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Calcium stable isotopes place Devonian conodonts  
as first level consumers
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Abstract doi: 10.7185/geochemlet.1912

Conodont animals are an extinct group of jawless vertebrates whose hard parts, 
also known as conodont elements, represent the earliest evidence of a mineralised 
skeleton in the vertebrate lineage. Conodont elements are interpreted as parts of 
a feeding apparatus, which together with the presence of eyes and microwear 
patterns, support the controversial hypothesis that conodont animals were 
macrophagous predators and/or scavengers. Here, we explore the trophic position 
of five conodont genera (Palmatolepis, Polygnathus, Ancyrodella, Ancyrognathus and 
Icriodus) from five contemporary Late Devonian sites distributed worldwide 
(France, Morocco, Vietnam and Australia) by means of calcium (Ca) stable isotope 
compositions. The seawater Ca isotope composition was calibrated using contem-
porary Late Devonian brachiopod isotopic values. By comparison with extant 
marine trophic chain composed of cartilaginous fish, conodont Ca isotope 
compositions are indicative of a zooplanktivore - primary piscivore niche, with 

no genus-specific trophic pattern. The question of active predation or scavenging cannot be resolved definitively but our 
results strongly suggest that Late Devonian conodonts were first level consumers. 
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Introduction

Until the publication of the discovery of the first specimen of 
the conodont animal in 1983 with conodont elements in situ 
forming a feeding apparatus, the nature and function of the 
conodont elements was one of palaeontology’s great mysteries 
(Briggs et al., 1983). Since then, several other specimens have 
shown similar schemes for this feeding apparatus, in which the 
anterior elements form a structure allowing them to trap food 
that is further processed by the posterior elements (Purnell 
and Donoghue, 1997). Today, despite the advancement of 
synchrotron microtomography that allows reconstructing 
virtual movements of the elements forming the feeding appa-
ratus (Goudemand et al., 2011), the dietary behaviour of cono-
donts remains an open debate but recently Shirley et al. (2018) 
suggested a predatory or scavenger mode of life. Conodonts 
possessed sclerotic eye capsule and extrinsic eye musculature 
(Gabbott et al., 1995; Purnell, 1995a), consistent with cono-
donts having pattern vision and an active predatory lifestyle. 
Lastly, microwear patterns were found on conodont elements, 
which constituted the first direct evidence that they functioned 
as teeth (Purnell, 1995b). 

In the present work, which is a pilot study, we use for the 
first time calcium (Ca) stable isotopes to infer the feeding habit 

of conodont animals. The first studies showing that trophic 
levels of animals, including fish, could be inferred from the 
Ca isotope compositions of their shell or inner skeleton lay 
back in the 2000’s (Skulan et al., 1997; Skulan and DePaolo, 
1999; Clementz et al., 2003; DePaolo, 2004). These results 
were recently confirmed on modern and fossil elasmobranchs 
(Martin et al., 2015), a subclass of cartilaginous fish, including 
the sharks, rays and skates, and sawfish. Some authors have 
already measured the Ca isotope composition of conodonts 
but with the aim to reconstruct variations of the seawater 
composition (Hinojosa et al. 2012; Jost et al. 2014; Le Houedec 
et al. 2017). Here, the Late Devonian period, particularly the 
Frasnian-Famennian boundary (F/F), was chosen because it is 
accompanied by important variations in the shape of conodont 
elements, suggestive of changes in the feeding behaviour of 
several genera (Balter et al., 2008; Girard and Renaud, 2008). 
The Material and Method sections are described in the Supple-
mentary Information.

Results

All values presented in this work are expressed as δ44/42Ca and 
defined as δ44/42Ca = ((44Ca/42Casample) / (44Ca/42CaSRM915a) – 1) 
* 1000. All measured samples were plotted as δ43/42Ca against 
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δ44/42Ca and fall on a line with a slope of 0.557 close to the 
theoretical 0.507 slope predicted by the exponential approx-
imation of mass dependent fractionation (Tacail et al., 2014; 
Fig. S-2). Quality control assessment is given in Table S-2, 
and Ca isotope values of conodonts measured in this study 
(Table S-3; Fig. 1)  range from -0.38 ‰ to 0.22 ‰, with an 
average value of -0.10 ± 0.22 ‰ (±2 s.d., n = 80). The average 
δ44/42Ca value is -0.10 ± 0.20 ‰ (±2 s.d., n = 39) at Col des 
Tribes, -0.12 ± 0.28 ‰ (±2 s.d., n = 39) at Coumiac, -0.03 ± 
0.12 ‰ (±2 s.d., n = 5) at M’rirt, -0.14 ± 0.04 ‰ (±2 s.d., n = 2) 
at Xom Nha and -0.05 ‰ at Sprite Ridge (Table S-3). Compar-
ison between conodonts at Coumiac and Col des Tribes, the 
two most abundant sites, reveals no significant difference of 
the δ44/42Ca value (Student’s t-test, p = 0.373). Comparisons 
between conodonts grouped by genus reveal no taxonomic 
difference (Table S-4). The brachiopod yielded a δ44/42Ca value 
of 0.13 ‰ (Table S-1), which represents one of the highest 
values of the dataset. 

