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Abstract
Nominal automata are a widely studied class of automata designed to recognise languages over
infinite alphabets. In this paper, we present a Kleene theorem for nominal automata by providing a
syntax to denote regular nominal languages. We use regular expressions with explicit binders for
creation and destruction of names and pinpoint an exact property of these expressions – namely
memory-finiteness – identifying a subclass of expressions denoting exactly regular nominal languages.
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1 Introduction

Languages over infinite alphabets have been studied in a variety of contexts: query-based
languages [8], XML processing [19], URLs [1], process calculi [5], etc. Accordingly, a number
of automata models have been introduced for these languages, either register-based, where the
state space is finite but registers are available for storing data, or based on nominal sets, where
the state space is infinite but can be represented finitely due to symmetries. The most general
classes of such automata are Kaminski and Francez’s finite-memory automata (FMA) [8],
in the register-based style, and Bojańczyk, Klin and Lasota’s nondeterministic orbit-finite
automata (NOFA) [4], in the nominal style. These two kinds of automata have been shown
to have the same expressivity [4], and their equivalence is known to be undecidable [8, 16].

While automata are useful to process and compare languages, to specify languages it
is often more natural to use regular expressions; this is for instance the standard way of
denoting a path in an XML tree. To that effect, many classes of expressions have been
proposed [9, 12, 11, 18, 14]. The expressions from [14] capture the full class of languages
recognised by either FMA of NOFA, but having been developed for FMAs they are not
straightforwardly suitable to describe NOFA languages. Some of the other formalisms are
more natural in the context of nominal automata, but all fail to capture the full class, and
instead coincide with some (usually decidable) sub-classes.

We use in this paper a new class of regular expressions for data languages, originally
motivated by applications to program verification, as part of larger framework called bracket
algebra. These expressions feature explicit allocation 〈a and deallocation 〉a binders, and
may be used to generate nominal languages. We prove in this paper that they are in fact
able to describe every language recognisable by a NOFA.

Let us illustrate our syntax on simple examples. To make this discussion simpler, we
assume for now that our alphabet is an infinite set of names A. The first notion we present
is that of α-equivalence of words with binders. Here we choose to define α-equivalence as
the smallest congruence stable by permutation of bound or fresh names. For instance the
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following pair of words is equivalent: 〈a a〈b b 〉a 〈a a 〉b 〈b b 〉a 〉b =α 〈b b〈c c 〉b 〈d d 〉c 〈a a 〉d 〉a .
Indeed, we may derive this as follows (we underline the redex at each step):

〈a a〈b b 〉a 〈a a 〉b 〈b b 〉a 〉b =α 〈a a〈c c 〉a 〈a a 〉c 〈b b 〉a 〉b =α 〈a a〈c c 〉a 〈d d 〉c 〈b b 〉d 〉b =α 〈b b〈c c 〉b 〈d d 〉c 〈a a 〉d 〉a

We then define well-formed words to be those without name capture, i.e. for every prefix
u〈a , every 〈a in u may be matched with a corresponding 〉a . For instance 〈a a〈b b 〉b 〉a is
well-formed, but 〈a a〈a a 〉a 〉a is not, even though the two are equivalent. Now, consider
regular expressions over an alphabet composed of names from A and binders 〈a and 〉a . We
associate to such an expression e a nominal language LβeM in several steps:
1) take the regular language JeK denoted by e;
2) compute its closure by α-equivalence JeKα, adding every word that is equivalent to some

word in the initial language;
3) restrict this language to its well-formed members;
4) erase the brackets.
Here are some examples:
L1 := Lβ〈a a 〉a M = A: the set of all atoms;
L2 := Lβ〈a 〈b ab 〉b 〉a M = {ab | a 6= b}: two letter words made of different letters;
L3 := Lβ〈a a 〉a ?M = A?: the set of all words;
L4 := Lβ〈a a〈a a 〉a ? 〉a M = {a1 . . . an | n > 0,∀1 < i, ai 6= a1}: the set of words such that the

first letter is different from all others;
L5 := Lβ〈a 〈a a 〉a ?a 〉a M = {a1 . . . an | n > 0,∀i < n, ai 6= an}: the set of words such that the

last letter is different from all others;
L6 := Lβ〈a a (〈b b 〉a 〈a a 〉b )? (1 + 〈b b 〉b ) 〉a M = {a1a2 . . . an | n > 0,∀i, ai 6= ai+1}: the set of

non-empty words such that two consecutive letters are different;
L7 := Lβ(〈a x)? (y 〉a )?M = {x} ∪ {xnym | n 6 m}.
As one can see, this technique allows for the definition of a large class of nominal languages.
In fact this class is in some sense “too large” and contains languages that are not regular, like
for instance L7. To get a Kleene theorem, we therefore introduce a tractability condition: we
ask regular expressions to have a memory-finite language. Intuitively this means there should
be number N such that any prefix of a word in the language has less than N unmatched
brackets. This condition is decidable by induction on expressions, and such expressions
generate exactly the class of languages recognisable by NOFAs. The main result of the paper
is an exact correspondence between memory-finite nominal languages and NOFA:

I Theorem 1 (Kleene Theorem). Let L be a nominal language. The following are equivalent:
(i) L is rational, that is L = LβeM for some memory-finite regular expression e.
(ii) L is regular nominal, that is recognisable by a NOFA.
The paper is structured as follows. In Section 2, we define our notations, and recall some

elements of nominal automata theory. We introduce in Section 3 words with explicit binders
and define an α-equivalence relation for these words. To recognise this relation we construct
in Section 4 a nominal transducer. We then present in Section 5 our syntax for regular
expressions with binders, and prove in Section 6 our main result, a Kleene theorem for NOFA.
We briefly discuss related work in Section 7. All proofs are provided in an appendix.

This paper is part of a larger research program developing a framework to reason about
programs with explicit resource (de)allocation. A companion paper describing the algebraic
framework of bracket algebra and a hierarchy of nominal languages can be found online, as
well as a Coq formalisation of the framework. The Coq library is also available on GitHub.

http://paul.brunet-zamansky.fr/Brackets/
https://coq.inria.fr/
https://github.com/monstrencage/BracketAlgebra
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2 Preliminaries

The set of finite subsets of a set A is denoted by Pf (A). If A is finite, its cardinal is denoted
by #A ∈ N. The set of words over an alphabet Σ is written Σ?. The empty word is denoted
by ε, concatenation of words u and v is written uv, and |u| is the length of word u. For w ∈ Σ?
and x ∈ Σ, |w|x is the number of occurrences of x in w. We sometimes identify words with
the set of letters occurring in them, writing x ∈ w to denote the fact that the letter x appears
in w, i.e. |w|x 6= 0. We will extend this analogy by writing w ≈ X for w ∈ Σ? and X ⊆ Σ
when ∀x, (x ∈ X)⇔ (|w|x 6= 0). We denote the ith letter of a word u by ui, for 0 < i 6 |u|.
The set of prefixes of a language is defined as: pref (L) := {u ∈ Σ? | ∃v : uv ∈ L}.

Given a set A, and B ⊆ A, the set B./ of shuffles of B consists of the lists without
repetitions of elements from B: B./ := {l ∈ B? | |l| = #B ∧ (∀0 < i < j 6 |l|, li 6= lj)} .
Observe that if w ∈ B./, then {a | ∃0 < i 6 |w| : wi = a} = B. We say that a list l ∈ A? is
duplication-free, written l ∈ A(?) when l ∈ {a | ∃0 < i 6 |l| : li = a}./.

Rational expressions over an alphabet Σ are terms generated by the following grammar:
e, f ∈ Rat 〈Σ〉F 0 | 1 | l | e+ f | e · f | e?, where l ranges over the alphabet Σ. Such
a term e denotes a language JeK, defined in the usual way:

J0K := ∅, J1K := {ε} , JlK := {l} ,
Je+ fK := JeK ∪ JfK, Je · fK := {uv | u ∈ JeK ∧ v ∈ JfK} , Je?K := JeK?.

2.1 Nominal sets
We fix an infinite set A of names, and write SA the set of finitely supported permutations
over A. In the following we let a, b, . . . range over A and ā, b̄, . . . range over finite sets of
atoms. These are bijections π such that there is a finite set ā ⊆ A such that a /∈ ā⇒ π(a) = a.
The inverse of a permutation π is written π−1 . The permutation exchanging a and b, and
leaving every other name unchanged, is written (a b). We say that a permutation π fixes a
finite set ā ⊆ A, written π ⊥ ā, when ∀a ∈ ā, π(a) = a.

