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Abstract

We consider the problem of allocating a wireless channel to mobile users moving on a
straight road. The objective is to maximize a given function of the total data transmitted.
We develop a model within the multi-armed bandit framework and we formulate an opti-
mization problem under the constraint that only one user can be served at a time. We solve
the relaxed optimization problem, in which one user is served on the average, for which the
solution is given by Whittle’s index policy, and we derive a heuristic policy for the original
optimization problem using Whittle’s index policy as well. We evaluate numerically to see
how well the heuristic algorithm performs in various settings, including the dynamic scenario
with arrivals of new users, and in the presence of heterogeneous users.

Index terms— Markov Decision Process, restless multi-armed bandit problem, Whittle’s
index, scheduling, drive-thru internet

1 Introduction

Drive-thru internet has seen a recent resurgence due to an increase in demand for high-speed
internet access from mobile users [1, 2, 3]. One of the early works in this area [4], introduced
this concept as WLAN for mobile users. Until then, local networks such as IEEE 802.11
b/a/g were primarily targeted towards stationary users. Using measurements, they concluded
that WLAN hotspots could be a viable technology for high-speed internet access in different
mobility settings. The capability of present generation hand-held mobile devices to support
high bandwidth applications such as video transfers has reignited interest in this technology.

A typical scenario for drive-thru internet studies is a WiFi hotspot or access point (AP) that
servers users moving along a straight line as shown in Figure 1. For example, these users can be
cars or pedestrians moving on (or along) a long avenue. Various question related to link-layer
scheduling and resource allocation [5, 6], MAC layer retransmissions [7], message scheduling
using network coding [8] have recently been investigated by taking into account the specific
mobility pattern of the drive-thru internet systems.

In this paper, we revisit the multi-class scheduling problem for Markovian queues [9, 10]
in the context of a drive-thru internet. Consider users of different classes (i.e, different mean
service requirements) moving along a straight line in the coverage area of an AP (Fig. 1). Users
enter the coverage range from the left and leave from the right. In each time-slot, the AP has

∗This is an extended version of the work that appears in Wiopt 2019.
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to determine which user to serve in order to maximize a given long-term objective. The AP can
serve at most one user in each time-slot. Users receive a rate depending upon their distance
from the AP: users who are closer have higher rate (as shown in Fig. 1). The trade-off is
between serving users with a higher rate and users who leave first.

Coverage range of the Access Point

1 slot

Rate Curve

Figure 1: A drive-thru internet network.

1.1 Contributions

The problem as a Markov Decision Process [11] whose solution can be computed numerically
for small number of users but becomes computationally intractable for large instances. We shall
rely on the multi-armed bandit approach of Whittle [12, 13] to obtain a heuristic based on the
Whittle index. In general, the Whittle indices are not easy to compute ([14, 15]) but given the
special mobility structure (users move one spatial-slot to the right in each time-slot), we are
able to obtain a simple computational procedure for these indices. The indices are obtained as
a function of the position and the class of the user. The heuristic then serves the user with
the highest index. It will be shown that this index is not the same as the greedy algorithm
(or the cµ-rule [16]) that assigns the channel to the user with the largest product of channel
rate and mean service requirement. Several numerical experiments will be presented to show
the performance improvements of the proposed heuristic with respect to the greedy policy. In
particular, the improvements are more pronounced when there are more classes of users.

1.2 Related work

In [8] the authors develop an information-theoretic formula for the total amount of information
that a vehicle can receive (for only one user) when it passes the broadcast zone of a BS. Vehicles
moving in a road may have blind zones in which they might not receive signal from the base
station. To circumvent this problem, they propose and analyse the benefits of cooperative
scheme for joint V2V and V2I communications in order to improve the system capacity.

The Gittins’ index is optimal for, what is known in the bandit literature as, the ’rested’
bandit problem, i.e, in which the bandits do not change state if they are not served. Moving
users, on the other hand, are ’restless’, that is, users change state (or position) even when they
are not served. For the bandits that restless, Whittle developed a relaxation based method
which we shall employ to attack the problem. This method is presented in [12]-[10].

As explained in the introduction, one of the main contributions of this paper is the closed-
form calculation of Whittle’s index, which enables to develop a simple heuristic, known as
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Whittle’s index policy (WIP), for the original problem. WIP is a particular instance of so-
called index policies, that is, the solution to the stochastic control problem is characterized by
an index, a function that depends on the state of a single job, that determines which action to
take.

Index policies have long be known in scheduling theory. In general, the solution to a schedul-
ing problem will be a complex function of all the input parameters and the number of competing
jobs. In practice such problems can be solved only for very specific instances. Remarkably, in
some cases, a so-called index policy is optimal. Two well-known examples of this situation are
the so-called cµ-rule (optimal in a single server with linear holding costs and exponential service
times [16]) and Shortest-Remaining-Processing-Time (SRPT, optimal in a single server where
the remaining service times are known [17].)

The above two optimality results (cµ and SRPT) can be cast in the framework of Multi-
Armed Bandit Problems (MABP), a broad class of resource allocation problems for which Index
policies are known to be optimal. A MABP is a particular case of a Markov Decision Process:
at every decision epoch the scheduler needs to select one bandit, and an associated reward
is accrued. The state of this selected bandit evolves stochastically, while the state of all other
bandits remains frozen. The scheduler knows the state of all bandits and aims at maximizing the
total average reward. In a ground-breaking result Gittins showed that the optimal policy that
solves a MABP is an index rule, nowadays commonly referred to as Gittins’ index policy [18].
Thus, for each bandit, one calculates Gittins’ index, which depends only on its own current
state and stochastic evolution. The optimal policy activates in each decision epoch the bandit
with highest current index.

Despite its generality, in multiple cases of practical interest the problem cannot be cast as
a MABP. For example, mobility of users directly invalidates the requirement that non-selected
bandits remain frozen. In a seminal work [19], Whittle introduced the so-called Restless Bandit
Problem (RBP), a generalization of the standard MABP in which all bandits might evolve over
time according to a stochastic kernel that depends on whether the bandit is made active. RBP
provides a powerful modeling framework, but its solution has in general a complex structure
that might depend on the entire state-space description. In fact, it is known that RBP are
PSPACE-hard even in its deterministic variant [20], and is typically attributed to suffer from
the curse of dimensionality.

Whittle considered a relaxed version of the problem (where the restriction on the number
of active bandits needs to be respected on average only, and not in every decision epoch), and
showed that the solution to the relaxed problem is of index type, referred to as Whittle’s index.
Whittle then defined a heuristic for the original problem, referred to as Whittle’s index policy,
where in every decision epoch the bandit with highest Whittle index is selected. It has been
shown that the Whittle index policy performs strikingly well, see [21] for a discussion, and is
asymptotically optimal under certain conditions, see [9, 22].

In addition to resource allocation problems, Whittle’s index has been applied in a wide va-
riety of cases, including recommendation systems, website morphing and pharmaceutical trials,
[18, Chapter 6]. In the last years many researchers have applied Whittle’s index approach for
the opportunistic scheduling in wireless networks, see [15, 23] and references therein.

In order to calculate Whittle’s index there are two main difficulties: first, one needs to
establish a technical property known as indexability, and second, the calculation of the Whittle
index itself might be involved or even infeasible. Indexability has been established for a wide
variety of cases, but in many cases, see for example [14], the calculation of the index is done
numerically.

1.3 Organization

The rest of the paper is organized as follows. Section 2 formally describes the general setting
and casts the problem as an MDP. It also proposes the simpler model of no arrivals. Section 3
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states the main result on the indexability of the simpler model of no arrivals and gives a simple
numerical procedure for the computation of the indices. The heuristic Whittle-index policy
based upon the main result in presented in Section 4. This section also contains numerical
comparison of the proposed policy with other policies. The conclusions and further research
directions appear in Section 5. Most of the proofs have been moved to the Appendix for
improved readability.