Discussion

The present paper focuses on the trophic position of conodont 
animals based on their Ca isotope compositions, but these 
could have been affected by diagenetic processes. Discussion 
on the effects of diagenesis is developed in the Supplementary 
Information. We conclude, in the absence of any evidence of 
Ca isotope compositions being diagenetically reworked, that 
the measured δ44/42Ca values of conodonts are biogenic. 

The present paper focuses on the trophic position of 
conodont animals based on their Ca isotope composition, but 
accurate comparisons with modern analogues first necessitate 
calibrating the Ca isotopic values of the conodont elements 
relative to that of the contemporaneous seawater. Based on 
the existing Ca isotopic fractionation factor between modern 
brachiopods (br) Terebratalia and seawater (sw), abr-sw = 
0.99915 (Gussone et al., 2005), the δ44/42Ca value of end-De-
vonian seawater (δ44/42Casw) was estimated at 0.55 ‰, i.e. ~0.4 
‰ lower than that of modern oceans (Blättler et al. 2012). With 
an age estimated slightly younger than the Devonian-Carbon-
iferous boundary of 360 Ma, this value falls in the range, but 

in the lower limit, of the reconstructed Phanerozoic seawater 
Ca isotope composition of Farkaš et al. (2007; Fig. S-3). We 
can now calculate the Ca isotopic offset between seawater and 
conodonts, which is equal to 0.65 ± 0.25 ‰, (± s.d., n = 80). 
Conodonts are made up of hydroxylapatite (hap), which is 
more or less fluorinated, but it is the same mineral phase 
as that of elasmobranch teeth. This allows comparing the 
average Ca isotopic offset between Devonian seawater and 
conodonts with that of modern seawater and extant elasmo-
branch tooth enameloid (Martin et al. 2015), which is anno-
tated Δ44/42Casw-hap (Fig. 2). Using a modern seawater δ44/42Casw 
value of 0.92 ‰, an offset of ~0.65 ‰ is observed nowadays 
between seawater and the zooplanktivore and primary pisci-
vores group, which are characterised by average Δ44/42Casw-hap 
values of 0.56 ± 0.27 ‰ (±2 s.d., n = 5) and 0.86 ± 0.08 ‰ 
(±2 s.d., n = 6), respectively (Fig. 2). To fully encompass the 
δ44/42Casw variability at that time, which is well described by 
the study of Farkaš et al. (2007), we can also calculate the 
Δ44/42Casw-hap with the upper limit of the contemporaneous 
δ44/42Casw value, i.e. ~0.67 ‰. Even with this higher value, the 
calculated Δ44/42Casw-hap offset shows that conodonts are still 
in the the zooplanktivore - primary piscivores group (Fig. 2). 
The observation that conodonts fall as first level consumers is 
in accordance with the macrophagous hypothesis (i.e. feeding 
on relatively large particles of food), but is at odds with the 
view that conodont animals had a purely predatory life-
style, which would have implied a δ44/42Ca value of conodont 
elements around 1 ‰. Scavenging of fish cannot be ruled out, 
but must have involved small fish above all, otherwise the 
δ44/42Ca values would have been those of predators.

Another argument in favour of a basal trophic position 
for conodonts, is that modern piscivore elasmobranchs exhibit 
a much tighter grouping of the δ44/42Ca values than modern 
zooplanktivore elasmobranchs and conodonts (Figs. 1 and 2). 
The range of δ44/42Ca values for a given trophic level of pisci-
vore elasmobranchs never exceeds 0.1 ‰ while it is higher 
than 0.2 ‰ for modern zooplanktivore elasmobranchs and 
conodonts. No definitive explanation can be put forward from 
the state of the results, but a reasonable hypothesis could be 
that animals at the bottom of the trophic chain are more 
likely to sample local isotopic heterogeneities. This variability 

Figure 1  Ca isotope compositions of conodonts (δ44/42Ca) relative to SRM915a (‰) measured in the study. 
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is subsequently contracted at higher trophic level probably 
thanks to a biopurification process such as in the case of the 
Sr/Ca and Ba/Ca ratios (Peek and Clementz, 2012). 

