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Second-order autoregressive model-based Kalman filter for the estimation of a slow fading channel described by the Clarke model: Optimal tuning and interpretation $

This paper treats the estimation of a flat fading Rayleigh channel with Jakes' Doppler spectrum model and slow fading variations. A common method is to use a Kalman filter (KF) based on an auto-regressive model of order p (AR(p)). The parameters of the AR model can be simply tuned by using the correlation matching (CM) criterion. However, the major drawback of this method is that high orders are required to approach the Bayesian Cramer-Rao lower bound. The choice of p together with the tuning of the model parameters is thus critical, and a tradeoff must be found between the numerical complexity and the performance. The reasonable tradeoff arising from setting p = 2 has received much attention in the literature. However, the methods proposed for tuning the model parameters are either based on an extensive grid-search analysis or experimental results, which limits their ap-

Introduction

This paper treats the estimation of a flat fading channel in the context of slow fading, i.e. normalized Doppler frequencies less than 10 -2 . Note that this context includes a large number of practical applications, including vehicular applications. For instance, with the vehicular communication standard 802.11p [START_REF] Msadaa | A comparative study between 802.11 p and mobile WiMAX-based V2I communication networks[END_REF], this corresponds to a speed of hundreds of km/h (228 km/h). The principle of this channel estimation is the tracking of the complex baseband equivalent flat fading coefficient, called the channel complex gain (CG), which will be denoted by α. Here, the widely accepted Rayleigh random model with Jakes' Doppler spectrum (a model proposed by Clarke in 1968 [START_REF] Clarke | A statistical theory of mobile-radio reception[END_REF]) will be employed. Common approaches to channel estimation are to employ adaptive filters, such as least mean square (LMS) and Kalman filters (KF). The LMS is a computationally less demanding technique than KF, but at the cost of a slower convergence. The design of KF requires selecting a linear recursive state-space model for the parameter to be tracked [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load[END_REF][START_REF] Rajender | Estimation and performance kalman based approach: A review[END_REF][START_REF] Huang | Kalman-filter-based channel estimation for orthogonal frequency-division multiplexing systems in time-varying channels[END_REF][START_REF] Locubiche-Serra | Closed-Form Approximation for the Convergence Time ofpth-Order Kalman Filters[END_REF][START_REF] Jamoos | Two cross coupled kalman filters for joint estimation of mc-ds-cdma fading channels and their corresponding autoregressive parameters[END_REF]. As the true CG does not follow such a model, the linear recursive state-space model is considered an approximation. Thus, it has to be selected and tuned carefully in order to limit any degradation. The conventional state-space model is an autoregressive model of some order p (AR(p)) [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF][START_REF] Baruah | AR-model of faded MIMO set-up optimized for ITU channels[END_REF], whose parameters are tuned by matching the autocorrelation of the true channel CG with that of the AR process. This criterion is known as the correlation matching (CM) criterion [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF][START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF][START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF][START_REF] Al-Naffouri | A forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF] 1 and the solution is obtained by solving the Yule-Walker equations [START_REF] Cheng | Yule-Walker Equations[END_REF]. Over the past two decades, an extensive literature on Rayleigh Channel estimation was based on an AR(p)-KF tuned using the CM criterion [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF][START_REF] Banelli | Data-Aided Kalman Tracking for Channel Estimation in Doppler-Affected OFDM Systems[END_REF][START_REF] Chen | Kalman-filter channel estimator for OFDM systems in time and frequency-selective fading environment[END_REF][START_REF] Sohail | An EM based frequency domain channel estimation algorithm for multi-access OFDM systems[END_REF][START_REF] Hassasneh | Estimation of MC-DS-CDMA Fading Channels Based on Kalman Filtering with High Order Autoregressive Models[END_REF][START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF] and still continues nowadays [START_REF] Prasad | Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning[END_REF][START_REF] Gutta | Low complexity channel estimation us-59 ing fuzzy Kalman Filter for fast time varying MIMO-OFDM systems[END_REF][START_REF] Abdzadeh-Ziabari | Joint Carrier Frequency Offset and Doubly Selective Channel Estimation for MIMO-OFDMA Uplink With Kalman and Particle Filtering[END_REF][START_REF] Jamoos | Estimation of UFMC Time-Varying Fading Channel Using Adaptive Filters[END_REF][START_REF] Shah | Fractional-order algorithms for tracking Rayleigh fading channels[END_REF][START_REF] Awe | Machine learning algorithms for cognitive radio wireless networks[END_REF].

Challenge of slow fading channel estimation with an AR(p)-Kalman filter of low order

In the context of very high mobility, such as high speed trains, [START_REF] Simon | Joint Carrier Frequency Offset and Channel Estimation for OFDM Systems via the EM Algorithm in the Presence of Very High Mobility[END_REF][START_REF] Hijazi | Joint data QR-detection and Kalman estimation for OFDM time-varying Rayleigh channel complex gains[END_REF] used an AR(p)-KF of order p = 1 tuned with the CM criterion. Simulation results show outstanding performance in such scenarios in terms of MSE. In the most common context of a slow fading scenario, the use of a CM criterion with an AR(p)-KF of low order (p = 1 or 2) for Clarke model channel estimation was also usual up to ten years ago [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF][START_REF] Banelli | Data-Aided Kalman Tracking for Channel Estimation in Doppler-Affected OFDM Systems[END_REF][START_REF] Chen | Kalman-filter channel estimator for OFDM systems in time and frequency-selective fading environment[END_REF][START_REF] Al-Naffouri | A forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF]. However, those papers do not compare the MSE to lower bounds such as the Bayesian Cramer-Rao Bound (BCRB). Abeida et al. [START_REF] Abeida | An EM Algorithm for Path Delay and Complex Gain Estimation of Slowly Varying Fading Channel for CPM Signals[END_REF] make this comparison and note an MSE very far from the modified CRB (see [START_REF] Abeida | An EM Algorithm for Path Delay and Complex Gain Estimation of Slowly Varying Fading Channel for CPM Signals[END_REF] fig. 3, with f d T = 7.38 × 10 -4 , p = 1), arguing that the CRB is not achievable in a low SNR region. But the right explanation, due to Ghandour-Haidar et al. [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF] in 2012, after the preliminary work of Barbieri et al. [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF] in 2009, is that the CM criterion with low order p is not able to follow the dynamics of the fading, since the dynamic MSE is approximately constant with respect to the Doppler frequency (see eq. [START_REF] Jamoos | Estimation of UFMC Time-Varying Fading Channel Using Adaptive Filters[END_REF] or fig. B.1 in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF]), whereas it should be able to decrease for low Doppler (the channel is theoretically easier to estimate). In conclusion, disappointing performance is obtained with low-order AR(p)-KF tuned with the CM criterion for the slow fading scenario, which is the most common one for practical applications, and solutions have to be found. It should be noted that in spite of this important warning highlighted from 2012, many authors still continue to use the KF with an AR (p = 1 or 2) model tuned with the CM criterion for Clarke channel estimation [START_REF] Prasad | Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning[END_REF][START_REF] Gutta | Low complexity channel estimation us-59 ing fuzzy Kalman Filter for fast time varying MIMO-OFDM systems[END_REF][START_REF] Abdzadeh-Ziabari | Joint Carrier Frequency Offset and Doubly Selective Channel Estimation for MIMO-OFDMA Uplink With Kalman and Particle Filtering[END_REF][START_REF] Jamoos | Estimation of UFMC Time-Varying Fading Channel Using Adaptive Filters[END_REF][START_REF] Shah | Fractional-order algorithms for tracking Rayleigh fading channels[END_REF][START_REF] Awe | Machine learning algorithms for cognitive radio wireless networks[END_REF] with low to moderate Doppler frequencies. It appears thus important to continue to communicate on this point, and recommend alternative solutions.

Existing techniques, limitations, and open questions

In [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF] and [START_REF] Hassasneh | Estimation of MC-DS-CDMA Fading Channels Based on Kalman Filtering with High Order Autoregressive Models[END_REF] there is proposed a correction of the CM criterion by the addition of a very small regularization term to the diagonal of the correlation matrix, to enhance its conditioning. This correction considerably improves the performance, but the parameter is only set by simulation and high orders are still required in order to get closer to the BCRB, as can be seen in Fig. 1, where the MSE performance for the AR(p)-CM+ is presented. Thus, Order of autoregressif model p the choice of the order together with the tuning of the model parameters is critical and a trade-off must be found between numerical complexity and performance. The case p = 1 was fully resolved in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF][START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF], but it leaves room for possible improvement regarding the BCRB. The reasonable trade-off arising from p = 2, when considering a tuning other than the CM, has received much attention in the literature, but without a satisfactory analytical solution, as detailed below.

