FromEvolution();
9 if C′ /∈ CL0 then Stack C′;

10 AddSCG(C, Ts, C
′);

11 else
12 FromStable() ;
13 end
14 end

Algorithm 1: Construction of the L0-SCG

Algorithm 1 describes the construction of the L0-SCG. It is globally structured like the
classical algorithm computing a PN state graph, but with lines 7-13 specialized to stages
computing (and saving only classes reached by the stages) as macro-transitions instead
of simple transition firings. Stages are computed by calls to procedures FromEvolution
at line 8 and FromStable at line 12. FromEvolution (resp. FromStable) implicitely deals
with firing stages, update stages and in-stability stages (resp. out-stability stages). None
of these procedures is provided with test of execution finiteness (or loop detection) thanks
to the feature 4.3.2. Moreover, because of the deadlock-freeness (feature 4.3.1), a head
firing t is always found to begin a stage from a new class C to treat from the stack: either
a transition having priority at line 7, or an external event at line 11.

1 Find any fireable transition t′ from C;
2 Compute the successor class C′; Ts := {{t′}};
3 while ∃t′′ ∈ En(M ′) ∩ TE0 , with t′′ and t′ fireable at the same time do
4 Compute C′′ from C′; Ts := Ts ∪ {{t′′}}; C′ := C′′;
5 end

Procedure FromEvolution

If the class reached by the stage computed by the procedure FromEvolution at line
8 of Algorithm 1 is a new one, this class is stacked at line 9 to handle it later, and next
at line 10 is saved the new transition caused by this stage with the call to the procedure
AddSCG.

1 Input: C, Ts, C′;
2 if C′ /∈ CL0 then
3 CL0 := CL0 ∪ {C′}; TL0 := TL0 ∪ {(C, Ts, C

′)};
4 end
5 TL0 := TL0 ∪ {(C, Ts, C

′)};
Procedure AddSCG

1 foreach t′ ∈ En(M) fireable from C do
2 Compute C′ from C; Ts := {{t′}};
3 if t′ = t∞ then
4 foreach transition t′′ ∈ En(M ′) ∩ Tinput do
5 Compute C′′ from C′; Ts := Ts ∪ {{t′′}};
6 if C′′ /∈ CL0 then Stack C′′;
7 AddSCG(C, Ts, C

′′);
8 end
9 else

10 while ∃t′′ ∈ En(M ′) ∩ TE0 such as δ(t′′) = 0 do
11 Compute C′′ from C′; Ts := Ts ∪ {{t′′}}; C′ := C′′;
12 end
13 if C′ /∈ CL0 then Stack C′;
14 AddSCG(C, Ts, C

′);
15 end
16 end

Procedure FromStable

Lines 7-10 of Algorithm 1 deal with any stage, except the out-stability stage which is
managed at line 12 with the call to the procedure FromStable: the if block of the procedure
(lines 3-8) deals with firing t∞ followed by a firing in the set Tinput in the same instant
(feature 4.3.7); the else block (lines 9-15) deals with a timed event firing in TT followed
by firings of transition with zero static delay (feature 4.3.6), in fact a singleton set made
of the transition Time_out (feature 4.3.5) to return to an evolution phase.

The usage of a stack by Algorithm 1 to save classes is pertinently justified when inter-
leavings are necessary for possible multiple external events in a stable state (lines 6 and
13 of the macro FromStable). The AddSCG procedure call at lines 7 and 14 of the macro
FromStable allows to save relevant classes and the related transitions as stages.

The consistency check of a stage evoked in subsection 5.1 may be useful, especially
for an update stage: the procedure is presented in the subsection 5.5.

The procedures FromEvolution, FromStable, and AddSCG are reused for the follow-
ing levels of abstraction in the next subsection. Notice that it is supposed SCG data in
Algorithm 1 are shared with the procedures, as the current class informations (C, C ′, Ts,
...) for the macros FromStable and FromEvolution.

Besides, it may be observed that the stack used for Algorithm 1 contains as well stable
states as unstable (i.e. evolution) states. And the possibility of a total instability of the
grafcet model evoked in subsection 4.3, does not mind yet here; this is taken into account
in the sequel.

As illustration, the L0-SCG of the example Fig. 5(b) is made of 18 classes and 21
transitions, detailed in Table 1.