2 Problem formulation

Consider an AP with a coverage range of length L (see Fig. 1). The users enter the coverage
range from left, move at a constant velocity, and leave from the right. Every ∆ time units the AP
has to decide which user to serve. Let v be the velocity of the users. Then, the coverage range
can be divided into spatial-slots on length v∆ = σ. Let S = {1, 2, . . . , N}, where N = L/σ,
denote the set of spatial-slots with the convention that slot 1 is the leftmost slot. The length
of the time-slot is assumed to be much smaller than the coverage range of the AP (in the order
of hundreds of meters). The scheduling decisions are made every 10-20 ms during which a car
inside a city would move a distance of less than a metre.

In each time-slot, the AP has to choose at most one user (or a spatial-slot) to serve, that is,
its set of actions is A = {ei}i∈S with ei being the unit vector for the ith coordinate. The user
that will be chosen by the AP in a time-slot will depend upon the data rate of the users currently
in range as well as the class of these users. The data rate received by a user in spatial-slot s
depends on the distance between the AP and s. Users that are closer to the AP will get a higher
rate than the users that are closer to the end points. We shall assume that the Signal-to-Noise
Ratio (SNR) has a polynomial decay:

SNR(s) =
C1

d(s)γ
,

and that the data rate in slot s, C(s) can be obtained using the the Shannon law:

C(s) = C2 log(1 + SNR(s)). (1)

For more information on these formulae, we refer to [8]. The amount of data that is transmitted
in a time-slot, r(s), to a user served at rate C(s) will thus be C(s)∆.

Assumption 1. The function r(s) is unimodal with maximum at s = N/2 (assuming N is
even). It is non-decreasing on the left and non-increasing on the right.

The assumption is quite natural and is satisfied by the rate function derived from (1).
The total volume of data requested by user i is assumed to have volume Di,b to transfer.

Here b is the class of user i and b ∈ B := {1, 2, ...B}, where B is the number of classes. We shall
assume that, for each b, Di,b are independently and exponentially distributed with rate ηb. The
probability that a user of class-b who is served in slot s finishes its data transfer in that slot is
1− exp(−ηbr(s)). The assumption of exponential data volumes ensures that this probability is
independent of past allocations.

In each time-slot, users arrive in spatial-slot 1 according to a categorical distribution on
B∪{0}. The outcome 0 corresponds to no arrival in that time-slot. The probability that a user
of class-b arrives in time-slot will be denoted pb for b ∈ B. If

∑
b pb < 1, then there is non-zero

probability of there being no new arrival in a time-slot.

2.1 Objective

For a given policy π of the AP, let Sπ(t) ∈ ({0, 1} × B)S be the stochastic process that tells
whether a spatial-slot is occupied by a user or not and tells the class of the user if it is occupied.
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The objective of the AP is:

max
π

lim sup
T→∞

1

T

T∑
t=1

Rπ(S(t), a(S(t), t)), (OBJEC)

where a(S(t), t) ∈ A is the action prescribed by policy π in the state S in time-slot t. And
Rπ(s, a) is reward one-step after chosing action a for state s which is described in this below
assumption.

Assumption 2. The reward in a time-slot is sum of the rewards of each user, where the reward
of a user is a strictly positive and increasing function of the rate if it is served and 0 if it is not
served.

From now to present easier , reward one-step of a user is its departure probability in that
slot, which is a strictly positive and increasing function of that user’s rate.

From the assumptions on the data volumes and the arrival process, it can be seen that
this problem is a classical average-cost MDP [11]. There exists an optimal stationary (time-
independent) policy that can be computed numerically. The drawback of this formulation,
however, is that the number of states in any practical scenario is too large to allow numerical
computation. As mentioned in the Introduction, for time-slots of 10–20 ms and a coverage
length of 100–200 m, the number of spatial-slots, N , of the order of a thousand. The state
space of S(t) will have ≈ B2|N | = B21000 elements making the problem intractable. Even for
20–30 spatial-slots, the problem is not computationally tractable in reasonable time with the
current technology.

Instead of the treating the problem in its full generality, we shall as first step focus on a
simplified instance of the problem in which there are no arrivals, that is pb = 0, ∀b ∈ B. This
will allow us to obtain certain heuristics that can be then used for the general problem.

2.2 Finite horizon MDP for problem with no-arrivals

Let there be K users at time 0, and let Xk(t) ∈ N := S ∪ N + 1 be the position of user-k
in time-slot t. The special state N + 1 indicates that the user has departed the system either
because it has moved out of the coverage range or because its demand has been satisfied. We
shall assume that the parameter of the exponential distribution for user-k is ηk. That is, each
user could potentially be of a different class.

Since there are no arrivals, the process S(t) can be replaced by the process X(t) :=
(X1(t), . . . XK(t)). Let ak(t) ∈ {0, 1} denote whether user-k was served in slot t or not, and let
a(t) := (a1(t), . . . , aK(t)).

With these definitions, it can be seen that the problem (OBJEC) is equivalent to the fol-
lowing problem finite-horizon MDP when there are no arrivals:

maxπ
1

N+1

∑N
t=0

∑K
k=1 Eπx(Rk(Xk(t), ak(t))

subject to ∑K
k=1 ak(t) ≤ 1, t = 0, 1, 2, ..., N,

ak(t) = {0, 1}, ∀k, t

(NOARR)

Here X(0) = x is the initial position of the users and Rk(x, a) is the reward obtained (i.e., data
transferred) by the user-k when action ak(t) is taken. The constraints on the actions indicate
that at most one user can be served in a time-slot. Further, the horizon of the problem can be
constrained to N since all users would have left the coverage range by that time.

In general, finite-horizon problem need not have optimal policies that are stationary. How-
ever, problem (NOARR) is a particular case known as the stochastic shortest path problem
([24], e.g.) for which under certain assumptions there exists a stationary optimal policy which
is the solution of Bellman’s equation.
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Lemma 1. Problem (NOARR) admits a stationary optimal policy that satisfies Bellman’s equa-
tion.

Proof. We need to check that Assumptions 1 and 2 in [24] are satisfied by (NOARR). Assump-
tion 1 requires the existence of a stationary proper policy, that is, a stationary policy that takes
the process to its terminal state. Since all users will leave the coverage range in N+1 time-slots
irrespective of the actions of the AP, all policies (stationary or not) are proper and there are
no improper policies. Thus, this requirement is met. It also requires the terminal state (state
N + 1 in our problem) to have 0 cost which again is satisfied. Finally, any improper policy
should have an initial state from which its cost is infinite. Since there are no improper policies,
all the requirements of Assumption 1 are met. Assumption 2 is satisfied by finite-state and
finite-action problems which is true for (NOARR). From Proposition 2 in [24], we can conclude
that there exists a stationary optimal policy that satisfies Bellman’s equation.

This result will be important later on when we shall derive an heuristic based on Whittle’s
index.

With some abuse of notation, let rx = r(x). For a user-k, given ak(t) = a, Xk(t) has the
transition probabilities:

Pk(y|x, a) =


ae−rxηk + (1− a), y = x+ 1, x 6= N + 1;

a(1− e−rxηk), y = N + 1, x 6= N + 1;
1, y = N + 1, x = N + 1;
0, otherwise.

(2)

It follows from the above that:

• The dynamics of each user is Markovian and is independent of that of the other users
conditioned on the action. Further, each user can change state whether it is served or not.

• The reward function is decomposable into sum of rewards of the individual users.

Problem (NOARR) is thus an instance of the Restless Multi-armed Bandit (MAB)framework
considered by Whittle [12, 13]. The bandits in that framework correspond to users in our
problem. Since the users can change state even when they are not served, the users are restless
bandits1. Problem (NOARR) is a finite-horizon problem whereas most of the work is in the
literature on MABs is on the infinite-horizon setting. The fact that (NOARR) is also a classical
stochastic shortest path problem allows us to use results of the infinite-horizon setting for the
present problem as well.