The AR(2) model has one pair of parameters to be tuned: the coefficients {a 1 , a 2 } of the linear difference equation, or, equivalently, the resonance frequency and the pole radius {f AR(2) , r}. [START_REF] Wu | On the performance of coherent and noncoherent multiuser detectors for mobile radio CDMA channels[END_REF] provides analytical tuning for only one parameter, f AR(2) , while the second parameter r is fixed through intensive simulations with a search grid. Similarly, [START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF][START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load[END_REF][START_REF] Banister | Tracking performance of the RLS algorithm applied to an antenna array in a realistic fading environment[END_REF] use the same tuning for f AR(2) and additionally give an analytical expression for r via experimentation in terms of the Doppler frequency without considering the signal to noise ratio (SNR). In [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF], {a 1 ,a 2 } depends on a set of coefficients that have to be evaluated off-line using look-up tables from simulation results for a range of values of the SNR. Consequently, these solutions work well only in the specific context for which they have been tuned, and a general analytical solution for the tuning of the AR(2) model, that will work in any scenario, is still missing.

Recently, an alternative model, the random walk (RW) model, with a minimum asymptotic variance (MAV) criterion, has been employed for KF channel estimation [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF][START_REF] Chung | A phase tracking system for three phase utility interface inverters[END_REF]. The RW model is also a Gauss-Markov model (when p = 1, or an integrated version if p > 1) but unlike the AR(p) model, the RW(p) model is not stationary: it has a variance that grows to infinity with the number of iterations, and it is why it is most often used for the (modulo-2π) phase estimation problem. Analytic solutions for the tuning of the RW(p) model have been found for p = 1 [START_REF] Gerzaguet | Selfadaptive stochastic rayleigh flat fading channel estimation[END_REF], p = 2 [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF] and p = 3 [START_REF] Shu | Third-order kalman filter: Tuning and steady-state performance[END_REF]. We can conclude from these studies that the MSE performance of the RW(p)-KF is close to the BCRB for p ≥ 2.

The questions that now arise are: Is it also theoretically possible to obtain a performance close to the BCRB with the AR(2) model? Is this performance equivalent to or better than what was obtained with the RW(2) model? In

addition to being open questions that deserve better answers than those that can be found in the literature, there would be an advantage to working with a stationary model, which the RW(2) model is not. The answers to these questions will be given in this paper.

Note that part of the results of the present paper was presented in the conference paper [START_REF] Husseini | Optimization of the second order autoregressive model AR(2) for Rayleigh-Jakes flat fading channel estimation with Kalman filter[END_REF]. However, [START_REF] Husseini | Optimization of the second order autoregressive model AR(2) for Rayleigh-Jakes flat fading channel estimation with Kalman filter[END_REF] followed a sub-optimal approach that was slightly different: the adjustment of the parameter a 1 imposed a linear constraint with the Doppler frequency for the parameter a 2 deduced from grid search. Furthermore, no complete proof, interpretation, or extensive comparison was provided.

Contributions of this paper

In this paper, a novel optimal tuning of an AR(2) model with Kalman filter is proposed to achieve better performance in terms of MSE channel estimation in radio mobile communications with a flat fading scenario, assuming a Clarke model. To sum up, the contributions are as follows:

• Optimal tuning of an AR(2) model under the MAV criterion. Closedform expressions for the tuning of the parameters are provided as functions of the channel state (Doppler frequency and SNR), which make them highly useful in practice. Moreover, an expression for the optimal MSE is provided, which is useful to predict the performance of the channel estimation, also with respect to the channel state. To do so, the Riccati equations of the asymptotic KF are solved by resorting to an eigenvalue based method commonly used in optimal linear control [START_REF] Vaughan | A nonrecursive algebraic solution for the discrete Riccati equation[END_REF].

• New interpretations of the power spectral density (PSD) of the optimal AR(2) process are also provided. More precisely, a closed-form expres-sion for the damping ratio sheds light on the shape of the PSD. Unlike classical parametric modeling, where the goal is to fit the PSD of an AR process to the true PSD, here the PSD of the optimal AR process is not necessarily the one that best fits the true PSD. We demonstrate that this is particularly true with harsh channel states, i.e. relatively high Doppler frequencies (still under the slow fading assumption) and low SNR. This is understandable, since our criterion is an optimal estimation rather than a modeling criterion. In addition, interpretations of the autocorrelation functions are also provided.

• An extensive and fair comparison with the algorithms commonly used in the literature for tracking time-varying flat fading channels is provided, from theoretical formulas or numerical simulations. The considered algorithms are Kalman filters based on an AR(p) model with CM [START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF][START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF][START_REF] Al-Naffouri | A forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF] and improved criterion [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load[END_REF][START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF][START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF], or based on an RW(p) model [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF], but also least mean square (LMS) algorithms [START_REF] Gerzaguet | Selfadaptive stochastic rayleigh flat fading channel estimation[END_REF][START_REF] Gerzaguet | Performance of a digital transmitter leakage LMS-based cancellation algorithm for multi-standard radio-frequency transceivers[END_REF][START_REF] Gerzaguet | On the performance of digital adaptive spur cancellation for multi-standard radio frequency transceivers[END_REF] or rather their integrated versions [START_REF] Lindbom | Tracking of time-varying mobile radio channels .1. The Wiener LMS algorithm[END_REF][START_REF] Gazor | Prediction in LMS-type adaptive algorithms for smoothly time varying environments[END_REF] to have the same model order p = 2 as the proposed algorithm.

Outline of this paper

The rest of this paper is organized as follows. Section 2 provides an introduction to the system model. In this section, the true channel model is given, then the approximate channel model using the AR(2) and the equivalent pairs of parameters of interest are presented. Section 3 presents the Kalman filter equation, the Kalman filter in steady-state, and analytic expressions of the Kalman filter gain, which will be useful in the optimization process.

The variance of the MSE in steady-state and the optimization are given in Section 4. Interpretations and simulation results are provided in Section 5.

Section 6 concludes the paper.

System Model

True channel model

We consider the estimation of a flat Rayleigh fading channel. The observation

is 2 y (k) = α (k) + w (k) , (1) 
where k is the time index, w (k) is a zero-mean additive white circular complex Gaussian noise with variance σ 2 w , and α (k) is a zero-mean correlated circular complex Gaussian channel gain with variance σ 2 α . The signal to noise ratio is SNR = σ 2 α /σ 2 w and the normalized Doppler frequency of this channel is f d T , where T is the symbol period. In this paper, slow fading is assumed, i.e. f d T 1. This assumption corresponds to many transmission scenarios, e.g. 802.11p [START_REF] Msadaa | A comparative study between 802.11 p and mobile WiMAX-based V2I communication networks[END_REF], where the carrier frequency is around 5.9 GHz and the symbol period is 8 µs. As f d T is proportional to the symbol period T , values around 10 -2 can correspond to a relatively high mobility with such systems (hundreds of km/h). This prompts the need for a comprehensive study of 2 Model (1) assumes that symbols are normalized and known (or decided), in addition to the flat fading assumption. Although this model is admittedly simplistic, it can be applied to different (more involved) contexts, such as pilot-aided multi-carrier systems in frequency-selective wireless channels [START_REF] Shu | Simplified Random-Walk-Model-Based Kalman Filter for Slow to Moderate Fading Channel Estimation in OFDM Systems[END_REF]. 1 . The Jakes' Doppler spectrum (illustrated in Fig. 2) for this channel is

Γ(f ) =            σ 2 α πf d 1 -f f d 2 if |f | < f d . 0 if |f | > f d . (2) 
It has two infinite peaks when f tends to

f d and -f d . The autocorrelation coefficient R α [m] of the stationary channel CG α (k) is defined for a lag m by R α [m] = E{α (k) .α * (k-m) } = σ 2 α J 0 (2πf d T m), (3) 
where J 0 is the zeroth-order Bessel function of the first kind.

