
HAL Id: hal-02112905
https://hal.science/hal-02112905

Submitted on 27 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Omega and OpenType Fonts
Yannis Haralambous, John Plaice

To cite this version:
Yannis Haralambous, John Plaice. Omega and OpenType Fonts. Glyph and Typesetting Workshop,
East Asian Center for Informatics in Humanities, the 21st Century COE, Kyoto University, Nov 2003,
Kyoto, Japan. �hal-02112905�

https://hal.science/hal-02112905
https://hal.archives-ouvertes.fr

Kyōto University 21st Century COE Program

Omega and OpenType Fonts

Yannis Haralambous John Plaice

Abstract

The time has come for Omega to break its bounds with TFM/VF fonts and move forward to font formats
of the “real world.” Our choice of candidate of font format for Omega is the OpenType font format. In
this talk we start by describing the four-step process of switching to OpenType. Then we compare the
information contained in TFM/VF with the one of these fonts, and comment the necessary conversion
of TeX/Omega fonts into the new format. Finally, we give an almost complete list of TrueType and
OpenType tables and discuss their possible interest and modality of use, in the Omega context.

Omega, the successor of TEX, uses OFM and OVF

fonts, which are an extension of TFM and VF fonts

to 16 bits. It produces DVI files, in which one finds

only names of TFM/OFM files and glyph positions

in the font tables. When converting DVI files into

PostScript, the task of finding the PostScript type 1

fonts corresponding to TFM/OFM and including

them in the PostScript code is handled by an ex-

ternal utility, odvips.

On the other hand, when a PostScript is converted

into PDF, Acrobat will guess the Unicode corre-

spondence of each glyph by inspecting the glyph’s

name in the PostScript font. This means that to get

textual information from the TEX file into the PDF

file one needs TFM/OFM and PostScript type 1 to

agree, and glyph names to be correct. Otherwise

we have no guarantee that everything will turn out

correctly.

Nowaday there are several font formats widely

used:

• PostScript type 1 fonts are inspired by

PostScript language: they are dictionaries,

glyphs are accessed by their names, their de-

scriptions use a very restricted set of special

PostScript operators. They have fixed encod-

ings with at most 256 positions;

• TrueType fonts are binary data structures

based on tables. Information in tables in ac-

cessible through pointers. Glyph descriptions

are accessed by their location in the code, there

is table (cmap) mapping them to Unicode posi-

tions. TrueType instructions can dynamically

modify the outline according to the context;

• OpenType fonts are TrueType structures with

Keywords: Omega Fonts OpenType

TrueType or PostScript glyph descriptions.

They contain pattern-matching tables for con-

textual glyph positioning and substitutions;

• AAT fonts are TrueType structures with ex-

tra tables. They contain finite state machines

for glyph positioning and substitutions. (Ma-

cOS X);

• Graphite fonts (by SIL) are also TrueType

structures with extra tables, containing finite

state machines. For the time being they can be

used only in two programs: WorldPad (Win-

dows), and Drusilla (Linux).

Up to now Omega can only use TFM/OFM fonts

and odvips only VF/OVF and PostScript type 1

fonts. We have decided that the time has come to

switch to a TrueType based format. At the moment

the most promessing choice is OpenType, but AAT

and Graphite should not be neglected.

Adapting Omega to OpenType is a three-step pro-

cess:

1. make odvips read OpenType fonts,

2. convert Computer Modern and Omega fonts

into OpenType,

3. make Omega read OpenType fonts;

Step (1) of this process has been accomplished

with success. ENST Bretagne Students Gbor Bella

and Anish Mehta have worked on this project.

1 How odvips deals with OpenType

fonts

A utility called makepfc will extract data from a

TTF or OTF/CFF font and create a PFC font.

volumetitle

PFC is a TrueType-based data structure contain-

ing the following tables:

1. oCHR contains type 1 encrypted charstrings for

all glyphs in the font,

2. oMAP contains glyph code, Unicode character

correspondence, PostScript name and a pointer

to the location of each glyph in oCHR,

3. oGFD contains global font information,

4. oPRI contains the private dictionary,

5. oSUB contains subroutines;

PFC tables can be inside a TTF font or in a sep-

arate file.

odvips will find out which glyph codes are needed

and will extract the descriptions from the PFC file.