The present results suggest that no significant difference 
in trophic level may have existed among conodonts, because 
genera exhibit indistinguishable δ44/42Ca values (Table S-2). 
This overall similarity suggests that competition must have 
existed between some genera occupying similar trophic levels 
at the same time, i.e. between Palmatolepis and Polygnathus for 
instance. It is noteworthy that Ancyrodella is the only genus 
analysed in the study that disappeared at the F/F boundary, 
questioning the possibility that a distinct ecological trait would 
have triggered the extinction of this conodont genus. 

Using a similar Δ44/42Casw-hap for conodont elements 
and modern elasmobranchs to retrieve the trophic position 
of conodont animals implies similar vital effects (i.e. isotope 
fractionation due to biological processes) in both groups. This 
approach is however probably simplistic. In fish, Ca is taken 
up along three pathways, (1) directly from the water via the 
gills, which contain a lot of ion-transporting cells or chloride 
cells (also known as ionocytes), but also through the intestine 
from (2) drinking water and (3) food (Flik and Verbost, 1993). 
No evidence for gills has ever been reported in preserved 
specimens of conodont animals (Aldridge and Purnell, 1996), 
which would suggest distinct Δ44/42Casw-hap values between 
conodont animals and elasmobranchs. Total intestinal absorp-
tion of calcium in marine fish represents around 30 % of the 
total calcium intake (Björnsson and Nilsson, 1985; Sundell and 
Björnsson, 1988). To our knowledge, relative proportions of 
drinking water and food in fish have never been determined, 
but the isotopic results of Martin et al. (2015) in elasmobranchs 
demonstrate that food must make a sizable proportion, other-
wise no trophic effect would have been observed. Indeed, the 
most likely explanation to account for the depletion of Ca 
heavy isotopes up trophic chains, being marine or terrestrial, 
is that preys are wholly ingested along with their skeleton 

which is depleted in heavy Ca isotopes. If the three types 
of Ca uptake described above are characterised by different 
isotope fractionation intensity, and their relative proportions 
vary between fish groups, this should in principle result in 
a different Δ44/42Casw-hap fractionation. Analysis of dietary 
relevant trace elements for marine organisms, such as Sr/Ca 
and Ba/Ca ratios (Balter and Lécuyer, 2004, 2010; Le Houedec 
et al., 2013; Peek and Clementz, 2012) would corroborate the 
present results, but we question whether this would be feasible 
in light of the difference of vital effects discussed above, and 
of potential diagenetic effects. Further analysis of Ca isotopes 
in conodont assemblages will document the diversity of their 
ecological niches within Palaeozoic oceanic trophic chains.
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Figure 2  Ca isotopic offset between seawater and hap of modern elasmobranchs compared to that of conodonts (Δ44/42Casw-hap) 
measured in the study. Modern elasmobranch data are from Martin et al. (2015). The Δ44/42Casw-hap offset is calculated with two 
δ44/42Casw values, 0.55 ‰ (diagonal lines) and 0.67 ‰ (diagonal cross hatch) corresponding to the range given by Farkaš et al. (2007; 
Fig. S-3). Boxplots delimit 5, 25, 50, 75 and 95 % percentiles. Depending on the δ44/42Casw value, statistics show that conodonts and 
zooplanktivores have similar δ44/42Ca values. Under the null hypothesis that there is no difference in the distribution of two groups of 
δ44/42Ca values, the p value of Student’s t-tests provides the smallest level of significance at which null hypothesis would be rejected 
(NS, non-significant p value; *p = 0.01–0.05; **p = 0.001–0.01; and ***p < 0.001).
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Supplementary Material 

 
Conodont elements were collected from Frasnian-Famennian levels of five different localities (Figure S-1): 1) a Famennian 

succession at the Col des Tribes (France), a newly described outcrop in the Montagne Noire, which exposes a continuous record of 

the Famennian Stage (Girard et al. 2014); 2) the stratotype area of the F/F boundary, the Coumiac Lower Quarry, located close to the 

Col des Tribes (Girard and Feist 1997); 3) M'rirt (Central Meseta, Morocco), which shows a similar environmental context to 

Coumiac, where deposits are a succession of well-oxygenated beds (Lazreq 1999). Conodonts are sampled from the Pa. linguiformis 

Zone (M9, level just before the Upper Kellwasser event) (Girard et al. 2005); 4) the Xom Nha section (Central Vietnam), which is 

characterised by a continuous carbonate sequence dated from latest Frasnian to Famennian (here the conodonts are from the Pa. 