Approximate channel model

In this article, the true channel CG is approximated by an AR(2) process denoted by α(k) :

α(k) = a 1 α(k-1) + a 2 α(k-2) + u (k) , (4) 
where u (k) is a complex white circular Gaussian state noise with variance

σ 2 u .
The possible range of the real parameters of the AR(2) are a 1 ∈ [0, 2[ and a 2 ∈] -1, 0[ to ensure stationarity. Moreover, to approximate the Jakes' Doppler spectrum in the slow fading scenario, a 1 and a 2 will be necessarily close to 2 and -1, respectively (as will be deduced later from [START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF]).

Assume that α(k) has the same power as

α (k) , i.e. R α[0] = σ 2 α . The Yule- Walker equations are [14] R α[1] = a 1 R α[0] 1 -a 2 (5) R α[2] = a 1 R α[1] + a 2 R α[0] (6) 
σ 2 u = R α[0] -a 1 R α[1] -a 2 R α[2]. (7) 
Using ( 5), ( 6) and ( 7) also gives σ 2 u as a function of a 1 and a 2 alone, which will be useful for the following:

σ 2 u = σ 2 α (1 + a 2 )(1 -a 1 -a 2 )(1 + a 1 -a 2 ) (1 -a 2 ) . ( 8 
)
Note that the CM solution for the tuning of a 1 and a 2 is obtained from ( 5) and ( 6) by imposing

R α[p] = R α [p] for p = {0, 1, 2}.

Equivalent pairs of parameters of interest for {a

1 , a 2 }
So far, one pair of parameters {a 1 , a 2 } has been presented. Now, two equivalent pairs of parameters will also be considered. The optimal tuning will be investigated with the second pair, while the third pair will be used for purposes of interpretation.

2.3.1. Parameters {f AR(2) T, r}
The pair of parameter {f AR(2) T, r}, equivalent to {a 1 , a 2 }, is derived from the transfer function of the AR(2) model, obtained from the z-transform of (4):

H(z) = 1 1 -a 1 z -1 -a 2 z -2 . ( 9 
)
In order to design a low-pass filter, a set of complex conjugate poles should be placed in the z-plane at [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load[END_REF][START_REF] Wu | On the performance of coherent and noncoherent multiuser detectors for mobile radio CDMA channels[END_REF]:

z 1 = r • e -j2πf AR(2) T and z 2 = r • e +j2πf AR(2) T [
H(z) = 1 (1 -z 1 z -1 )(1 -z 2 z -1 ) . (10) 
Comparing Eqs ( 9) and ( 10), we have

a 1 = 2r cos(2πf AR(2) T ) a 2 = -r 2 , (11) 
where r ∈ [0, 1[ is the radius of the poles, and f AR(2) T ∈ [0, 1[ is the normalized resonance frequency of the AR(2) process.

In order to obtain a resonance peak, it is well known that r must be close to 1. Put δ = 1 -r. This leads to the assumption 0 < δ 1, which will be exploited to get simple approximate closed-form expressions. Then, to position the peak at f d T , the resonance frequency f AR(2) T must be around

f d T , yielding f AR(2) T 1. Initially, f AR(2) T was fixed to f d T [4].
Then, [START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF] showed that the best choice for the Kalman estimation is actually 

f AR(2) T = 1 √ 2 f d T. ( 12 
) -2 -1 0 1 2 f T ×10 -3 -20 0 10 60 S(f ) (dB) δ = 2.46 × 10 -6 δ = 10 -2 δ = 10 -3
f d T = 10 -3 with f AR(2) T = f d T √ 2 and different values of δ = 1 -r.
The compensation factor √ 2 has also been justified in [START_REF] Wu | On the performance of coherent and noncoherent multiuser detectors for mobile radio CDMA channels[END_REF]. Assumption ( 12) is adopted a priori in this article, and will be in addition verified in Fig. 5 through simulations. However, in [START_REF] Wu | On the performance of coherent and noncoherent multiuser detectors for mobile radio CDMA channels[END_REF][START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF], no expression is given for the tuning of r. The optimal tuning of r is the topic of the next sections. To end this subsection, an example of the PSD of the AR(2) process

S(f ) = σ 2 u |H(e j2πf T )| 2
is given in Fig. 3 for three different values of δ, thus illustrating the connection between the value of δ and the height of the peaks.

Parameters {f n,AR(2) T, ζ AR(2) }

The equivalent natural frequency f n,AR(2) T and damping ratio ζ AR(2) of the discrete-time second-order low-pass filter H(z) could also be investigated.

These parameters are indeed the most used to tune second order filters, in the case of continuous-time systems [START_REF] Golnaraghi | Automatic control systems[END_REF][START_REF] Chung | A phase tracking system for three phase utility interface inverters[END_REF]. The following notation will be used in the following sections: ω AR(2) = 2πf AR(2) and ω n,AR(2) = 2πf n,AR [START_REF] Msadaa | A comparative study between 802.11 p and mobile WiMAX-based V2I communication networks[END_REF] .

Even though we will tune the AR(2) process with {f AR(2) T, r}, this third pair of positive parameters {f n,AR(2) T, ζ AR(2) } is of interest due to its physical meaning and we will refer to it for purposes of interpretation. Indeed, it is known that the height of the PSD peaks is inversely proportional to ζ AR(2) , actually just like δ. So it is legitimate to ask about the link between these two pairs of parameters. This is found in Appendix A.1, where we prove the following relations between {f n,AR(2) T, ζ AR(2) } and {f AR(2) T, r}:

f n,AR(2) T = 1 2π (2πf AR(2) T ) 2 + ln(r) 2 (13) 
ζ AR(2) = -ln(r) 2πf n,AR(2) T (14) 
δ ω AR [START_REF] Msadaa | A comparative study between 802.11 p and mobile WiMAX-based V2I communication networks[END_REF] .

The transition from ( 14) to ( 15) is detailed in Appendix A.2. With this formula, we show, as expected, that the coefficient δ of the AR(2) process is proportional to the damping ratio, but that it is also proportional to the resonance frequency of an equivalent second-order analog system.

Note that as already stated, the damping ratio should be

ζ AR(2) 1. Then the formula f n,AR(2) T = f AR(2) T 1 -ζ 2 AR(2)
, obtained from (A.4), becomes

f n,AR(2) T f AR(2) T. (16) 
Hence, the resonance frequency of the AR(2) process and the natural frequency of the equivalent second-order system have (almost) the same value.

The Kalman Filter

First of all, recall that we chose the MAV criterion, which consists in minimizing the mean square error (MSE) in steady state mode (k → +∞),

σ 2 = E |α (k) -α(k|k) | 2
, where α(k|k) is the estimate of α (k) given by the Kalman filter, as detailed in Section 3.1. Then, to implement this criterion, an expression for the steady state Kalman gain will be found in Section 3.2.

An approximate version, more tractable for the optimization, will be provided in Section 3.3, together with the list of the assumptions that allow us to derive it. All these assumptions match the specified context of slow fading and SNR greater than one, which is in general the case in practice.

The equations of the Kalman filter

The second order autoregressive model can be reformulated as a state space model model. The state vector to be considered includes the channel CG

at k and k -1, α (k) = [α (k) , α (k-1) ] T and α(k) = [α (k) , α(k-1) ] T . The state transition matrix is M =   a 1 a 2 1 0   and the state noise vector is u (k) = [u (k)
, 0] T . The selection vector has dimensions 1×2 and is given by s

T = [1, 0].
The state evolution of (4) and observation (1) becomes

α(k) = M α(k-1) + u (k) (17) 
y (k) = s T α (k) + w (k) . ( 18 
)
Now we define the prediction vector α(k|k-1) = α(k|k-1) , α(k-1|k-1) T and the estimation vector α(k|k) = α(k|k) , α(k-1|k) T , with α(k|j) being the estimate of the CG at time k given the observation at time j. Regarding the state-space formulation ( 17) and ( 18), the two stages of the filter are Time update equations:

α(k|k-1) = M α(k-1|k-1) (19) 
P (k|k-1) = MP (k-1|k-1) M H + U (20) 
Measurement update equations

K (k) = P (k|k-1) s s T P (k|k-1) s + σ 2 w (21) α(k|k) = α(k|k-1) + K (k) (y (k) -s T α(k|k-1) ) (22) 
P (k|k) = (I 2 -K (k) s T )P (k|k-1) , (23) 
where

K (k) =   K 1(k) K 2(k)   is the Kalman gain vector, U =   σ 2 u 0 0 0   , I 2 is the
2 × 2 identity matrix, and P (k|k) and P (k|k-1) are, respectively, the 2 × 2 a posteriori and the predicted error covariance matrices.