Whittle proposed a relaxation which allows to decompose (NOARR) into K sub-problem
thus reducing the dimension of the problem considerably (from NK to N). Each of these K
sub-problems can sometimes be solved analytically, and from these solutions one can obtain an
heuristic called Whittle’s index policy, that is quite easy to implement. It has been observed
on several problems that a heuristic based on Whittle’s index performance very well in practice
[25, 26, 27] and is in fact asymptotically optimal when the number of bandits becomes large
[22].

We shall follow the approach of Whittle to obtain an heuristic policy for (NOARR).

3 Whittle’s relaxation and indexability

One of the difficulty in solving (NOARR) comes from the constraints that need to be satisfied
in each time-slot. To overcome this, Whittle proposed to relax the constraint that exactly at

1From now on, we shall use bandits and users interchangeably to mean the same thing. Similarly activating
a bandit will mean serving a user.
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most one user is served (or active) per time and to replace it by the constraint that at most one
user is active in average per time. He then considered the Lagrange relaxation of the problem
with relaxed constraints and arrived at K sub-problems—one for each of the K users.

For (NOARR), this approach leads to the problem:

max
π

1

N + 1

N∑
t=0

K∑
k=1

Eπx(Rk(Xk(t), ak(t))

−ν 1

N + 1

N∑
t=0

K∑
k=1

Eπx(ak(t)),

where ν is the Lagrange multiplier of the constraint.
Once there are no constraints on the actions, there is no longer any dependence between the

users. Following Whittle approach, we use this property to obtain the following K sub-problems:

max
πk

N∑
t=1

Eπkxk(Rk(Xk(t), ak(t))− ν
N∑
t=1

Eπkxk(ak(t)). (SUBP-k)

where πk is policy of single user-k. Sub-problem-k, (SUBP-k), is associated to user-k when this
user is alone in the system and there is penalty ν on the actions. Each (SUBP-k) is again a
stochastic shortest path problem which can be solved independently of the other users, and to
which the reasoning of Lemma 1 can be applied to argue the existence of an optimal stationary
policy.

Intuitively, ν can be seen as the penalty for being active (or being served) because it reduces
the reward for taking ak > 0. If ν = −∞, then it is optimal to activate all the bandits while if
ν = +∞, then the optimal policy is to inactivate the bandits.

From now we concentrate on (SUBP-k), and omit index k in the variables to simplify
the notation. For a given ν, any stationary policy, π, can be characterized by its active set
Ωπ(ν) = {x : a(x) = 1} which is the set of states in which the bandit is active. Let Ω∗(ν) ⊂ N
to be the active set for the optimal policy of (SUBP-k). It can be seen that Ω∗(0) = N is the
set of all states. This is because there is no penalty for taking a = 1 and in each state this
action gives at least as much immediate reward as a = 0. Similarly, Ω∗(∞) = ∅ since a = 1 has
too high a penalty.

Definition 1. For ν ∈ [0,∞), a bandit is said to be indexable if Ω∗(ν) is monotonically de-
creasing in ν, that is ν1 ≤ ν2 ⇔ Ω∗(ν1) ⊇ Ω∗(ν2).

The Fig. 3 illustrates indexablity on an example with numerically with |N | = 200 and
η = 1/3, since once a state is in passive zone it never comes back active zone.

If a bandit is indexable, we can define the Whittle index of a state (for more details see [12],
[13]).

Definition 2. Given an indexable bandit, the Whittle index νx of a state x, is the largest value
of ν such that action active x is optimal in that state. That is, vx = sup{ν|x ∈ Ω∗(ν)}.

νx ≥ ν ⇔ x ∈ Ω∗(ν). (3)

The index νx gives us an indication to how profitable it is to activate the bandit (or serve the
user) in state x. If νx > νy, it means that it is even with a lower subsidy ν it is profitable to be
active in state x than in state y.

This motivates the following heuristic policy : given the state, the data rate, and the class
of each user in the coverage, the AP serves the user with the highest current Whittle index.
For this heuristic to be work, the bandits need to be indexable. In the next section, we show
that this is true for the bandits defined by (SUBP-k) and give a relatively cheap method for
the computation of the Whittle indices.
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Figure 2: Illustration of indexability.The darker (resp. lighter) region indicates the bandit is
active (resp. passive). η = 1/3 and N = 200.

3.1 Indexability

In the rest of the paper, we shall make the following assumptions which will simplify the pre-
sentation. The results carry over under the more general conditions mentioned in Assumptions
1 and 2.

Assumption 3. 1. The probability of leaving due to service in a time-slot in state x is
approximated by ηbrx.

2. The reward function is Rk(x, a) = rx · ηk · a. Here, the factor ηk can be seen as the weight
of user-k.

The approximation of probability is justified when the duration of time-slot is small com-
pared to the average time required for service completion. Hence, the probability of departure
due to service completion, 1− e−ηbrx can be approximated by ηbrx.

For indexability, we shall restrict the domain of ν to [0,+∞). Denote by V (x, ν) the value
function, i.e.

V (x, ν) = max
π

N∑
t=0

Eπx(R(X(t), a(t))− ν
N∑
t=0

Eπx(a(t)).

As mentioned earlier, even though (SUBP-k) is a finite-horizon problem, its value function
satisfies Bellman’s equation because (SUBP-k) is a classical stochastic shortest path problem
(see Lemma 1). Therefore, its value function is the solution of

V (x, ν) = max
a∈{0,1}

(R(x, a)− ν)a+
∑
y∈N

P(y|x, a)V (y, ν)

 .

Replacing R(x, a) and P(y|x, a) with values from Assumption 3, the above equation simplifies
to:

V (x, ν) = max
a∈{0,1}

{(rxη − ν)a+ (1− rxηa)V (x+ 1, ν)}. (4)
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Recall that state N + 1 is the terminal state in which the user has left, so V (N + 1, ν) = 0
for any ν. For x = 0, 1, ...N , define:

V 0(x, ν) = V (x+ 1, ν),

V 1(x, ν) = (rxη − ν) + (1− rxη)V (x+ 1, ν).

Bellman’s equation then becomes V (x, ν) = max{0,1} {V 1(x, ν), V 0(x, ν)}.

Remark 1. : V 1(x, ν), V 0(x, ν), V (x, ν) are continuous and non-increasing in ν, since they
derived from the maximum of finite number of continuous and non-increasing functions of ν.

From the definition of indexability (see Definition 2), Whittle’s index of state x, is the value
of ν such that

V 1(x, νx) = V 0(x, νx) with ν ∈ [0,+∞), (5)

which is equivalent to

rxη − ν = rxηV (x+ 1, ν) with ν ∈ [0,+∞). (6)

We shall prove that for any x, (5) has exactly one solution, called νx, and thus it is Whittle’s
index of the state x. The existence and uniqueness of the solution implies indexability. Indeed,
if (5) has a unique solution, then due to continuity of V 1(x, ν) and V 0(x, ν) in ν it implies that
the sign of V 1(x, ν)−V 0(x, ν) changes only once in [0,∞) and this change happens at νx. Since
V 1(x,∞) < V 0(x,∞), we have V 1(x, ν) < V 0(x, ν) for ν ∈ [νx,∞) and V 1(x, ν) ≥ V 0(x, ν)
otherwise. This argument will be made formal in Theorem 1 below.

AssumeN is even (the arguments of the proof also work whenN is odd.) It will be convenient
to divide the state-space, N , into two subsets: one on the left of the AP, N− = {0, 1, 2, ..., N/2−
1} and one to the right of the AP (including in front of the AP), N+ = {N/2, N/2+1, ..., N+1}.
For convenience, define f(x,∆) for x ∈ N−,∆ ∈ N+ as follows:

f(x,∆) :=
rxη
(
1−

∑∆
i=x+1 riη

∏i−1
j=x+1(1− rjη)

)
1− rxη(

∑∆
i=x+1

∏i−1
j=x+1(1− rjη))

, (7)

This following theorem shows the indexability and gives the formula for the unique solution
and characterizes the behavior of the indices.

