Yannis Haralambous

John Plaice

John Plaice Omega

Opentype Fonts

Glyph

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Omega, the successor of T E X, uses OFM and OVF fonts, which are an extension of TFM and VF fonts to 16 bits. It produces DVI files, in which one finds only names of TFM/OFM files and glyph positions in the font tables. When converting DVI files into PostScript, the task of finding the PostScript type 1 fonts corresponding to TFM/OFM and including them in the PostScript code is handled by an external utility, odvips.

On the other hand, when a PostScript is converted into PDF, Acrobat will guess the Unicode correspondence of each glyph by inspecting the glyph's name in the PostScript font. This means that to get textual information from the T E X file into the PDF file one needs TFM/OFM and PostScript type 1 to agree, and glyph names to be correct. Otherwise we have no guarantee that everything will turn out correctly.

Nowaday there are several font formats widely used:

• PostScript type 1 fonts are inspired by PostScript language: they are dictionaries, glyphs are accessed by their names, their descriptions use a very restricted set of special PostScript operators. They have fixed encodings with at most 256 positions;

• TrueType fonts are binary data structures based on tables. Information in tables in accessible through pointers. Glyph descriptions are accessed by their location in the code, there is table (cmap) mapping them to Unicode positions. TrueType instructions can dynamically modify the outline according to the context;

• OpenType fonts are TrueType structures with Keywords: Omega Fonts OpenType TrueType or PostScript glyph descriptions. They contain pattern-matching tables for contextual glyph positioning and substitutions;

• AAT fonts are TrueType structures with extra tables. They contain finite state machines for glyph positioning and substitutions. (Ma-cOS X);

• Graphite fonts (by SIL) are also TrueType structures with extra tables, containing finite state machines. For the time being they can be used only in two programs: WorldPad (Windows), and Drusilla (Linux).

Up to now Omega can only use TFM/OFM fonts and odvips only VF/OVF and PostScript type 1 fonts. We have decided that the time has come to switch to a TrueType based format. At the moment the most promessing choice is OpenType, but AAT and Graphite should not be neglected.

Adapting Omega to OpenType is a three-step process:

1. make odvips read OpenType fonts,

convert Computer Modern and Omega fonts

into OpenType, 3. make Omega read OpenType fonts;

Step (1) of this process has been accomplished with success. ENST Bretagne Students Gbor Bella and Anish Mehta have worked on this project. odvips will find out which glyph codes are needed and will extract the descriptions from the PFC file. Then it will make as many internal PostScript type 1 fonts as necessary and will include them in the PostScript file.

On figure ?? on can see an organigramm of the various ways odvips will respond to a font request in the DVI file.

Instead of making PFC, one could also make as many type 42 fonts as necessary. But then odvips would hence produce level 2 code and we have no idea about how PostScript operators like glyphshow or charpath would react.

Wa can also ask ourselves the question: is it a good strategy to keep instructions? Is Omega going to produce resolution-dependent PostScript code?

Storing TFM Data in OpenType

Let us see now how we will be able to store the information already contained in TFM files in Open-Type structures. A TFM file contains the following information: • Basic information for each glyph: figure 2 shows that the dimension model of a glyph is different for T E X and for OpenType.

-CHARWD: can go into hmtx table, -CHARHT: is not provided in OpenType philosophy, although most of the time it is the height of the glyph, -CHARDP: same, but for the depth of the glyph, -CHARIC: not provided at all, since Open-Type cannot act across fonts, and italic correction is only useful when we change fonts;

• Gadgets for each glyph:

-VARCHAR: can go into GPOS table, -NEXTLARGER: can go into GSUB table.
Once we have stored TFM information into an OpenType font we can consider virtual fonts:

• MOVE*, SETCHAR: can be obtained through True-Type composite glyphs;

• POP, PUSH: are not really needed since we can replace them by adequately chosen by MOVE* instructions;

• SETRULE: we just need to draw a glyph in glyf or CFF table;

• MAPFONT: it is not possible to include other OpenType fonts: we will have to make big fonts which include all glyphs;

• SPECIAL: it is not possible to include special code in a glyph.

Using OpenType Data in Omega

Now that we have seen how to store TFM and VF data in an OpenType structure let us consider the inverse problem: given an OpenType font, how can we take advantage of its data to typeset with Omega?

We will take a quick overview of most of the interesting OpenType tables.

cmap

This table provides a Unicode correspondence for each glyph. It allows to find the right glyph name when TTF or OTF is converted into type 1.

