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GEODESIC COMPLETENESS OF THE H3/2 METRIC ON Diff(S1)

MARTIN BAUER, BORIS KOLEV, AND STEPHEN C. PRESTON

Abstract. Of concern is the study of the long-time existence of solutions to the Euler–Arnold

equation of the right-invariant H
3

2 -metric on the diffeomorphism group of the circle. In previous
work by Escher and Kolev it has been shown that this equation admits long-time solutions if the
order s of the metric is greater than 3

2
, the behaviour for the critical Sobolev index s = 3

2
has been

left open. In this article we fill this gap by proving the analogous result also for the boundary case.
The behaviour of the H

3/2-metric is, however, still different from its higher order counter parts, as
it does not induce a complete Riemannian metric on any group of Sobolev diffeomorphisms.

1. Introduction

In this article, we prove longtime existence for solutions of the geodesic initial value problem
of the right invariant H3/2-metric on the group of smooth diffeomorphisms on the circle. The
interest in (fractional) order metrics on diffeomorphism groups is fuelled by their relations to various
prominent PDEs of mathematical physics: In the seminal article [1], Arnold showed in 1965 that
Euler’s equations for the motion of an incompressible, ideal fluid have a geometric interpretation
as the geodesic equations on the group of volume preserving diffeomorphisms. Since then, an
analogous result has been found for a whole variety of PDEs, including the Burgers equation, the
Hunter–Saxton equation, the Camassea–Holm equation [6, 18] or the modified Constantin–Lax–
Majda (mCLM) equation [10, 14]. Building up on the pioneering work of Ebin and Marsden [11],
these geometric interpretations have been used to obtain rigourous well-posedness and stability
results for the corresponding PDEs [9, 24, 23, 21, 3, 15, 19].

Motivated by the analysis on the mCLM equation, Escher and Kolev recently studied fractional
order Sobolev metrics on the diffeomorphism group of the circle [13, 12]. In their investigations,
they showed that the geodesic equation of the class of Sobolev metrics of order s is locally well-
posed if s ≥ 1

2 and globally well-posed if s > 3
2 . The question of global existence of solutions

of the geodesic equation for the critical index s = 3
2 was left unanswered. Towards this direction,

Preston andWashabaugh proved in [22] that the Weil–Petersson metric on the universal Teichmüller
space, which is of critical order 3

2 , possesses smooth global solutions. In this article, we extend
their analysis to obtain a global existence result for general Sobolev metrics of order 3/2 on the
diffeomorphism group of the circle and thus give a positive answer for the critical index.

Metric completeness. In [2], it was shown that the Sobolev metric of order s > 3
2 extends

smoothly to a strong Riemannian metric on the group of Sobolev diffeomorphisms Ds(S1). This
allowed the authors to use results on strong, right invariant metrics to show that the metric is not
only geodesically complete, but (as a metric on Ds(S1)) also metrically complete, see also [5]. This
result is not true anymore for the critical index s = 3

2 , as Ds(S1) is only a topological group for

s > 3
2 ; the metric extends only to a smooth, weak Riemannian metric on the Sobolev completion

Dq(S1), for high enough q > 3
2 .
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Metrics of lower order. For certain examples of metrics of order s < 3
2 , it has been shown

that solutions of the Euler–Arnold equation can blowup in finite time. This includes the L2-metric
(Burgers equation), the H1/2-metric (mCLM equation) [22, 4] and the H1-metric (Camassa–Holm
equation) [6, 7]. We conjecture that blowup of solutions occurs for every metric of order s < 3

2 .
This result would provide a complete characterization for the solution behaviour of the geodesic
equation of fractional order metrics on the group of diffeomorphisms. As we are not able to show
this result at the present time, we leave this question open for future research.

2. Right invariant Sobolev metrics on Diff(S1)

Let Diff(S1) denote the group of smooth and orientation preserving diffeomorphisms on the circle.
The space Diff(S1) is an open subset of the Fréchet manifold of all smooth functions C∞(S1, S1)
and thus, itself a Fréchet manifold. Furthermore, composition and inversion are smooth maps and
Diff(S1) is a Fréchet-Lie group, where the Lie algebra is the space of vector fields on the circle,
equipped with the negative of the usual Lie-bracket on vector fields, i.e.:

[u, v] = uxw − uwx .

See [16] for more details on diffeomorphism groups as infinite dimensional Lie groups. Given an
inner product on the space of vector fields we can extend this using right translations to obtain
a right invariant metric on the diffeomorphism group. Thus, to define a right-invariant metric, it
remains only to specify the inner product on the space of vector fields. The most natural choice is
given by the standard L2-inner product:

〈u, v〉L2 =

∫

S1

uv dx .