A set X is called nominal if it can be equipped with two functions, respectively action
− ·− : SA ×X → X and support supp(−) : X → Pf (A), satisfying ∀x ∈ X, ∀π, π′ ∈ SA,:

π ⊥ supp(x)⇒ π · x = x. (†1)
supp(π · x) =

{
a ∈ A

∣∣ π−1(a) ∈ supp(x)
}
. (†2)

π · (π′ · x) = (π ◦ π′) · x. (†3)

Intuitively, this means that we may replace a name by another in any element of X, and
that each element of X only depends on a finite number of names. We say that a permutation
π fixes a subset Y ⊆ X, also written π ⊥ Y if ∀y ∈ Y, π · y = y. This enables use to state (†1)
as π ⊥ supp(x)⇒ π ⊥ x. We say that the name a is fresh for the variable x, and write a # x,
whenever a /∈ supp(x). We will also use the notation X�ā to mean {x ∈ X | supp(x) ⊆ ā}.
I Remark 2. In Pitts’ book [17] a nominal set is defined as a SA-action such that every
element has some finite support. From conditions (†1) and (†3) we infer that X is a nominal
set as in [17]. Furthermore, condition (†2) enforces that supp(x) is the least finite set that
supports x, so our notion of support coincides with the the one introduced in [17]. For Coq
implementation considerations, we chose to include the support function in the definition.

For the rest of this section, we fix a nominal set X. Given x, y ∈ X, we say that x and y
are in the same orbit, written x∼Oy, if there is exists π ∈ SA such that x = π · y. This is an
equivalence relation, and its equivalence classes are called orbits. A subset Y ⊆ X is called:

https://coq.inria.fr/
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strict if it has no symmetries, i.e. (†1) holds as an equivalence: π ⊥ supp(x)⇔ π ⊥ x;
equivariant if for every permutation π ∈ SA, we have π · Y = Y ;
finitely supported if there is a finite ā ⊆ A such that π ⊥ ā entails π · Y = Y ;
orbit-finite if Y only intersects finitely many orbits;
tractable if it is both orbit-finite and finitely supported.

I Remark 3. In Bojańczyk [2, 3] terminology, what we call tractable sets are simply called
orbit-finite, even though these are sets that are both orbit-finite and finitely supported. We
chose a different name to avoid confusion as in most other papers orbit-finite sets are not
necessarily finitely supported.

In the following, we will use the following results adapted from [3]:

I Lemma 4 (Simple extension of Lemma 3.5 in [3]). Every tractable set can be expressed as
the image of a tractable set of words from A? by some equivariant function.

I Lemma 5 (Fact 3.6 in [3]). Tractable sets are closed under finite unions and products,
finitely supported subsets and images under finitely supported functions.

2.2 Nominal automata
Let Σ be an orbit-finite nominal alphabet. A nominal automaton (NOFA) over Σ is a structure
A = 〈Q,Σ,∆, I, F 〉 where Q is a tractable state space, I, F ⊆ Q are finitely supported sets
of respectively initial and final states, and ∆ ⊆ Q× Σ×Q is a finitely supported transition
relation. This definition corresponds to Bojańczyk’s “orbit-finite automata” [3]. We define the
automaton’s path relation in the usual way, by saying that p ε−→A p and whenever p w−→A q′

and 〈q′, x, q〉 ∈ ∆ then we also have p wx−−→A q. Notice that since ∆ is finitely supported, so
is the path relation. The language recognised by such an automaton is defined as usual as
the set of traces leading from an initial state to a final state:

LA :=
{
w ∈ Σ?

∣∣∣ ∃ 〈qi, qf 〉 ∈ I × F : qi
w−→A qf

}
.

Nominal regular languages are those recognised by nominal automata.

I Remark 6. In the literature, the name “Nominal automaton” is sometimes used to refer to
a different class of automata, where the tractability requirement is replaced by orbit-finite
and equivariant. These two classes define the same languages: an equivariant automaton is a
particular case of a tractable one, and any tractable automaton with support ā might be seen
as an equivariant automaton by replacing the set of atoms A with the set A \ ā. However, we
feel that our approach leads to more intuitive encoding of some natural languages. Consider
for instance the language of words over A where the name a ∈ A does not appear. This
language is not equivariant, therefore to represent it with an equivariant automaton one
needs to remove the name a from the set of names, which seems a bit counter-intuitive.
However, it may be represented by a simple tractable automaton with a single state q both
initial and final and transitions q b−→ q for every name b 6= a.

We will later on rely on the following properties of nominal automata.

I Lemma 7. Every nominal automaton is language equivalent to a nominal automaton
whose state space is strict.

I Lemma 8. Nominal automata enjoy ε-elimination.
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A nominal automaton is called deterministic (DOFA) if it has a single initial state and
its transition relation is a deterministic function, i.e. if we have two transitions 〈p, x, q〉 ∈
∆ ∧ 〈p, x, q′〉 ∈ ∆, then q = q′. Languages recognised by DOFA form a strict subclass of the
regular nominal languages. E.g. the language over A of words with the last letter distinct
from all others is regular nominal but cannot be recognised by a DOFA: intuitively to check
for membership one needs to guess what will be the last letter before reading the word. There
is also a significant complexity difference: equivalence of DOFA is decidable in polynomial
time [15], the corresponding problem for NOFA is undecidable [16].

I Lemma 9. Regular languages can be recognised by deterministic nominal automata.

Proof. Regular languages can be recognised by deterministic finite state automata. Being
finite, such automata are also tractable, thus deterministic nominal automata. J

2.3 Nominal transductions
We will make intensive use of transductions in this paper. A nominal transducer is a nominal
automaton over an alphabet of the shape (Σ ∪ {ε})× (Γ ∪ {ε}). For a nominal transducer
T , we may define its path relation −[−/−]→T and the binary relation RT it recognises:

p −[ε/ε]→T p

p −[w/w′]→T q′ 〈q′, 〈x, x′〉 , q〉 ∈ ∆
p −[wx/w′x′]→T q

RT := {〈u, v〉 ∈ Σ? × Γ? | ∃ 〈qi, qf 〉 ∈ I × F : qi −[u/v]→T qf} .

A binary relation R ⊆ Σ? × Γ? is called a nominal transduction if it is recognised by some
nominal transducer. For a transduction R, we will sometimes see R as either a function
Σ? → P (Γ?) or a function P (Σ?)→ P (Γ?), writing:

u ∈ Σ?, R(u) := {v ∈ Γ? | u R v} L ⊆ Σ?, R(L) := {v ∈ Γ? | ∃u ∈ L : u R v} .

This should not introduce any ambiguity, since what we mean will always be clear from
typing considerations.

I Lemma 10. Nominal regular languages are stable under nominal transductions.

Proof. Let Σ,∆ be two tractable alphabets, and Σ′ := (Σ ∪ {ε})×(Γ ∪ {ε}). Consider a nom-
inal automaton A = 〈Q1,Σ,∆1, I1, F1〉 and a nominal transducer T = 〈Q2,Σ′,∆2, I2, F2〉.
We want to show that the language RT (LA) is regular nominal. We define a nominal
automaton T (A) with ε-transitions. Its states are in Q1 ×Q2, with initial and final states
respectively I1 × I2 and F1 × F2. Its transition relation is given by:

∆ := {〈〈p1, p2〉 , x, 〈q1, q2〉〉 | ∃y : 〈p1, y, q1〉 ∈ ∆1 ∧ 〈p2, 〈y, x〉 , q2〉 ∈ ∆2}
∪ {〈〈p1, p2〉 , x, 〈p1, q2〉〉 | 〈p2, 〈ε, x〉 , q2〉 ∈ ∆2} .

Correction of this construction can be checked as a matter of routine. J

3 Words over an alphabet with binders

For the rest of the paper, we fix an orbit-finite nominal set X of variables, to represent our
alphabet. We consider words built out of variables, left and right binders, respectively written
〈a and 〉a . These binders are meant to represent the creation and destruction of names.
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We now introduce a notion of α-equivalence for these words. This relation will be a
congruence stable under substitution of “local” names: for instance the words 〈a 〉a and 〈b 〉b
are equivalent. The definitions in this section are straightforward adaptations from [7].