Then it will make as many internal PostScript type 1

fonts as necessary and will include them in the

PostScript file.

On figure ?? on can see an organigramm of the

various ways odvips will respond to a font request

in the DVI file.

Instead of making PFC, one could also make as

many type 42 fonts as necessary. But then odvips

would hence produce level 2 code and we have no

idea about how PostScript operators like glyphshow

or charpath would react.

Wa can also ask ourselves the question: is it a

good strategy to keep instructions? Is Omega going

to produce resolution-dependent PostScript code?

2 Storing TFM Data in OpenType

Let us see now how we will be able to store the

information already contained in TFM files in Open-

Type structures. A TFM file contains the following

information:

• Global information:

– CHECKSUM: not needed since can re-

calculated,

– DESIGNSIZE: can go into size feature of

the GPOS table,

– DESIGNUNITS: can go into unitsPerEm en-

try in head table,

– CODINGSCHEME, FAMILY, FACE: are obsolete

and useless;

• Basic font parameters:

– SLANT: can go into italicAngle in post

table,

– SPACE: can be the width of SPACE glyph,

– STRETCH not provided in OpenType phi-

losophy. Maybe it could be expressed as

width delta clusters in an AAT just ta-

ble,

– SHRINK (idem),

– XHEIGHT: can go into sxHeight entry in

OS/2 table,

– QUAD: not provided in OpenType philoso-

phy,

– EXTRASPACE: not provided;

• Other font parameters:

– DEFAULTRULETHICKNESS: can go into

underlineThickness in post table,

although this is not exactly the same

notion,

– SUPDROP could be ySuperscriptYOffset

in OS/2,

– SUBDROP could be ySubscriptYOffset in

OS/2,

– BIGOPSPACING1-5, SUP2, SUP3, SUB1,

SUB2, DELIM1, DELIM2: not provided,

– AXISHEIGHT: can go into BASE or base ta-

ble, but then we have to know which script

and language we will be using with this

font;

• Kerning pairs: KRN: can be converted into

lookups of type 2, in GPOS table;

• Dumb and smart ligatures: LIG, /LIG, /LIG>,

LIG/, LIG/>, /LIG/, /LIG/>, /LIG/>>: can be

converted into lookups of type 4, in GSUB table;

• Basic information for each glyph: figure 2 shows

that the dimension model of a glyph is different

for TEX and for OpenType.

– CHARWD: can go into hmtx table,

2

volumetitle

Figure 1: odvips responding to a font request in the DVI file.

height

baseline
depth

w
id

th

w
id

th

it
al

ic

co
rr

ec
ti

on

Figure 2: Dimensions for TEX/Omega and for Open-

Type.

– CHARHT: is not provided in OpenType phi-

losophy, although most of the time it is the

height of the glyph,

– CHARDP: same, but for the depth of the

glyph,

– CHARIC: not provided at all, since Open-

Type cannot act across fonts, and italic

correction is only useful when we change

fonts;

• Gadgets for each glyph:

– VARCHAR: can go into GPOS table,

– NEXTLARGER: can go into GSUB table.

Once we have stored TFM information into an

OpenType font we can consider virtual fonts:

• MOVE*, SETCHAR: can be obtained through True-

Type composite glyphs;

• POP, PUSH: are not really needed since we can

replace them by adequately chosen by MOVE*

instructions;

• SETRULE: we just need to draw a glyph in glyf

or CFF table;

3

volumetitle

• MAPFONT: it is not possible to include other

OpenType fonts: we will have to make big fonts

which include all glyphs;

• SPECIAL: it is not possible to include special

code in a glyph.

3 Using OpenType Data in Omega

Now that we have seen how to store TFM and

VF data in an OpenType structure let us consider

the inverse problem: given an OpenType font, how

can we take advantage of its data to typeset with

Omega?

We will take a quick overview of most of the in-

teresting OpenType tables.

3.1 cmap

This table provides a Unicode correspondence for

each glyph. It allows to find the right glyph name

when TTF or OTF is converted into type 1.

We will use it with format 4 (16 bits, eventu-

ally sparse), platformID 0 (Unicode), encodingID 0

(Unicode 2+)—or, if necessary, the one with

format 4 (16 bits, eventually sparse), platformID 3

(Windows), encodingID 1 (Unicode 2).