This metric (which corresponds to the Burgers equation) has been studied in great detail and it
has been shown, in particular, that:

(1) the induced geodesic distance of the metric is vanishing [20];
(2) the exponential map is not a C1 diffeomorphism [8].

More generally, we consider an inner product on C∞(S1) which writes

〈u, v〉A =

∫

S1

(Au)v dx .

where A : C∞(S1) → C∞(S1), the so-called inertia operator is self-adjoint, with respect to the
L2-inner product i.e.

∫

S1

(Au)v dx =

∫

S1

u(Av) dx, ∀u, v ∈ C∞(S1) ,

and positive definite i.e.
∫

S1

(Au)u dx > 0, ∀u ∈ C∞(S1) .

The corresponding right invariant metric on Diff(S1) reads as

GA
ϕ (h, k) = 〈h ◦ ϕ−1, k ◦ ϕ−1〉A =

∫

S1

(A(h ◦ ϕ−1))k ◦ ϕ−1 dx,

where h, k ∈ TϕDiff(S1). If we assume, furthermore, that A is invertible and commutes with

differentiation, then, the Euler–Arnold equation of the metric GA is given by:

(1) mt + umx + 2mux = 0, m = Au, u(0) = u0 ∈ C∞(S1).

In this equation, m is the so-called momentum associated to the velocity u. If the inertia operator
A is a nice operator of order s > 3

2 , the global existence of smooth solutions to this equation has
been shown by Escher and Kolev in [13]. In this article, the question for the behaviour of the
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solutions for the boundary index s = 3
2 was raised. The aim of the present work is to give a positive

answer to this former open problem.

3. The right-invariant H3/2-metric on Diff(S1)

We will now formally introduce the class of nice operators we are interested in. We will assume
that A is a continuous linear operator on C∞(S1) that commutes with differentiation. In that case,
A is a Fourier-multiplier, i.e.

(Au)(x) =
∑

k∈Z

a(k)û(k) exp(2iπkx),

where û(k) is the k-th Fourier coefficients of the vector field u, see [13, App. A]. The sequence
a : Z → C is called the symbol of A and we will use the notation A = op(a(k)) or equivalently
A = a(D). For a more detailed introduction to the theory of Fourier multipliers in the context
of Diff(S1) we refer to the article [13]. The most important example in our context is the inertia
operator for the fractional order Sobolev metric Hs, which reads:

(2) A = op
(

(1 + k2)s/2
)

.

In this article we will be interested in the specific case s = 3.

Definition 1. Given r ∈ R, a Fourier multiplier a(D) is of class Sr iff a extends to a smooth
function R

d → C
d and satisfies moreover the following condition:

a(l)(ξ) = O(|ξ|r−l), ∀l ∈ N.

Remark 1. Note that a Fourier multiplier a(D) of class Sr extends to a bounded linear operator

Hq(S1) → Hq−r(S1)

for any q ≥ r.

Definition 2. If a Fourier multiplier a(D) extends to a bounded linear operator

Hq(S1) → Hq−r(S1)

for q big enough and r ∈ R, we will say that a(D) is of order less than r.

We will impose a slightly more restrictive condition on the symbol class, by requiring that a has
a series representation of the form

a(ξ) =

∞
∑

k=0

ã3−k |ξ|3−k .(3)

In terms of the operator A = a(D) this translates to

A = a3(HD)3 +R2 = a3(HD)3 + a2(HD)2 +R1,

where

Rk :=

k
∑

j=−∞

aj(HD)j

and H := op(−i sign(k)) denotes the Hilbert transform. Using the property H2 = − Id, we can
then rewrite A to obtain

(4) A = −a3HD3 +R2 = −a3HD3 − a2D
2 +R1.

Note, that the remainder terms Rk are Fourier multipliers of order k.
Finally, in order to ensure local well-posedness of the Euler–Arnold equation (1) (see [13]), we

will require, furthermore, an ellipticity condition on A.
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Definition 3. A Fourier multiplier A = a(D) in the class Sr is called elliptic if
(

1 + |ξ|2
)r/2

. |a(ξ)| , ∀ξ ∈ R
d.

In the following definition, we summarize the assumptions on the class of operators we will
consider.

Definition 4. An operator A ∈ L(C∞(S1)) is in the class E3
cl iff the following conditions are

satisfied:

(1) A is a Fourier multiplier of class S3;
(2) A is elliptic;
(3) a(ξ) is real for all ξ ∈ R;
(4) a(ξ) is positive for all ξ ∈ R;
(5) a(ξ) has a series expansion of the form (3).