linguiformis Zone XN52, Phuong 1998); 5) Sprite Ridge (Canning Basin, Australia), which is part of an elongated Famennian 

limestone (Feist and Becker 1997). The sample analysed here is of the Early rhomboidea Zone. In addition, a brachiopod sample was 

collected from the La Serre section in the Bispathodus ultimus zone corresponding to the CT69 level at Col des Tribes. All 

correlations are based on conodont biostratigraphy (Flajs and Feist 1988; Girard and Feist 1997; Girard et al. 2010, 2014), and 

absolute ages are given in Figure S-1 according to Becker et al. (2012). All the samples came from stratigraphic levels around the F/F 

boundary which is dated of ~ 372 Ma. Calcium isotopes were measured in a total of 80 conodont samples, which are distributed as 

follows: Palmatolepis, n = 38; Ancyrodella, n = 12; Ancyrognathus, n = 11; Icriodus n = 5; Polygnathus, n = 14. For each studied 

stratigraphic level and for a given genus, between five and twenty conodont elements (depending on their size and the richness of 

the stratigraphic layer) were selected and completely dissolved in 1 ml ultrapure concentrated HNO3 overnight. The brachiopod 

shell was sampled following the protocol of Brazier et al. (2015) and dissolved as for the conodonts.  



 

 

 

                                                             Geochem. Persp. Let. (2019) 10, 36-39 | doi: 10.7185/geochemlet.1912                            SI-2 

 

 

Supplementary Methods 
 

The details of the purification processes and analytical techniques are given in Tacail et al. (2014) but are summarised here. Samples 

were digested on hotplate using 2 ml concentrated distilled HNO3. Vials were heated at 120°C during 2 h and regularly degassed. 

A volume of 2 ml Suprapur 30 % H2O2 was added on cooled samples and vials were sealed, regularly degassed at ambient 

temperature. Finally, vials were sealed and heated on hotplate at 100°C during 2 h and evaporated to dryness. The use of MC-

ICPMS requires efficient separation of Ca from samples because of isobaric interferences. Strontium, potassium and to a lesser 

extent magnesium from samples have to be eliminated to avoid any bias in the measurement of 42Ca+ (interfering with 84Sr2+, 41K1H+ 

and 25Mg16O+), 43Ca+ (86Sr2+) and 44Ca+ (88Sr2+, 26Mg18O+). The elimination of the remaining matrix components is also required to 

avoid any bias due to matrix effects. The exact elution procedure is shown in Table S-1. 

The first elution aims at discarding K and the majority of matrix elements. Once taken up in 1N HCl, samples were processed 

on 0.76 cm internal diameter Teflon chromatography columns, filled with 2 ml of Biorad AG50W-X12 cationic resin, 200-400 mesh. 

The AG50W-X12 columns were reused maximum 5 times, in order to avoid any aging of resin. Strontium was finally eliminated by 

processing samples on 0.7 ml Eichrom Sr-specific resin, packed in 2 ml Eichrom columns, following a classical Sr elimination 

protocol (Table S-1). Blank levels never exceed 100 ng, which would represent a contribution of 1/30 of a typical signal. The Sr/Ca 

ratio, measured as the 87Sr2+/44Ca+ ratio is always below 10-5. Quality control of the Ca chemical purification is controlled in each 

session by including a blank and one or two standards which are matrix-matched with the samples (SRM915b "Calcium Carbonate" 

and SRM1486 "Bone Meal"). Data for the standards are reported in Table S-2. Based on replicates of two standards, the external 

reproducibility has been estimated at ±0.066 ‰ (2 SD, n = 130) for SRM1486 and ±0.048 ‰ (2SD, n=17) for SRM915b in the context 

of the present study. Since 2014, the overall reproducibility of SRM1486 is ±0.006 (2 SE, n = 404) with a mean 44/42Ca value of -

1.024 ‰. 

 The Ca isotopic compositions were measured using a Neptune plus MC-ICPMS (Thermo Scientific, Bremen, Germany). 

Standard and sample solutions were prepared to reach a 3 mg.l-1 concentration in 0.05N HNO3 medium. Calcium solution was 

introduced as a dry aerosol with a Cetac Aridus II desolvating system allowing reduction of hydride and oxide formation. The 

Aridus desolvating system was used with Ar sweep gas flow and an additional N2 gas flow. Aerosols were introduced in a 1200 W 

plasma with uptake rate of 100 to 150 µL.min-1. The optimised MC-ICPMS instrument operating parameters were : cool gas 

(15 L.min-1), auxiliary gas (0.7-0.8 L.min-1) and sample gas (1-1.2 L.min-1). 