Nevertheless, let us note that the AAT table Zapf

is a better alternative than cmap.

3.2 head

This table contains general information about the

font. Among the data it contains, the unitsPerEm

value will be needed to translate glyph coordinates

into global ones, if we want to delve into glyphs.

3.3 hhea

This table contains general information about

horizontal typesetting with the font. It is of no in-

terest to Omega.

3.4 hmtx

This table contains horizontal widths for all

glyphs. It is absolutely essential to us because it

is the place where widths of glyphs are stored, but

there is a caveat : these widths can be modified a

posteriori by TrueType instructions, and this why

we also need the hdmx table.

3.5 maxp

This table contains maximum values for various

quantities (number of glyphs, max number of con-

tours, max number of Bézier points, etc.). Its only

interest is to provide useful values for memory allo-

cation when delving into glyphs. It is unnecessary

since we are using dynamic allocation of memory.

3.6 name

This table contains various textual information

about the font, in any language and encoding. Since

Omega is not interactive, it could be useful only for

the log file: the name of the font in the name table is

more legible than its file name. This way we could

have multilingual (politically correct) log files.

3.7 OS/2

This table contains useful numeric data. For ex-

ample:

• sxHeight is the x-height, there is also

sCapHeight. These can be useful for accent

placement in the absence of marks;

• ulUnicodeRange1-4 can warn us that the cur-

rent font is not capable to typeset in a given

script, so that we can search for a substitute;

• panose can be used for finding a look-alike of

the current font, again for typesetting a missing

glyph;

• if no substitute font can be found,

xAvgCharWidth can be the width of the

“missing glyph;”

• usDefaultChar gives us a possible “missing

glyph;”

• ySuperscriptYOffset et al. can give us a

clue about how to typeset superscripts and sub-

scripts;

• usBreakChar: the word separator. Really a

bad idea!

• maxContext: how many glyphs must be kept in

memory to apply pattern matching.

4

volumetitle

3.8 post

This table contains information needed for con-

verting from TrueType to PostScript type 1 or

type 42.

The italicAngle entry contains the slant param-

eter which we need for accent placement, in the ab-

sence of GDEF marks.

The underlinePosition and underlineThick-

ness entries can be useful for underlining.

Some versions of post table also contain

PostScript glyph names for all glyphs: this can be

useful to odvips when creating mini-type 1 fonts.

3.9 loca

This table contains pointers to TrueType glyph

descriptions, it is indispensable if we want to delve

into glyphs, useless otherwise.

3.10 glyf

This table contains TrueType glyph descriptions,

bounding boxes and instructions. We may want to

delve into glyphs to find out information about their

shapes, in the absence of marks. For example in the

figure below:

we have an Esperanto letter “h” with circumflex ac-

cent. Only by examining the glyph outline, and do-

ing shape recognition, will we be able to place the

circumflex accent correctly on the letter.

Nevertheless we must be very carefull with True-

Type instructions because they can modify shapes,

origin points and widths!

3.11 fpgm, prep, cvt

These tables contain TrueType instructions ex-

ecuted when the font is loaded, or when its size

its changed. They can be useful to Omega only if

we have to execute instructions to get resolution-

dependent values related to glyph shapes.

3.12 CFF

This table contains the PostScript type 2 descrip-

tions of glyphs. Once again, it can be useful to

Omega only if we want to delve into glyphs. It will

be more difficult to analyze than TrueType glyph

descriptions.

Also we must consider the fact that type 2

charstrings can not be executed by ordinary

PostScript interpreters, which is quite a paradox,

and hence type 2 fonts must be converted into

type 1. This conversion is mostly straightforward,

since most type 2 operators are there only for opti-

mization, others are mathematical and can easily be

replaced by the calculated result. Only a few can-

not be converted at all, as for example the random

operator.

3.13 VORG

This table contains the coordinates of vertical ori-

gins of glyphs. It is absolutely necessary when doing

vertical typesetting.

3.14 EBLC, EBDT, EBSC

This table contain bitmap glyphs and related in-

formation. We would need to convert these into

PostScript type 3, in the same way as PK fonts.

Is this necessary?

First of all, there will always be bitmap fonts

around.