Remark 2. Note that assumption (1) guarantees that the operator is of order three and commutes
with differentiation; The ellipticity condition (2) is required to show local well-posedness of the
geodesic equation. Condition (3) guarantees that A is L2-self-adjoint and (4) that it is a positive
definite operator. Assumption (5) is a technical condition, that is essential for our long-time
existence proof.

Example 1. A trivial example for an operator within the class S3
cl is the operator A = 1 −H∂3

θ .

Another example consist of the Sobolev metric of fractional order 3
2 as defined in (2). The ellipticity

of this inertia operator has been shown in [13]. To see that this operator satisfies assumption (5),

one only needs to make a series expansion of the Fourier multiplier (1 + k2)
3

2 .

4. Global Well-Posedness of the EPDiff equation.

In this section, we will prove the global existence of solutions to the EDDiff equation of metrics
of order 3/2:

Theorem 1. Let G be the right invariant metric on Diff(S1) with inertia operator A in the class

E3
cl and let u0 be an Hs velocity field on S1, for some s > 3

2 . Then the solution u(t) of the Euler–

Arnold-equation (1) of the metric G with u(0) = u0 remains in Hs for all time. In particular if u0
is C∞ then so is u(t) for all t > 0. Thus the space

(

Diff(S1), G
)

is geodesically complete.

Note, that this result implies in particular the completeness of the H3/2-metric, as the inertia
operator A = op

(

(1 + k2)s
)

is of class E3
cl, c.f. Example 1.

Proof. According to [12, Theorem 5.6], we only need to show that for any solution u(t) of the
Euler–Arnold equation (1), the norm ‖ux(t)‖L∞ is bounded on every bounded time interval.

Let ϕ(t) be the flow of the time dependant vector field u(t), we have

∂t(ux ◦ ϕ) = (utx + uuxx) ◦ ϕ.
Now, from (1), we get

utx = −A−1D(uAux + 2uxAu)

= −A−1
(

D2(uAu) +D(uxAu)
)

.

Thus, observing that ‖w‖L∞ = ‖w ◦ η‖L∞ , for every w ∈ C∞(S1) and η ∈ Diff(S1), we have

‖ux(t)‖L∞ ≤ ‖ux(0)‖L∞ +

∫ t

0
‖Q(u(s))‖L∞ ds

where
Q(u) := uuxx −A−1

(

D2(uAu) +D(uxAu)
)

.
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Therefore, thanks to Grönwall inequality, it is sufficient to show that

‖Q(u)‖L∞ ≤ α ‖u‖2H3/2 + β ‖u‖H3/2 ‖ux‖L∞ ,

for some positive constants α, β, because the norm ‖u‖H3/2 is equivalent to the norm ‖u‖A, given
by

‖u‖2A :=

∫

S1

uAudx,

which is an integral constant. The remaining estimate for Q(u) will be achieved in Lemma 1
below. �

To prove the bound for Q(u) we will use the decomposition (4) of A to further expand Q(u) in
a sum of terms that can be bounded separately. We have:

D2(uAu) +D(uxAu) = −a3D
2(uHuxxx) +D2(uR2u)− a3D(uxHuxxx) +D(uxR2u)

= −a3D
3(uHuxx) + a3D

2(uxHuxx) +D2(uR2u)

− a3D
2(uxHuxx) + a3D(uxxHuxx) +D(uxR2u)

= −a3D
3(uHuxx) +D2(uR2u) + a3D(uxxHuxx) +D(uxR2u)

= a3HD3H(uHuxx)−R2H(uHuxx) +R2H(uHuxx)

+D2(uR2u) + a3D(uxxHuxx) +D(uxR2u)

= −AH(uHuxx) + a3D(uxxHuxx) +R2H(uHuxx) +D2(uR2u) +D(uxR2u).

Further expanding with R2 = −a2D
2 +R1, we get:

R2H(uHuxx) = −a2D
2H(uHuxx) +R1H(uHuxx)

= −a2D
2H(uHuxx) +R1HD(uHux)−R1H(uxHux),

D2(uR2u) = −a2D
2(uuxx) +D2(uR1u),

D(uxR2u) = −a2D(uxuxx) +D(uxR1u)

= −a2
2
D2(u2x) +D(uxR1u).