Formally, we define our alphabet by �A
X := X ∪ {〈a | a ∈ A} ∪ { 〉a | a ∈ A}. If the sets of

atoms and variables are clear from the context, we simply write �. This alphabet can be
endowed with a nominal structure in the obvious way, by setting π · 〈a = 〈π(a) , π · 〉a = 〉π(a) ,
and supp(〈a ) = supp( 〉a ) = {a}. In the following, a word with binders will be an element
of �?, that is a finite sequence of letters from the alphabet �. Words with binders naturally
support a nominal structure: the action is defined by applying the alphabet action letter by
letter, and the support of a word is the union of the supports of its letters.

Before we define α-equivalence, we need to introduce the notion of binding power of a
word with binders. The purpose of this notion is to keep track of the occurrences of each name
along a word, and enable us to decide whether a particular name is local to the word, and
more generally to get a precise account of the way the name is used in the word, from the point
of view of the context. The binding monoid B is defined as the free monoid over the three
element set {c, f ,d}, quotiented by the identities: f · f = f , c · f = c, f ·d = d, and c ·d = ε.

The letters c, f , d are meant to represent that a name might be created, free or destroyed.
An important property of this monoid is the following, as noticed in [7]: every element of B
can be uniquely represented in the form dmfncp, with 〈m,n, p〉 ∈ N× {0, 1} × N. We use
this remark to define the size1 of a binding element b ∈ B as |dmfncp| = m+ p.

The binding power of a letter l ∈ � with respect to a name a ∈ A, written Fa (l), is
computed as follows:

Fa (〈b ) :=
{

c (a = b)
ε (a 6= b) Fa ( 〉b ) :=

{
d (a = b)
ε (a 6= b) Fa (x) :=

{
f (a ∈ supp(x))
ε (a # x)

The function F may be extended to words naturally as a monoid homomorphism, by setting
Fa (ε) = ε and Fa (lw) = Fa (l) · Fa (w). If Fa (u) = dmfncp with n ∈ {0, 1}, we define
da (u) := m, fa (u) := n, and ca (u) := p. This is well defined thanks to the uniqueness of
such representations. This function is equivariant, in the sense that Fπ(a) (π · u) = Fa (u).

The weight of a word u is the sum of the sizes of its binding powers: ‖u‖ :=
∑
a∈A |Fa (u)|.

This sum is finite, since for every name a outside the finite set supp(u) we know that the
binding power of u with respect to a is ε, so |Fa (u)| = 0. The memory of a word u is the
maximum weight of a prefix of u, i.e. m (u) := maxvw=u ‖v‖.

We use the binding power to define the following: a is balanced in the word w, written
a � w, if Fa (w) ∈ {f , ε}; a is α-fresh in w, written a #α w, is Fa (w) = ε; the α-
support of w, written suppα(w), is the set of names a such that Fa (w) 6= ε. Notice that
suppα(w) ⊆ supp(w). Therefore, we get that π(a) #α π · u if and only if a #α u, and
similarly for π(a) ∈ suppα(π · u) and π(a) � π · u.

We may now define the α-equivalence relation over words. It is the smallest congruence
such that applying the transposition (a b) to a word where a and b are α-fresh yields an
equivalent word. We give the formal definition of, =α in Table 1a and list some of its
properties in Table 1b. The propositions (1) and (2) state that =α is symmetric and that
concatenation is compatible with =α, which together with (αε) and (αt) establishes =α as a
congruence, while (3), (4), and (5) are necessary preservation properties of =α. The proofs
of these results follow a simple induction of proof trees.

1 Since the size of a Boolean is constant, we do not count n in the size of dmfncp. This simplifies a
number of computations.
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ε =α ε (αε)
u =α v ∧ v =α w ⇒ u =α w (αt)

w1 =α w2 ⇒ w1l =α w2l (αr)
w1 =α w2 ⇒ lw1 =α lw2 (αl)

a � u ∧ b #α u ⇒ 〈a u 〉a =α 〈b (a b) · u 〉b . (αα)

(a) Definition of Alpha-equivalence

u =α v ⇒ v =α u (1)
u =α v ∧ u′ =α v

′ ⇒ uu′ =α vv
′ (2)

u =α v ⇒ ∀a, Fa (u) = Fa (v) (3)

u =α v ⇒ ∀π, π · u =α π · v (4)
u =α v ⇒ |u| = |v| (5)

(b) Properties of Alpha-equivalence

Table 1 Alpha-equivalence

Note that the deduction system we provided for =α is not a priori equivalent to the
informal description we gave before. However, the correspondence can be proved in the sense
that the same relation is obtained if we replace rule (αα) with the following rule:

a #α u ∧ b #α u⇒ u =α (a b) · u. (αα′)

However, this proof is not straightforward: (αα′) obviously implies (αα) (as the latter may
be seen as an instance of the former), but the converse direction is more subtle. Unfortunately,
this is the most interesting direction, as it is necessary to show that words quotiented by
=α form a nominal set, with the support function suppα(). This property may however be
established using the transducer presented in the next section.

We say that a word u is well-formed when for every decomposition u = u1〈a u2, we have
ca (u1) = 0. Intuitively, this means that there is no name capture for bound variables. The
set of well-formed words is written WF , and we define wf (u) := {v | u =α v ∧ v ∈ WF}.

4 A transducer for α-equivalence-checking

The problem that arises when trying to prove statements like (αα) is that α-equivalence
is not preserved in the inductive calls: the property ux =α vy does not entail u =α v. In
this section we introduce a nominal transducer recognising the relation =α. The reachability
relation in this transducer will give us more powerful proof techniques, allowing us to perform
proofs by induction. This transducer serves several purposes: it provides us with a decision
procedure for =α, enables us to show that (αα′) is admissible, and will be used here as a
bridge between nominal automata and rational expressions over �.

4.1 Stacks
The states of this transducer will consist of lists of pairs of atoms, called stacks in the
following. Before we define the transducer, we introduce some useful notations. Stacks are
generated by the following grammar: s ∈ S F [] | s :: 〈a, b〉, where a, b range over names.
Hence S is isomorphic to (A× A)?. We will also use the notation s :: t for the concatenation
of the two stacks s, t ∈ S. We write p1 (s) for the word over A obtained by erasing the second
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components of every pair in s, and symmetrically p2 (s) when we erase the first components.
For instance p1 ([] :: 〈a, b〉 :: 〈c, d〉) = ac, and p2 ([] :: 〈a, b〉 :: 〈c, d〉) = bd.

Stacks can be endowed with a canonical nominal structure defined by:

π · [] := [] π · (s :: 〈a, b〉) := π · s :: 〈π(a), π(b)〉
supp([]) := ∅ supp(s :: 〈a, b〉) := supp(s) ∪ {a, b} .

Note that supp(s) = supp(p1 (s)) ∪ supp(p2 (s)) = p1 (s) ∪ p2 (s), the last identity using
our shorthand identifying words with the set of letters occurring in them.

The pivotal notions for stacks are the validates predicate and the pop function. We say
that a stack s validates the pair 〈a, b〉, written s |= 〈a, b〉, when either a = b and a # s, or
s can be decomposed as s = s′ :: 〈a, b〉 :: s′′ in such a way that a /∈ p1 (s′′) and b /∈ p2 (s′′).
When s validates 〈a, b〉, we may pop the pair from s, yielding the stack s� 〈a, b〉 defined by:

a /∈ supp(s)
s� 〈a, a〉 := s

a /∈ p1 (s′) ∧ b /∈ p2 (s′)
(s :: 〈a, b〉 :: s′)� 〈a, b〉 := s :: s′.

4.2 Equivalence transducer
We now define the equivalence transducer Tα, recognising =α. This will not strictly speaking
be a nominal transducer, as we will discuss later on. Its state space is S, with initial state [],
and the set of accepting states Sacc consists of all stacks s containing only reflexive pairs, i.e.
such that p1 (s) = p2 (s). The transition relation −[−/−]→Tα is defined by:

s −[〈a /〈b ]→Tα s :: 〈a, b〉
s |= 〈a, b〉 ⇒ s −[ 〉a / 〉b ]→Tα s� 〈a, b〉

∀a ∈ supp(x), s |= 〈a, π(a)〉 ⇒ s −[x/π · x]→Tα s

Note that this relation is functional, in the sense that for every triple 〈s, l, l′〉 ∈ S× � × �
there exists at most one stack s′ such that s −[l/l′]→Tα s′. This transducer over an
infinite state space is equivariant, as one can easily check that s −[u/v]→Tα s′ entails
π · s −[π · u/π · v]→Tα π · s′. However, it is not orbit finite. This seems to be unavoidable
since there are infinitely many α-equivalence classes (in particular, words of different length
cannot be equivalent).