We will use it with format 4 (16 bits, eventually sparse), platformID 0 (Unicode), encodingID 0 (Unicode 2+)-or, if necessary, the one with format 4 (16 bits, eventually sparse), platformID 3 (Windows), encodingID 1 (Unicode 2).

Nevertheless, let us note that the AAT table Zapf is a better alternative than cmap.

head

This table contains general information about the font. Among the data it contains, the unitsPerEm value will be needed to translate glyph coordinates into global ones, if we want to delve into glyphs.

hhea

This table contains general information about horizontal typesetting with the font. It is of no interest to Omega.

hmtx

This table contains horizontal widths for all glyphs. It is absolutely essential to us because it is the place where widths of glyphs are stored, but there is a caveat: these widths can be modified a posteriori by TrueType instructions, and this why we also need the hdmx table.

maxp

This table contains maximum values for various quantities (number of glyphs, max number of contours, max number of Bézier points, etc.). Its only interest is to provide useful values for memory allocation when delving into glyphs. It is unnecessary since we are using dynamic allocation of memory.

name

This table contains various textual information about the font, in any language and encoding. Since Omega is not interactive, it could be useful only for the log file: the name of the font in the name table is more legible than its file name. This way we could have multilingual (politically correct) log files.

OS/2

This table contains useful numeric data. For example:

• sxHeight is the x-height, there is also sCapHeight. These can be useful for accent placement in the absence of marks;

• ulUnicodeRange1-4 can warn us that the current font is not capable to typeset in a given script, so that we can search for a substitute;

• panose can be used for finding a look-alike of the current font, again for typesetting a missing glyph;

• if no substitute font can be found, xAvgCharWidth can be the width of the "missing glyph;"

• usDefaultChar gives us a possible "missing glyph;"

• ySuperscriptYOffset et al. can give us a clue about how to typeset superscripts and subscripts;

• usBreakChar: the word separator. Really a bad idea!

• maxContext: how many glyphs must be kept in memory to apply pattern matching.

post

This table contains information needed for converting from TrueType to PostScript type 1 or type 42.

The italicAngle entry contains the slant parameter which we need for accent placement, in the absence of GDEF marks.

The underlinePosition and underlineThickness entries can be useful for underlining.

Some versions of post table also contain PostScript glyph names for all glyphs: this can be useful to odvips when creating mini-type 1 fonts.

loca

This table contains pointers to TrueType glyph descriptions, it is indispensable if we want to delve into glyphs, useless otherwise.

glyf

This table contains TrueType glyph descriptions, bounding boxes and instructions. We may want to delve into glyphs to find out information about their shapes, in the absence of marks. For example in the figure below: we have an Esperanto letter "h" with circumflex accent. Only by examining the glyph outline, and doing shape recognition, will we be able to place the circumflex accent correctly on the letter.

Nevertheless we must be very carefull with True-Type instructions because they can modify shapes, origin points and widths!

fpgm, prep, cvt

These tables contain TrueType instructions executed when the font is loaded, or when its size its changed. They can be useful to Omega only if we have to execute instructions to get resolutiondependent values related to glyph shapes.

CFF

This table contains the PostScript type 2 descriptions of glyphs. Once again, it can be useful to Omega only if we want to delve into glyphs. It will be more difficult to analyze than TrueType glyph descriptions.

Also we must consider the fact that type 2 charstrings can not be executed by ordinary PostScript interpreters, which is quite a paradox, and hence type 2 fonts must be converted into type 1. This conversion is mostly straightforward, since most type 2 operators are there only for optimization, others are mathematical and can easily be replaced by the calculated result. Only a few cannot be converted at all, as for example the random operator.

VORG

This table contains the coordinates of vertical origins of glyphs. It is absolutely necessary when doing vertical typesetting.

EBLC, EBDT, EBSC

This table contain bitmap glyphs and related information. We would need to convert these into PostScript type 3, in the same way as PK fonts.

Is this necessary?

First of all, there will always be bitmap fonts around.

And also Luc Devroye seeks the perfect font, a bitmap font with a resolution such that pixels have the size of molecules.

So, let us keep the bitmap option open.

DSIG

This table contains a digital signature of the font. It should be avoided since it is only a good way to make font developers pay $400 per year for the rest of their life.

But it does raise the question of authentication of fonts, which, in turn, raises the question of identification of fonts.

gasp

This table informs the system about how to rasterize the font. It is useless to Omega.

hdmx, LTSH

The hdmx table contains glyph widths in pixels, not to confuse with hmtx, which contains values in abstract glyph coordinates. It can be useful if we want to produce PostScript code for a given resolution (for exemple, for low-resolution hand-held devices-there is a project on making fonts for Palm with Metafont.