Theorem 1 (Indexability). For each state x, the equation (5) has the unique solution denoted
by νx. It implies indexability of the bandit k.
More precise, the index is given in this following formula:

1.1 On the right x ≥ N/2, νx = rxη, and νN/2 > νN/2+1 > · · · > νN .

1.2 On the left x ≤ N/2 − 1, νx = f(x,∆(x)) where ∆(x) ∈ N+ such that f(x,∆(x)) ∈
[r∆(x)+1η, r∆(x)η), and ν1 < ν2 < · · · < νN/2−1 < νN/2.

We note that the index follows exactly the same pattern as the data rate curve rx. That is,
νx is increasing for x ∈ N− and decreasing for x ∈ N+. Further, for x ∈ N+, it is equal to the
probability of departure rxη whereas on the left (i.e., x ∈ N−), νx < rxη.

In this following proposition, we prove that Whittle’s index policy always gives more priority
for the state on the right hand side.

Proposition 1. (Right priority) Suppose rx is a symmetric about x = N/2. If x and y are
symmetric (x+ y = N), x is on the left (x < N/2), y is on the right (y ≥ N/2) then νx < νy.

9



Figure 3: Comparison of the one-step reward curve (Greedy), Gittins’ index and the Whittle’s
index for two different values of η. The three indices are coincide on the right but not coincide
on the left.

So if we have two cars that have the same rates but are on the opposite sides of the AP,
then Whittle index policy chooses the car on the right hand side.

Fig. 3 illustrates the Whittle index, and compares it with the one-step reward (which is also
the departure probability), and Gittin’s index curve (which is recalled in the full version). The
one-step reward can be seen as the index of the greedy algorithm which chooses the user with
the highest one-step reward. The Whittle index gives priority to the users on the right-hand
side because they leave the system earlier than users on the left-hand side. Further, the users
on the left-hand side will pass through much more favorable channel conditions later on. Thus,
one can wait to serve them later and hope to get a better reward.

Whittle’s index for more genaral case

So far we consider the case when there one type of cars who leave at the same state (every car
moving until state N and then leave the system). In this section we consider the more general
case, when there are not only one type of cars, i.e there are some cars who leave before the
others because of the structure of the road (for example there is another road across to the
considered road). We denote type 1 containing the cars who leave exactly after N , and type
2 containing the cars who leave sooner (they leave after state N1 < N). Denote ν1

x and ν2
x

the Whittle’s index of state x in type 1 and type 2 respectively. In this case, Whittle’s index
changes in this way:

Proposition 2. ν1
x ≤ ν2

x for every state x = 0, 1, ..., N .

Intuitively, the cars leaving sooner should have more priority.

4 Whittle-index based policy

Coming back to the original optimization problem, by using the formula in Theorem 1 we can
calculate the indices of all vehicles currently present in the coverage range of the AP. Our

10



proposed policy based on Whittle’s method is to allocate the channel to the user that has the
highest current Whittle index. Let K(t) be the set of users present in the coverage range at
time-step t. The algorithm for this policy takes as input the current position, the data rate and
the mean size of the demand as input. It them computes the Whittle index of each user and
selects the one with the highest one. If there are two or more users with the same index, one is
chosen arbitrarily.

Algorithm WIP: Heuristic policy based on Whittle indices

1 for every time step t do
Input : Vectors X(t), rX(t), and η
Output: a∗

2 a∗ ← 0
3 i = arg maxk∈K(t) νk,Xk(t)

/* choose arbitrarily one maximizer, if there is more than one */

4 a∗i ← 1

5 end

The proposed policy shall be compared with the following policies.

• Optimal: obtained by solving (OBJEC) (or (SUBP-k) depending upon the scenario). The
optimal policy can only be computed for small number of time-slots so will not be shown
when this number is large.

• Greedy: chooses the user with the best one-step reward.

• Gittin’s index: serves the user with the best Gittin’s index.

• RMS: gives priority to the right-most user. This mimics the Whittle’s index by serving
users on the right-hand side. However, it goes a step further and gives priority to users
who are leaving first.

• LMS: gives priority to the left-most user.

4.1 No arrivals

First, we compare the average reward obtained when there are no arrivals to the system and one
class of users. The number of time-slots is N = 100, the mean service requirement is η−1 = 1,
and the rate curve, rx, is given in Fig. 3. There are K cars in the system and their initial
position is chosen randomly. The total reward for a run is computed and then the experiment
is repeated by taking a different initial condition. For various values of K, Table 1 gives the
values of the average total reward obtained after averaging over 1000 experiments for different
policies. The optimal policy is not evaluated because of the large size of the state-space. WIP

Table 1: Compare algorithms in case of no arrival.

Number of cars Whittle Greedy Gittin RMS LMS

K = 10 0.082 0.070 0.069 0.077 0.061
K = 20 0.129 0.114 0.113 0.080 0.086
K = 40 0.195 0.190 0.189 0.080 0.109
K = 60 0.226 0.224 0.224 0.080 0.122

outperforms all the other policies, except for RMS for low values of K. At the two extreme
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Figure 4: Percentage of improvement of WI policy over greedy in case of no arrival and one
class of users.

values of K, both WIP and Greedy have the same performance but for moderate number of
users one can gain up to 17% with WIP. The percentage improvement of the Whittle policy
over the greedy policy is shown in Fig. 4 as a function of the initial number of cars in the
system. The best performance improvement is obtained in moderate loads (initial number of
users divided by the number of slots). When the load is high, the probability of having some
user in a slot with high rate (close to the AP) is high. Thus, both greedy and Whittle policies
choose similar users to serve and have similar performance.

Fig. 5 shows the number of users that were able of send all their data before leaving the
coverage range. The x axis the the time-slot. Since there are 100 spatial-slots and users move
one spatial-slot in one time-slot, at the end of 100 time-slots, the system is guaranteed to be
empty and the simulation can stop. The initial number of cars for this set of experiments is
K = 20. Here too, the Whittle performs better than the other policies.

4.2 New arrivals

We now evaluate the performance of the policies when there are new arrivals to the systems.
Recall that in each time-slot a new user arrives with a probability p in the left-most spatial-slot.
We first compare the policies for a small number of spatial-slots, N = 11. This allows use to
compute the average reward of the optimal policy. In Fig. 6, the average total reward is plotted
for the policies. Since the performance of the Gittin’s index is similar to the greedy in the no
arrival case, we omit this in the plot. We observe that Whittle policy almost overlaps with the
optimal policy, and outperforms the others.

As a final comparison, we show the performance of the different polices (except the optimal
one) for N = 100 spatial-slots and three classes of users. The values of the mean service
requirement of the three classes are: η−1

1 = 0.8, η−1
2 = 1.4, and η−1

3 = 4.2. This time the
optimal policy is not shown because the state-space is too big to allow for its computation.
Fig. 7 shows the average total reward as a function of the probability of new arrival. It is
observed that the Whittle policy performs much better than the greedy policy when there are
more number of classes. The improvement is visible for a larger range of the probability of new
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Figure 5: Number of satisfactory cars of five policies in the case of no arrival when there are 20
users at the beginning.

Figure 6: Comparison of policies when there are new arrivals and number of spatial-slots is
small (N = 11) and one class of users.
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Figure 7: Comparison of policies when there are new arrivals and number of spatial-slots is
large (N = 100) and three classes of users with mean service η = 1.

arrivals compared to when there is only class of users.

5 Conclusions and future work

We proposed a heuristic policy based on Whittle’s restless multi-armed bandit framework for
scheduling users in a drive-thru internet scenario. The simplified problem of no-arrivals has a
nice structure, inherited from the mobility model of the drive-thru internet, which permits for
simple computation of Whittle’s indices. Between two users who have the same rate but who
are on the opposite sides on the access point, the Whittle-index policy gives priority to the user
on the right because the user on the left can be served later on. It was seen from numerical
experiments that the heuristic policy based on Whittle’s indices outperforms the greedy policy
in various settings including dynamic arrivals and heterogeneous users.