I Theorem 11. The relation RTα is exactly =α.

The full proof has been done in Coq. The following technical lemma allows one to relate the
binding power of a word with the stack contents:

I Lemma 12. Whenever s −[u/v]→Tα s
′ the following identities hold:

|p1 (s′)|a = (|p1 (s)|a ´ da (u)) + ca (u) |p2 (s′)|a = (|p2 (s)|a ´ da (v)) + ca (v) .

(Where ´ is the truncated subtraction.)

This lemma has the following corollaries:

I Corollary 13. If [] −[u/v]→Tα s −[u′/v′]→Tα s
′ then |s| 6m (uu′).

Proof. By Lemma 12, and since [] −[u/v]→Tα s, we have |s| =
∑
a ca (u) 6 ‖u‖. Since

‖u‖ 6m (uu′), the result follows. J

https://coq.inria.fr/
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I Corollary 14. For any words u, v of length n, the following are equivalent:
(i) u =α v and v ∈ WF ;
(ii) there are stack s0 . . . sn such that s0 = [], sn ∈ Sacc, for every index 0 6 i < n we

have si −[ui+1/vi+1]→Tα si+1, and for any index 0 6 i 6 n and name a we have
|p2 (si)|a 6 1.

These results allow us to show that the following are nominal transductions:
=6nα := {〈u, v〉 | u =α v ∧m (u) 6 n}
wfn := {〈u, v〉 | u =α v ∧m (u) 6 n ∧ v ∈ WF} .

I Theorem 15. For any n ∈ N, both =6nα and wfn are nominal transductions.

Proof. Thanks to Corollary 13, we know that =6nα is recognised by Tα restricted to states
S6n, made up of stacks of length less that n. This is a tractable set, by Lemma 5. Combined
with Corollary 14, this proves that wfn is recognised by Tα restricted to stacks such that
|s| 6 n and ∀a, |p2 (s)|a 6 1. This set of stacks being an equivariant subset of S6n, by
Lemma 5 it is also tractable. J

5 Memory-finite rational languages

In this section we consider regular languages over �, i.e. languages JeK for some e ∈ Rat 〈�〉.
We may lift α-equivalence to languages by first defining the α-closure of a language L as:

Lα := {u ∈ �? | ∃v ∈ L, u =α v} .

Now we say that two languages are equivalent if their α-closures are equal.
We lift the support function from � to Rat 〈�〉 in the canonical way: for letters in � we

use the supp(−) function from the nominal structure of the alphabet, the support of 0 and
1 is the empty set, the support of e? is that of e and the support of both e+ f and e · f is
supp(e) ∪ supp(f). This definition is an over approximation of the pointwise lifting of the
support function on words: indeed

⋃
u∈JeK supp(u) ⊆ supp(e). Note that supp(e) is always

finite, and supports JeK in the sense that whenever π ⊥ supp(e), we have π · JeK = JeK.
A language L ⊆ �? is called memory-finite if there exists a bound N such that ∀u ∈

L,m (u) 6 N . A rational expression is memory-finite if its language is memory-finite.

I Lemma 16. For any rational expression e, the following are equivalent:
(i) e is memory-finite;
(ii) the set {Fa (u) | u ∈ JeK, a ∈ A} is finite;
(iii) ∀u ∈ JeK, m (u) 6 2× |e|.
(Where |e| is the number of occurrences of letters in e.)

This lemma was proved in Coq. The following result is of independent interest:

I Theorem 17. If e is memory-finite, then JeKα is recognisable by DOFA.

Proof. Let N be the memory of JeK. By definition, this means that JeKα is equal to
the language =6Nα (JeK). However, the automaton built by applying the construction
from Lemma 10 does not yield a deterministic automaton, even if the input automaton is
deterministic. Fortunately, in the present case we can determinise the resulting automaton.
To do so, we will rely on the following technical result about Tα, which was established using
Coq: for every word u ∈ �?, there is a word tr (u) ∈ A? such that for any stack s and word v:

[] −[u/v]→T s⇒ p1 (s) = tr (u) [] −[v/u]→T s⇒ p2 (s) = tr (u) .

https://coq.inria.fr/
https://coq.inria.fr/
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Notice that this implies that supp(tr (u)) ⊆ supp(u): indeed since u =α u there is a stack s
such that [] −[u/u]→Tα s, so tr (u) = p1 (s), and according to Lemma 12 whenever a ∈ p1 (s)
we have ca (u) 6= 0 which implies a ∈ supp(u).

Let A = 〈Q,Σ, δ, q0, F 〉 be some deterministic finite-state automaton for JeK, with
Σ ∈ Pf (�). We write ā for the finite set of names mentioned in the finite alphabet Σ:
ā :=

⋃
l∈Σ supp(l) ⊆ supp(e). Notice that this means that π ⊥ ā⇒ π ⊥ Σ?. Without loss

of generality, we assume that δ is a partial function Q×Σ→ Q and that A has no sink-state:
for any state q ∈ Q, there exists a word u ∈ Σ? such that δ (q, u) ∈ F . If we look back at the
proof of Lemma 10, we see that the states in the automaton we get for =6Nα (A) are pairs
of a state from Q and a stack from S6N :=

(
A2)6N . Now, let us do the standard powerset

construction on this automaton: we get an automaton A ′ := 〈Q′,�, δ′, q′0, F ′〉 where:

Q′ = P
(
Q× S6N

)
; q′0 = {〈q0, []〉} ; F ′ = {q̄ ∈ Q′ | q̄ ∩ (F × Sacc) 6= ∅} ;

δ′(q̄, l) = {〈q′, s′〉 | ∃ 〈q, s〉 ∈ q̄,∃l′ ∈ Σ : q′ = δ(q, l) ∧ s −[l′/l]→Tα s
′} .

Unfortunately, state space Q′ is not tractable, since it is not orbit-finite. However, as we
will now prove, the subset of reachable states is tractable. Therefore if we restrict A ′ to
its reachable part we get a language-equivalent DOFA. A state q̄ ∈ Q′ is reachable if there
exists a word v such that δ′(q′0, v) = q̄. By unfolding the definitions, we can see that q̄ is
reachable by the word v when the following equivalence is satisfied:

∀q, s : 〈q, s〉 ∈ q̄ ⇔ ∃u : q = δ(q0, u) ∧ [] −[u/v]→Tα s.

This implies that ∀ 〈q, s〉 ∈ q̄, p2 (s) = tr (v), and p1 (s) = tr (u) for some u ∈ pref (JeK). This
second condition tells us that p1 (s) ∈ ā6N which is a finite set. Hence the set of reachable
states is contained (modulo isomorphism) in the set: Q := P

(
Q× ā6N

)
× A6N . This set

being the product of a finite set with a tractable one, it is tractable. Notice that the set of
reachable states is supported by the finite set ā: indeed if π ⊥ ā, then we already know that
π ⊥ Σ? so if q̄ is reachable by the word v, then π · q̄ is reachable by π · v since:

〈q, s〉 ∈ π · q̄ ⇔
〈
q, π−1 · s

〉
∈ q̄ ⇔ ∃u : q = δ(q0, u) ∧ [] −[u/v]→Tα π

−1 · s
⇔ ∃u : q = δ(q0, u) ∧ π · [] −[π · u/π · v]→Tα s

⇔ ∃u : q = δ(q0, u) ∧ [] −[u/π · v]→Tα s.

We conclude that the set of reachable states is tractable by applying Lemma 5, which tells
us that a finitely supported subset of a tractable set is tractable. J

We may use expressions over � to generate languages over X as follows: the language
generated by a term e ∈ Rat 〈�〉, written LβeM, is the set of words obtained by erasing the
brackets from the well-formed words from JeKα. In other words, if we denote by η the monoid
homomorphism defined by η (〈a ) = η ( 〉a ) = ε and η (x) = x, we have LβeM := η (wf (JeK)).