The LTSH table contains values from which interpolation is linear. It gives us a range of possible acceptable resolutions for a given typeset document.

kern

This is the old way for obtaining kerning pairs. This table can have various subtables in different formats: format 0 is the plain one; format 3 is the AAT one: it contains a finite state machine. An example where this could be useful: "S.A.V." would be much better typeset with a small kern between the period and the "V": "S.A. V." but this kern should only occur when the period is preceded by an "A," or a similar letter.

In OpenType it is better to use GPOS to obtain contextual kerning.

This raises a problem: Omega, like T E X, does not use a SPACE character, so how do we kern with it? We need to be able to apply kerning to word boundaries, when not at line boundaries.

VDMX

This table contains global pixel information about vertical typesetting (not to confuse with an hypothetical vertical version of hdmx).

It is of little use to Omega.

vhea, vmtx

These are the vertical counterparts of hhea and hmtx. The latter is absolutely necessary if we want to typeset vertically: it contains the vertical widths of glyphs.

BASE

This table contains the heights of various baselines, relative to the dominant script (see fig. 3).

They could be quite useful to Omega when mixing scripts. It raises the question: should baseline changes be valid only for the current font, or should they be persistent between fonts?

Advanced Typography tables

The tables GPOS, GSUB, GDEF and JSTF are the OpenType "Advanced Typography" tables.

The system works as follows: the user choses features, which call lookups. Lookups apply transformation rules which are either positionning (GPOS) or substitution (GSUB) rules.

In a T E X document, feature choices have to be indicated by special primitives. In an Omega IDE, one should expect to have an OpenType-compliant editor which will include the feature-choice primitives in a transparent way.

Let us consider these tables.

GPOS

The table GPOS contains lookups for glyph positioning. There are 9 kinds of lookups:

• lookup type 1: simple positionning. This lookup will move a glyph in some direction, when this lookup is requested by a feature. In the following example, parentheses are raised to obtain a better fit with capital letters:

• lookup type 2: pair positionning, as for example, kerning. This is actually more powerful than kerning since either one of the two glyphs can be moved in any direction. One can use individual glyphs, glyph classes or covering tables;

• lookup type 3: cursive attachment. Very useful for calligraphic scripts or Arabic. One often forgets one of the flags of the lookup, which indicates whether it is the first or the last glyph of a sequence which is aligned on the baseline. This lookup is essential for writing in Urdu, but we need a special micro-engine in Omega, which will be able to memorize glyph positions and move a whole block at the end of a "run."

• lookup types 4 and 6: diacritics, and diacritics upon diacritics. These lookups define attachment marks. This can be eextremely useful for Omega since it will allow placement of arbitrary diacritics over arbitrary letters or other diacritics-nevertheless one must be careful about potential kerning: if a given diacritic has to be kerned with a base glyph, or if we have to kern between two diacritics, special attachment marks must be defined, and this can quickly become a mess.

• lookup type 5: diacritics on ligatures. It defines attachment marks for different parts of a ligature glyph. It can also be extremely useful for Omega. Especially in fonts like Prestige:

where we have many ligatures and need to place accents upon them. This operation raises some interesting questions: what is the accent that should be upon INDNIABLE in the exemple above? Is it a grave or an acute accent?

• lookup type 7: contextual positionning. It is a kind of "virtual" lookup, since it calls other lookups (of types 1-6) when a certain pattern is matched. Here is an example of contextual kerning:

Contextual positionning can be easily converted into an OTP, except that we need better primitives for moving glyphs vertically (besides \raise). Even if glyphs are moved vertically they must remain a single glyph chain, so other lookups can be applied.

• lookup type 8: extended contextual positionning. This lookup type is like type 7, but uses also a backtrack and a lookahead.

The lookahead can be easily used into an OTP, with the <= operator which will put characters back into the data flow. For the backtrack we need to extend the operational model of OTPs: one must be able to go back and fetch the last characters read. This raises a question: is the Omega buffer compatible with the concept of OpenType "run"?

GSUB

The GSUB table contains lookups for glyph substitution (typically what we find in OTPs). There are 8 kinds of lookups;

• lookup type 1: simple substitution. It replaces a glyph by some other glyph and can be easily converted into an OTP;

• lookup type 2: multiple substitution. It replaces a glyph by more than one glyphs and can also be easily converted into an OTP;

• lookup type 3: choice of variant. This lookup can be used only interactively, to choose between glyphs representing the same character.