This framework opens several interesting questions for related to the suboptimality of the
proposed heuristics as well as generalizations of indexability to models with users moving on
larger networks and with varying speeds.

Appendix

5.1 Proof of Theorem 1

We divide the proof of Theorem 1 into three steps:

• Proof of the existence of the solution of (5), which is given in Proposition 3,

• Proof of Theorem 1.1 for the states on the right. This is presented in Proposition 4,

• Proof of Theorem 1.2 for the states on the left. This is presented in Proposition 5.

Proposition 3. For each x, the (5) has at least one solution ν ∈ (0,+∞). The same holds for
(6).
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For the proof of Prop. 3, we need the following two lemmas.

Lemma 2. If ν = 0, V 1(x, 0) > V 0(x, 0), for x = 0, 1, . . . N .

Proof. We prove by induction in reverse direction, i.e, from state N to state 0. For x = N :

V 1(N, 0) = rNη > 0 = V 0(N, ν),

so that V (N, 0) = V 1(N, 0).
Suppose the claim is true until state x, i.e, V 1(y, 0) > V 0(y, 0) for any y ≥ x and V (y, 0) =

V 1(y, 0). Then, by value iteration we have, for any y ≥ x,

V (y, 0) = V 1(y, 0) = ryη + (1− ryη)V (y + 1, 0)

= ...

= 1− (1− ryη)(1− ry+1η) · · · (1− rNη).

We now prove that the claim is true for state x− 1. We have:

V 0(x− 1, 0) = V (x, 0) = 1− (1− rxη)(1− rx+1η) · · · (1− rNη)

and

V 1(x− 1, 0) = rx−1η + (1− rx−1η)V (x, 0)

= 1− (1− rx−1η)(1− rxη) · · · (1− rNη).

Therefore V 1(x− 1, 0) > V 0(x− 1, 0).

Lemma 3. For any ν > maxx=0,1,...N{rxη}, V 1(x, ν) < V 0(x, ν), x = 0, 1, ...N .

Proof. We prove by induction in reverse direction from state N to state 0. For x = N ,

V 1(N, 0) = rNη − ν < 0 = V 0(N, 0),

since rxη < ν. So, V (N, 0) = V 1(N, 0).
Suppose the claim is true until state x, i.e, V 1(y, 0) < V 0(y, 0) so that, for any y ≥ x,

V (y, 0) = V 0(y, 0). Then, by value interaction we have:

V (y, 0) = 0

for any y ≥ x. Thus, for state x− 1, we have

V 1(x− 1, 0) = rx−1η − ν < 0 = V 0(x− 1, 0).

Proof of Prop.3. From Lemma 2, we know that V 1(x, 0) > V 0(x, 0). From Lemma 3, we have
V 1(x, 1) > V 0(x, 1) (we can take ν = 1 because rxη is a probability and is thus smaller than
1). Using these two lemmas and the continuity of the function V 1(x, ·), V 0(x, ·) in the second
variable, we can conclude that (5) each has at least one solution.

We now prove the uniqueness of the solution of (5) on the right hand side, and give its
properties. We also characterize the behaviour of the value function which will be used later
for the proof of Theorem 1.

Proposition 4. (For Theorem 1.1) For any x ≥ N/2, Eqn. (6) has a unique solution νx.
Moreover, we have:
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1. νx = rxη. Thus, νN/2 > νN/2+1 > · · · > νN .

2. The value function takes the following form:
? If ν ≥ rxη, then

V (x, ν) = 0, (8)

? If 0 ≤ ν < rxη, then

V (x, ν) =

y∑
i=x

i−1∏
j=x

(1− rjη)

 (riη − ν), (9)

where y ∈ {x, x+ 1, ..., N} is such that ry+1η ≤ ν < ryη, with the convention rN+1 = 0.

For the proof of this proposition, we need the following lemmas which are proven in part
5.5 - the additional proofs.

Lemma 4. If A1, B1, A2, B2, ..., Ak, Bk > 0, k ≥ 2 and A1
B1

< A2
B2

< · · · < Ak
Bk

then

A1

B1
<
A1 +A2

B1 +B2
< · · · < A1 +A2 + · · ·+Ak

B1 +B2 + · · ·+Bk
.

Lemma 5. If A1 > A2 + A3 + · · · + Ak > 0, B1 > B2 + B3 + · · · + Bk > 0, k ≥ 2 and
A1
B1

> A2
B2

> · · · > Ak
Bk

then

A1

B1
<
A1 −A2

B1 −B2
< · · · < A1 −A2 − · · · −Ak

B1 −B2 − · · · −Bk
.

For every ∆ > x, we define:

a(x,∆) := 1−
∆∑

i=x+1

riη

i−1∏
j=x+1

(1− rjη),

b(x,∆) :=
∆∑

i=x+1

i−1∏
j=x+1

(1− rjη).

Proof of Prop. 4. For the states on the right side (x ≥ N/2), we prove by induction.
We start by state N. From the boundary condition, V (N + 1, ν) = 0. so that

V (N, ν) = max{rNη − ν, 0}.

By Definition 2, νN is such that there is no difference between being active and being passive
in state N . Thus, rNη − νN = 0, and so νN = rNη.

We assume that the claim is true until state x + 1, i.e, for any y = x + 1, x + 2, ..., N we
have νy = ryη and formula of (9) for the value function.

Now we show the claim holds for state x. Assume by contradiction that νx ≤ νx+1 so there
exists y ≥ x + 1 such that νx ∈ [ry+1η, ryη). Using the induction hypotheses, the solution of
equation (6) is obtained as:

νx =
rxηa(x, y)

1− rxηb(x, y)
.
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For k = 1, . . . , y − x, define:

Ak = rxη · rx+kη
x+k−1∏
j=x+1

(1− rjη).

Bk = rxη ·
x+k−1∏
j=x+1

(1− rjη),

Applying Lemma 5 with the observation that:

A1

B1
= rx+1η > rx+2η =

A2

B2
> · · · > Ay−x

By−x
= ryη,

and
A1 −A2 − · · · −Ay−x
B1 −B2 − · · · −By−x

= νx,

we get rx+1η = νx+1 ≥ νx =
A1−A2−···−Ay−x

B1−B2−···−By−x
> A1

B1
= rx+1η, which is a contradiction.

Therefore, νx > νx+1. Using (5) for state x and (8) for states x+1, ..., N , we obtain νx = rxη.
The formulas (8) and (9) for state x follow by using induction on Bellman’s equation (4).

Next, we move to the proof of Theorem 1.2.

Proposition 5. (For Theorem 1.2) For every state on LHS x ≤ N/2−1, Eqn. (6) has a unique
solution νx. Moreover, we have:

1.
νx = f(x,∆(x)),

where ∆(x) ≥ N/2 is chosen such that f(x,∆(x)) ∈ [r∆(x)+1η, r∆(x)η).

2. νx increases in x on LHS, i.e,

ν0 < ν1 < ν2 < · · · < νN/2−1 < rN/2η = νN/2.

3. The value function has the following form:
? If ν ≥ νx, then V (x, ν) = V (x+ 1, ν).
? If 0 ≤ ν < νx, then

V (x, ν) = (rxη − ν) + (1− rxη)V (x+ 1, ν).

Before proving Proposition 5, we need to characterize properties of function f(x,∆) which
are described in the following Lemma 6. Remark that we can rewrite f as:

f(x,∆) =
rxηa(x,∆)

1− rxηb(x,∆)
.

Lemma 6. For a fixed x ∈ L = {0, 1, ..., N/2 − 1}, define Dx =
{

∆|∆ ≥ N/2, f(x,∆) ≥ 0
}

.
Recall from (7) that f is defined only on integers. Let ∆(x) ∈ Dx be the smallest value for
which r∆(x+1)η ≤ f(x,∆(x)) < r∆(x)η. Then,

∆(x) = arg min
∆∈Dx

f(x,∆).