6 Kleene Theorem

In this section, we show that regular nominal languages over X are exactly those generated
by memory-finite rational expressions. To that end, we call a language L rational if there is
some memory-finite expression e such that L = LβeM. One direction is immediate:

I Lemma 18. For any memory-finite expression e, LβeM is regular nominal.
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Proof. Since e is memory-finite, according to Lemma 16, every word in e has memory less
than 2×|e|. Therefore, wf (JeK) = wf2×|e| (JeK). By the classic Kleene theorem JeK is regular
and thanks to Theorem 15 we know that wf2×|e| is a nominal transduction. Since we may
also see easily that η is a nominal transduction, the statement follows from Lemma 10. J

We now show that nominal regular languages are rational. We fix a nominal automaton
A = 〈Q,X,∆, I, F 〉, and assume without loss of generality that its state space is strict,
equivariant and orbit-finite. We also fix a finite set ā0 ⊆ A that supports I, F and ∆. As a
first step, we will find a finite sub-automaton of A that is “large enough” to describe the
language of A. We do this by picking a finite set ā ⊆ A such that:

∀α ∈ I ∪ F ∪∆,∃β ∈ I ∪ F ∪∆ : supp(β) ⊆ ā ∧ ∃π : π ⊥ ā0 ∧ π · β = α.

Such a set always exists: we just need to pick a representative per orbit, and take the union
of their supports. As a shorthand, we write S0 for the set of permutations over A \ ā0,
i.e. the permutations π ∈ SA such that π fixes ā0. We then define the finite automaton
A�ā := 〈Q�ā,X�ā,∆�ā, I�ā, F �ā〉. We can relate the runs of A�ā to those in A as follows.

I Lemma 19. For any letters (xi)1,...,n and any states (qi)0,...,n, t.f.a.e.:
(i) there is a run p0

x1−→A p1 . . .
xn−−→A pn

(ii) there is a run q0
y1−→A�ā q1 · · ·

yn−→A�ā qn and a sequence (πi)0,...,n from S0 such that
π0 · q0 = p0 and ∀i > 0 we have πi · 〈qi−1, yi, qi〉 = 〈pi−1, xi, pi〉.

We now define a finite automaton A ′ over the alphabet ��ā?. The state space of this
automaton will be Q′ := Q�ā ∪ {q0, qf}, with q0 and qf fresh states, respectively the initial
and final states. We build its transitions as follows:
1. we have q0

〈a1 ...〈an−−−−−−→ q ∈ ∆′ for any q ∈ I�ā, and any word a1 . . . an ∈ (ā0 ∪ supp(q))./;

2. we have q
〉a1 ... 〉an−−−−−−→ qf ∈ ∆′ for any q ∈ F �ā, and any word a1 . . . an ∈ (supp(q) \ ā0)./;

3. we have p
〈a1 ...〈an x 〉b1 ... 〉bm−−−−−−−−−−−−−→ q ∈ ∆′ for every transition p x−→A�ā q and any pair of words:

a1 . . . an ∈ ((supp(q) ∪ supp(x)) \ (supp(p) ∪ ā0))./

b1 . . . bm ∈ ((supp(p) ∪ supp(x)) \ (supp(q) ∪ ā0))./.

Since we have only a finite number of transitions, we know that this automaton may be
transformed into a finite state automaton over ��ā, therefore thanks to Kleene’s theorem
there is a rational expression e ∈ Rat 〈�〉 such that JeK = LA ′ . We now need to check that e
is memory-finite and that LβeM = LA . For the first property, we show the following lemma:

I Lemma 20. For every run q0
w−→A ′ q ∈ Q�ā, the word w ∈ WF , m (w) 6 #ā and either

a ∈ supp(q) ∪ ā0 and Fa (w) = c, or a 6∈ supp(q) ∪ ā0 and Fa (w) = ε.

This entails that JeK ⊆ WF and m (e) 6 #ā. Lemma 20 will also serve in the next proof.

I Lemma 21. For any w ∈ �?, the word w belongs to wf
(
LA ′

)
if and only if there

is a sequence of permutations π0 . . . πn+1 ∈ S0 and a run q0
u0−→A ′ q1

u1−→A ′ · · ·
un−−→A ′

qn+1
un+1−−−→A ′ qf such that w = (π0 · u0) . . . (πn+1 · un+1) and ∀0 < i 6 n, πi−1 · qi = πi · qi.

From Lemmas 19 and 21 it is not hard to see that our construction is correct, thus proving
that every regular nominal language is rational.

I Theorem 1 (Kleene Theorem). Let L be a nominal language. The following are equivalent:
(i) L is rational, that is L = LβeM for some memory-finite regular expression e.
(ii) L is regular nominal, that is recognisable by a NOFA.
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7 Related work

Schröder at al.’s regular bar-expressions [18] enjoy a Kleene-like theorem. Regular bar-
expressions add an operator |a to the alphabet, intuitively writing an a on the right-hand side
of the bar, and hiding it from the left-hand side. These expressions are equipped with two
semantics, called “local” and “global” freshness. Under “local” freshness, the class of automata
represented by these expressions is a strict subset of the class of nominal automata, where no
name may be guessed (i.e. for every transition p x−→ q we have supp(q) ⊆ supp(p)∪supp(x)),
and where a policy of “name dropping” is enforced: a name may be in the support of a state
only if it will appear later. For instance, this precludes recognising the languages L2 and L5
from the introduction. Under “global” freshness however the situation is more contrasted.
With this semantics, the expressive power of bar-expressions is incomparable with that of
memory-finite expressions. Indeed, they can denote the language of words where all the
letters are different by |a?, but cannot denote L3 := Lβ〈a a 〉a ?M = A?. However if we drop the
memory-finite requirement, one can translate bar-expressions into regular expressions over �
by replacing every occurrence of |a with 〈a a add to the expression a suffix

(∑
a∈supp(e) 〉a

)?
.

For instance the term |a? is sent to the expression (〈a a)? 〉a ?. In this case, our well-formed
predicate corresponds to the clean predicate used to define the global freshness semantics,
and this transformation preserves languages. This means that unrestricted expressions with
brackets are strictly more expressive than regular bar-expressions.

In a study of Nominal Kleene Algebra [11, 10, 6], NKA expressions were introduced,
and half a Kleene theorem for NOFA was proved. These expressions feature a unary νa(e)
operator to make a name a local to an expression e. These expressions do not allow the
interleaving of scopes, thus failing to capture languages such as 5 from the introduction.

Kurz et al. [13] considered regular expressions with binders. However, their framework
only accounts for well nested brackets, thus not covering many of the languages we consider.
They present a Kleene theorem for history-dependent automata that incorporates a bound on
the nesting depth of binding, rejecting words that exceed this depth, which is the analogue
restriction at the automaton level of our memory-finiteness property at the language level. It
is unclear whether HD-automata could be generalised to accommodate interleaving of scopes.

On the other hand Libkin and Vrgoč’s regular expressions with memory [14] enjoy a full
Kleene theorem with register automata. Since register automata and nominal automata are
equi-expressive, this means that regular expressions with memory as as expressive as our
memory-finite expressions. They are however quite different in style. The point of view they
choose is that of data words: they assume a finite alphabet Σ and an infinite set of data
values D, and consider languages over the alphabet Σ × D, i.e. each letter carries a data
value. The key feature of their syntax is to use annotation on letters. They fix a number
of variables x1 . . . xk, and use regular expressions over an alphabet made of elements of the
shape a[c]↓I where a is a letter from Σ, I is a subset of the variables, and c is a boolean
formula that may use atomic predicates x=

i and x 6=i . These expressions are then interpreted
as ternary relations, linking two k-tuples of data values with data words. In effect, this
amounts to simulating the run of a register automaton where the k-tuples of data values
represent the content of the registers.
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A Proofs of Section 2

I Lemma 22 (Simple extension of Lemma 3.5 in [3]). Every tractable set can be expressed as
the image of a tractable set of words from A? by some equivariant function.

Proof. Let Y ⊆ X be a tractable set. Let I be the set of orbits intersected by Y , i.e.
I = {[x]∼O | x ∈ Y } ⊆ X. By definition of tractability I is finite, let n = #I. We may
therefore index the orbits in I with numbers 1 6 i 6 n. For an orbit oi ∈ I, we define
Yi = oi ∩ Y . Hence Y may be expressed as the finite union:

Y =
⋃

16i6n
Yi.

Since Y is finitely supported, so are the Yi. Indeed, π · Y = Y entails π · Yi = Yi, so any set
supporting Y also supports Yi.