 Faraday cups were set to measure 42Ca+ signal on L4 cup, 43Ca+ on L2 and 44Ca+ on central cup. The use of these three 

isotopes is sufficient for mass-dependent stable isotopes composition measurements in biological materials. The L1 cup was used to 

monitor the 87Sr2+ corresponding to m/z = 43.5. The 42 and 44 ion beams signals were measured with a 1011  resistance on faraday 

cup and 43 signal was measured with 1012  resistance, because of the low abundance of 43Ca (0.135 % of total Ca). Calcium 

concentrations were adjusted to be within 10 % of the fixed 3 mg.l-1 concentration. Medium mass resolution was sufficient to 

resolve polyatomic interferences: including 40Ar1H2+, 12C16O2+ and 14N3+. 

 Each analysis consisted of 40 measurements of 4.2 s integrations on m/z ratios 42, 43, 44 and 43.5. Even if Sr levels were 

very low due to the specific separation on the Sr-Spec resin, we corrected the double charge interferences of Sr on Ca (88Sr2+ on 44Ca+, 
86Sr2+ on 43Ca+, 84Sr2+ on 42Ca+) using the 43.5 signal corresponding to 87Sr2+. The correction includes the instrumental mass bias on Sr 

isotopes, which was monitored using the NBS 987 standard. Corrected and uncorrected ratios were calculated for each 

measurement and averaged after exclusion of values higher than 1SD from average. Instrumental mass bias was corrected by 

standard-sample-standard bracketing. A Specpure Calcium plasma standard solution (Alfa Aesar), noted ICP-Lyon, was used as 

reference and bracketing in-house standard. ICP-Lyon required purification because of the presence of Sr traces responsible for 

significant interferences on the three measured isotopes. 

 

Supplementary Discussion 
 

Sedimentological analyses (Girard et al. 2014) at the Col des Tribes and geochemical analyses on bulk sediment (δ13C and δ18O) at 

the Coumiac Quarry (Joachimski and Buggisch 1993) do not argue for any substantial post-depositional modifications. Regarding 

more specifically the Ca isotope composition of fossils, its use to unravel paleobiological features is in its infancy and data are still 

lacking to highlight potential methods to detect diagenesis of the original isotopic composition. Calcium is the major element of 

endogenous mineralised tissues, bone, dentine and enamel, which are made up of hydroxylapatite, and exogenous mineralised 

tissues, which are made up of calcite or aragonite. In both cases, Ca represents about 40 % weight of the mineral fraction, rendering 

Ca hardly prone to diagenesis because diagenetic fluids are incommensurably less Ca concentrated (Martin et al., 2017). For 

instance, this led recently Pruss et al. (2018) to show that 600 Myr old Ediacaran shell-forming organisms had still preserved a Ca 

isotope signature typical of aragonite. Here, we did not measure the concentration of trace elements that specifically incorporate 
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hap during diagenetic processes, such as rare Earth elements (REE), due to sample size limitation. However, REE concentrations 

have been previously measured in conodonts at Coumiac along with the strontium/calcium ratio (Sr/Ca) and the oxygen isotope 

composition of phosphates (δ18O, Le Houedec et al., 2014). From eight common layers where all the geochemical proxies have been 

measured, we show that, unless the strong correlation between La/Sm and La/Yb, indicative of substitution mechanisms in the 

context of ‘extensive’ or ‘late’ diagenesis (Reynard and Balter, 2014), no proxy is significantly correlated to any other (Table S-5). 

 

 

Supplementary Tables 

Table S-1  Chart of the purification processes. 

 

1. Matrix elimination 

AG50W-X12 resin (200-400 mesh) ~ 2mL 

Step Eluent Vol. (mL) 

Condition 1N HCl 10 

Load 1N HCl 2+1 

Elution (matrix) 1N HCl 55 

Ca elution (Ca,Sr,Fe) 6N HCl 10 

2. Sr elimination 

Sr-Specific resin (Eichrom) ~ 0.7mL 

Step Eluent Vol. (mL) 

Condition 3N HNO3 5 

Load 3N HNO3 0.5+0.5 

Elution (Ca) 3N HNO3 6 

Remaining on resin: Sr  
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Table S-2  Ca isotope compositions of SRM1486 and SRM915b measured in the study relative to ICP-Lyon. 

 

Standard  n 
δ44/42  
amu 

2 SD reference 

SRM1486 session #         

 
1 38 -0.52 0.02 

 

 
2 29 -0.53 0.14  

 
3 30 -0.50 0.07 

 

 
4 7 -0.52 0.05 

 

 
5 21 -0.48 0.08  

 
6 5 -0.51 0.04  

 
literature 

    

  
25 -0.52 0.06 Martin et al. (2015) 

  
17 -0.48 0.07 Tacail et al. (2014) 

  
142 -0.51 0.07 Heuser and Eisenhauer (2008)* 

  
2 -0.50 0.07 Heuser et al. (2011)* 

SRM915b session #         

 1 3 -0.11 0.03  

 2 3 -0.06 0.02  

 3 3 -0.06 0.09  

 4 2 -0.06 0.05  

 5 6 -0.10 0.05  

  literature         

  
13 -0.08 0.06 Martin et al. (2015) 

  
11 -0.06 0.04 Tacail et al. (2014) 

  
56 -0.08 0.01 Heuser and Eisenhauer (2008)* 

* TIMS analysis     
 



 

 

 

                                                             Geochem. Persp. Let. (2019) 10, 36-39 | doi: 10.7185/geochemlet.1912                            SI-5 

 

 

Table S-3  Ca isotope compositions measured in the study relative to ICP-Lyon and SRM915a standards. Conversion between ICP-Lyon and SRM915a standards 
is given by the relationship: 44/42CaICP Lyon = 44/42CaSRM915a - 0.52 (Martin et al. 2015). Error of the 44/42CaSRM915a value is obtained by adding 0.08 ‰ on the error 
relative to ICP Lyon. 

 

locality ID taxon shape n 44/42Ca 2 SD 43/42Ca 2 SD 44/42Ca 

          vs. ICP Lyon   vs. ICP Lyon   vs. SRM915a 

Col des Tribes CT22An Ancyrodella 
 

2 -0.61 0.18 -0.32 0.08 -0.09 

 
CT22Ag Ancyrognathus 

 
2 -0.59 0.05 -0.28 0.01 -0.07 

 
CT23Ag Ancyrognathus 

 
3 -0.70 0.09 -0.35 0.01 -0.18 

 CT22 (IC1) Icriodus 
 

2 -0.50 0.01 -0.19 0.03 0.02 

 CT22 (IC2) Icriodus 
 

2 -0.67 0.32 -0.28 0.10 -0.15 

 CT59-7 Palmatolepis 
 

2 -0.34 0.12 -0.21 0.00 0.18 

 CT37 Palmatolepis 
 

2 -0.57 0.10 -0.27 0.07 -0.05 

 CT35Pa Palmatolepis 
 

2 -0.60 0.08 -0.31 0.14 -0.08 

 CT33 Palmatolepis 
 

2 -0.53 0.11 -0.28 0.13 -0.01 

 CT30Pa Palmatolepis 
 

2 -0.49 0.01 -0.29 0.02 0.03 

 CT23Pa Palmatolepis Broad 6 -0.61 0.12 -0.30 0.12 -0.09 

 CT39Pa Palmatolepis Broad 2 -0.63 0.07 -0.34 0.00 -0.11 

 CT46Pa Palmatolepis Broad 6 -0.68 0.11 -0.35 0.08 -0.16 

 CT51Pa1 Palmatolepis Slender 5 -0.63 0.09 -0.33 0.15 -0.11 

 CT51Pa2 Palmatolepis Broad 5 -0.66 0.12 -0.34 0.06 -0.14 

 CT54-2Pa Palmatolepis Broad 6 -0.58 0.12 -0.28 0.11 -0.06 

 CT62Pa_1 Palmatolepis Slender 4 -0.53 0.09 -0.26 0.05 -0.01 

 CT62Pa_2 Palmatolepis Broad 6 -0.63 0.12 -0.32 0.14 -0.11 

 CT69GPa Palmatolepis Broad 8 -0.53 0.09 -0.28 0.08 -0.01 

 CT56Pa Palmatolepis Broad 3 -0.62 0.01 -0.36 0.07 -0.10 

 CT33FRPa Palmatolepis Broad 3 -0.78 0.13 -0.39 0.14 -0.26 

 CT70-2_Pa Palmatolepis Broad 3 -0.47 0.14 -0.25 0.07 0.05 

 CT35Pa0 Palmatolepis Broad 3 -0.84 0.21 -0.48 0.13 -0.32 

 CT22Pa Palmatolepis Broad 3 -0.76 0.10 -0.39 0.09 -0.24 

 CT22 (Pa1) Palmatolepis Broad 2 -0.67 0.18 -0.40 0.09 -0.15 

 CT22 (Pa2) Palmatolepis Broad 2 -0.73 0.15 -0.43 0.01 -0.21 

 CT66Pa Palmatolepis Broad 2 -0.68 0.07 -0.36 0.03 -0.16 

 CT66 (Pa5) Palmatolepis Broad 2 -0.60 0.02 -0.36 0.00 -0.08 

 CT66 (Pa6) Palmatolepis Broad 2 -0.60 0.14 -0.34 0.04 -0.08 

 CT66 (Pa7) Palmatolepis Broad 2 -0.67 0.10 -0.42 0.10 -0.15 

 CT30Po Polygnathus 
 

3 -0.54 0.03 -0.29 0.06 -0.02 

 CT46Po Polygnathus 
 

3 -0.59 0.06 -0.30 0.03 -0.07 

 CT69GPo Polygnathus 
 

4 -0.51 0.08 -0.26 0.10 0.01 

 CT39Po Polygnathus 
 

7 -0.61 0.09 -0.33 0.10 -0.09 

 CT22Po Polygnathus 
 

2 -0.62 0.03 -0.29 0.05 -0.10 

 CT51Po Polygnathus 
 

4 -0.55 0.00 -0.28 0.07 -0.03 

 CT22 (Po1) Polygnathus 
 

2 -0.66 0.26 -0.25 0.20 -0.14 

 CT22 (Po2) Polygnathus 
 

2 -0.83 0.11 -0.45 0.01 -0.31 

 CT22 (Po3) Polygnathus 
 

2 -0.67 0.03 -0.31 0.07 -0.15 
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Coumiac CUQ31cAn Ancyrodella 
 