And also Luc Devroye seeks the perfect font, a

bitmap font with a resolution such that pixels have

the size of molecules.

So, let us keep the bitmap option open.

3.15 DSIG

This table contains a digital signature of the font.

It should be avoided since it is only a good way to

make font developers pay $400 per year for the rest

of their life.

But it does raise the question of authentication of

fonts, which, in turn, raises the question of identifi-

cation of fonts.

3.16 gasp

This table informs the system about how to ras-

terize the font. It is useless to Omega.

5

volumetitle

3.17 hdmx, LTSH

The hdmx table contains glyph widths in pixels,

not to confuse with hmtx, which contains values in

abstract glyph coordinates. It can be useful if we

want to produce PostScript code for a given res-

olution (for exemple, for low-resolution hand-held

devices—there is a project on making fonts for Palm

with Metafont.

The LTSH table contains values from which inter-

polation is linear. It gives us a range of possible

acceptable resolutions for a given typeset document.

3.18 kern

This is the old way for obtaining kerning pairs.

This table can have various subtables in different

formats: format 0 is the plain one; format 3 is the

AAT one: it contains a finite state machine. An ex-

ample where this could be useful: “S.A.V.” would be

much better typeset with a small kern between the

period and the “V”: “S.A.V.” but this kern should

only occur when the period is preceded by an “A,”

or a similar letter.

In OpenType it is better to use GPOS to obtain

contextual kerning.

This raises a problem: Omega, like TEX, does not

use a SPACE character, so how do we kern with it?

We need to be able to apply kerning to word bound-

aries, when not at line boundaries.

3.19 VDMX

This table contains global pixel information about

vertical typesetting (not to confuse with an hypo-

thetical vertical version of hdmx). It is of little use

to Omega.

3.20 vhea, vmtx

These are the vertical counterparts of hhea and

hmtx. The latter is absolutely necessary if we want

to typeset vertically: it contains the vertical widths

of glyphs.

3.21 BASE

This table contains the heights of various base-

lines, relative to the dominant script (see fig. 3).

They could be quite useful to Omega when mix-

ing scripts. It raises the question: should baseline

changes be valid only for the current font, or should

they be persistent between fonts?

3.22 Advanced Typography tables

The tables GPOS, GSUB, GDEF and JSTF are the

OpenType “Advanced Typography” tables.

The system works as follows: the user choses fea-

tures, which call lookups. Lookups apply transfor-

mation rules which are either positionning (GPOS) or

substitution (GSUB) rules.

In a TEX document, feature choices have to be in-

dicated by special primitives. In an Omega IDE, one

should expect to have an OpenType-compliant edi-

tor which will include the feature-choice primitives

in a transparent way.

Let us consider these tables.

3.23 GPOS

The table GPOS contains lookups for glyph posi-

tioning. There are 9 kinds of lookups:

• lookup type 1: simple positionning. This lookup

will move a glyph in some direction, when this

lookup is requested by a feature. In the follow-

ing example, parentheses are raised to obtain a

better fit with capital letters:

• lookup type 2: pair positionning, as for example,

kerning. This is actually more powerful than

kerning since either one of the two glyphs can be

moved in any direction. One can use individual

glyphs, glyph classes or covering tables;

• lookup type 3: cursive attachment. Very useful

for calligraphic scripts or Arabic. One often

forgets one of the flags of the lookup, which

indicates whether it is the first or the last glyph

of a sequence which is aligned on the baseline.

6

volumetitle

Figure 3: Base lines for three different scripts: latin, ideographic and tibetan.

This lookup is essential for writing in Urdu, but

we need a special micro-engine in Omega, which

will be able to memorize glyph positions and

move a whole block at the end of a “run.”

• lookup types 4 and 6: diacritics, and diacrit-

ics upon diacritics. These lookups define at-

tachment marks. This can be eextremely use-

ful for Omega since it will allow placement

of arbitrary diacritics over arbitrary letters or

other diacritics—nevertheless one must be care-

ful about potential kerning: if a given diacritic

has to be kerned with a base glyph, or if we

have to kern between two diacritics, special at-

tachment marks must be defined, and this can

quickly become a mess.