Summing up and rearranging all the terms, we get finally:

Q(u) =
8
∑

i=1

Qi(u),

where

Q1(u) = H(uHuxx) + uuxx, Q2(u) = −a3A
−1D(uxxHuxx),

Q3(u) = a2A
−1D2

(

H(uHuxx) + uuxx
)

, Q4(u) =
a2
2
A−1D2(u2x),

Q5(u) = −A−1D2(uR1u), Q6(u) = −A−1R1HD(uHux),

Q7(u) = A−1R1H(uxHux), Q8(u) = −A−1D(uxR1u).

To achieve the proof of Theorem 1, it only remains to show that all the quadratic terms Qi(u) are

bounded either by ‖u‖2H3/2 or by ‖u‖H3/2 ‖ux‖L∞ :

Lemma 1. For i = 1, . . . , 8, there exists κi > 0 such that:

‖Qi(u)‖L∞ ≤ κi ‖u‖2H3/2 , for i = 1, 2, 3, 5, 6, 7,

and

‖Qi(u)‖L∞ ≤ κi ‖ux‖L∞ ‖u‖H3/2 , for i = 4, 8.
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Proof. Using Theorem 2, we can bound the supremum norm of Q1 via

‖Q1(u)‖L∞ ≤ κ1 ‖u‖2H3/2 .

Using Theorem 3, with B = A−1D, we obtain:

‖Q2(u)‖L∞ ≤ κ2 ‖u‖2H3/2 and ‖Q7(u)‖L∞ . ‖u‖2H1/2 ≤ κ7 ‖u‖2H3/2 .

Since A−1D2 is of order ≤ −1, we can use Lemma 4 to bound Q3 via:

‖Q3(u)‖L∞ .
∥

∥

(

H(uHuxx) + uuxx
)∥

∥

L2 ≤
∥

∥

(

H(uHuxx) + uuxx
)∥

∥

L∞
≤ κ3 ‖u‖2H3/2 ,

the last inequality following from Theorem 2. For Q5, we apply Lemma 5 with B1 = R1 of order ≤ 1
and B2 = A−1D2 of order ≤ −1, which yields ‖Q5(u)‖L∞ ≤ κ3 ‖u‖2H3/2 . Finally, using Lemma 4,
we get

‖Q4(u)‖L∞ .
∥

∥u2x
∥

∥

L2 ≤ ‖ux‖L∞ ‖ux‖L2 . ‖ux‖L∞ ‖u‖H3/2 ,

then

‖Q6(u)‖L∞ . ‖uHux‖L2 . ‖u‖L∞ ‖Hux‖L2 . ‖u‖2H3/2 ,

and

‖Q8(u)‖L∞ . ‖uxR1u‖L2 . ‖ux‖L∞ ‖R1u‖L2 . ‖ux‖L∞ ‖u‖H3/2 . �

Appendix A. Norm-bounds

In this appendix, we will collect some estimates that were needed in the proof of the main result
of this article. The principal estimate is the following which relies on a computation performed
in [4].

Lemma 2. Let u : S1 → R be a smooth function and F (u) := uuxx +H(uHuxx). Then

‖F (u)‖L∞ ≤ 4 ‖u‖2H3/2 .

Proof. Since F (u + c) = F (u) for every c ∈ R, it is enough to show this estimate when u has
vanishing mean value. Express u in a Fourier basis u(x) =

∑

n∈Z une
inx. It was then shown in [4,

Theorem 17] that

F (u)(x) = 2
∞
∑

n=1

(2n− 1)

∣

∣

∣

∣

∣

∞
∑

k=n

uke
ikx

∣

∣

∣

∣

∣

2

.

But
∣

∣

∣

∣

∣

∞
∑

k=n

uke
ikx

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∞
∑

k=n

(

√

k(k + 1)uke
ikx
)

(

1
√

k(k + 1)

)∣

∣

∣

∣

∣

2

≤
(

∞
∑

k=n

k(k + 1) |uk|2
)(

∞
∑

k=n

1

k(k + 1)

)

=
1

n

∞
∑

k=n

k(k + 1) |uk|2 .

Thus we get

‖F (u)‖L∞ ≤ 2

∞
∑

n=1

(2n − 1)

n

(

∞
∑

k=n

k(k + 1) |uk|2
)

≤ 4
∞
∑

k=n

k(k + 1) |uk|2 ≤ 4 ‖u‖2H3/2 .

�
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Next, we will formulate the following estimate, which is a slight modification of [22, Theorem 8].

Lemma 3. Let u : S1 → R be a smooth function and set G(u) := B(uxHux), where B is a Fourier

multiplier of order less than −2. Then

‖G(u)‖L∞ ≤ C ‖u‖2H1/2 ,

for some constant C > 0.