Moreover, for fixed x and considering f(x,∆) as a function of ∆ in Dx, then f decreases from
N/2 to ∆(x) and increases from ∆(x) to b. Outside of Dx, f(x,∆) is either negative or infinity.

17



Proof. First, we will show that Dx is connected. The numerator of f(x,∆) is rxη ·a(x,∆) where

a(x,∆) = 1−
∆∑

i=x+1

riη
i−1∏

j=x+1

(1− rjη) =
∆∏

j=x+1

(1− rjη) ≥ 0.

So, the numerator of f(x,∆) is always positive.
Since the numerator of f(x,∆) is always positive, the sign of f depends on the sign of its

denominator. It is easy to see that the denominator of f is decreasing in ∆ because b is an
increasing function of ∆. So, for ∆2 > ∆1 ≥ N/2, if f(x,∆2) is positive, then so is f(x,∆1).
This implies that Dx is connected. And, for ∆ ∈ {b+ 1, b+ 2, ..., N}, f(x,∆) is either negative
or infinity.

Now, we will prove the claim in the lemma. Suppose ∆1 ∈ Dx = {N/2, N/2 + 1, ..., b} for
some b (b depends on x), and ∆2 > ∆1 > ∆(x). Define

A1 = rxη · a(x,∆(x)),

B1 = 1− rxη · b(x,∆(x)),

and, for 2 ≤ k ≤ ∆2 −∆(x) + 1,

Ak = rxη · r∆(x)+k−1η

∆(x)+k−2∏
j=x+1

(1− rjη)

Bk = rxη ·
∆(x)+k−2∏
j=x+1

(1− rjη).

We have B1−(B2 + · · ·+B∆2−∆(x)+1) > 0 since it is the denominator of f(x,∆2) with ∆2 ∈ Dx.
And, A1 − (A2 + · · ·+A∆2−∆(x)+1) > 0 since it is the numerator of f(x,∆2) which is positive.
Moreover,

A1

B1
= f(x,∆(x)) ∈ [r∆(x)+1η, r∆(x)η),

and we get
A1

B1
≥ r∆(x)+1η =

A2

B2
> · · · > r∆2η =

A∆2−∆(x)+1

B∆2−∆(x)+1
.

Applying Lemma 5 we get:

f(x,∆1) =
A1 −A2 − · · · −A∆1−∆(x)+1

B1 −B2 − · · · −B∆1−∆(x)+1

<
A1 −A2 − · · · −A∆2−∆(x)+1

B1 −B2 − · · · −B∆2−∆(x)+1
= f(x,∆2).

Hence, if ∆2 > ∆1 > ∆(x) and ∆1,∆2 ∈ Dx = {∆(x),∆(x) + 1, ..., b} then f(x,∆2) >
f(x,∆1).Similarly, by using Lemma 4, if N/2 ≤ ∆1 < ∆2 < ∆(x) then f(x,∆1) > f(x,∆2).

Combining the above two results, we get the minimum of function f(x,∆) in Dx attained
when ∆ = ∆(x). Further, if ∆ ∈ N+ \Dx, then f(x,∆) is either negative or infinity.

The existence of ∆(x) will be proved in Lemma 7 for x = N/2− 1 and for other values of x
in the proof of Proposition 4 using the existence of the solution of (5).

Before doing induction for the states on the left hand side, we first consider state N/2− 1.

18



Lemma 7. ∆(N/2− 1) ≥ N/2 exists. Further, the equation V 1(N/2− 1, ν) = V 0(N/2− 1, ν)
has the unique solution which is:

νN/2−1 = f(N/2− 1,∆(N/2− 1)).

Moreover,
1. If ν < νN/2−1, then V (N/2− 1, ν) = (rN/2−1η − ν) + (1− rN/2−1η)V (N/2, ν),
2, If ν ≥ νN/2−1, then V (N/2− 1, ν) = V (N/2, ν),
with V (N/2, ν) given in Prop. 4.

Proof. By Prop. 3, the equation

rN/2−1η − ν = rN/2−1ηV (N/2, ν)

has at least one solution ν1. If ν1 ≥ rN/2η then the left-hand side of the above equation is
negative while the right-hand side equals 0 (which is a impossible).

So, ν1 < rN/2η. Then, there exists ∆1 ≥ N/2 such that ν1 ∈ [r∆1+1η, r∆1η). By developing
V (N/2, ν1) in Prop. 4,

rN/2−1η − ν1 = rN/2−1η

∆1∑
i=N/2

i−1∏
j=x

(1− rjη)

 (riη − ν). (10)

Solving this linear equation, we get:

ν1 = f(N/2− 1,∆1)

=
rN/2−1η

(
1−

∑∆1

i=N/2 riη
∏i−1
j=N/2(1− rjη)

)
1− rN/2−1η(

∑∆1

i=N/2

∏i−1
j=N/2(1− rjη))

.

Obviously every solution is of the above form. Suppose ∆1 is the first state from the left such
that

f(x,∆1) ∈ [r∆1+1η, r∆1η). (*)

We now prove the uniqueness of the solution by contradiction. Suppose there exist another
solution ν2 < ν1 (ν2 can not greater than ν1 due to (*). We know that ν2 can not be in
[r∆1+1η, r∆1η) since the linear equation (10) has a unique solution. Therefore, there exists
∆2 > ∆1 such that ν2 ∈ [r∆2+1η, r∆2η). Following the same approach as for finding ν1, we get:

ν2 = f(N/2− 1,∆2).

We have 2 cases:

• If ∆2 ∈ Dx then f(x,∆2) > 0. By Lemma 6 we have:

ν2 = f(N/2− 1,∆2) ≥ f(N/2− 1,∆1) = ν1

This contradicts ν2 < ν1.

• If ∆2 ≥ N/2 but is not in Dx then ν2 = f(N/2− 1,∆2) is negative or infinity which cannot
be true since we solve the equation in [0,+∞).

Thus, there is a unique ∆1 if it exists.
The existence of ∆1 ≥ N/2 such that f(N/2− 1,∆1) ∈ [r∆1+1η, r∆1η) follows from the fact

that the value function is piece-wise linear in ∆ and that there exists a solution to (5).

19



Hence, the solution exists and is unique. Denote the solution by νN/2−1. Let ∆(N/2−1) :=
∆1 and we get the relationship:

νN/2−1 = f(N/2− 1,∆(N/2− 1))

∈ [r∆(N/2−1)+1η, r∆(N/2−1)η).

By the continuity of V 1(x, ·), V 0(x, ·) in the second variable, the fact that V 1(x, 0) > V 0(x, 0)
(from Lemma 2), and V 1(x, 1) < V 0(x, 1) (from Lemma 3) and the uniqueness of solution
proved above, we get the conclusion on the value function.

In a similar way, we will prove Prop. 5 by induction on states x ≤ N/2− 1. That is, we will
show that (5) has a unique solution, called νx, and, on the left-hand side νx increases in x, i.e
if x < y ≤ N/2− 1 then νx < νy.

Proof of Proposition 5. We shall prove the claim by induction in the reverse direction. For state
N/2 − 1, the claim follows from Lemma 7. Suppose the claim is true until state x ≤ N/2 − 1.
We now prove for state x− 1. Consider the equation:

rx−1η − ν = rx−1ηV (x, ν).

By Lem. 3 we know that there is at least one solution. Suppose ν is a solution of this equation.

• If ν ≥ rN/2η, then

rx−1η − ν = rx−1ηV (x, ν) = · · · = rx−1ηV (N + 1) = 0,

which follows by the induction hypothesis for all states in [x, x + 1, ..., N/2 − 1] and by
Proposition 4, for all states in [N/2, N/2 + 1, ..., N ]. This implies that ν = rx−1η < rN/2η,
which leads to a contradiction with ν ≥ rN/2η.