Steady-state Kalman filter

Since the linear system is observable and controllable, an asymptotic regime for which the covariances and gain of the filter become constant is quickly reached: Note that once the KF attains the steady state, it becomes a fixed coefficient filter. After the convergence, the total complexity is reduced to the number of multiplications required at each iteration for the computation of α(k|k-1) and α(k-1|k-1) . The total complexity of the steady-state AR(p)-KF is (3p 2 + 2p) multiplications, where p = 2 here, versus 1 multiplication for the LMS. It will be seen in Section 4 that analytical expressions for K 1 and K 2 as functions of the AR(2) parameters a 1 , a 2 , σ 2 u and the observation noise variance σ 2 w are required for tuning r. First, we focus on K 1 , and K 2 will be deduced from K 1 .

K (k) = K (k+1) = K ∞ =   K 1 K 2   , P ( 
To find K 1 , we need to solve the Riccati equations, which are the equations ( 20), ( 21) and [START_REF] Shah | Fractional-order algorithms for tracking Rayleigh fading channels[END_REF] 

It can be seen from ( 24) that we need to find P 11 in order to deduce K 1 . An exact formula for P 11 is given in Appendix B.1 and for K 2 in Appendix B.2.

An approximate expression for K 1

The expression for K 1 established previously is not mathematically tractable enough to get an analytical expression for the optimization of σ 2 . To do so, the exact expression has to be approximated in closed form, by using the following assumptions.

Assumptions used for the approximation

(i) f d T 1 and then f AR(2)
T 1, i.e. slow fading assumptions.

(ii) σ w ≤ σ α , i.e. the SNR is greater than or equal to 1.

(iii) δ 1 and (iv) ζ AR(2) 1, i.e. the presence of a pair of even symmetric peaks in the spectrum.

(v) σ u σ w , i.e. the process noise is small compared to the measurement noise, as is the case in most applications [START_REF] Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF][START_REF] Locubiche-Serra | Closed-Form Approximation for the Convergence Time ofpth-Order Kalman Filters[END_REF] with usual SNR (ii).

(vi) (2πf AR(2) T ) 2 σu σw it will be seen afterwards, at the end of this section (through [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF], also [START_REF] Chung | A phase tracking system for three phase utility interface inverters[END_REF]), that this means that the Kalman filter is sufficiently fast compared to the fading process. Assumptions (i), (ii), (iii) and (iv) lead to the following relation (see Appendix A.3):

(vii) δ 2 σ u σ w .

Expression for σ 2 u

Using Assumptions (i) and (iii), an expression for σ 2 u is developed in terms of r and f AR(2) T in Appendix H. The approximate expression for σ 2 u is

σ 2 u 4σ 2 α r(1 -r)(ω AR(2) T ) 2 , ( 28 
)
where

ω AR(2) T = 2πf AR(2) T .
It should be noted that r is the only variable in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF], due to the fact that ω AR(2) T is fixed using [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF]. For the purpose of simplicity, the optimization will be carried out with respect to σ 2 u (or a parameter directly linked to σ 2 u ) instead of r, and the results will then be expressed in terms of r by using (28).

Formula for K 1

Based on Assumptions (i)-(v), we prove in Appendix C that the exact expression for K 1 [START_REF] Awe | Machine learning algorithms for cognitive radio wireless networks[END_REF] can be approximated by [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF], and then by [START_REF] Wu | On the performance of coherent and noncoherent multiuser detectors for mobile radio CDMA channels[END_REF] in using [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF]:

K 1 2σ u σ w (29) 4σ α r 1 2 (1 -r) 1 2 ω AR(2) T σ w . (30) 
From [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF] and Assumption (v) it can be deduced that (viii) K 1 1 and from (vi) and (vii) it can be respectively deduced that:

(ix) K 1 δ and (x) K 1 f AR(2) T .
All these assumptions on K 1 mean that the Kalman gain has been chosen to be small due to (viii) because of the slow fading assumption but large enough due to (x) to perform the tracking (see [START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF] and [START_REF] Chung | A phase tracking system for three phase utility interface inverters[END_REF], where K 1 plays the role of the normalized equivalent bandwidth). Equation ( 29) means that for a given noise level, the value of the Kalman gain K 1 directly increases with σ u .

Error Variance in Steady-State and Optimization

Now that a closed-form expression for the Kalman gain has been established, we can proceed to the criterion. To do so, we first have to derive an expression for the error variance, i.e. the steady state MSE, as a function of the Kalman gain in 4.1. Then, the optimization is carried out in 4.2.

Error variance in steady-state

Write α(z), α(z), y(z), w(z) for the z-transforms of α(k|k) , α (k) , y (k) and w (k) , respectively. Denote by L(z) the transfer function of the filter that gives α(z)

with the observation y(z) as input. In a steady state, the solution is given by the system of equations ( 19) and ( 22) of the KF by (see Appendix E)

L(z) = K 1 + a 2 K 2 z -1 1 + z -1 (a 2 K 2 -a 1 (1 -K 1 )) -a 2 (1 -K 1 )z -2 , (31) 
where a 1 and a 2 were defined in [START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF] in terms of r (and then K 1 from (30))

and K 2 is expressed in (B.20) in terms of a 1 , a 2 and K 1 . In comparison with second order systems [START_REF] Chung | A phase tracking system for three phase utility interface inverters[END_REF], this corresponds to a second-order low-pass filter with normalized natural frequency ω n,L(z) T

K 1 √
2 and a damping factor

ζ L(z) √ 2 2 (Appendix F).
From the filtering equations, we have α(z) = L(z)(α(z) + w(z)) (illustrated in Fig. 4) and the estimation error (z) is

(z) = α(z) -α(z) = (1 -L(z))α(z) -L(z)w(z). (32) 
Therefore, it remains to calculate the power of the error from (z) [START_REF] Banister | Tracking performance of the RLS algorithm applied to an antenna array in a realistic fading environment[END_REF], which can be split into two additive contributions:

σ 2 = σ 2 w + σ 2 α . (33) 
• The static error variance σ 2 w is due to the additive noise w (k) filtered by the low pass filter L(z). The details of the calculation, together with the analytical results, are given in Appendix G, where we also derive an approximate expression by resorting to Assumptions (i), (ii), (iii), (iv), (v), and (viii):

σ 2 w σ 2 w 3K 1 4 . (34) 
Equation [START_REF] Chung | A phase tracking system for three phase utility interface inverters[END_REF] means that 3K 1 4 plays the role of the normalized equivalent bandwidth of the closed-loop steady-state Kalman L(z), which a posteriori sheds light on Assumptions (v), (vi), (viii) and (x).

• The dynamic error variance σ 2 α is due to the variations of α (k) filtered by the high pass filter 1 -L(z):

σ 2 α σ 2 α 6π 4 (f d T ) 4 K 4 1 . (35) 
An exact expression for σ 2 α as well as an approximation for it are given in Appendix G.1.

In summary, we have the global MSE σ 2 in terms of K 1 and f d T :

σ 2 σ 2 w 3K 1 4 + σ 2 α 6π 4 (f d T ) 4 K 4 1 , (36) 
where K 1 is in terms of σ u and σ w (see ( 29)).

Optimization

In this section, we first look for the minimization of σ 2 . To do so, we proceeded in two steps. First, we find the optimal σ 2 u , denoted by σ 2 u(MAV) , that minimizes σ 2 . Then, the expressions for r and ζ AR(2) are deduced from σ 2 u(MAV) in terms of the channel state (f d T and SNR). Thus, expressing [START_REF] Shu | Third-order kalman filter: Tuning and steady-state performance[END_REF] with [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF], differentiating it with respect to σ 2 u , and equating the derivative to zero, yields

σ 2 u(MAV) = 4π 16 5 (σ 2 α (f d T ) 4 √ σ w ) 4 5 (37) 
and the theoretical minimum MSE

σ 2 (AR(2)-MAV) = 15 8 π 4 5 (σ 2 α ) 1 5 (f d T σ 2 w ) 4 5 . (38) 
Part of this work has been presented in [START_REF] Husseini | Optimization of the second order autoregressive model AR(2) for Rayleigh-Jakes flat fading channel estimation with Kalman filter[END_REF], but without rigorous justifications. In [START_REF] Husseini | Optimization of the second order autoregressive model AR(2) for Rayleigh-Jakes flat fading channel estimation with Kalman filter[END_REF], a sub-optimal adjustment of {a 1 , a 2 } was proposed by giving an analytical expression for a 1 in terms of a 2 , where a 2 is given by imposing a linear constraint obtained through experimentation, with respect to the Doppler frequency. In the following, the optimal tuning of r and ζ AR(2) is given in terms of the Doppler frequency and the SNR. This is one of the contributions of the present paper.