• lookup type 5: diacritics on ligatures. It defines

attachment marks for different parts of a liga-

ture glyph. It can also be extremely useful for

Omega. Especially in fonts like Prestige:

where we have many ligatures and need to place

accents upon them. This operation raises some

interesting questions: what is the accent that

should be upon INDNIABLE in the exemple

above? Is it a grave or an acute accent?

• lookup type 7: contextual positionning. It is

a kind of “virtual” lookup, since it calls other

lookups (of types 1–6) when a certain pattern

is matched. Here is an example of contextual

kerning:

Contextual positionning can be easily con-

verted into an OTP, except that we need better

primitives for moving glyphs vertically (besides

\raise). Even if glyphs are moved vertically

they must remain a single glyph chain, so other

lookups can be applied.

• lookup type 8: extended contextual positionning.

This lookup type is like type 7, but uses also a

backtrack and a lookahead.

The lookahead can be easily used into an OTP,

with the <= operator which will put characters

back into the data flow. For the backtrack we

need to extend the operational model of OTPs:

one must be able to go back and fetch the last

characters read. This raises a question: is the

Omega buffer compatible with the concept of

OpenType “run”?

3.24 GSUB

The GSUB table contains lookups for glyph substi-

tution (typically what we find in OTPs). There are

8 kinds of lookups;

• lookup type 1: simple substitution. It replaces

a glyph by some other glyph and can be easily

converted into an OTP;

• lookup type 2: multiple substitution. It replaces

a glyph by more than one glyphs and can also

be easily converted into an OTP;

• lookup type 3: choice of variant. This lookup

can be used only interactively, to choose be-

tween glyphs representing the same character.

7

volumetitle

In an Omega IDE, one should expect the text

editor to include the glyph index in the TEX

code together with the Unicode position, so

that Omega can access both directly;

• lookup type 4: ligatures. It replaces more than

one glyphs by one glyph and can be easily con-

verted into an OTP;

• lookup type 5: contextual substitution. It is a

“virtual” lookup as in GPOS and can be easily

converted into an OTP;

• lookup type 6: extended contextual substitution.

It is like the lookup type 5 but with lookahead

and backtrack. Same remark as for GPOS: looka-

head can be implemented in an OTP with <=

operator, but backtrack needs more care;

• lookup type 8: reverse extended contextual sub-

stitution. This lookup has been especially in-

vented for Urdu. In the figure below we can see

the same Arabic letter beh typeset several times

in a row, and taking different forms depending

on the context. Urdu requires the substitution

of letter forms to start at the end of the string,

and this is why this lookup is necessary:

=

À
Á Â

Ã Ä
Å

To be converted into an OTP, this lookup has

to be converted into a type 6 first.

3.25 JSTF

This table gives a preference order of features to

apply for optimizing justification. It can be quite

dangerous (some features should not be applied ran-

domly). Like TEX, Omega can do justification very

well, so this table may not be needed.

Nevertheless it raises a question: which features

should be activated by the user only, which ones

should be automatic, and which ones should be ac-

tivated by the line-breaking algorithm?

4 AAT tables

Besided OpenType, there is also AAT. AAT uses

features like OpenType, but with two advantages:

AAT features have selectors, and AAT features have

names in the name table. While OpenType relies on

software, AAT features are chosen on a system level.

Here are some interesting AAT tables.

4.1 opbd

This table provives optical bounds to glyphs. It

can be very useful, especially for italic or when mix-

ing fonts with different sidebearings. In the follow-

ing example we see the same text with and without

optical bounds;

(It is a tri-lingual love poem for my wife, with a

reference to Goethe’s Faust.)

4.2 trak

In TEX tracking has been avoided until now, prob-

ably because English language typesetters claim

that “letterspacing is like steeling sheeps.” Never-

theless, s o m e l a n g u a g e s (G r e e k, R u s s i a n,

G e r m a n) need letterspacing. Tracking is also part

of the AFM specification, it can be useful if used like

alcohol (in small quantities, or as medecine).

The difference between letterspacing and tracking

is that the former should be selective, and the latter

not.

8

volumetitle

4.3 Zapf

Named after a famous font designer which we will

not name in the present text.

This table gives a lot of information on each glyph:

its PostScript glyph name, Unicode correspondence,

the fact if it is Japanese kanji or Chinese han or

Korean hancha, an historical memorandum, etc. It

can be useful for chosing the right glyph according

to the context.