In an Omega IDE, one should expect the text editor to include the glyph index in the T E X code together with the Unicode position, so that Omega can access both directly;

• lookup type 4: ligatures. It replaces more than one glyphs by one glyph and can be easily converted into an OTP;

• lookup type 5: contextual substitution. It is a "virtual" lookup as in GPOS and can be easily converted into an OTP;

• lookup type 6: extended contextual substitution.

It is like the lookup type 5 but with lookahead and backtrack. Same remark as for GPOS: lookahead can be implemented in an OTP with <= operator, but backtrack needs more care;

• lookup type 8: reverse extended contextual substitution. This lookup has been especially invented for Urdu. In the figure below we can see the same Arabic letter beh typeset several times in a row, and taking different forms depending on the context. Urdu requires the substitution of letter forms to start at the end of the string, and this is why this lookup is necessary:

=

To be converted into an OTP, this lookup has to be converted into a type 6 first.

JSTF

This table gives a preference order of features to apply for optimizing justification. It can be quite dangerous (some features should not be applied randomly). Like T E X, Omega can do justification very well, so this table may not be needed.

Nevertheless it raises a question: which features should be activated by the user only, which ones should be automatic, and which ones should be activated by the line-breaking algorithm?

AAT tables

Besided OpenType, there is also AAT. AAT uses features like OpenType, but with two advantages: AAT features have selectors, and AAT features have names in the name table. While OpenType relies on software, AAT features are chosen on a system level.

Here are some interesting AAT tables.

opbd

This table provives optical bounds to glyphs. It can be very useful, especially for italic or when mixing fonts with different sidebearings. In the following example we see the same text with and without optical bounds;

(It is a tri-lingual love poem for my wife, with a reference to Goethe's Faust.)

trak

In T E X tracking has been avoided until now, probably because English language typesetters claim that "letterspacing is like steeling sheeps." Nevertheless, s o m e l a n g u a g e s (G r e e k, R u s s i a n, G e r m a n) need letterspacing. Tracking is also part of the AFM specification, it can be useful if used like alcohol (in small quantities, or as medecine).

The difference between letterspacing and tracking is that the former should be selective, and the latter not.

Zapf

Named after a famous font designer which we will not name in the present text.

This table gives a lot of information on each glyph: its PostScript glyph name, Unicode correspondence, the fact if it is Japanese kanji or Chinese han or Korean hancha, an historical memorandum, etc. It can be useful for chosing the right glyph according to the context.

*var

The tables fvar, gvar, avar, cvar deal with "variations:" the AAT equivalent of Multiple Master fonts. They could be useful for generating onthe-fly font instances which will solve specific typesetting problems. But, they are unstable, hard to implement, and their features bit more flexible than Multiple Masters, but still not flexible enough.

morx

This is the heavy-duty AAT table. It uses finite state machines as in the following example where we replace a person's first name by an initial, eventually keeping an "h": The morx table has 5 operations:

• operation 0: glyph re-ordering, very useful for Indic and South-East Asian languages;

• operation 1: contextual substitution;

• operation 2: ligatures (out of up to 16 components);

• operation 4: simple glyph substitution (no finite state machine);

• operation 5: glyph insertion;

Technically, finite state machines can be easily converted into OTPs, since these have states as well.

just

The just table is like the OpenType table JSTF (it aims to optimize justification), only more intelligent. It has a quantitative and a qualitative part.

In the quantitative part one can define width variation, or even glyph variation. This could be a solution for the T E X SHRINK and STRETCH parameters, only here we can apply them to any glyph. It has special options for keshided, white spacing, and other glyphs.

The qualitative table is like JSTF: one choses actions (ligature decomposition, glyph insertion, glyph stretching, repeated glyph insertion: a phenomenon similar to T E X's rules).

Open Questions

• What is still missing, despite the magnificence of OpenType and AAT?

• to handle Arabic correctly one needs dynamically variable glyphs;

• T E X virtual fonts can combine glyphs from several fonts, this could be very profitable to Open-Type/AAT;

• more generally, what happens between fonts? How can two fonts communicate/interact?

• could automatic kerning be an option? islands that communicate?

• software like FontLab or PFAEdit has functions for "boldening" or "lightening" glyphs. This could be an option for automatic optical correction, or for automatic typographical gray correction;

• the context of OpenType fonts is a "run", the one of OTPs is a buffer. How about a more global context, where can say that we are at paragraph begin, or at page begin, or at document begin...

Figure 1 :

 1 Figure 1: odvips responding to a font request in the DVI file.

Figure 2 :

 2 Figure 2: Dimensions for T E X/Omega and for Open-Type.

Figure 3 :

 3 Figure 3: Base lines for three different scripts: latin, ideographic and tibetan.