• If νx ≤ ν < νN/2 then there exist y1, y2 such that:{
x ≤ y1 ≤ N/2− 1, N/2 ≤ y2 ≤ ∆(y1)
ν ∈ [νy1 , νy1+1) ∩ [ry2+1η, ry2η).

(11)

So, by induction hypothesis and Prop. 4, we can develop V (x, ν) to get:

V (x, ν) = V (x+ 1, ν) = · · · = V (y1 + 1, ν)

= (ry1+1η − ν) + (1− ry1+1)V (y1 + 2, ν)

= · · ·

=

y2∑
i=y1+1

 i−1∏
j=y1+1

(1− rjη)

 (riη − ν).

Now, the equation rx−1η− ν = rx−1ηV (x, ν) becomes linear in ν, which can be solved to get:

ν =
rx−1ηa(y1, y2)

1− rx−1ηb(y1, y2)
. (12)

We have:

ν =
rx−1ηa(y1, y2)

1− rx−1ηb(y1, y2)
<

ry1ηa(y1, y2)

1− ry1ηb(y1, y2)
= f(y1, y2), (13)

and we remark that y2 ≤ ∆(y1).

Now, there are two sub-cases:
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– If y2 = ∆(y1) then
νy1 = f(y1,∆(y1)) = f(y1, y2) > ν,

where the last inequality is due to (13). This contradicts ν ≥ νy1 in (11).

– Suppose y2 < ∆(y1). From (11), we have ν ∈ [ry2+1η, ry2η), and by (13) we have
ν < f(y1, y2). Therefore, f(y1, y2) > ry2+1η. Note that the statement f(y1, y2) < ry2η
cannot be true because this will imply that ∆(y1) = y2. On the other hand, by induction
hypothesis, ∆(y1) is the unique state that satisfies f(y1,∆(y1)) ∈ [r∆(y1)+1η, r∆(y1)η) and
we have assumed that y2 < ∆(y1). Thus,

f(y1, y2) ≥ ry2η. (14)

Define

A1 = ry1η · a(y1, y2),

B1 = 1− ry1η · b(y1, y2),

and for k = 2, . . . ,∆(y1)− y2 + 1,

Bk = ry1η

y2+k−2∏
j=y1+1

(1− rjη),

Ak = ry2+k−1 ·Bk,

From the above definitions and (14),

A1

B1
= f(y1, y2) ≥ ry2η >

A2

B2
= ry2+1η > · · ·

>
A∆(y1)−y2+1

B∆(y1)−y2+1
= r∆(y1)η.

Apply Lemma 5 on Ak and Bk, we get:

ry2η ≤ f(y1, y2) =
A1

B1

<
A1 −A2 − · · ·A∆(y1)−y2+1

B1 −B2 − · · · −B∆(y1)−y2+1

= f(y1,∆(y1)) < r∆(y1)η,

which is in contradiction to N/2 ≤ y2 < ∆(y1).

• Finally, suppose 0 < ν < νx. Then, following similar arguments as in the proof of Lemma 7
and by existence of the solution of (6), there exists a unique ∆(x− 1) ≥ ∆(x) such that

ν = f(x− 1,∆(x− 1)) ∈ [r∆(x−1)+1η, r∆(x)η).

We have proved the first two claims of Proposition 5.
Now, we prove the third claim. From Lemma 2, we have V 1(x, 0) > V 0(x, 0) and from

Lemma 3, we know that V 1(x,∞) < V 0(x,∞). Since νx is the unique solution of V 1(x, 0) =
V 0(x, 0) and V 1(x, ν) and V 0(x, ν) are continuous in ν, we can infer that V 1(x, ν) ≥ V 0(x, ν) in
[0, νx] and V 1(x, ν) ≤ V 0(x, ν) in [νx,∞). This implies the claimed form of the value function
for state x.
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5.2 Proof of Proposition 1

Proof. We prove it by induction for the direction from N/2− 1 to 0 by showing that

νx < νN−x = rN−xη = rxη for any x ≤ N/2− 1. (15)

Firstly, we prove for state x = N/2 − 1. Suppose that νN/2−1 ≥ νN/2+1 = rN/2+1η = rN/2−1η.
By proof of Lemma 7 we have νN/2−1 < rN/2η. It implies that νN/2−1 ∈ [rN/2+1η, rN/2η), so
∆(N/2− 1) = N/2. Therefore,

rN/2−1η ≤ νN/2−1

= f(N/2− 1,∆(N/2− 1))

=
rN/2−1η(1− rN/2η)

1− rN/2−1η
.

But rN/2η > rN/2−1η, so rN/2−1η
(1−rN/2η)

1−rN/2−1η
≤ rN/2−1η. This is a contradiction.

Next we prove the claim by induction for x < N/2 − 1. Let (15) be true until state x + 1.
Suppose it is not true for x, then f(x,∆(x)) ≥ rxη. By induction, we get f(x+ 1,∆(x+ 1)) <
rx+1η. By theorem 1 we have f(x + 1,∆(x + 1)) > f(x,∆(x)). Therefore rxη ≤ f(x,∆(x)) <
f(x+ 1,∆(x+ 1)) < rx+1η, it implies ∆(x) = ∆(x+ 1) and νx+1 = f(x+ 1,∆(x)). To get the
contradiction we shall show that :

νx+1 − νx = f(x+ 1,∆(x))− f(x,∆(x)) > rx+1η − rxη.

Indeed,

νx+1 − νx = rx+1ηa(x+1,∆(x))
1−rx+1ηb(x+1,∆(x)) −

rxηa(x,∆(x))
1−rxηb(x,∆(x))

> rx+1ηa(x,∆(x))
1−rx+1ηb(x,∆(x)) −

rxηa(x,∆(x))
1−rxηb(x,∆(x)) (16)

=

(
rx+1η−rxη

)
a(x,∆(x))(

1−rx+1ηb(x,∆(x))
)(

1−rxηb(x,∆(x))
)

> rx+1η − rxη (contradiction). (17)

The inequality (16) is implied by using Lemma 5 for A1
B1 = rx+1ηa(x,∆(x))

1−rx+1ηb(x,∆(x)) ,
A2
B2 = rx+1η∗rx+1η

rx+1η

and A1−A2
B1−B2 = rx+1ηa(x+1,∆(x))

1−rx+1ηb(x+1,∆(x)) .

The inequality (17) is due to f(x,∆(x)) = rxηa(x,∆(x))
1−rxηb(x,∆(x)) ≥ rxη, so a(x,∆(x))

1−rxηb(x,∆(x)) ≥ 1, and
a(x,∆(x))(

1−rx+1ηb(x,∆(x))
)(

1−rxηb(x,∆(x))
) > 1.

5.3 Proof of Proposition 2

Proof. Suppose that car of type 2 leaves after state N1 < N . Remark that in this case the rate
of the type-2 car equals to 0 after state N1.

• If x is on the right hand side, by Proposition 4 we get ν1
x = ν2

x = rxη.

• If x is on the left hand side, we show that ∆1(x) ≤ ∆2(x) where ∆1(x),∆2(x) are given
in proposition 5 for type 1, and type 2 respectively.

– If ∆2(x) ≤ N1 − 1 then ∆2(x) = ∆1(x) due to the rate function being same until
state N1.
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– ∆2(x) = N1 we consider 2 sub-cases:
? f(x,∆2(x)) ∈ [r∆2(x)+1η, r∆2(x)η), it implies ∆2(x) = ∆1(x) due to same rate
function until state N1.
? f(x,∆2(x)) ∈ [0, r∆2(x)+1η), it implies that ∆1(x) > ∆2(x). Denote D1

x (resp. D2
x)

the domain of x for type-1 (resp. type-2) car. Then D2
x ⊂ D1

x since ∆1(x) > ∆2(x).
By Lemma 6, we get f(x,∆1(x)) attains minimum at ∆1(x) in the domain D1

x so
f(x,∆1(x)) ≤ f(x,∆2(x)).