According to [3, Lemma 3.5], for each Yi there exist an equivariant function fi and a
word wi ∈ A? such that:

Yi = {π · wi | π ∈ SA : π ⊥ supp(Yi)} .

Now, we encode the numbers 1 6 i 6 n into words as follows: let a, b ∈ A be two distinct
names, i = an−i+1bi. Each of those words have length n + 1, and there is an equivariant
function idx : A? → {0, . . . , n} such that: idx (i) = i.

We finally define:

WY := {iwi | 1 6 i 6 n} f(w) :=
{
f1(w) if |w| < n+ 1
fidx(w1...wn+1)

(
wn+2 . . . w|w|

)
otherwise.

J

I Lemma 23. Nominal automata enjoy ε-elimination.

Proof. Let A = 〈Q,X,∆, I, F 〉 be an automaton with ε-transitions, meaning ∆ is a finitely
supported subset of Q× (X ∪ {ε})×Q.

We may define A ′ = 〈Q,X,∆′, I, F ′〉 where:

∆′ :=
{
〈p, x, q〉 ∈ Q× X×Q

∣∣∣ ∃p′ : 〈p′, x, q〉 ∈ ∆ ∧ p ε−→A p′
}

F ′ :=
{
q ∈ Q

∣∣∣ ∃q′ ∈ F : q ε−→A q′
}
.

Clearly this automaton is language-equivalent to A. What we need to show is that F ′
and ∆′ are finitely supported. This is a consequence of the fact that F and ∆ were finitely
supported. Let ā be a finite set of names supporting both F and ∆. By definition of the
path relation, we have that:

∀π ∈ SA, π ⊥ ā⇒ ∀p, w, q : p w−→A q ⇔ π · p π·w−−→A π · q.

Therefore, since π · ε = ε, we can deduce that ā supports both ∆′ and F ′. J

B Proof of Section 4

I Corollary 24. For any words u, v of length n, the following are equivalent:
(i) u =α v and v ∈ WF ;
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A�ā

pi−1 pixi

p′ p′′x′

qi−1 qiyi

πi−1

π π π

π′ π′ π′

Figure 1 Illustration of the inductive case for i ⇒ ii of Lemma 19.

(ii) there are stack s0 . . . sn such that s0 = [], sn ∈ Sacc, for every index 0 6 i < n we
have si −[ui+1/vi+1]→Tα si+1, and for any index 0 6 i 6 n and name a we have
|p2 (si)|a 6 1.

Proof. By Theorem 11, we know that u =α v if and only if there are stack s0 . . . sn such
that s0 = [], sn ∈ Sacc, for every index 0 6 i < n we have si −[ui+1/vi+1]→Tα si+1. We
need to show that in this situation, v ∈ WF if and only if for any index 0 6 i 6 n and name
a we have |p2 (si)|a 6 1. Assume v is well-formed, and let a ∈ A. We prove the property by
recursion on i. Since |[]|a = 0, the initialisation is trivial. Now, assume |p2 (si)|a 6 1. We
proceed by case analysis on the letter vi+1.

If vi+1 is a closing bracket or a variable, then si+1 is a subword of si (either it is equal to
si or it was obtained by removing a pair from si). In this case |p2 (si+1)|a 6 |p2 (si)|a 6 1.
If vi+1 = 〈b then ui+1 = 〈c for some c and si+1 = si :: 〈c, b〉, thus p2 (si+1) = p2 (si) b.

If b 6= a, then |p2 (si+1)|a = |p2 (si)|a 6 1.
If on the other hand a = b, then by definition ofWF we know that ca (v1 . . . vi) = 0, thus
by Lemma 12 we get that |p2 (si)|a = 0. Therefore |p2 (si+1)|a = |p2 (si)|a + 1 = 1 6 1.

J

C Proofs of Section 6

I Lemma 25. For any letters (xi)1,...,n and any states (qi)0,...,n, t.f.a.e.:
(i) there is a run p0

x1−→A p1 . . .
xn−−→A pn

(ii) there is a run q0
y1−→A�ā q1 · · ·

yn−→A�ā qn and a sequence (πi)0,...,n from S0 such that
π0 · q0 = p0 and ∀i > 0 we have πi · 〈qi−1, yi, qi〉 = 〈pi−1, xi, pi〉.

Proof. We proceed to prove both directions of the equivalence.
ii⇒i: This is immediate since for every π ∈ S0, π ·∆ = ∆.
i⇒ii: We will prove this direction by induction on n. If n = 0, then by definition of ā there is

some state p0 ∈ Q�ā and some permutation π0 ∈ S0 such that π0 · q0 = p0. The inductive
case is illustrated in Figure 1. Assume we have πi−1 · qi−1 = pi−1 with qi−1 ∈ Q�ā
and πi−1 ∈ S0. These hypotheses are represented by solid arrows in the diagram. By
definition of ā we can find a permutation π ∈ S0 such that π−1 · 〈pi−1, xi, pi〉 ∈ ∆�ā. On
the figure, this gives us the dotted arrows. We write p′ = π−1 · pi−1. Since:

π−1 ◦ πi−1 · qi−1 = p′ π−1 ◦ πi−1 ∈ S0 supp(qi−1) ∪ supp(p′) ⊆ ā

there must be some permutation π′ ∈ S0 such that π′ · ā = ā and π′ · qi−1 = p′. We
choose πi = π ◦ π′, yi = π−1

i · xi and qi = π−1
i · pi. This step is materialised by dashed
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arrows on the figure. Since π, π′ ∈ S0, we have πi ∈ S0, and since we already know
that πi · qi−1 = π · π′ · qi−1 = π · p′ = pi−1, we get that πi · 〈qi−1, yi, qi〉 = 〈pi−1, xi, pi〉.
To conclude, notice that supp(yi) = π−1

i · supp(xi) = π′−1 · supp
(
π−1 · xi

)
. Since

supp
(
π−1 · xi

)
⊆ ā and π′ · ā = ā, we conclude that supp(yi) ⊆ ā, meaning yi ∈ X�ā.

The same argument shows that qi ∈ Q�ā.
J

I Lemma 26. For every run q0
w−→A ′ q ∈ Q�ā, the word w ∈ WF , m (w) 6 #ā and either

a ∈ supp(q) ∪ ā0 and Fa (w) = c, or a 6∈ supp(q) ∪ ā0 and Fa (w) = ε.

Proof. To prove that w is well-formed and that its memory is bounded by #ā, we actually
show that for every word u prefix of w and any name a, Fa (u) ∈ {c, ε}. Since by construction
supp(u) ⊆ ā, this entails that ‖u‖ 6 #ā, and since this holds for every prefix of w it means
that m (w) 6 #ā. It also means that for any decomposition w = w1〈a w2, since both Fa (w1)
and Fa (w1〈a ) belong to the set {c, ε}, we have Fa (w1) = ε and Fa (w1〈a ) = c, therefore
w ∈ WF .

We proceed by induction on the path. The initial case is:

q0
〈a1 ...〈an−−−−−−−→A ′ q where q ∈ I�ā and a1 . . . an ∈ (supp(q) ∪ ā0)./.

Since w = 〈a1
. . . 〈an is made exclusively of 〈− with no duplication, we have:

Fa
(
〈a1

. . . 〈ai
)

=
{

c if a = aj for some j 6 i
ε otherwise

This shows that for every prefix Fa (u) ∈ {c, ε}. For w itself, we get the value c for precisely
the names in {a1 . . . an} = supp(q) ∪ ā0.

Now, for the inductive step, assume that we have

q0
w−→A ′ p

〈a1 ...〈an x 〉b1 ... 〉bm−−−−−−−−−−−−−→A ′ q where: p x−→ q ∈ ∆�ā and
a1 . . . an ∈ ((supp(q) ∪ supp(x)) \ (supp(p) ∪ ā0))./

b1 . . . bm ∈ ((supp(p) ∪ supp(x)) \ (supp(q) ∪ ā0))./.

By induction hypothesis we know that we have Fa (u) ∈ {c, ε} for every prefix u of w and
that:

Fa (w) =
{

c if a ∈ supp(p) ∪ ā0,

ε otherwise.

We write u = 〈a1
. . . 〈an and v = 〉b1 . . . 〉bm

. By definition we gather that:

Fa (u) =
{

c if a ∈ (supp(q) ∪ supp(x)) \ supp(p),
ε otherwise.

Fa (x) =
{

f if a ∈ supp(x),
ε otherwise.

Fa (v) =
{

d if a ∈ (supp(p) ∪ supp(x)) \ supp(q),
ε otherwise.

To conclude on Fa (wuxv), we check the 16 possible boolean combinations of:

a
?
∈ ā0 a

?
∈ supp(p) a

?
∈ supp(q) a

?
∈ supp(x).
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a∈ā0 a∈supp(q) a∈supp(p) a∈supp(x) Fa (w) Fa (u) Fa (x) Fa (v) Fa (wuxv)
% % % % ε ε ε ε ε

% % % ! ε c f d ε

% % ! % c ε ε d ε

% % ! ! c ε f d ε

% ! % % ε c ε ε c
% ! % ! ε c f ε c
% ! ! % c ε ε ε c
% ! ! ! c ε f ε c
! − − % c ε ε ε c
! − − ! c ε f ε c
Table 2 Case analysis for Fa (wuxv).

and using the expressions above we compute Fa (wuxv) to verify that indeed this evaluates
to c when a ∈ supp(q) and to ε otherwise. See Table 2 for a detailed analysis. To show that
for every prefix w′ of wuxv and any name a the binding power of w′ is either c or ε, we need
to look into four cases:
1. w′ is a prefix of w: in this case, we conclude using the induction hypothesis;
2. w′ = w〈a1

. . . 〈ai : in this case,
a. if a /∈ {a1, . . . , ai}, then Fa (w′) = Fa (w) ∈ {c, ε},
b. otherwise we know that a /∈ supp(p) ∪ ā0 so Fa (w) = ε, hence we have: Fa (w′) =

ε · c = c;
3. w′ = wux: in this case we way conclude by looking at Table 2;
4. w′ = wux 〉b1 . . . 〉bi : in this case,

a. if a /∈ {b1, . . . , bi}, then Fa (w′) = Fa (wux), which we covered in the previous case,
b. otherwise we get Fa

(
〉b1 . . . 〉bi

)
= d, and it implies that a ∈ supp(p)∪supp(x) hence

Fa (w′) = Fa (wux) · d = c · d = ε.
J

I Lemma 27. JeK ⊆ WF and m (e) 6 #ā.

Proof. Let u ∈ JeK. By definition, there is a run q0
w−→A ′ q

〉a1 ... 〉an−−−−−−→A ′ qf where:

u = w 〉a1
. . . 〉an q ∈ F �ā a1 . . . an ∈ (supp(q) \ ā0)./.

By Lemma 20, the word w is well-formed, m (w) 6 #ā and

Fa (w) =
{

c if a ∈ supp(q) ∪ ā0
ε otherwise.

Clearly u is well-formed since a prefix of u ending with 〈a must be a prefix of w. To conclude,
notice that ∀i we have:

Fa
(
w 〉a1

. . . 〉ai
)

= Fa (w) · Fa
(
〉a1
. . . 〉ai

)
=


c · ε if a ∈ supp(q) ∪ ā0 and ∀j 6 i, aj 6= a

c · d if a ∈ supp(q) ∪ ā0 and ∃j 6 i, aj = a

ε otherwise.

=
{

c if a ∈ supp(q) ∪ ā0 and ∀j 6 i, aj 6= a

ε otherwise.
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This entails that for any name a,
∣∣Fa (w 〉a1

. . . 〉ai
)∣∣ 6 1, and since the support of

w 〉a1
. . . 〉ai is contained in ā this means that

∥∥w 〉a1
. . . 〉ai

∥∥ 6 #ā. Now we conclude:

m (u) = max {‖v‖ | v ∈ pref (u)}
= max

(
max {‖v‖ | v ∈ pref (w)} ,max

{∥∥w 〉a1
. . . 〉ai

∥∥ ∣∣ 1 6 i 6 n
})

= max
(
m (w),max

{∥∥w 〉a1
. . . 〉ai

∥∥ ∣∣ 1 6 i 6 n
})

6 max (#ā,#ā)
= #ā.

J

I Lemma 28. For any w ∈ �?, the word w belongs to wf
(
LA ′

)
if and only if there

is a sequence of permutations π0 . . . πn+1 ∈ S0 and a run q0
u0−→A ′ q1

u1−→A ′ · · ·
un−−→A ′

qn+1
un+1−−−→A ′ qf such that w = (π0 · u0) . . . (πn+1 · un+1) and ∀0 < i 6 n, πi−1 · qi = πi · qi.

Before getting to the proof of this result, we establish the following technical lemmas.

I Lemma 29. Let q0
u−→A ′ p

v−→∆′ q be a run in A ′, and [] −[u/u′]→Tα s a run in Tα with
u′ ∈ WF . For every permutation such that π · p1 (s) = p2 (s), we have u′ (π · v) ∈ WF and
there exists s′ such that:

s −[v/π · v]→T s′ π · p1 (s′) = p2 (s′) .

Proof. Let us write v = 〈a1
. . . 〈an x 〉bk . . . 〉b1 , with

a1 . . . an ∈ ((supp(q) ∪ supp(x)) \ (supp(p) ∪ ā0))./

bk . . . b1 ∈ ((supp(p) ∪ supp(x)) \ (supp(q) ∪ ā0))./.

We start by showing that u′ (π · v) ∈ WF . Since u′ is well-formed, it amounts to showing
that:

∀1 < i 6 n, cπ(ai)

(
u′〈π(a1) . . . 〈π(ai−1)

)
= 0. (†)

Notice the following identities:

dπ(ai)

(
〈π(a1) . . . 〈π(ai−1)

)
= 0 (∗)

cπ(ai)

(
〈π(a1) . . . 〈π(ai−1)

)
= 0 (∗∗)

The fact that (∗) holds is due to the fact that there are no closing brackets in the word
considered, and (∗∗) stems from the fact that ∀j 6= i, ai 6= aj , which entails π (ai) 6= π (aj).
Hence we may simplify the expression we had before:

cπ(ai)

(
u′〈π(a1) . . . 〈π(ai−1)

)
=
(

cπ(ai) (u′) ´ dπ(ai)

(
〈π(a1) . . . 〈π(ai−1)

))
+ cπ(ai)

(
〈π(a1) . . . 〈π(ai−1)

)
=
(

cπ(ai) (u′) ´ 0
)

+ 0 = cπ(ai) (u′) .

Using Lemma 12 and the fact that p2 (s) = π · p1 (s), we may further obtain that:

cπ(ai) (u′) = |p2 (s)|π(ai) = |π · p1 (s)|π(ai) = |p1 (s)|ai .
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Finally, we know by Lemma 20 that since ai /∈ supp(p) ∪ ā0, |p1 (s)|ai = 0. This means
that (†) holds, hence that u′m ∈ WF .

By defining s0 = s and ∀0 6 i < n, si+1 = si :: 〈ai, π (ai)〉, we get a run:

s0 −[〈a1
. . . 〈an /〈π(a1) . . . 〈π(an) ]→T sn.

Notice that this implies ∀i, p2 (si) = π · p1 (si).
The next step consists in checking that sn −[x/π · x]→T sn. To do so, we establish that

if a ∈ supp(x), then sn |= 〈a, π (a)〉. Let a ∈ supp(x).
If a ∈ supp(p) ∪ ā0, then by Lemma 20 we know that a ∈ p1 (s). As p2 (s) = π · p1 (s),
this means that s |= 〈a, π (a)〉. Because a ∈ supp(p), a /∈ {a1, . . . , an}, so π (a) /∈
{π (a1) , . . . , π (an)}. Therefore sn |= 〈a, π (a)〉.
If a /∈ supp(p) ∪ ā0, there must be some j such that aj = a, hence

sj = sj−1 :: 〈aj , π (aj)〉 |= 〈aj , π (aj)〉 .

Since ∀j < i, ai 6= aj ∧ π (ai) 6= π (aj), this ensures that sn |= 〈a, π (a)〉.

We now define tk+1 = sn, and ti = ti+1� 〈bi, π (bi)〉. Notice that this preserves the fact
that p2 (ti) = π · p1 (ti). We now show that ∀j, i < j ⇒ tj |= 〈bi, π (bi)〉.

If bi ∈ supp(p) ∪ ā0, then by Lemma 20 we know that a ∈ p1 (s). As p2 (s) = π · p1 (s),
this means that s |= 〈bi, π (bi)〉. By construction, and since all of the aj are different from
bi, we know that sn = tk+1 |= 〈bi, π (bi)〉. From there, we remove pairs 〈bl, π (bl)〉 from
tk+1 to get to tj , but since all of these are different from 〈bi, π (bi)〉 in the end we still
have tj |= 〈bi, π (bi)〉.
If bi /∈ supp(p) ∪ ā0, then there must be some i′ such that ai′ = bi hence:

si′ = si′−1 :: 〈ai′ , π (ai′)〉 |= 〈ai′ , π (ai′)〉 = 〈bi, π (bi)〉 .

Using the same reasoning as before, we get that sn = tk+1 |= 〈bi, π (bi)〉, and thus
tj |= 〈bi, π (bi)〉.

This ensures that ti+1 |= 〈bi, π (bi)〉, so we get ti+1 −[ 〉bi / 〉π(bi) ]→T ti. We may now
conclude since we know that p2 (t1) = π · p1 (t1) and we have a run: s −[v/π · v]→T t1. J

I Lemma 30. Let q0
u−→A ′ p

v−→∆′ q be a run in A ′, and

[] −[u/u′]→Tα s −[v/v′]→Tα s
′

a run in Tα with u′v′ ∈ WF . There exists a permutation such that:

π · p1 (s) = p2 (s) , π · p1 (s′) = p2 (s′) , (π · v) = v′.

Proof. Let us write v = 〈a1
. . . 〈an x 〉bk . . . 〉b1 , with

a1 . . . an ∈ ((supp(q) ∪ supp(x)) \ (supp(p) ∪ ā0))./

bk . . . b1 ∈ ((supp(p) ∪ supp(x)) \ (supp(q) ∪ ā0))./.

In order to find the appropriate permutations, we decompose the run of the transducer as
follows:

s = s0 −[〈a1
/〈a′1 ]→T s1 · · · −[〈an /〈a′n ]→T sn −[x/x′]→T sn

sn = tk+1 −[ 〉bk / 〉b′
k

]→T tk · · · −[ 〉b1 / 〉b′1 ]→T t1 = s′.
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This means that v′ = 〈a′1 . . . 〈a′n x
′ 〉b′1 . . . 〉b′

k
. It is straightforward to see that:

∀0 6 i 6 n, si = s :: 〈a1, a
′
1〉 · · · :: 〈ai, a′i〉 .

Since u′v′ is well-formed, we know that for every i, ca′
i

(
w′〈a′1 . . . 〈a′i−1

)
= 0. According to

Lemma 12, this implies that a′i /∈ p2 (si−1), which in turn proves that for every i, p2 (si) has
no duplicates. For the same reason p1 (si) has no duplicates, so there exists a permutation
πi such that p2 (si) = πi · p1 (si). By definition of si, this implies that ∀i, a′i = πi (ai). We
also get that p2 (s) = πi · p1 (s).

Since sn −[x/x′]→T sn there must be a permutation πx such that x′ = πx · x and
∀a ∈ supp(x), sn |= 〈a, πx (a)〉. As we have just shown that p2 (sn) = πn · p1 (sn), and
because whenever a ∈ supp(x) either a ∈ supp(p)∪ ā0 or a ∈ {a1, . . . , an}, so in both cases
a ∈ p1 (sn), we know that ∀a ∈ supp(x), πx (a) = πn (a), which implies x′ = πn · x.

For every step ti+1 −[ 〉bi / 〉b′i ]→T ti, we know that ti+1 |= 〈bi, b′i〉 and ti = ti+1� 〈bi, b′i〉.
From the later remark, a simple induction shows that ∀i, p2 (ti) = πn · p1 (ti). We may show
from Lemma 20 that

a ∈ p1 (ti)⇔ (a ∈ supp(p) ∪ supp(q) ∪ supp(x) ∪ ā0) \ {bk, . . . , bi} .

Therefore bi ∈ p1 (ti+1), meaning that ti+1 |= 〈bi, b′i〉 entails 〈bi, b′i〉 ∈ ti+1. Since p2 (ti+1) =
πn · p1 (ti+1), this in turn ensures that b′i = πn (bi).

Summing up, if we write π := πn, we have π · p1 (s) = p2 (s), π · p1 (s′) = p2 (s′), and:

π · v = 〈π(a1) . . . 〈π(an) (π · x) 〉π(bk) . . . 〉π(b1) = 〈a′1 . . . 〈a′n x
′ 〉b′
k
. . . 〉b′1 = v′.

This means that π satisfies the requirements we wanted.
J

We may now prove Lemma 21.

Proof of Lemma 21. Assume w ∈ wf
(
LA ′

)
. Then there is are runs:

q0
u0−→A ′ q1 · · ·

un−−→A ′ qn+1
un+1−−−→A ′ qf

[] −[u0/v0]→Tα s1 · · · −[un/vn]→Tα sn+1 −[un+1/vn+1]→Tα sf

Such that:

q1, . . . , qn ∈ Q�ā q1 ∈ I�ā qn ∈ F �ā sf ∈ Sacc w = v0 . . . vn+1.

Using a similar argument as in the proof of Lemma 30, we find a permutation π0 ∈ SA such
that

π0 · p1 (s1) = p2 (s1) π0 · u0 = v0.

We may then apply Lemma 30 recursively, since ∀i, v0 . . . vi ∈ WF , and get a sequence of
permutations π1, . . . , πn ∈ SA such that:

πi · p1 (si) = p2 (si) πi · p1 (si+1) = p2 (si+1) πi · ui = vi.

Using a again a similar argument as in the proof of Lemma 30, we find a permutation
πn+1 ∈ SA such that

πn+1 · p1 (sn+1) = p2 (sn+1) πn+1 · p1 (sf ) = p2 (sf ) πn+1 · un+1 = vn+1.
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By Lemma 20, we know that p1 (sn+1) ≈ supp(qn+1) ∪ ā0. By construction, we know
un+1 = 〉a1

. . . 〉ak , for a1 . . . ak ∈ (supp(qn+1) \ ā0)./. According to Lemma 12, we deduce
that p1 (sf ) ≈ ā0. Since sf ∈ Sacc, we know that 〈a, b〉 ∈ sf ⇒ a = b. This means that since
πn+1 · p1 (sf ) = p2 (sf ), we have:

a ∈ ā0 ⇔ a ∈ p1 (sf )⇔ 〈a, πn+1(a)〉 ∈ sf ⇒ πn+1(a) = a.

Since ∀0 < i 6 n+ 1, πi · p1 (si) = p2 (si) = πi−1 · p1 (si), and since we know by Lemma 20
and Lemma 12 that ā0 ⊆ supp(qi) ≈ p1 (si), we can conclude by descending recursion that
∀i, πi ∈ S0.

For the other direction, assume we have

q0
u0−→A ′ q1 · · ·

un−−→A ′ qn+1
un+1−−−→A ′ qf , π0, . . . , πn+1 ∈ S0, πi−1 · qi = πi · qi.

Using a similar argument as Lemma 29, we show that π0 · u0 ∈ WF and find a stack s1 such
that:

π0 · p1 (s1) = p2 (s1) [] −[u0/π0 · u0]→Tα s1.

We apply Lemma 29 recursively, and get stacks such that:

πi · p1 (si) = p2 (si) πi · p1 (si+1) = p2 (si+1) si −[ui/πi · ui]→Tα si+1.

We also show along the way that (π0 · u0) . . . (πi · ui) ∈ WF .
Since πn+1 · qn+1 = πn · qn+1, and since we have assumed that Q is strict, we know that

∀a ∈ supp(qn+1), πn(a) = πn+1(a). Since we know that

p1 (sn+1) ≈ supp(qn+1) ∪ ā0 πn, πn+1 ∈ S0 πn · p1 (sn+1) = p2 (sn+1)

this entails πn+1 · p1 (sn+1) = p2 (sn+1). Again, with a similar argument as Lemma 29, we
show that

(π0 · u0) . . . (πn · un) (πn+1 · un+1) ∈ WF

and find a stack sf such that:

πn+1 · p1 (sf ) = p2 (sf ) sn+1 −[un+1/πn+1 · un+1]→Tα sf .

sn+1 is accepting, since it only contains pairs 〈a, πn+1(a)〉 with a ∈ ā0. This means that
(π0 · u0) . . . (πn · un) (πn+1 · un+1) is a well-formed word that is α-equivalent to a word in
LA ′ , meaning it belongs to wf

(
LA ′

)
. J
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