Optimal tuning of r and ζ AR(2)

The optimal tuning of the parameters r and ζ AR(2) are given in this section.

Using the expression for σ 2 u defined in (28),

σ 2 u 4σ 2 α (ω AR(2) T ) 2 (1 -r)r. ( 39 
)
Hence r is one solution of the second degree equation

r 2 -r + σ 2 u 4σ 2 α (ω AR(2) T ) 2 0. ( 40 
)
Solving this equation, we find

r 1 2 + 1 2 1 - σ 2 u σ 2 α (ω AR(2) T ) 2 . (41) 
Due to the fact that

σ 2 u σ 2 α (ω AR(2) T ) 2 4(1 -r)r
1 (Eq. ( 39)), we have

r 1 - σ 2 u 4σ 2 α (ω AR(2) T ) 2 . (42) 
Equation ( 42) is always valid under the assumptions 3.3.1.

In the special case of the MAV criterion, one can calculate the optimal radius r (MAV) from the optimal state noise σ 2 u(MAV) [START_REF] Vaughan | A nonrecursive algebraic solution for the discrete Riccati equation[END_REF]:

r (MAV) = 1 - σ 2 u(MAV) 4σ 2 α (ω AR(2) T ) 2 = 1 - π 6 5 (f d T ) 6 5 σ 2 w σ 2 α 1 5 2 , ( 43 
)
where ω AR(2) T = 2πf AR(2) T and f AR(2) T is fixed using the optimal choice already defined in [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF]. Having r (MAV) , an expression for the dumping ratio of the AR(2) process ζ AR(2) (MAV) can be deduced from [START_REF] Banelli | Data-Aided Kalman Tracking for Channel Estimation in Doppler-Affected OFDM Systems[END_REF], using that r = 1-δ:

ζ AR(2) (MAV) 1 -r (MAV) ω AR(2) √ 2 4 πf d T σ 2 w σ 2 α 1 5 . ( 44 
)
The above equation gives insight into the shape of the PSD of the optimal AR(2) process. As mentioned previously, the height of the peak is inversely proportional to ζ AR [START_REF] Msadaa | A comparative study between 802.11 p and mobile WiMAX-based V2I communication networks[END_REF] . Thus, [START_REF] Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF] means that the greater the SNR and the lower the f d T , the higher the peak. This will be illustrated in the simulation section.

Comparison with AR(1)-MAV and RW(2)

The AR(1)-MAV has been obtained in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF], where the theoretical MSE was calculated as follows:

σ 2 (AR(1)-MAV) 3 2 .π 2 3 (σ 2 α ) 1 3 (f d T σ 2 w ) 2 3 . (45) 
Comparing ( 38) and ( 45), we have

σ 2 (AR(2)-MAV) < σ 2 (AR(1)-MAV) . ( 46 
)
It will be seen later, in the simulation section, that AR(2)-MAV outperforms AR(1)-MAV, which confirms the comparison above.

On the other hand, the performance of the stationary AR(2) model under the MAV criterion is close to the one obtained with a non-stationary model, the second order random walk (RW(2)) model [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF] under the same criterion:

σ 2 (RW(2)-MAV) σ 2 (AR(2)-MAV) = 2 2 5 (47) Model AR(1)-MAV AR(2)-MAV RW(2) Discrete-time equation α(k) = aα (k-1) + u (k) α(k) = a 1 α(k-1) + a 2 α(k-2) + u (k) a 1 = 2r cos(ω AR(2) T ) a 2 = -r 2 α(k) = α(k-1) + e (k-1) e (k) = e (k-1) + u (k)
Gain at f = 0, H(1)

1 1-a 1 1-a 1 -a 2 +∞ Optimal Tuning σ 2 u 4 (πf d T ) 4 σ w σ 2 α 3 4π 5 (σ 2 α (f d T ) 4 √ σ w ) 5 4 5 π 5 (σ 2 α (f d T ) 4 √ σ w ) 5 ω AR(2) T - 2π f d T √ 2 - r - 1 - σ 2 u 4σ 2 α (ω AR(2) T ) 2 - Transfer function L(z) K 1 1-a(1-K 1 )z -1 K 1 +a 2 K 2 z -1 1+z -1 (a 2 K 2 -a 1 (1-K 1 ))-a 2 (1-K 1 )z -2 K 1 -K 2 1-K 1 (1-z -1 )+ K 2 1-K 1 (1-z -1 ) 2 + K 1 -K 2 1-K 1 (1-z -1 )+ K 2 1-K 1 K 1 σu σw 2σu σw 2σu σw K 2 - K 1 K 2 1 2 ω n,L(z) T - K 1 √ 2 K 1 √ 2 ζ L(z) - √ 2 2 √ 2 2 Performance σ 2 3 2 .π 2 3 (σ 2 α ) 1 3 (f d T σ 2 w ) 2 3 15 8 π 4 5 (σ 2 α ) 1 5 (f d T σ 2 w ) 4 5 15 8 ( √ 2π) 4 5 (σ 2 α ) 1 5 (f d T σ 2 w ) 4 5 σ 2 w √ (1-a 2 )σ 2 w 2 σ 2 w 3K 1 4 σ 2 w 3 √ 2K 2 4 σ 2 α σ 2 α 2(πf d T ) 2 σ 2 w 1-a 2 σ 2 α 6π 4 (f d T ) 4 K 4 1 3 8 σ 2 α (2πf d T ) 4 K 2 2
Table 1: Comparison of AR(2)-MAV, AR(1)-MAV [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF] and RW(2) [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF].
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Note that the expression for the transfer function L(z) obtained in [START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF] for the AR(2)-KF is different from the one obtained in [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF] for the RW(2) model, due to the difference between the two discrete-time second-order systems. In addition, the two components of the Kalman gain are nearly equal (K 2 K 1 , see Appendix D) for the AR(2) model, while this is not the case for the RW(2) model, for which K 2 K 2 1 2 [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF]. Despite these differences, the damping factors (issuing from the equivalent approximate analog second-order systems)

of the two KFs have the same value

ζ L(z) ≈ √ 2 
2 , which means that the shapes of the frequency domain transfer functions L(e j2πf T ) of the AR(2)-KF and RW(2)-KF are very close, under the slow fading assumption. Also, in both cases, the normalized natural frequency is linked to the first component of the Kalman gain by ω n,L(z

) T ≈ K 1 / √ 2.
Table 1 provides a clear presentation of the differences and common points between the AR(2)-MAV, AR(1)-MAV [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF] and RW(2) [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF] Kalman filters.

Simulation Results

Illustration of system parameters and interpretation

The objective of this section is to illustrate and interpret the values of the In order to illustrate the choice f AR(2) T in [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF], Monte Carlo simulations have been carried out for [START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF] and [START_REF] Wu | On the performance of coherent and noncoherent multiuser detectors for mobile radio CDMA channels[END_REF], claiming that f AR(2) T = f d T √ 2 is the optimal choice in terms of MSE. Note also that the AR(2)-CM performs poorly compared

f AR(2) T = { f d T 2 , f d T √ 2 , f d T } at different SNR and f d T . They confirm
to AR(2)-MAV with f AR(2) T = f d T √ 2 .

ACF of AR(2)

In this subsection, the Yule-Walker [START_REF] Cheng | Yule-Walker Equations[END_REF] equations are used to get the ACF of the AR(2): model is tuned with our proposed MAV criterion (AR(2)-MAV). For comparison, the KF with the following AR(2) models from the literature are considered: the AR(2)-CM [START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF][START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF][START_REF] Al-Naffouri | A forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF] together with the improved AR(2)-CM with [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF], the AR(2) of [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load[END_REF][START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF] where r is tuned based on experimental results as follows: r = 0.999 -0.1 × 2πf d T and f AR(2) T = f d T √ 2 . Note that the expression for r does not depend on the SNR.