5.4 Computation of the Gittins’ index

Gittins’ index policy is known optimal in the case of static bandit, but it not for the bandits are
restless. By static bandit, we mean a bandit who does not change state when it is not activated.
In our problem, the users change state even if they are not activated (or served). Thus, the
users are restless and do not fall in the static framework of Gittins. However, for comparison
purposes, we also include the Gittins’ index.

Gittin’s index for state x is defined as the follows:

Gk(x) = sup
∆∈{1,2,...,N−x+1}

∑τ∆−1
t=0 βtE(Rk(Xk(t))|Xk(0) = x)∑τ∆−1

t=0 βt
, (18)

where τ̂ = inf{t ≥ 0 : Xk(t) = N + 1} and τ∆ = min(∆, τ̂) and here we take β = 1.
To compute Gk(x) we define:

G∆
k (x) =

∑τ∆−1
t=0 βtE(Rk(Xk(t))|Xk(0) = x)∑τ∆−1

t=0 βt
,

for all ∆ ∈ {1, 2, ..., N − x+ 1}. We have:

• P(τ∆ = i|Xk(0) = x) = P(τ̂ = i|Xk(0) = x) = P(Xk(i) = N + 1|Xk(0) = x,Xk(1) 6=
N + 1, ..., Xk(i − 1) 6= N + 1) = (1 − rxηk)(1 − rx+1ηk)...(1 − rx+i−2ηk) ∗ rx+i−1ηk, for
i = 1, 2, ...,∆− 1

• P(τ∆ = ∆|Xk(0) = x) = P(τ̂ ≥ ∆|Xk(0) = x) = P(Xk(0) = x,Xk(1) 6= N+1, ..., Xk(∆−1) 6=
N + 1) = (1− rxηk)(1− rx+1ηk)...(1− rx+∆−2ηk).

So G∆
k (x) equals to:∑∆

i=1 P(τ∆ = i)
∑i−1

t=0 β
tE(Rk(Xk(t))|Xk(0) = x, τ∆ = i)∑∆

i=0 P(τ∆ = i)
∑i−1

t=0 β
t

=

∑∆
i=1 P(τ∆ = i)

∑i−1
t=0 rx+tηk∑∆

i=0 P(τ∆ = i) ∗ i
,

We can find sup∆∈{1,2,...,N−x+1}G
∆
k (x) numerically.

5.5 Additional proofs

Proof. (Lemma 4) We can prove directly that

A1

B1
<
A1 +A2

B1 +B2
<
A2

B2
,

But A2
B2

< A3
B3

by the above assumption, it implies A1+A2
B1+B2

< A3
B3

. Therefore we have:

A1 +A2

B1 +B2
<

(A1 +A2) +A3

(B1 +B2) +B3
<
A3

B3
.

By induction in that way we get the conclusion.
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Proof. (Lemma 5) The proof of this lemma is similar to the proof of Lemma 4 with the below
observation:

Ak
Bk

< · · · A3

B3
<
A2

B2
<
A1

B1
<
A1 −A2

B1 −B2
.

References

[1] Nan Cheng, Ning Lu, Ning Zhang, Xuemin (Sherman) Shen, and Jon W. Mark. Vehicular
WiFi offloading. Veh. Commun., 1(1):13–21, January 2014.

[2] Haibo Zhou, Lin Gui, Quan Yu, and Xuemin (Sherman) Shen. Overview of Vehicular
Communications in Drive-thru Internet, pages 11–17. Springer International Publishing,
Cham, 2015.

[3] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen. A survey on platoon-based vehicular cyber-
physical systems. IEEE Communications Surveys Tutorials, 18(1):263–284, Firstquarter
2016.

[4] J. Ott and D. Kutscher. Drive-thru internet: IEEE 802.11b for ”automobile” users. In
IEEE INFOCOM 2004, volume 1, page 373, March 2004.

[5] J. J. Alcaraz, J. Vales-Alonso, and J. Garcia-Haro. Link-layer scheduling in vehicle to
infrastructure networks: An optimal control approach. IEEE Journal on Selected Areas in
Communications, 29(1):103–112, January 2011.

[6] Qiang Zheng, Kan Zheng, Periklis Chatzimisios, and Fei Liu. Joint optimization of link
scheduling and resource allocation in cooperative vehicular networks. EURASIP Journal
on Wireless Communications and Networking, 2015(1):170, Jun 2015.

[7] D. Jia, R. Zhang, K. Lu, J. Wang, Z. Bi, and J. Lei. Improving the uplink performance of
drive-thru internet via platoon-based cooperative retransmission. IEEE Transactions on
Vehicular Technology, 63(9):4536–4545, Nov 2014.

[8] Q. Wang, P. Fan, and K. B. Letaief. On the joint V2I and V2V scheduling for cooperative
vanets with network coding. IEEE Transactions on Vehicular Technology, 61(1):62–73, Jan
2012.

[9] Richard R. Weber and Gideon Weiss. On an index policy for restless bandits. Journal of
Applied Probability, 27(3):637–648, 1990.

[10] M. Larrnaaga, U. Ayesta, and I. M. Verloop. Dynamic control of birth-and-death rest-
less bandits: Application to resource-allocation problems. IEEE/ACM Transactions on
Networking, 24(6):3812–3825, December 2017.

[11] Dimitri P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[12] P. Whittle. Restless bandits: Activity allocation in a changing world. Journal of Applied
Probability, 25:287–298, 1988.

[13] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed Bandit Allocation In-
dices. John Wiley & Sons, 2011.

[14] Vivek S. Borkar and Sarath Pattathil. Whittle indexability in egalitarian processor sharing
systems. Annals of Operations Research, 2017.

24



[15] Arjun Anand and Gustavo de Veciana. A Whittle’s index based approach for qoe opti-
mization in wireless networks. In Abstracts of the 2018 ACM International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’18, pages 39–39, New
York, NY, USA, 2018. ACM.

[16] C. Buyukkoc, P. Varaya, and J. Walrand. The cµ rule revisited. Adv. Appl. Prob., 17:237–
238, 1985.

[17] L.E. Schrage and L.W. Miller. The queue M/G/1 with the shortest remaining processing
time discipline. Operations Research, 14:670–684, 1966.

[18] J.C. Gittins, K. Glazebrook, and R. Weber. Multi-armed Bandit Allocation Indices. Wiley,
2011.

[19] P. Whittle. Restless bandits: Activity allocation in a changing world. Journal of Applied
Probability, 25:287–298, 1988.

[20] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of optimal queueing network.
Mathematics of Operations Research, 24(2):293–305, 1999.

[21] J. Niño-Mora. Dynamic priority allocation via restless bandit marginal productivity indices.
TOP, 15(2):161–198, 2007.

[22] I.M. Verloop. Asymptotically optimal priority policies for indexable and non-indexable
restless bandits. Annals of Applied Probability, 2016.

[23] Samuli Aalto, Pasi Lassila, and Prajwal Osti. Whittle index approach to size-aware schedul-
ing with time-varying channels. In Proceedings of the 2015 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’15,
pages 57–69, New York, NY, USA, 2015. ACM.

[24] Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path prob-
lems. Mathematics of Operations Research, 16(3):580–595, 1991.

[25] K.D. Glazebrook, C. Kirkbride, and J. Ouenniche. Index policies for the admission control
and routing of impatient customers to heterogeneous servcie stations. Operations Research,
57:975–989, 2009.

[26] U. Ayesta, P. Jacko, and V. Novak. Scheduling of multi-class queueing system with aban-
donment. Journal of Scheduling, 20:129–145, 2017.

[27] P. S. Ansell, K. D. Glazebrook, J. Nino-Mora, and M. O’Keeffe. Whittle’s index policy
for a multi-class queueing system with convex holding costs. Mathematical Methods of
Operations Research, 57(1):21–39, 2003.

25