5.4. Abstractions of levels 1 and 2: grafcet situations state-space
Algorithm 2 describes the constructions of the L1-SCG (level 1 SCG, with the sets CL1

and TL1) and L2-SCG (level 2 SCG, with the sets CL2 and TL2), which are worth doing
as grafcet state-space. These constructions are more largely based on the knowledge of
the possible succession order of the different stages induced by a grafcet semantics:

– a firing stage is always followed by an update stage: these consecutive stages are
merged in practice for a grafcet, and the intermediate state between them does not need

Table 1. L0-SCG transitions of the example Fig. 5(b).
Transitions Ts Transitions Ts Transitions Ts

C0
Ts→ C1 tε2 C6

Ts→ C7 tε2 C11
Ts→ C12 Activate_Step_1,

Deactivate_Step_2,
1s_X_2_false

C1
Ts→ C2 t∞ , I_1_to_true C7

Ts→ C8 t∞ , I_1_to_true C12
Ts→ C13 tε2

C2
Ts→ C3 tr_1, Firing C7

Ts→ C15 1s_X_2_true, C13
Ts→ C14 Deactivate_Step_1,

Time_out Activate_Step_2

C3
Ts→ C4 Deactivate_Step_1, C8

Ts→ C9 tε2
C14

Ts→ C15 tε2
Activate_Step_2

C4
Ts→ C5 tε2

, O_1_true C9
Ts→ C6 t∞ , I_1_to_false C15

Ts→ C16 tr_2, Firing

C5
Ts→ C6 t∞ , I_1_to_false C9

Ts→ C10 1s_X_2_true C16
Ts→ C17 Activate_Step_1,

Time_out Deactivate_Step_2,
1s_X_2_false

C5
Ts→ C10 tε2

C10
Ts→ C11 tr_2, Firing C17

Ts→ C1 1s_X_2_true,
Time_out

1 Input: marked ε-TPN;
2 Output: sets CL1 and TL1 (L1-SCG), sets CL2 and TL2 (L2-SCG);
3 CL1 := {C0}; CL2 := {}; C = C0;
4 TL1 := {}; TL2 := {};
5 repeat
6 FromEvolution(); // Firing Stage

7 C∗ := C; C := C′; T∗,s := Ts ∩ TG;
8 FromEvolution(); // Update Stage

9 Make the consistency check of the stage Ts;
10 if C′ ∈ CL1 then exit (NEVER_STABILITY) ;
11 AddSCG1(C∗, T∗,s, C′); C = C′;
12 until tε2 is fireable from C;
13 FromEvolution(); // Into-stability Stage

14 AddSCG1(C, {tε2}, C′); Stack C′ in STACK1;
15 while STACK1 is non empty do
16 Unstack CS from STACK1; C = CS ;
17 FromStable2(); // Out-stability Stage

18 while STACK2 is not empty do
19 Unstack (Text, C) from STACK2;
20 Loc_Classes := {C};
21 repeat
22 FromEvolution(); // Firing Stage

23 C∗ := C; C := C′; T∗,s := Ts ∩ TG;
24 FromEvolution(); // Update Stage

25 Make the consistency check of the stage Ts;
26 if C′ ∈ Loc_Classes then exit (NO_STABILITY) ;
27 if C∗ /∈ CL1 then AddSCG1(C∗, T∗,s, C′) ;
28 Loc_Classes := Loc_Classes ∪ {C′}; C := C′;
29 until tε2 is fireable from C;
30 FromEvolution(); // Into-stability Stage

31 if C /∈ CL1 then AddSCG1(C, {tε2}, C′) ;
32 if C′ /∈ CL2 then Stack C′ in STACK1 ;
33 AddSCG2(CS , Text, C

′);
34 end
35 end

Algorithm 2: Construction of the L2-SCG

to be saved (lines 6-8 and 22-24);
– class C0 starts an evolution phase which eventually ends with a first stable situation

(lines 5-12);
– any total instability should be detected (at lines 10 and 26) to abort the SCG com-

puting.
For L1-SCG, the procedure AddSCG1 replaces AddSCG (at lines 11, 27 and 31 in

Algorithm 2, and at lines 7 and 14 in procedure FromStable2 replacing FromStable) by
rather acting on the sets CL1

and TL1
(instead of the sets C and T with Algorithm 1).

The first stable state class (i.e. a state class such as the place Stable is marked, meaning
a state of a stable grafcet situation) is saved on STACK1 at line 14: STACK1 contains
all the stable state classes to be treated, by computing their successor classes. For each
class pulled from STACK1 (line 16), the next classes reached by each possible external
event with the related out-stability stage are saved on STACK2 by the macro FromStable2
replacing FromStable, with the same code lines but with some name substitutions. Indeed,
lines 6 and 13 for the macro FromStable2 acts now on STACK2 (instead of Stack with
Algorithm 1) which contains only classes reached by an out-stability stage, that is the
states beginning an evolution phase. Besides, the set Text = Ts ∩ (Tinput ∪ {t∞}) (resp.
Text = Ts ∩ TT) replaces Ts in the call AddSCG1 at line 7 (resp. line 14) of the macro
FromStable2. Precisely, STACK2 saves a couple (Text, C) instead of a simple class C at
lines 6 and 13 in the macro FromStable2.