R α[k] = a 1 R α[k -1] + a 2 R α[k -2]. (48) 
f d T 2 f d T √ 2 f d T AR(2)-MAV AR(2)-CM (a) f d T = 10 -3 -SNR = 0 dB 10 - 8 10 -6 10 -4 10 -2 10 0 10 -3 10 -1 δ MSE 
r (M AV ) = 0.999503 ζ AR(2)(M AV ) = 0.091 (a) f d T = 10 -3 , SNR = 0 dB -3 -1 0 1 3 x 10
r (M AV ) = 0.999802 ζ AR(2)(M AV ) = 0.044 (b) f d T = 10 -3 , SNR = 20 dB -3 -1 0 1 3 x 10 -4 f T S(f ) (dB) r (M AV ) = 0.999968 ζ AR(2)(M AV ) = 0.070 (c) f d T = 10 -4 , SNR = 0 dB -3 -1 0 1 3 x 10
r (M AV ) = 0.999987 ζ AR(2)(M AV ) = 0.028 (d) f d T = 10 -4 , SNR = 20 dB
Moreover, due to the fact that the least mean square (LMS) algorithm (or integrated versions) gives similar steady-space performance as some KF (with random-walk state-space models [START_REF] Lindbom | Tracking of time-varying mobile radio channels .1. The Wiener LMS algorithm[END_REF] [START_REF] Gazor | Prediction in LMS-type adaptive algorithms for smoothly time varying environments[END_REF]), the AR(2)-MAV KF is compared to a set of LMS adaptive algorithms:

1. The Wiener least mean square algorithm (WLMS) proposed by [START_REF] Lindbom | Tracking of time-varying mobile radio channels .1. The Wiener LMS algorithm[END_REF].

In this model, the AR(2) process is used for the prediction of the next CG. [START_REF] Gazor | Prediction in LMS-type adaptive algorithms for smoothly time varying environments[END_REF], where a second order random walk model is used.

The adaptive LMS (A-LMS) algorithm by

The on-line BCRB [START_REF] Hijazi | Bayesian CramerRao bounds for complex gain parameters estimation of slowly varying Rayleigh channel in OFDM systems[END_REF] is also plotted.

First, it can be verified that the MSE computed by simulation is very close to σ 2 (AR(2)-MAV) as obtained by the closed-form expression in [START_REF] Gerzaguet | Performance of a digital transmitter leakage LMS-based cancellation algorithm for multi-standard radio-frequency transceivers[END_REF], thus validating the theoretical analysis. Then, it is seen in Fig. 8 MAV with the literature: AR(2)-CM [START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF][START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF][START_REF] Al-Naffouri | A forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF], AR(2)-CM+ [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF], AR(2) [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load[END_REF], A-LMS [START_REF] Gazor | Prediction in LMS-type adaptive algorithms for smoothly time varying environments[END_REF],

WLMS [START_REF] Lindbom | Tracking of time-varying mobile radio channels .1. The Wiener LMS algorithm[END_REF], in terms of SNR for f d T = 10 -4 and f d T = 10 -3 . Order of autoregressif model p that the AR(2)-MAV outperforms the AR(1)-MAV [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF], which is confirmed by the theory in [START_REF] Blake | Basic vibration theory[END_REF]. It shows also that the MSE of the AR(2)-MAV is equivalent to the one of the far more complex AR(15)-CM, which highlights the interest of our study. AR(2)-CM [START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF][START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF][START_REF] Al-Naffouri | A forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF], A-LMS [START_REF] Gazor | Prediction in LMS-type adaptive algorithms for smoothly time varying environments[END_REF], W-LMS [START_REF] Lindbom | Tracking of time-varying mobile radio channels .1. The Wiener LMS algorithm[END_REF], AR(1)-MAV [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF], versus SNR for QPSK modulation and f d T = 10 -4 .

Performance in terms of BER

Until now, all the performances were given in terms of the MSE. The performances in terms of the Bit Error Rate (BER) are given in Fig. 12, where QPSK transmitted symbols are used. The estimation is in semi-blind mode, that is, the data block is composed of 20 pilot symbols followed by 200 unknown symbols. The method used consists in changing the observation model in (1) to become y

(k) = α (k) × s (k) + w (k) where s (k) is a QPSK sym- bol.
In this case, Eq. ( 22) of the KF equations is also modified by replacing y (k) by y (k) × ŝ * (k|k-1) , where ŝ(k|k-1) = s

(k) if s (k) is a pilot symbol or ŝ(k|k-1) = sgn Re(y (k) × α * (k|k-1)
if s (k) is an unknown symbol. In this case, ŝ(k|k-1) represents the decision a priori, and the final decision will be ŝ(k|k) = sgn Re(y (k) × α * (k|k)

. Fig. 12 shows the simulation result, where it is seen that the AR(2)-MAV outperforms the literature, with a BER close to that with a perfect knowledge of the channel state information (CSI).

Conclusion

This paper addresses the problem of estimating a channel supposed to follow a Rayleigh model with Jakes' Doppler spectrum (initially called the Clarke model) using a second order autoregressive model with Kalman filter (KF).

Analytic results clearly show that the widely used AR(2) model tuned by the correlation matching (CM) criterion is not accurate for low SNR and low to moderate Doppler frequencies f d T ≤ 10 -2 . Therefore, we suggested switching to the minimum asymptotic variance (MAV) criterion to improve the estimation performance. We provided closed-form formulas for the optimal tuning of the AR(2) parameters and for the theoretical performance.

Moreover, we also obtained some insight into the physical meaning and interpretations of the AR(2) parameters through the shape of the spectrum of the optimal AR(2) process. In particular, it has been shown that the dumping ratio of the spectrum of the AR(2) process should be tuned proportionally to If λ i is an eigenvalue of H f , the corresponding eigenvector can be found to be

v i =         1 a 2 λ i σ 2 w (a 2 λ i (λ i + a 1 /a 2 ) -1) (σ 2 w (a 2 λ i (λ i + a 1 /a 2 ) -1))/λ i         . (B.2)
The steady state solution for P ∞ is then given by [37]

P ∞ = W 21 W -1 11 , (B.3) 
where W 21 and W 11 are defined as follows:

Put W to be the 4 × 4 matrix formed from the eigenvectors v 1 , v 2 , v 1 and v 2 and their corresponding eigenvalues λ 1 , λ 2 , 1/λ 1 and 1/λ 

2 : W = [v 1 , v 2 , v 1 , v 2 ] =   W 11 W 12
W 11 =    1 1 a 2 λ 1 a 2 λ 2    (B.4) W 21 =   x y x/λ 1 y/λ 2   , (B.5) where x = σ 2 w (a 2 λ 1 (λ 1 + a 1 a 2 ) -1) and y = σ 2 w (a 2 λ 2 (λ 2 + a 1 a 2 ) -1).
Using this method, we have a matrix P ∞ from which we can extract P 11 :

P 11 = -σ 2 w (1 + a 2 λ 1 λ 2 ). (B.6)
Therefore it remains to calculate the product λ 1 λ 2 to find P 11 . The method proposed in [START_REF] Ekstrand | Analytical Steady State Solution for a Kalman Tracking Filter[END_REF] is based on the characteristic polynomial of the matrix H f . It remains now to calculate K 2 . In the following, an expression for K 2 is obtained after some direct manipulations of the Riccati equations.

An expression for the characteristic polynomial

and P 21 are the elements of the predicted error covariance matrix defined in [START_REF] Hijazi | Joint data QR-detection and Kalman estimation for OFDM time-varying Rayleigh channel complex gains[END_REF].