Proof. The proof is similar as one of [22, Theorem 8]. The first part of the proof, can be copied
word by word from [22]. Express u in a Fourier basis u(x) =

∑

n∈Z une
inx, and let h = uxHux.

Then we have

(uxHux)(x) = i
∑

m,n∈Z

mnumun(sign n)e
i(m+n)x

= i
∑

k∈Z

(

∑

n∈Z

|n| (k − n)uk−nun

)

eikx

= i
∑

k∈Z

hke
ikx,

where hk =
∑

n∈Z |n| (k − n)uk−nun. Now let us simplify hk. For k > 0, we have

hk =

∞
∑

n=1

n(k − n)unuk−n +

∞
∑

n=1

n(k + n)unuk+n

=
k−1
∑

n=1

n(k − n)unuk−n +
∞
∑

m=1

(k +m)(−m)uk+mum +
∞
∑

n=1

n(k + n)unuk+n,

where we used the substitution m = n− k. Clearly the middle term cancels the last term, so

hk =

k−1
∑

n=1

n(k − n)unuk−n.

It is easy to see that h0 = 0 due to cancellations, while if k < 0, we get

hk = −
|k|−1
∑

n=1

n(|k| − n)unu|k|−n = −h|k|.

Note in particular that h1 = h−1 = 0. We thus obtain

(uxHux)(x) =
∞
∑

k=2

(

ihke
ikx − ihke

−ikx
)

.

From here we slightly differ from the proof of [22], although the idea remains the same. Applying
B to the function h yields

G(u)(x) = B(h)(x) =

∞
∑

k=2

(

ib(k)hke
ikx − ib(−k)hke

−ikx
)

.
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We estimate only the first part of the sum, the second is similar:

‖G(u)‖L∞ ≤
∞
∑

k=2

k−1
∑

n=1

b(k)n(k − n) |un| |uk−n|

=
∞
∑

n=1

∞
∑

k=n+1

b(k)n(k − n) |un| |uk−n|

=
∞
∑

n=1

∞
∑

m=1

b(n+m)nm |un| |um| .

Using the assumption on the symbol of B, we then have

‖G(u)‖L∞ ≤ C

∞
∑

n=1

∞
∑

m=1

nm

1 + (m+ n)2
|un| |um|

≤ 2C
∞
∑

n=1

∞
∑

m=1

√
nm |un| |um|
n+m

≤ 2Cπ

(

∞
∑

n=1

n |un|2
)

≤ Cπ ‖u‖2H1/2 ,

where the inequality in the last line is precisely the well-known Hilbert double series theorem. �

Finally, we will provide the following two estimates.

Lemma 4. Let u : S1 → R be a smooth function and B be a Fourier multiplier of order s < −1/2.
Then

‖Bu‖L∞ ≤ C ‖u‖L2 ,

for some constant C > 0.

Proof. Since B is of order s < −1/2, there exists a constant C̃ such that

b(m) ≤ C̃(1 +m2)s/2

Express u in a Fourier basis u(x) =
∑

n∈Z une
inx. Then, we have

(Bu)(x) =
∑

m∈Z

b(m)umeimx,

and thus

‖Bu‖L∞ ≤
∑

m∈Z

|b(m)um|

≤ C̃
∑

m∈Z

(1 +m2)s/2 |um|

≤ C̃

(

∑

m∈Z

(1 +m2)s

)1/2

‖u‖L2

≤ C ‖u‖L2 .

�

Lemma 5. Let u, v : S1 → R be smooth functions, B1 be Fourier multiplier operator of order

k1 ≤ 3/2 and B2 be Fourier multiplier operator of order k2 < −1/2. Then, we have

‖B2(uB1v)‖L∞ ≤ C ‖u‖H3/2 ‖v‖H3/2 ,
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for some constant C > 0.

Proof. Since B2 is of order k2 < −1/2, by virtue of Lemma 4, we get

‖B2(uB1v)‖L∞ ≤ C1 ‖uB1v‖L2

Now, we will recall the following inequality (see [17, Lemma 2.3]) on pointwise multiplication in
Sobolev spaces, valid for q > 1/2 and 0 ≤ ρ ≤ q:

‖uw‖Hρ . ‖u‖Hq ‖w‖Hρ .

We deduce from it, using q = 3/2 and ρ = 0, that

‖uB1v‖L2 . ‖u‖H3/2 ‖B1v‖L2 . ‖u‖H3/2 ‖v‖Hk1 . ‖u‖H3/2 ‖v‖H3/2 ,

which achieves the proof. �
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