4.4 *var

The tables fvar, gvar, avar, cvar deal with

“variations:” the AAT equivalent of Multiple Mas-

ter fonts. They could be useful for generating on-

the-fly font instances which will solve specific type-

setting problems. But, they are unstable, hard to

implement, and their features bit more flexible than

Multiple Masters, but still not flexible enough.

4.5 morx

This is the heavy-duty AAT table. It uses finite

state machines as in the following example where we

replace a person’s first name by an initial, eventually

keeping an “h”:

if not letter

if not letter
if not letter

if consonant, except “h”

if consonant, except “h”

if vowel
or “h”

if vowel
or “h”

if non-letter

if letter

keep
insert
a point

delete,
insert
a point

keep,
insert
a point

keep,
insert

a point

keep

keep

keep

keep

keep

keep

delete

initial state 1
(«line start»)

initial state 0
(text begin)

second
glyph

word
interior

if “h”

if letter other than "h"

The morx table has 5 operations:

• operation 0: glyph re-ordering, very useful for

Indic and South-East Asian languages;

• operation 1: contextual substitution;

• operation 2: ligatures (out of up to 16 compo-

nents);

• operation 4: simple glyph substitution (no fi-

nite state machine);

• operation 5: glyph insertion;

Technically, finite state machines can be easily

converted into OTPs, since these have states as well.

4.6 just

The just table is like the OpenType table JSTF (it

aims to optimize justification), only more intelligent.

It has a quantitative and a qualitative part.

In the quantitative part one can define width vari-

ation, or even glyph variation. This could be a so-

lution for the TEX SHRINK and STRETCH parame-

ters, only here we can apply them to any glyph. It

has special options for keshided, white spacing, and

other glyphs.

The qualitative table is like JSTF: one choses ac-

tions (ligature decomposition, glyph insertion, glyph

stretching, repeated glyph insertion: a phenomenon

similar to TEX’s rules).

5 Open Questions

• What is still missing, despite the magnificence

of OpenType and AAT?

• to handle Arabic correctly one needs dynami-

cally variable glyphs;

• TEX virtual fonts can combine glyphs from sev-

eral fonts, this could be very profitable to Open-

Type/AAT;

• more generally, what happens between fonts?

How can two fonts communicate/interact?

• could automatic kerning be an option? islands

that communicate?

• software like FontLab or PFAEdit has functions

for “boldening” or “lightening” glyphs. This

could be an option for automatic optical correc-

tion, or for automatic typographical gray cor-

rection;

• the context of OpenType fonts is a “run”, the

one of OTPs is a buffer. How about a more

global context, where can say that we are at

paragraph begin, or at page begin, or at docu-

ment begin...

9

volumetitle

Bibliography

[1] Apple Computer. TrueType GX Font For-

mats, April 1993.

[2] Apple Computer. QuickDraw GX Ty-

pography. Addison-Wesley, June

1994 ftp://ftp.apple.com/developer/

Technical_Publications/Archives/QDGX_

Typo%graphy.sit.hqx.

[3] Gábor Bella, Anish Mehta and Yannis Har-

alambous. Adapting odvips to OpenType

fonts. TUGboat, 24(1) (to appear), 2003.

[4] Microsoft Typography Division. The Open-

Type Specification, v. 1.4, October 2002

http://www.microsoft.com/typography/

otspec/default.htm.

[5] Yannis Haralambous. Fontes et codages.

O’Reilly, Paris, 2004.

[6] Martin Hosken and Sharon Correll.

Extending TrueType for Graphite.

Technical report, Summer Institute

for Linguistics, March 2003 http:

//scripts.sil.org/cms/sites/nrsi/

media/GraphiteBinaryFormat_pdf.pd%f.

[7] Microsoft. Digital signatures http:

//www.microsoft.com/typography/

developers/dsig/default.htm.

[8] Microsoft. Recommendation for

OpenType fonts, November 2002

http://www.microsoft.com/typography/

otspec/recom.htm.

[9] Adobe Systems. OpenType feature file

specification, v. 1.4, January 2003

http://partners.adobe.com/asn/tech/

type/otfdk/techdocs/OTFeatureFileSyn%

tax.jsp.

10