Then from [START_REF] Abeida | An EM Algorithm for Path Delay and Complex Gain Estimation of Slowly Varying Fading Channel for CPM Signals[END_REF] 

K 2 = a 1 (1 -K 1 )K 1 1 -a 2 + a 2 K 1 .
(B.20) matrix form. The elements of this matrix are the coefficients of the numerator and denominator of the integrand L(z). Now L(z) can be written

L(z) = B 0 z 2 + B 1 z + B 2 A 0 z 2 + A 1 z + A 2 , (G.3)
where

A 0 = 1, A 1 = a 2 K 2 -a 1 (1 -K 1 ), A 2 = -a 2 (1 -K 1 ), B 0 = K 1 , B 1 = K 2 a 2
, and B 2 = 0, and the corresponding matrix equation is

     A 0 A 1 A 2 A 1 A 0 + A 2 A 1 A 2 0 A 2      ×      A 0 BN W M 1 M 2      =      B 2 0 + B 2 1 + B 2 2 2(B 0 B 1 + B 1 B 2 ) 2B 0 B 2      , (G.4)
where M 1 and M 2 are evaluated in terms of BN W , A 0 , A 1 , A 2 , B 0 , B 1 and B 2 . Replacing K 2 by its expression defined in (B.20), the calculation result of (G.4) leads to the following exact calculation in terms of K The above approximations allow expressing BN W in terms of the pair of AR(2) parameters f AR(2) T, r = 1 -δ. By replacing each term by its approximation in (G.5) and using the previous assumptions,

BN W 6K 4 1 + 32δK 1 8K 3 1 + 48δK 2 1 6K 3 1 (K 1 + 32 6 δ) 8K 2 1 (K 1 + 6δ) 3 4 K 1 ,
(G.16) using that K 1 + 32 6 δ K 1 + 6δ 1, which can be assumed from (v).
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 1 Figure 1: Performance in terms of MSE of the AR(p)-CM+ where is set according to [9] for f d T = 10 -3 and SNR = 10 dB.
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 2 Figure 2: Centred Jakes' PSD for f d T = 10 -3 .
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 3 Figure 3: An example of PSDs for an AR(2) for f d T = 10 -3 with f AR(2) T = f d T
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 4 Figure 4: Scheme of the KF in steady-state
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 5 Figure5shows the impact of the parameter f AR(2) T on the asymptotic MSE.
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 67 Figure 6 plots the ACFs of different AR(2) processes: the AR(2)-MAV with f AR(2) T = f d T √ 2 and f AR(2) T = f d T , and the AR(2)-CM. For comparison, the true ACF, i.e. the Bessel function (3), is also plotted. As expected from our discussions in Section 2, it can be seen that the ACF of the AR(2)-MAV with f AR(2) T = f d T √ 2 is very close (in terms of Euclidean distance) to the true ACF (Bessel function), for the first lobe region.
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 10456 Figure 5: Variation of MSE versus δ = 1 -r for different values of f AR(2) T for SNR = 0 dB and 20 dB.
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 7 Figure 7: Spectrum of AR(2) with MAV criterion for various f d T and SNR.
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 1 Figure 8 plots the asymptotic MSE of the KF estimates when the AR(2)

  that the AR(2)-MAV outperforms the other algorithms from the literature. Fig. 9 plots the MSE of the WLMS, A-LMS, AR(2) [13] and AR(2)-MAV as a function of f d T f d T = 10 -4
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 8 Figure 8: Comparison of the asymptotic MSE of the Kalman filters for proposed AR(2)-
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 9 Figure 9: Comparison of the asymptotic MSE of the proposed AR(2)-MAV with the literature: A-LMS[41], W-LMS[40], AR(2)[4], for different values of f d T and SNR = 10 dB.
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 10 Figure 10: Comparison of AR(1)-MAV [28], AR(2)-MAV and AR(p)-CM+ where is set according to [9] for f d T = 10 -3 and SNR = 10 dB.
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 11 Figure 11: δ (MAV) = 1 -r (MAV) (43) and ζ AR(2) MAV (44) for different values of f d T and SNR.
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 12 Figure 12: Comparison of the BER of the proposed AR(2)-MAV with the literature:

the 1 5

 5 th power of the ratio of the Doppler frequency to the SNR. Simulation results show better MSE performance for the proposed AR(2)-MAV KF compared to AR(2)-KF, AR(1)-KF and second-order LMS based algorithms of the literature, and similar performance compared to the much more complex Correlation Matching based AR(p)-KF with order p = 15. The performance is also equivalent to that of the second order Random Walk model-based Kalman filter of the literature, but with a stationary instead of unstationary state-space model to approximate the fading dynamic. Appendix A. Physical Parameters of AR(2) eigenvalue, and the problem is reduced to finding two eigenvalues instead of four.

W 21 W 22 

 22 with W 11 , W 12 , W 21 and W 22 being the 2 × 2 matrices

9 )= λ 4 -(λ 1 + λ 2 + 1 /λ 1 + 1 /λ 2 )λ 3 +((λ 1 + 1 /λ 1 )(λ 2 + 1 /λ 2 ) + 2)λ 2 -(λ 1 + 1 + λ 2 = a λ 1 λ 2 λ 1 λ 2 + 1 . (B. 13 )= λ 1 λ 2 14 ) 2 -

 9412111231112122111132142 Pol 1 is evaluated by calculating the determinant of the matrix |H f -λI|, where I is the 4 × 4 identity matrix. The corresponding characteristic polynomial isPol 1 = λ 4 -aλ 3 + (b + 2)λ 2 -aλ + 1In addition, because of the fact that the inverse of an eigenvalue is also an eigenvalue, there must be another expression for the characteristic polynomial of the following form:Pol 2 = (λ -λ 1 )(λ -λ 2 )(λ -1/λ 1 )(λ -1/λ 2 ) λ 2 + 1/λ 1 + 1/λ 2 )λ + 1. (B.10) Identifying (B.10) and (B.7) we get a = λ 1 + λ 2 + 1/λ 1 + 1/λ 2 . (B.11) b = (λ 1 + 1/λ 1 )(λ 2 + 1/λ 2 ). (B.12) Equation (B.11) can be rewritten as λ Thus we have a relation between the sum and the product of the eigenvalues. Now developing the product in (B.12) and using (B.13) yields b Put d = λ 1 λ 2 + 1 λ 1 λ 2 . Equation (B.14) is a second-order equation in d with solution 4a 2 ). (B.15) Moreover, d = λ 1 λ 2 + 1 λ 1 λ 2 is a second-order equation in λ 1 λ 2 d given in (B.15), b in (B.9), and a in (B.8). To sum up, an exact expression for K 1 is given by (24) where P 11 was given in (B.6) and λ 1 λ 2 in (B.16).

  in steady state (k → ∞). The Riccati equations are P 11 + a 1 a 2 P 12 + a 1 a 2 P 21 + a 2 2 P 22 + σ 2 u a 1 P 11 + a 2 P 21 a 1 P 11 + a 2 P 12 P 11

			K 1 =	P 11 P 11 + σ 2 w	(24)
			K 2 =	P 21 P 11 + σ 2 w	(25)
			 	P 11 P 12 P 21 P 22	  =
	 	a 2 1  	(26)
			  P 11 P 12 P 21 P 22	  =
			(1 -K 1 )P 11	(1 -K 1 )P 12
			

(-K 2 )P 11 + P 21 (-K 2 )P 21 + P 22   .

  and by comparing the expressions for P 12 and P 21 we get (1 -K 1 )P 12 + K 2 P 11 = P 12 , yielding Also from[START_REF] Abeida | An EM Algorithm for Path Delay and Complex Gain Estimation of Slowly Varying Fading Channel for CPM Signals[END_REF], P 12 = (1 -K 1 )P 12 and P 11 = (1 -K 1 )P 11 . By substituting these equations into (B.17), we get Another expression for P 12 could be deduced from (26) and (27), using P 12 = a 1 P 11 + a 2 P 21 and P 12 = (1 -K 1 )P 12 isP 12 = a 1 (1 -K 1 )P 11 1 -a 2 + a 2 K 1 . (B.19) By comparing Eqs (B.18) and (B.19), an exact expression for K 2 is obtained in terms of K 1 , a 1 and a 2 :

	P 12 =	K 2 P 11 K 1	.	(B.17)
	P 12 =	K 2 P 11 K 1	.	(B.18)

  1 , a 1 and a 2 ,

	1 -	(2πf AR(2) T ) 2 2	and (1 -δ) n 1 -nδ, so
				A	32δ -12(2πf AR(2) T ) 2	(G.6)
				B	6 -22δ	(G.7)
				C	32δ -12(2πf AR(2) T ) 2	(G.8)
				D	8(2πf AR(2) T ) 2	(G.9)
				E	-1 + 10δ	(G.10)
				F	-8 + 74δ	(G.11)
				G	-112δ + 8	(G.12)
				H	48δ	(G.13)
				I	64δ 2	(G.14)
				J	32δ(2πf AR(2) T ) 2 .	(G.15)
		BN W =	AK 5 1 + BK 4 1 + CK 3 1 + DK 2 1 1 + F K 4 EK 5 1 + GK 3 1 + HK 2 1 + IK 1 + J	,	(G.5)

Note that this is one of the methods used in Matlab to approximate correlated fading channels for the computer simulation of the Rayleigh fading channel model with Jakes' Doppler spectrum.

is obtained for the lowest f d T = 10 -4 and the highest SNR = 20 dB, which is consistent with [START_REF] Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF]. Moreover, it is interesting to compare these levels with the one obtained with the AR(2)-CM. In fact, the example of the PSD given in Fig. 3 has been obtained with the CM criterion (δ = 2.46 × 10 -6 in Fig. 3). The PSD for the CM has an overhead of about 40 dB compared to the value at 0 Hz, and this is independent of the SNR. Indeed, the CM solution for a 1 and a 2 does not depend on the SNR. This value, 40 dB, is to be compared with the one obtained for the MAV, which is only about 12 dB for SNR = 0 dB and f d T = 10 -3 .