2 -0.54 0.11 -0.29 0.02 -0.02 

 CLQ25aAn Ancyrodella 
 

2 -0.59 0.01 -0.25 0.07 -0.07 

 CUQ28cAn Ancyrodella 
 

2 -0.62 0.01 -0.32 0.02 -0.10 

 CLQ25bAn Ancyrodella 
 

3 -0.71 0.10 -0.37 0.06 -0.19 

 
CLQ23An Ancyrodella 

 
3 -0.30 0.12 -0.16 0.15 0.22 

 CLQ24An Ancyrodella 
 

3 -0.64 0.13 -0.32 0.02 -0.12 

 CLQ25aAn Ancyrodella 
 

2 -0.47 0.20 -0.32 0.12 0.05 

 CLQ25bAn Ancyrodella 
 

3 -0.60 0.14 -0.31 0.19 -0.08 

 CLQ25aAg Ancyrognathus 
 

3 -0.58 0.08 -0.28 0.03 -0.06 

 CLQ23bAg Ancyrognathus 
 

2 -0.59 0.04 -0.30 0.02 -0.07 

 CLQ25bAg Ancyrognathus 
 

2 -0.77 0.07 -0.40 0.11 -0.25 

 CUQ31cAg Ancyrognathus 
 

1 -0.54  -0.29  -0.02 

 CUQ28cAg Ancyrognathus 
 

2 -0.49 0.03 -0.24 0.03 0.03 

 CLQ23Ag Ancyrognathus 
 

3 -0.39 0.02 -0.14 0.14 0.13 

 CLQ24Ag Ancyrognathus 
 

4 -0.60 0.13 -0.33 0.12 -0.08 

 CLQ28Ic Icriodus 
 

2 -0.90 0.01 -0.50 0.03 -0.38 

 CLQ29aIc Icriodus 
 

2 -0.75 0.11 -0.39 0.01 -0.23 

 CLQ33Ic Icriodus 
 

2 -0.86 0.03 -0.48 0.06 -0.34 

 CLQ23Pa Palmatolepis 
 

3 -0.72 0.19 -0.38 0.14 -0.20 

 CLQ24Pa Palmatolepis 
 

3 -0.74 0.10 -0.39 0.10 -0.22 

 CLQ25aPa Palmatolepis 
 

3 -0.78 0.15 -0.41 0.11 -0.26 

 CLQ25bPa Palmatolepis 
 

6 -0.58 0.10 -0.31 0.10 -0.06 

 CLQ26aPa Palmatolepis 
 

3 -0.75 0.12 -0.38 0.08 -0.23 

 CLQ26bPa Palmatolepis 
 

2 -0.63 0.04 -0.33 0.10 -0.11 

 CLQ27Pa Palmatolepis 
 

3 -0.70 0.12 -0.36 0.13 -0.18 

 CLQ28Pa Palmatolepis 
 

3 -0.78 0.08 -0.39 0.11 -0.26 

 CLQ29aPa Palmatolepis 
 

3 -0.81 0.08 -0.43 0.01 -0.29 

 CLQ33Pa Palmatolepis 
 

2 -0.69 0.06 -0.40 0.07 -0.17 

 CLQ25aPo Polygnathus 
 

3 -0.49 0.05 -0.25 0.02 0.03 

 CLQ25bPo Polygnathus 
 

3 -0.56 0.16 -0.29 0.07 -0.04 

 CLQ29aPo Polygnathus 
 

3 -0.49 0.11 -0.22 0.08 0.03 

 CLQ26bPo Polygnathus 
 

3 -0.78 0.07 -0.43 0.09 -0.26 

 CLQ28Po Polygnathus 
 

2 -0.78 0.07 -0.39 0.08 -0.26 

M'rirt M9-1An Ancyrodella 
 

2 -0.62 0.09 -0.32 0.01 -0.10 

 
M9-2An Ancyrodella 

 
2 -0.59 0.08 -0.29 0.04 -0.07 

 
M9-1Ag Ancyrognathus 

 
2 -0.47 0.02 -0.21 0.02 0.05 

 
M9-2Ag Ancyrognathus 

 
2 -0.54 0.19 -0.29 0.06 -0.02 

 
M9Pa Palmatolepis 

 
2 -0.52 0.05 -0.25 0.05 0.00 

Xom Nha XNAn Ancyrodella 
 

3 -0.64 0.06 -0.33 0.03 -0.12 

 
XNPa Palmatolepis 

 
2 -0.67 0.14 -0.34 0.09 -0.15 

Sprite Ridge SR1 Palmatolepis 
 

2 -0.57 0.10 -0.33 0.08 -0.05 

La Serre LSbrach brachiopod 
 

3 -0.39 0.07 -0.20 0.03 0.13 
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Table S-4  Statistical results (p-value) of Student's t-tests between conodont genera. Under the null hypothesis that there is no difference in the distribution of 
two groups of 44/42Ca values, the p-value provides the smallest level of significance at which null hypothesis would be rejected. (NS, non significant p value; *p = 
0.01–0.05; **p = 0.001–0.01; and ***p < 0.001). 

 

 
Ancyrodella Ancyrognathus Icriodus Palmatolepis Polygnathus 

Ancyrodella 
 

NS 0.849 NS 0.092 NS 0.092 NS 0.327 

Ancyrognathus 
  

NS 0.080 NS 0.068 NS 0.253 

Icriodus 
   

NS 0.250 NS 0.190 

Palmatolepis 
    

NS 0.586 

Polygnathus 
     

 

 

 

Table S-5 Statistical results (correlation coefficient and associated p-value) of Student's t-tests between geochemical proxies used in the study (NS, non 
significant p value; *p = 0.01–0.05; **p = 0.001–0.01; and ***p < 0.001). 

 

 
44/42Ca 18O Sr/Ca La/Yb La/Sm 

44/42Ca   -0.676, NS 0.066 0.730, NS 0.062 0.518, NS 0.233 0.483, NS 0.273 

18O   
 

-0.578, NS 0.174 0.048, NS 0.918 0.139, NS 0.767 

Sr/Ca   
  

0.139, NS 0.767 0.152, NS 0.745 

La/Yb   
   

0.958, *** <10-4 

La/Sm           
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Supplementary Figures 

 

 

 

Figure S-1 Localisation of the different sites discussed in the text. Absolute ages are for Col des Tribes, -374 to -360 My; Coumiac, -374 to -371 My; Mrirt and 
Xom Nha: around -373 My; Sprite Ridge, around 367.5 My. La Serre, -360 My. Ages are from Becker et al. (2012). Conodonts are distributed as following: Col des 
Tribes, n = 39 (Palmatolepis, n=25; Ancyrodella, n=1; Ancyrognathus, n=2; Icriodus n=2; Polygnathus, n=9); Coumiac, n = 32 (Palmatolepis, n=10; Ancyrodella, 
n=8; Ancyrognathus, n=7; Icriodus n=2; Polygnathus, n=5); M'rirt, n = 5 (Ancyrodella, n=2; Ancyrognathus, n=2; Palmatolepis, n=1); Xhom Nha, n = 2 (Ancyrodella, 
n=1; Palmatolepis, n=1); Sprite Ridge, n = 1 (Palmatolepis). 
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Figure S-2 Three isotopes plot: 43/42Ca values as a function of the 44/42Ca values (‰, reference standard ICP Ca-Lyon) for all samples and standards analysed 

in this study. Ca isotope compositions fall on a line with a y-axis intercept of 0.023 indistinguishable from theoretical 0 ‰ intercept. The slope value of this line is 
0.557 (in red) very similar from the 0.507 slope (in blue) predicted by the exponential mass-dependent fractionation law. 
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Figure S-3 Value of the δ44/40Ca of seawater reconstructed from the brachiopod analysed in this study (in red) in the context of the Phanerozoic variations 
published by Farkaš et al. (2007).  
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