Each item of the STACK2 is treated (lines 18-34 of Algorithm 2), allowing thereby to
compute the successive classes until reaching the next stable state class, saved in STACK1
if new (line 32). To detect a possible total instability (always detectable according to the
feature 4.3.3) which might prevent reaching some next stable state class, the following
classes encountered (and only derived from the current stable state class CS to treat) are
stored in the set Loc_Classes: so, if a loop back is done before reaching an expected
stable state, that would mean that the instability is never left, and therefore the algorithm
is stopped (line 26). The same precaution is taken to reach the first stable state class
from C0 (line 10), by using directly the set CL1

which is not derived from multiple stable
state classes meanwhile. Notice that constituting Loc_Classes is not subject to explosion
since no interleaving is considered before reaching the next stable state class.

L2-SCG is constituted only at the line 33 of Algorithm 2 with the macro AddSCG2:
only the external event (Text) minds between two stable state classes. It should be men-
tioned that a transition Ts between two classes, as well for L1-SCG as for L2-SCG, is
now a simple set to only reflect the grafcet model elements: either Text, or {tε2 =
Evolution_end} (from an evolution phase to a stable state, lines 12-14 and 29-31) or
Ts∩TG (for a firing stage, with the subsequent update stage, at lines 6-8 and lines 22-24).

If only L2-SCG minds as the state-space to generate, then the calls to the macro
AddSCG1 should be discarded in Algorithm 2 and in procedure FromStable2.

The consistency check is done for an update stage at lines 9 and 25.
At lines 14 and 31, although the transition Ts = {tε2} is specific to ε-TPN, it expresses

the leaving of an evolution phase, and it may be useful to detect a deadlock in the source
grafcet (i.e. an always empty evolution phase).

As illustration, the L1-SCG of the example Fig. 5(b) is made of 14 classes and 17
transitions: it just saves the classes {C3, C11, C13, C16} in the L0-SCG. The L2-SCG is
made of 4 classes and 7 transitions, detailed in Table 2.

In the second column of Table 2, only relevant variables are represented: X1, X2, O1

and I1. In particular, the variable 1s/X2 is obviously always false in a stable state. The

Table 2. L2-SCG classes and transitions of the example Fig. 5(b).
Classes Some variables Transitions

at true value

C1 X1
{t∞,I_1_to_true}−−−−−−−−−−−→ C5

C5 X2, O1, I1
{1s_X_2_true}−−−−−−−−−→ C1

{t∞,I_1_to_false}−−−−−−−−−−−−→ C7

C7 X2, O1
{1s_X_2_true}−−−−−−−−−→ C1

{t∞,I_1_to_true}−−−−−−−−−−−→ C9

C9 X2, O1, I1
{1s_X_2_true}−−−−−−−−−→ C1

{t∞,I_1_to_false}−−−−−−−−−−−−→ C7

domains of the stable state classes are such that all firings get the clock interval [0, 0],
except transition 1s_X_2_true with clock interval [0, 1] in the classes C7 and C9.

5.5. Consistency check of an update stage
Basing on the equivalence of behaviour between a grafcet and the corresponding ε-

TPN, consistency check is only reserved for an update stage where ambiguity in a grafcet
model may lead to contradictory actions. Indeed, incompatible update firings may con-
cern stored actions on activation or deactivation:

– stored action on boolean output (or boolean internal variable): set and reset a given
variable from a same situation. Subsection 3.4 deals with this case by preventing set and
reset of a variable Bi in the same update stage: places Set_B_i and Reset_B_i will
remain marked at the end of the stage;

– on nonnegative counter: reset, and increasing or decreasing a given counter Ci from
a same situation.

To detect such a contradiction after an update stage, a solution may be to make sure
that activate or deactivate firings to update the states of various steps (for a step i, it is done
by transitions Deactivate_Step_i and Activate_Step_i in the related ε-TPN) do not
cause contradictory stored actions, by pairs of such update transitions. To implement this
solution, from the structure of the ε-TPN, the set of update transitions for each variable
(counter or boolean) may be established, before computing the state-space. For n activate
or deactivate firings concerning the same variable, n(n− 1)/2 pairs are possible. So, for
m variables in the model related to some stored action and nmax maximum number of
update firings per variable, the complexity of an update stage test is in polynomial order:
it is bounded by m× nmax × (nmax − 1)/2.

The test fails when for some variable, two update firings are incompatible. However,
the presented solution just gives a sufficient condition to detect an ambiguity in stored
actions. For instance, multiple updates of a counter in a stage may always lead to the
same state.

5.6. Taking into account CTL∗ model checking
With ε-TPN, a specific way for computing SCG is necessary to take into account

CTL∗ model checking, like for the classic TPNs in general. This is justified by the
transition t∞ introducing convex domains, with multiple possible values of clocks for a
same firing in a class.

ASCG is computed from an intermediate SCG [5] (SSCG or CSCG), which may be
one of the levels of abstraction presented previously. Obviously, the operation of splitting
non-atomic state classes is worth doing only when no priority transition is fireable, that
is from the classes reached by the in-stability stages: a head transition from such classes
are in the set {t∞} ∪ TT . So, L0-SCG, L1-SCG and L2-SCG (in fact L0-SSCG, L1-
SSCG and L2-SSCG respectively) will serve to create respectively L0-ASCG, L1-ASCG
and L2-ASCG, using the algorithm described in the work [5]. No particular adaptation is
necessary for that purpose, a firing tf from a class to split is just now a set including an
external event and a zero delay transition.

As in the work [5], to reduce the size of the intermediate abstraction from which an
ASCG is computed, comparing a new class with the stored classes will consist in inclusion
test (to obtain CSCG) instead of equality test when computing an SSCG: it is again worth
only from the classes reached by the in-stability stages.

The relaxation operation of a class when computing an SSCG or CSCG is justified
when an unbounded delay transition (such as t∞) may remain persistent after firing a
delayed transition (such as an element of TT). So if the grafcet does not contain a non-
zero delay transition (TT = ∅), relaxation is always useless. The feature 4.3.8 makes
anyway useless the relaxation operation, except when observers are introduced in the
next section.

6. Conclusion
The formal syntax and semantics for ε-TPN are proposed here, with some modifica-

tions made on the original description done in a previous work [12], mainly in order to
simplify the construction of the ε-TPN state-space abstractions. Then, two algorithms are
described to produce state-space abstractions, according to a partial-order semantics to
cope with state explosion due to the concurrency inherent to a TPN formalism. A pro-
posed consistency check should be applied to a stage (i.e. transition firings done in the
same instant), especially for the update stages which may contain contradictory orders
by the grafcet stored actions. The second algorithm generates the two abstractions rele-
vant from a grafcet point of view: the all situations state-space and the stable situations
state-space.

Based on the more clear definitions and characterisations about ε-TPN, a general per-
spective is to take into account the modelling of other concepts of the GRAFCET standard
such as the hierarchical concepts of forcing and enclosure, by extending the translation
rules.

Another extension of the current work is to allow model-checking for quantitative time
properties. Indeed, TCTL [1] is a quantitative time temporal logic applicable to TPNs [4],
and a perspective may be to adapt it to ε-TPN.

7. References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information and
computation, 104(1):2–34, 1993.

[2] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using time
Petri nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

[3] B. Berthomieu and F. Vernadat. State class constructions for branching analysis of time Petri
nets. In TACAS, pages 442–457, 2003.

[4] H. Boucheneb, G. Gardey, and O. H. Roux. TCTL model checking of time petri nets. Journal
of Logic and Computation, 19(6):1509–1540, Dec 2009.

[5] H. Boucheneb and R. Hadjidj. CTL* model checking for time Petri nets. Theor. Comput. Sci.,
353(1):208–227, 2006.

[6] G. Bucci and E. Vicario. Compositional validation of time-critical systems using communicat-
ing time Petri nets. IEEE Trans. Softw. Eng., 21(12):969–992, 1995.

[7] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer Publishing
Company, Incorporated, 2nd edition, 2010.

[8] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model checking. MIT Press, Cambridge,
MA, USA, 1999.

[9] IEC 60848. Grafcet specification language for sequential function charts. Technical report,
International Electrotechnical Commission, 2013.

[10] IEC 61131-3. Programmable controllers - part 3: Programming languages. Technical report,
International Electrotechnical Commission, 2013.

[11] D. L’Her, P. Le Parc, and L. Marcé. Proving sequential function chart programs using timed
automata. Theoretical Computer Science, 267(1-2):141–155, 2001.

[12] M. Sogbohossou and A. Vianou. Formal modeling of grafcets with Time Petri nets. IEEE
Transactions on Control Systems Technology, 23(5):1978–1985, Sept 2015.

[13] N. Wightkin, U. Buy, and H. Darabi. Formal modeling of Sequential function Charts with
Time Petri nets. IEEE Transactions on Control System Technology, 19(2):455–464, 2011.