Dependence of the optimal parameters on the channel state

In this subsection, the dependence of ζ AR(2)(MAV) and δ (MAV) = 1 -r (MAV) on the channel state (f d T and SNR) is discussed. Both parameters are plotted as functions of f d T for the three values of SNR = 0, 20, 40 dB in Fig. 11. It can be seen that δ (MAV) = 1 -r (MAV) increases proportionally to the 6 5 th power of f d T , and decreases proportionally to the 1 5 th power of the SNR, which agrees with [START_REF] Golnaraghi | Automatic control systems[END_REF]. In the same way, we can see that ζ AR(2) (MAV) increases proportionally to the 1 5 th power of the product ( f d T SNR ), which is in accordance with [START_REF] Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF]. As was mentioned in the previous section, the power spectral density depends on ζ AR(2) (MAV) , in that ζ AR(2) (MAV) influences the overhead of the peak of H(z). The maximum value of ζ AR(2) (MAV) , about 0.1, is obtained for the minimum SNR = 0 dB and maximum f d T = 10 -2 , which again illustrates the fact that the peak is the lowest at the minimum SNR and maximum f d T . Even in this worst case, the second-order model is still underdamped.

Appendix A.1. Proofs of ( 13) and [START_REF] Cheng | Yule-Walker Equations[END_REF] The AR(2) model ( 4) is a stochastic difference equation. To establish the connection between the two pairs of parameters {f AR(2) T, r} and the parameters of a second-order continuous-time (analog) deterministic model {f n,AR(2) T, ζ AR(2) }, it is more convenient to consider the deterministic version of the AR(2) model given in the absence of state noise (σ 2 u = 0), which generates a damped cosine cycle. An expression for this cycle can be obtained by recursion, by using a 1 and a 2 as defined in [START_REF] Sharma | Prediction of State Transitions in Rayleigh Fading Channels[END_REF]. The kth iteration of this recursion is

where c is the amplitude of the cycle generated by the initial values of α(0) and α(-1) . Indeed, (A.1) can be proved recursively. Suppose it is true for a given iteration k. Then the k + 1th iteration is given by

This completes the recursive process since (A.1) is also true for the initial iteration k = 1.

On the other hand, the pair of parameters {f n,AR(2) T, ζ AR(2) } are the physical parameters of the second order filter in continuous time. Within the context of basic vibration theory [START_REF] Blake | Basic vibration theory[END_REF] for continuous time, the general solution of the classical second order ordinary differential equation is of the form

where t is continuous time. Sampling the above equation with a sampling period of T yields

Comparing (A.1) and (A.3) yields e -ζ AR(2) 2πf n,AR(2) T = r, which gives [START_REF] Cheng | Yule-Walker Equations[END_REF].

Then, from [START_REF] Blake | Basic vibration theory[END_REF], we have

Substituting for ζ AR(2) from ( 14) into (A.4) yields [START_REF] Al-Naffouri | A forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF].

Appendix A.2. Proof of (44)

Substituting 1 -δ for r in [START_REF] Cheng | Yule-Walker Equations[END_REF] 

Using Assumption (iii) yields δ 2 δ √ δ, which results in

Then, combining Assumptions (ii) and ( 28 Optimal linear control with quadratic performance criteria is widely used.

A non-recursive algebraic solution for the optimal gains is presented in [START_REF] Vaughan | A nonrecursive algebraic solution for the discrete Riccati equation[END_REF].

This method can be used in our case for the determination of the steadystate Kalman filter. This solution allows determining the steady-state gains and covariance matrices directly, without iteration. In [START_REF] Vaughan | A nonrecursive algebraic solution for the discrete Riccati equation[END_REF] it is shown that the solution of the filter equations ( 20) and ( 23) is obtained by finding the eigenvalues and eigenvectors of the following 4 × 4 matrix:

where

u with M and s as defined in Section 3.1.

In [START_REF] Vaughan | A nonrecursive algebraic solution for the discrete Riccati equation[END_REF] it is also shown that if λ i is an eigenvalue of H f , then 1/λ i is also an

In this appendix an expression for K 2 is calculated. It is known that cov(x, y) = cov(y, x), where cov(x, y) is the covariance of the two variables x and y. Using ( 11) and r = 1 -δ gives

It can be deduced from (i) and (iii) that We use the notation µ = (b+4) 2 -4a 2 . From (i), we have cos(ω

. Using (C.1) and (C.4) together with the previous approximation yields

However, by using the double-angle trigonometric identity and Assumption 2 , and so . From this equation we can write The aim of this the section is to find an approximate expression of (B. 

From (i), we have cos(ω AR(2) T ) 1 -

The expression in (D.1) becomes

Assumptions (i), (iii) and (viii) lead to (ω

, respectively. Thus, (D.2) can be approximated by

Appendix E. Expression for L(z): Proof of ( 31)

Equations ( 19) and ( 22) of the Kalman filter, taken in the steady-state mode, give α(k|k-1) = a 1 α(k-1|k-1) + a 2 α(k-2|k-1) (E.1)

We define the error signal as the difference between the observation and the prediction:

By substituting (E.1) and (E.3) into (E.2) we have

Then, applying the z-transformation gives

Taking the z-transform yields

Substituting (E.7) into (E.5), we can find an expression for the closed-loop

, which leads to [START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF].

Appendix F. Expressions and approximations for ω n,L(z) T and ζ L(z)

The aim of this appendix is to establish the expressions and the approximations for the normalized natural frequency ω n,L(z) T and the damping ratio ζ L(z) of the transfer function of KF, L(z) given in [START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF].

Appendix F.1. Expressions for ω n,L(z) T and ζ L(z)

The transfer function of a continuous-time second order systems as a function of the natural frequency and the damping ratio is [START_REF] Chung | A phase tracking system for three phase utility interface inverters[END_REF]:

Using z = e j2πf T and then z -1 1 -j2πf T for f T 1 in [START_REF] Lindbom | Tracking of timevarying mobile radio channels. II. A case study[END_REF], and comparing the obtained expression with the transfer function in (F.1), we obtain

In this section the approximate expressions for (ω n,L(z) T ) and ζ L(z) are provided. The approximations used in this section are based on the pair of parameters {f AR(2) T, r = 1 -δ} instead of {a 1 , a 2 }. Using ( 11) and r = 1 -δ in (F.2) and (F.3) gives

Appendix F.2.1. Approximate expression for ω L(z) T

Replacing K 2 (Eq. (B.20)) by its expression in (F.4) and referring to Assumptions (i), (iii) and (viii) that lead respectively to cos(ω

and since K 1 1 and δ K 1 , from (viii) and (ix) respectively, we have

In this case

In this section we provide an approximate expression for ζ L(z) . In addition to all the assumptions used in the previous section, we use the approximation

)), and then (F.5) becomes

From (F.8) and (F.11),

Appendix G. Calculation and approximation for σ 2 w : Proof of [START_REF] Chung | A phase tracking system for three phase utility interface inverters[END_REF] In this appendix, the goal is to calculate and approximate the static error variance σ 2 w due to the observation noise variance σ 2 w , which can be rewritten

where BN W is the normalized equivalent noise bandwidth of the system, defined by

An exact expression for BN W can be derived by using the method presented in [START_REF] Winkelstein | Closed form evaluation of symmetric two-sided complex integrals[END_REF]. It can be evaluated analytically by solving a system of equations in Appendix G.1. Calculation and expression for [START_REF] Gerzaguet | Selfadaptive stochastic rayleigh flat fading channel estimation[END_REF] The aim of this appendix is to calculate and approximate the dynamic error variance σ 2 α . This variance is due to the variations of α (k) filtered by the high pass filter 1 -L(z):

(G.17)

In order to obtain the result of the integration in (G.17 for f in the vicinity of f d , -f d (the details of the calculation can be found in [START_REF] El Husseini | Approximation of |1 -L(z)| 2[END_REF]). The integration is then computed from Γ α (f ) defined in (2) by changing variables, replacing (f /f d ) by cos(θ): which is equivalent to [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF].