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ABSTRACT	46	

Background	and	aims	47	

Hepatitis	C	virus	(HCV)	infections	most	often	result	in	chronic	outcomes,	although	the	virus	48	

constantly	produces	replication	intermediates,	in	particular	double-stranded	RNA	(dsRNA),	49	

representing	potent	inducers	of	innate	immunity.	We	aimed	to	characterize	the	fate	of	HCV	dsRNA	50	

in	hepatocyte	cultures	to	identify	mechanisms	contributing	to	viral	persistence	in	presence	of	an	51	

active	innate	immune	response.	52	

Methods	53	

Various	hepatocyte	based	cell	culture	models	for	HCV	were	analyzed	for	induction	of	innate	54	

immunity,	secretion	of	viral	positive/negative	strand	RNA	and	viral	replication	using	different	55	

quantification	methods	and	microscopy	techniques.	Expression	of	pattern	recognition	receptors	was	56	

reconstituted	in	hepatoma	cells	by	lentiviral	transduction.	57	

Results	58	

HCV	infected	cells	secrete	substantial	amounts	of	viral	positive	and	negative	strand	RNA	in	59	

extracellular	vesicles	(EVs),	towards	the	apical	and	basolateral	domain	of	hepatocytes.	Secretion	of	60	

negative	strand	RNA	was	independent	from	virus	production	and	viral	RNA	secreted	in	EVs	61	

contained	higher	relative	amounts	of	negative	strands,	indicating	that	mainly	viral	dsRNA	is	released.	62	

A	substantial	part	of	viral	replication	complexes	and	dsRNA	was	found	in	the	endosomal	63	

compartment/multivesicular	bodies,	suggesting	that	secretion	of	HCV	replication	intermediates	is	64	

mediated	by	the	exosomal	pathway.	Block	of	vesicle	release	in	HCV-positive	cells	increased	65	

intracellular	dsRNA	levels	and	led	to	an	increased	activation	of	toll-like	receptor	3	(TLR3),	inhibiting	66	

HCV	replication.		67	

Conclusion	68	
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Our	results	demonstrate	that	part	of	the	HCV	dsRNA	intermediates	are	released	from	infected	cells	69	

in	EVs	attenuating	activation	of	TLR3.	This	mechanism	represents	a	novel	strategy	to	dampen	70	

intracellular	innate	immune	responses,	potentially	contributing	to	the	establishment	of	persistence.	71	

	72	

Keywords:	exosomes,	escape	73	

	 	74	
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INTRODUCTION	75	

Hepatitis	C	virus	(HCV)	presents	a	global	health	problem,	as	it	persistently	infects	about	1	%	of	the	76	

world’s	population,	and	about	75%	of	all	HCV	infections	will	progress	to	a	chronic	stage1.	HCV	is	a	77	

positive-strand	RNA	virus	of	the	flaviviridae	family,	and	primarily	replicates	in	human	hepatocytes.	78	

Upon	infection,	viral	proteins	induce	formation	of	membranous	replication	organelles,	consisting	79	

primarily	of	typical	double	membrane	vesicles	(DMVs),	the	presumed	site	of	viral	RNA	replication,	80	

and	multi-membrane	vesicles	(MMVs)2.	HCV	forms	a	double-stranded	RNA	(dsRNA)	replication	81	

intermediate	during	its	replication	process,	and	persistently	HCV-infected	cells	constantly	produce	82	

new	DMVs3.	However,	only	about	30%	of	replication	complexes	are	considered	to	actively	support	83	

RNA	replication	in	HCV-infected	cells4.	The	fate	of	inactive	replication	complexes	remains	unknown.		84	

Viral	dsRNA	in	general	is	a	major	pathogen	associated	molecular	pattern	(PAMP)	inducing	innate	85	

immune	responses.	Hepatocytes	express	several	pattern	recognition	receptors	(PRRs)	for	detection	86	

of	dsRNA,	including	the	cytoplasmic	sensors	retinoic-acid	inducible	gene	I	(RIG-I)	and	melanoma	87	

differentiation-associated	protein	5	(MDA5)5,	and	the	endosomal	toll-like	receptor	3	(TLR3)6.	88	

However,	HCV	counteracts	the	activation	of	these	sensors	by	proteolytic	cleavage	of	the	89	

mitochondrial	antiviral	signaling	protein	(MAVS),	efficiently	inhibiting	the	production	of	interferon	90	

(IFN)	and	interferon-stimulated	genes	(ISGs)7.	In	the	TLR3	signaling	pathway,	the	HCV	protease	91	

NS3/4A	cleaves	the	adaptor	TIR	domain-containing	adapter	molecule	1	(TRIF)8,	yet	the	efficiency	of	92	

inhibiting	TLR3-induced	upregulation	of	IFNs	and	ISGs	by	this	mechanism	is	still	discussed	93	

controversially6,9.	94	

HCV-infected	cells	not	only	secrete	regular	infectious	virions,	but	also	infectious	genomic	RNA	in	95	

exosomes,	which	are	a	subpopulation	of	extracellular	vesicles	(EVs)10,11.	These	vesicles	with	a	96	

diameter	of	50-150	nm	are	formed	by	budding	into	the	outer	limiting	membrane	of	the	97	

multivesicular	body	(MVB),	a	sorting	vehicle	of	late	endosomal	origin12.	The	MVB	content	can	then	98	

be	degraded	by	fusion	with	a	lysosome13,	a	process	in	which	the	content	could	come	into	contact	99	
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with	endo-lysosomal	TLR3.	On	the	other	hand,	if	the	MVB	fuses	with	the	plasma	membrane,	the	100	

intraluminal	vesicles	are	released	to	the	exterior	as	exosomes,	transporting	proteins,	mRNAs	and	101	

miRNAs	to	mediate	cell-cell	communication14.	The	release	of	HCV	particles	is	linked	to	the	exosomal	102	

release	pathway15,16,	but	HCV	RNA	is	also	released	in	exosomes	in	the	absence	of	viral	structural	103	

proteins10,11.	HCV	RNA	released	in	exosomes	can	have	a	dual	function,	as	it	can	activate	innate	104	

immune	cells,	such	as	plasmacytoid	dendritic	cells	(pDCs),	to	trigger	production	of	antiviral	IFN-α10	or	105	

it	can	propagate	the	infection	to			naïve	cells,	while	being	shielded	from	neutralization11,17.		106	

Here,	we	determined	the	contribution	of	the	late	endosomal	/	exosomal	RNA	release	pathway	to	the	107	

fate	of	HCV	replication	complexes	and	replication	intermediates,	and	evaluated	the	potential	impact	108	

on	the	activation	of	PRRs	in	HCV-infected	cells.	We	found	that	dsRNA	indeed	was	secreted	from	109	

HCV-positive	cells.	Blocking	of	dsRNA	release	strongly	increased	the	activation	of	TLR3	and	its	110	

antiviral	effects	on	HCV	replication.	Secretion	of	dsRNA	therefore	represents	a	novel	immune	111	

evasion	mechanism	employed	by	HCV	to	dampen	the	activation	of	innate	immune	responses	within	112	

the	infected	cell.	113	

MATERIAL	AND	METHODS	114	

Unless	specified	below,	detailed	information	about	used	materials	and	methods	can	be	found	in	the	115	

supplementary	materials	and	methods	section.	116	

Cell	Culture		117	

All	cell	lines	were	cultured	in	Dulbecco’s	Modified	Eagle	Medium	(DMEM;	Life	Technologies,	118	

Darmstadt,	Germany)	supplemented	with	10%	fetal	bovine	serum,	non-essential	amino	acids	(Life	119	

Technologies,	Darmstadt,	Germany),	100	U/ml	penicillin	and	100	ng/ml	streptomycin	(Life	120	

Technologies)	and	cultivated	at	37°C	and	5%	CO2.	Huh7-Lunet	cells	and	Huh7-Lunet-CD81high	cells	121	

have	been	described	before18,	as	well	as	the	Con1	subgenomic	replicon	clone	9-13	(gt	1b),	cell	lines	122	

with	persistent	reporter	replicons	of	genotype	2a	(LucubineoJFH1)19	and	HAV	replicon	cell	lines20.	123	

Cells	were	kept	under	selection	pressure	by	addition	of	1mg/ml	G418	(Geneticin,	Life	Technologies),	124	
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1µg/ml	puromycin	(Sigma-Aldrich,	Steinheim,	Germany)	or	5µg/ml	blasticidin	(Sigma-Aldrich).	Clones	125	

15	and	1SC3	of	the	HepG2-CD81	cell	line	were	described	recently21,	and	were	grown	on	semi-126	

permeable	support	(Corning)	in	William’s	medium	supplemented	with	2mM	glutamax,	10	ng/ml	127	

gentamicin	and	1%	DMSO	to	induce	cell	polarity	development.	128	

Primary	Human	Hepatocytes	(PHH)	129	

Liver	samples	were	obtained	either	after	partial	liver	resection	for	medical	reasons	or	from	organ	130	

donors	when	the	liver	was	considered	unsuitable	for	transplantation.	Primary	human	hepatocytes	131	

(PHH)	were	isolated	as	described	before22,23.	Tissue	donors	gave	written	informed	consent	for	the	132	

experimental	use	of	their	specimens.	The	protocol	was	approved	by	the	ethics	commission	of	133	

Hannover	Medical	School	(#252-2008).	Ethical	approval	further	is	covered	with	reference	number	#	134	

S-161/2007.	Isolated	PHH	were	cultured	in	Williams	E	medium	(Life	Technologies),	supplemented	135	

with	10%	FCS	(Seromed,	heat	inactivated),	50	U/ml	penicillin	/	50	µg/ml	streptomycin	antibiotics,	50	136	

µM	hydrocortisone	and	5	µg/ml	insulin	(SAFC,	Sigma	Aldrich),	and	incubated	at	37°	C	and	5%	CO2.	137	

Exosome	Isolation	138	

For	Extracellular	vesicle	(EV)-isolation,	cells	were	grown	in	EV-depleted	medium,	which		was	139	

generated	by	ultracentrifugation	of	fetal	bovine	serum	at	110,000	g	for	16h	at	4°C.	EVs	were	isolated	140	

using	Exo-spin	Exosome	Purification	Kit	(Cell	Guidance	Systems,	Cambridge,	UK)	according	to	141	

manufacturer’s	protocol,	with	the	addition	of	a	filtration	step	with	0.22	µm	filters	after	the	final	pre-142	

clearing	centrifugation.		143	

Statistical	analysis	144	

Independent	biological	replicates	are	denoted	with	n-numbers.	To	test	for	significance,	two-tailed	145	

paired	t-test	or	Welch’s	test	was	performed	using	GraphPad	Prism	5	software	(GraphPad	Software,	146	

La	Jolla,	CA,	USA).	*	p<0.05;	**	p<0.01;	***	p<0.001.		147	
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RESULTS	148	

HCV	RNA	secreted	in	extracellular	vesicles	is	enriched	for	negative	strand	149	

HCV	genomic	RNA	has	been	described	to	be	secreted	in	exosomes10,11.	We	therefore	hypothesized	150	

that	these	EVs	might	also	contain	HCV	negative	strand	RNA,	indicative	for	the	secretion	of	viral	151	

replication	intermediates.	We	isolated	EVs	from	HCV	infected	Huh7-Lunet	CD81high	cells	18	(strain	152	

Jc1,	Fig.	1A),		which	likely	also	contained	co-purified	infectious	virus	due	to	similar	biophysical	153	

properties10	and	investigated	the	composition	of	HCV	RNA	in	these	vesicles	relative	to	intracellular	154	

viral	RNA	by	use	of	a	strand-specific	RT-qPCR	assay	(Fig.	S1A,B).	Since	negative	strand	RNA	was	used	155	

as	a	quantitative	marker	for	dsRNA,		we	ensured	that	our	assay	reached	a	sensitivity	of	minus	strand	156	

detection	comparable	to	a	previously	published	protocol	(24,	Fig.	S1C).We	found	substantial	amounts	157	

of	negative	strands	in	the	EV	fraction	of	infected	cells,	with	a	far	lower	relative	ratio	of	positive	to	158	

negative	strands	than	intracellularly	(3.8	vs	29.8,	respectively	(Fig.	1B)).		Secretion	of	negative	strand	159	

RNA	started	at	about	24h	after	infection	and	showed	similar	kinetics	as	the	secretion	of	positive	160	

strand	RNA	(Fig.	1C).	We	further	analyzed	HCV	infected	primary	human	hepatocytes	(PHH)	to	161	

confirm	the	secretion	of	viral	replication	intermediates	in	a	more	physiological	cell	culture	system.	162	

Amounts	of	secreted	RNA	were	lower	in	PHH	than	in	HCV-infected	Huh-7	cells	and	varied	between	163	

donors,	which	is	most	likely	due	to	lower	replication	of	HCV,	because	of	the	strong	counteraction	by	164	

innate	immune	responses	in	PHH25.	However,	negative	strand	RNA	secretion	in	EVs	again	165	

recapitulated	secretion	kinetics	of	positive	strand	(Fig.	1D,	S1D,	E).		Importantly,	also	in	PHH	relative	166	

amounts	of	negative	strand	HCV	RNA	in	EVs	were	strongly	increased	compared	to	intracellular	levels	167	

(Fig.	1E).	We	next	used	cell	lines	harboring	persistent	subgenomic	HCV	replicons,	lacking	the	coding	168	

region	of	structural	proteins	(Fig.	1A),	to	assess	the	impact	of	virion	production	on	secretion	of	169	

negative	strand	RNA.	Cells	harboring	replicons	of	different	genotypes	secreted	similar	amounts	of	170	

negative	strand	RNA	in	EVs	as	HCV	infected	cells,	but	lower	levels	of	positive	strands,	likely	due	to	171	

the	absence	of	virions	(Fig.	1F,G),	which	co-purify	with	EVs	due	to	similar	biophysical	properties10.	172	

Therefore,	negative	strand	RNA	was	clearly	enriched	in	EVs	as	compared	to	levels	in	HCV-infected	173	
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and	replicon	cells	(Fig.	1H).	We	further	assessed	the	kinetics	of	RNA	release	from	replicon	cells,	174	

which	reached	steady	state	levels	15	min.	after	medium	exchange	(Fig.	S1F).	This	result	suggested	175	

that,	albeit	steady	state	RNA	levels	are	moderate	compared	to	intracellular	viral	RNA,	a	higher	176	

amount	of	negative	strand	RNA	might	be	secreted	due	to	rapid	secretion	kinetics	and	high	turnover.		177	

Overall	these	data	argued	for	enrichment	and	secretion	of	substantial	amounts	of	dsRNA	in	EVs.		178	

Since	subgenomic	replicons	allowed	the	analysis	of	HCV	RNA	secretion	independent	from	virion	179	

production	we	mainly	used	this	model	throughout	this	study.	We	first	verified	that	secreted	HCV	180	

RNA	was	protected	by	membranes	as	deduced	from	RNAse	resistance	in	the	absence	of	detergent	181	

(Fig.	S2A).	We	further	verified	that	the	exosomal	fraction	contained	the	marker	CD63,	as	well	as	182	

small	amounts	of	NS5A	(Fig.	S2B),	in	line	with	a	recent	study26,	supporting	the	hypothesis		that	the	183	

secreted	viral	RNA	might	be	contained	in	previous	replication	vesicles.		The	secretion	of	HCV	RNA	184	

could	be	decreased	by	GW4869,	an	inhibitor	of	neutral	sphingomyelinase	2,	blocking	exosome	185	

release	as	previously	reported10,27,	as	well	as	by	knocking	down	Rab27a,	an	important	host	factor	in	186	

the	release	pathway	of	exosomes	(Fig.	S2C-D)28,	with	the	combination	of	GW4869	and	siRNA	187	

showing	increased	efficiency,	probably	due	to	targeting	of	different	steps		involved	in	the	exosome	188	

release	pathway.	Knockdown	of	Rab27a	was	specific,	as		reconstitution	of	RAb27a	expression	189	

rescued	HCV	RNA	release	(Fig.	S2E).In	addition,	Rab27a	KD	had	no	detrimental	effects	on	cell	190	

viability	(Fig.	S2F).	In	contrast	to	HCV,	viral	RNA	was	almost	undetectable	in	extracellular	vesicles	191	

purified	from	the	supernatant	of	HAV	replicon	cells	(Fig.	S2G),	suggesting	that	secretion	of	viral	192	

replication	intermediates	in	EVs	is	not	common	for	all	hepatotropic	RNA	viruses.	193	

Altogether,	these	data	suggested	that	HCV	replication	intermediates	are	secreted	in	EVs/exosomes,	194	

as	previously	shown	for	positive	strand	RNA10.	Moreover,	HCV	negative	strand	RNA	was	highly	195	

enriched	in	the	secreted	fraction	as	compared	to	intracellular	levels.		196	
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HCV	replication	intermediates	are	detected	in	the	late	endosomal	compartment	197	

We	next	analyzed	the	intracellular	localization	of	viral	replication	organelles	in	replicon	cells.	Since	198	

secretion	of	viral	RNA	in	EVs	was	blocked	by	inhibitors	of	exosome	release	we	particularly	focused	199	

on	detection	of	viral	replication	organelles	and	dsRNA	in	MVBs	and	endosomal	compartments.		200	

We	used	a	replicon	harboring	an	insertion	of	mCherry	in	nonstructural	protein	(NS)5A	(Fig.	2A),	and	201	

implemented	correlative	light	and	electron	microscopy	to	assess	the	ultrastructure	of	NS5A-positive	202	

regions	(Fig.	2B,C).	About	25%	of	NS5A	positive	regions	showed	no	distinct	substructures	(Fig.	2D,	203	

other).	About	35%	of	NS5A-mCherry	signals	were	associated	with	cytoplasmic	regions	representing	204	

the	viral	replication	organelle,	as	judged	by	the	presence	of	DMVs	and	MMVs	(Fig.	2C,	area	2;	Fig.	205	

2D,	DMVs).	In	addition,	NS5A	signal	could	be	detected	at	lipid	droplets	(LD),	the	endoplasmatic	206	

reticulum	(ER),	and	the	mitochondria	(Fig.	2D,	Fig.	S3).	Surprisingly,	more	than	20%	of	all	NS5A	207	

positive	regions	per	cell	were	in	fact	multivesicular	bodies	(MVBs)	or	lysosomes	(Fig.	2C,	area	3;	Fig.	208	

2D).	Most	of	these	NS5A-positive	MVBs	also	contained	DMVs	and	MMVs	(Fig.	2E,	Fig.	S3).	This	209	

observation	was	in	line	with	our	hypothesis	that	secreted	HCV	replication	intermediates	originate	210	

from	the	MVB,	as	previously	reported	for	genomic	RNA	secreted	in	exosomes10.	We	next	assessed	211	

the	colocalization	of	dsRNA	with	markers	of	the	MVB/lysosomes	using	immunofluorescence-based	212	

staining,	confocal	microscopy	and	3D	reconstruction.	Indeed,	dsRNA	was	detected	in	CD63-positive	213	

compartments	and	in	association	with	the	late	endosomal/lysosomal	marker	Lamp1,	adding	up	to	214	

about	20%	and	15%	of	all	dsRNA	signals	in	HCV-positive	cells,	respectively	(Fig.	2F-H).		215	

To	further	support	the	mechanistic	link	between	secretion	of	HCV	replication	intermediates	and	the	216	

late	endosome/MVB,	we	blocked	the	exosomal	release	pathway	by	knockdown	of	Rab27a.	While	217	

release	of	HCV	RNA	in	EVs	was	decreased	in	Rab27a-KD	cells	(Fig.	3A),	intracellular	dsRNA	levels	218	

were	significantly	increased	(Fig.	3C),	which	was	confirmed	by	strand-specific		RT-qPCR,	using	219	

negative	strand	as	a	marker	of	dsRNA	(Fig.	S4).	More	specifically,	knockdown	of	Rab27a	increased	220	

the	dsRNA	amounts	associated	with	CD63+	exosome	release	compartments	and	Lamp1+	lysomomal	221	
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compartments	(Fig.	3E,	G).		In	contrast,	when	lysosomal	acidification	was	inhibited	by	Bafilomycin	A	222	

(BafA),	significantly	higher	amounts	of	HCV	RNA	were	secreted	(Fig.	3B),	while	the	number	of	223	

intracellular	dsRNA	positive	signals	decreased	(Fig.	3D).	Consequently,	also		a	lower	number	of	224	

dsRNA	signals	was	found	associated	with	CD63+	and	Lamp1+	compartments.	225	

	(Fig.	3F,	H).		226	

Altogether,	our	data	suggested	that	HCV	dsRNA,	engulfed	in	vesicular	structures,	entered	the	227	

endosomal	pathway,	from	where	it	was	either	secreted	in	EVs	or	entered	the	lysosomal	228	

compartment.	229	

TLR3	can	be	activated	within	HCV-positive	cells	230	

As	dsRNA	is	a	strong	inducer	of	innate	immune	responses,	we	next	studied	the	impact	of	dsRNA	231	

release	on	the	activation	of	intracellular	PRRs.	Hepatocytes	constitutively	express	the	cytosolic	232	

dsRNA	sensors	RIG-I	and	MDA5,	as	well	as	the	endosomal	dsRNA	sensor	TLR38.	Indeed,	ISG	233	

expression	was	strongly	induced	in	PHH	upon	transfection	of	poly(I:C)	and	by	delivery	of	poly(I:C)	to	234	

the	supernatant,	thus	only	accessible	for	uptake	in	endo-lysosomes	and	exclusively	activating	TLR3	235	

(Fig.	4A,	PHH).		In	contrast,	Huh7-Lunet	cells	barely	responded	to	either	of	these	stimuli	(Fig.	4A,	236	

empty),	indicating	low	expression	of	the	PRRs.	We	therefore	reconstituted	expression	of	individual	237	

dsRNA	sensor,	leading	to	rescue	of	dsRNA	recognition	upon	poly(I:C)	stimulation	(Fig.	4A,	S5A).	We	238	

chose	IFIT1	mRNA	levels	as	a	robust	measure	of	ISG	responses	induced	by	all	PRRs5,	whereas	IFNβ	239	

mRNA	was	not	detectable	in	Huh7	cells	expressing	TLR3	(Fig.	S5C)	and	not	induced	in	PHH	by	240	

addition	of	poly(I:C)	to	the	supernatant	(Fig.	S5D),	as	reported9.	241	

We	next	assessed	ISG	induction	by	each	PRR	and	its	corresponding	impact	on	HCV	replication	by	242	

transfection	of	a	subgenomic	HCV	reporter	replicon	(Fig.	4B).	Expression	of	RIG-I	resulted	in	an	early	243	

and	transient	induction	of	IFIT1	mRNA	levels	(Fig.	4C),	likely	by	the	incoming	RNA	and	blocked	by	244	

cleavage	of	MAVS	at	later	time	points7.	Expression	of	MDA5	did	not	result	in	induction	of	ISG	245	

response	and	neither	RIG-I	nor	MDA5	expression	had	any	significant	impact	on	HCV	replication	(Fig.	246	
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4D).	In	contrast,	presence	of	TLR3	induced	strong	expression	of	IFIT1	mRNA,	starting	48	h	after	247	

transfection	of	the	replicon	(Fig.	4C),	correlating	with	impaired	viral	replication,	with	a	24	h	delay	248	

(Fig.	4D).	TLR3	expression	was	similar	to	PHH	(Fig.	S5B),	indicating	that	TLR3	activation	was	likely	not	249	

an	artefact	of	overexpression.	The	induction	of	ISG	responses	and	its	negative	impact	on	HCV	250	

replication	upon	TLR3	activation	was	further	confirmed	in	cell	lines	containing	a	persistent	reporter	251	

replicon	(Fig.	4E).	Transient	transduction	with	a	lentiviral	vector	expressing	TLR3	induced	a	strong	252	

ISG	response	and	decreased	HCV	replication	also	in	this	case	(Fig.	4F,G).	In	contrast,	HCV	infection	253	

did	result	in	a	delayed,	slightly	less	pronounced	activation	of	TLR35,	which	did	not	result	in	a	clear	254	

reduction	of	HCV	replication	in	the	time	frame	of	the	experiment	(Fig.	S6),	either	due	to	differences	255	

in	the	kinetics	of	dsRNA	production	and/or	by	the	increased	levels	of	secreted	dsRNA	found	upon	256	

infection,	dampening	TLR3	response.			257	

TLR3	is	typically	activated	by	endocytic	uptake	of	extracellular	dsRNA	and	it	has	been	shown	that	258	

HCV	can	cause	TLR3	activation	in	uninfected	cells	by	extracellular	transfer	of	dsRNA29.	We	performed	259	

co-culture	experiments	to	investigate	the	contribution	of	secreted	dsRNA	to	trans-activation	of	260	

neighboring	cells	versus	the	induction	of	TLR3	upon	intracellular	transfer	of	replication	261	

intermediates.	We	either	transfected	subgenomic	HCV	replicons	into	Huh7-Lunet-TLR3	cells	and	co-262	

cultured	them	with	the	same	cell	type	lacking	TLR3,	resulting	in	a	strong	induction	of	IFIT1	mRNA	263	

expression	(Fig.	4H,	bottom).	In	contrast,	the	same	replicons	transfected	into	Huh7-Lunet	cells	264	

lacking	TLR3	and	co-cultured	with	Huh7-Lunet-TLR3	only	caused	minimal	IFIT1	induction	(Fig.	4H,	265	

top).	This	result	showed	that	TLR3	is	activated	mostly	within	HCV-positive	cells	and	that	transfer	of	266	

dsRNA	played	a	minor	role.		267	

In	summary,	TLR3	elicits	antiviral	ISG	responses	in	HCV-positive	cells,	despite	the	presence	of	viral	268	

protease.	The	activation	of	TLR3	did	not	depend	on	extracellular	but	on	intracellular	transfer	of	269	

dsRNA.	270	
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HCV	dsRNA	secretion	decreases	activation	of	TLR3	271	

TLR3	resides	in	the	late	endosome,	in	which	HCV	dsRNA	replication	intermediates	were	detected.	272	

Therefore,	we	investigated	the	effect	of	blocking	dsRNA	release	in	EVs	on	the	activation	of	TLR3.		273	

Huh7-Lunet-TLR3	or	empty	control	cells	were	transfected	with	HCV	reporter	replicon	RNA	and	274	

release	of	EVs	was	inhibited	by	knockdown	of	siRab27a	(Fig.	S7A)	and/or	treatment	with	GW4869,	275	

which	in	combination	was	most	efficient	in	preventing	HCV	RNA	secretion	(Fig.	S2C).	GW4869	276	

treatment	itself	had	no	impact	on	poly(I:C)-induced	TLR3	activation	(Fig.	S7B),	and	showed	no	277	

detrimental	effects	on	cell	viability	(Fig.	S7C,	D).	278	

Neither	treatment	affected	ISG	induction	or	HCV	replication	in	control	cells	(Fig.	5A,	C),	or	impacted	279	

HCV	replication	in	cells	expressing	RIG-I	or	MDA5	(Fig.	S8).	In	addition,	replication	of	DENV	reporter	280	

replicons	was	not	influenced	by	blocking	EV	secretion	in	any	of	the	dsRNA-sensor-expressing	cell	281	

lines,	while	HAV	replication	was	inhibited	by	Rab27a	knockdown	independently	of	PRR	expression	282	

(Fig.	S9).	In	contrast,	siRab27a	and	GW4869	treatment	both	lead	to	higher	ISG	induction	at	earlier	283	

time	points	in	TLR3-expressing	cells	upon	HCV	replication	than	the	non-treated	controls	(Fig.	5B).	284	

Consequently,	the	increased	induction	of	ISGs	resulted	in	a	significant	decrease	in	HCV	replication	285	

upon	blocking	of	EV	secretion	(Fig.	5D).	This	result	indicated	that	secretion	of	HCV	dsRNA	indeed	286	

reduced	the	TLR3	response	induced	by	HCV	replication,	albeit	we	cannot	formally	rule	out	the	287	

possibility	that	other	exosomal	content	might	additionally	regulate	TLR3	response.	Increased	288	

induction	of	ISG	expression	was	also	observed	in	HCVcc-infected	cells	expressing	TLR3	upon	EV	289	

release	inhibitor	treatment	(Fig.	5E,F).	However,	the	release	of	infectious	virus	is	at	least	partially	290	

dependent	on	the	exosome	release	pathway15,16,	therefore	Rab27a	knockdown	and	GW4869	291	

treatment	resulted	in	decreased	secretion	of	infectious	virus	and	slightly	increased	intracellular	RNA	292	

levels	in	presence	and	absence	of	TLR3,	precluding	an	unequivocal	interpretation	of	the	replication	293	

data	(Fig.	S10).		294	
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In	summary,	release	of	HCV	dsRNA	in	EVs	decreased	the	activation	of	TLR3	in	HCV-positive	cells.	295	

Therefore,	secretion	of	dsRNA	represents	an	escape	mechanism	dampening	cell	intrinsic	innate	296	

immune	responses.	297	

HCV	negative	strand	RNA	is	secreted	at	both	sides	of	polarized	hepatocytes	and	is	lowly	abundant	298	

in	serum	of	chronically-infected	patients	299	

Our	work	so	far	demonstrated	that	secretion	of	dsRNA	by	HCV	infected	cells	weakens	intracellular	300	

TLR3	responses,	thus	facilitating	viral	replication.	However,	previous	work	has	shown	that	secreted	301	

HCV	positive	strand	RNA	might	activate	pDCs	to	produce	IFN,	counteracting	HCV	replication10.	Since	302	

hepatocytes	are	highly	polarized	cells,	EVs	are	secreted	not	only	at	the	basolateral,	sinusoidal	side,	303	

but	also	at	the	apical	side,	into	bile	canaliculi.	Therefore,	we	wondered	whether	all	HCV	negative	304	

strand	RNA	indeed	is	secreted	to	the	basolateral	surface,	potentially	capable	of	activating	pDCs,	or	at	305	

least	in	part	to	the	apical	side,	thereby	avoiding	activation	of	innate	immune	responses.	We	306	

therefore	employed	a	cell	culture	system	based	on	HepG2	cell	clones	with	polarization	capabilities.	307	

These	recently	described	cell	clones	are	the	so	far	only	cell	lines	permissive	for	HCV	infection	that	308	

can	be	polarized	on	transwell	inserts	to	form	an	intact	apical	and	basolateral	compartment21.		Only	309	

this	experimental	setting	allowed	collecting	and	analyzing	media	from	both	compartments	310	

separately.	After	infection	with	HCV,	these	cells	secrete	infectious	HCV	particles	as	well	as	EVs	on	311	

both	their	apical	and	their	basolateral	side.	We	isolated	RNA	from	the	apical	and	basolateral	312	

supernatants	from	two	independent	cell	clones	infected	with	HCVcc	and	analyzed	their	HCV	RNA	313	

composition.	Both	cell	clones	secreted	the	majority	of	HCV	RNA	at	the	basolateral	side	(Fig.	6A,	6C).	314	

This	correlated	with	the	preferential	secretion	of	infectious	HCV	particles	at	the	basolateral	side21.	315	

However,	HCV	RNA	from	apical	supernatants	was	enriched	for	negative	strand	RNA	in	both	clones	316	

(Fig.	6B,	D),	suggesting	a	substantial	secretion	of	dsRNA	at	the	apical	side.	317	

Finally,	we	analyzed	the	abundance	of	positive	and	negative	strand	RNA	in	EVs	purified	from	the	318	

serum	of	5	patients	with	chronic	HCV	infection.	Interestingly,	we	could	detect	significant	amounts	of	319	
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negative	strand	RNA	in	all	sera,	albeit	at	far	lower	and	highly	variable	ratios	compared	to	cell	culture	320	

supernatants	(Fig.	6E),	indicating	that	serum	predominantly	contains	infectious	virus	and	that	the	321	

majority	of	dsRNA	secreted	in	EVs	does	not	reach	the	systemic	circulation.	Since	a	previous	study	has	322	

observed	increased	levels	of	dsRNA	in	the	liver	of	chronic	HCV	patients	depending	on	their	IL28B	323	

genotype24,	it	will	be	interesting	to	analyze	in	future	studies	whether	this	correlates	with	negative	324	

strand	levels	in	the	serum.	325	

In	summary,	polarized	HepG2	cells	infected	with	HCV	secreted	negative	strand	RNA	partly	at	their	326	

apical	side,	away	from	systemic	circulation.	In	line	with	these	results,	we	could	detect	negative	327	

strand	viral	RNA	in	the	sera	of	HCV	infected	patients,	but	to	a	far	lower	extent	than	in	cell	culture.		328	

In	conclusion,	our	results	demonstrate	that	HCV	dsRNA	enters	the	endosomal	compartment,	where	329	

it	is	either	released	in	EVs,	or	activates	TLR3.	Release	of	dsRNA	replication	intermediates	attenuates	330	

TLR3	responses,	thereby	representing	a	mechanism	to	avoid	excessive	activation	of	cell	intrinsic	331	

innate	immunity.	In	addition,	dsRNA	replication	intermediates	are	partly	secreted	at	the	apical	side	332	

of	polarized	hepatocytes,	away	from	access	to	systemic	circulation	and	detection	by	professional	333	

immune	cells.	Our	findings	add	another	mechanism	to	the	repertoire	of	immune	evasion	strategies	334	

employed	by	HCV.	335	

DISCUSSION	336	

This	study	shows	that	viral	replication	vesicles	containing	dsRNA	enter	the	endosomal	pathway	and	337	

are	either	secreted	in	EVs	via	the	MVB	or	transported	into	lysosomes,	activating	TLR3	(Fig.	7A).	338	

Blocking	EV	secretion	by	the	MVB	pathway	strongly	increases	TLR3	activation,	mounting	a	stronger	339	

antiviral	response,	suggesting	that	secretion	of	dsRNA	and	lysosomal	degradation	are	governed	by	340	

the	same	mechanism	(Fig.	7B).	Therefore,	secretion	of	dsRNA	replication	intermediates	in	EVs	341	

alleviates	induction	of	TLR3	responses	in	HCV-infected	hepatocytes,	representing	a	novel	viral	342	

immune	escape	mechanism.	343	
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Our	results	demonstrate	that	substantial	amounts	of	HCV	negative	strand	are	secreted	in	344	

extracellular	vesicles,	likely	exosomes,	by	HCV	infected	cells.	The	interpretation	that	these	negative	345	

strands	indeed	are	dsRNA	replication	intermediates	engulfed	in	replication	vesicles	is	supported	by	346	

the	high	ratio	of	negative	to	positive	strand	RNA	found	in	the	secreted	fraction	and	presence	of	347	

NS5A	positive	DMVs/MMVs,	as	well	as	dsRNA	in	late	endosomes/MVBs.	Secretion	of	these	viral	348	

replication	vesicles	is	independent	from	presence	of	structural	proteins;	however,	egress	of	a	349	

subfraction	of	infectious	virions	also	follows	this	route15,16.	A	mechanistic	link	between	both	350	

processes	is	suggested	by	an	increased	efficiency	of	viral	positive	strand	RNA	release	in	exosomes	in	351	

the	context	of	full	viral	replication30,	which	was	also	found	in	our	analysis	of	negative	strand	RNA	352	

secretion.	The	detailed	mechanism	underlying	transport	to	the	endosome	and	secretion	of	viral	353	

replication	intermediates	in	EVs,	as	well	as	infectious	virus,	remains	to	be	determined.	Previous	354	

studies	suggested	involvement	of	the	ESCRT	complex10,31.	Alternatively,	autophagy	has	been	355	

suggested	to	play	a	role	in	generation	of	viral	replication	complexes	as	well	as	release	of	infectious	356	

HCV	virions16,32.	We	can	furthermore	not	rule	out	that	replication	vesicles	are	directly	formed	at	the	357	

MVB.			358	

HCV	is	known	to	activate	TLR3,	which	is	expressed	constitutively	in	hepatocytes6.	Conversely,	HCV	is	359	

reported	to	cleave	the	TLR3	adaptor	TRIF	to	blunt	this	pathway8,	whereas	other	reports	claim	that	360	

the	TLR3	pathway	is	not	efficiently	shut	off	during	HCV	replication6,9.	Our	data	strongly	support	the	361	

latter	studies,	since	selected	replicon	cells,	by	definition	all	containing	replicating	viral	RNA	and	362	

expressing	the	NS3/4A	protease,	remained	fully	susceptible	to	TLR3	signaling.	Our	results	further	363	

suggest	that	TLR3	is	mostly	activated	upon	intracellular	delivery	of	viral	replication	vesicles	to	the	364	

endosomal/lysosomal	compartment	within	the	HCV-replicating	cell	itself,	and	not	by	transfer	of	365	

naked	RNA	to	neighbouring	cells29,	although	we	cannot	formally	rule	out,	that	TLR3	is	activated	by	366	

autocrine	secretion	and	re-entry	of	viral	dsRNA.	Overall	TLR3	seems	as	important	in	detecting	367	

intracellular	HCV	RNA	as	the	cytosolic	sensors	RIG-I	and	MDA5,	since	we	only	found	a	moderate,	368	

transient	RIG-I	activation	at	early	time	points,	compared	to	a	sustained	TLR3	response	starting	at	48h	369	
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after	infection.	For	several	reasons,	it	is	currently	difficult	to	evaluate	to	which	extent	TLR3	indeed	370	

contributes	to	high	ISG	expression	in	hepatocytes	even	in	chronic	patients33-35.	First,	ISG	responses	371	

mounted	by	cytosolic	PRRs,	TLR3	and	paracrine	Type	I	or	Type	III	IFNs	are	very	similar	and	hard	to	372	

differentiate	9.	Second,	in	PHH,	early	secretion	of	IFNs,	likely	induced	by	RIG-I	activation,	masks	373	

possible	late	TLR3	responses.	In	future	studies,	the	contribution	of	TLR3	to	intrahepatic	ISG	374	

responses	against	HCV	might	be	addressed	upon	availability	of	fully	immunocompetent	animal	375	

models	by	selective	knockdown/knockout	of	PRRs.	376	

Secretion	of	HCV	RNA	in	exosomes/EVs	has	been	described	in	previous	studies	as	an	antiviral	sensing	377	

process	activating	innate	immune	responses	in	DCs,	NK	cells	and	monocytes10,36,37,	inducing	378	

interferon	responses	and	inhibiting	viral	replication.	However,	activation	requires	close	cell	to	cell	379	

contact.	In	addition,	several	studies	indicate	that	elevated	ISG	expression	in	the	liver	of	chronic	HCV	380	

patients	is	found	primarily	in	HCV	positive	hepatocytes	and	their	surrounding	cells,	suggesting	that	381	

intracellular	and	not	immune	cell-derived	innate	immune	responses	might	substantially	contribute	382	

to	ISG	induction34,38,39.	Our	work	now	shows	that	mainly	double	stranded	HCV	RNA	is	secreted	in	EVs,	383	

dampening	intracellular	detection	by	TLR3.	We	further	demonstrate	significant	secretion	of	dsRNA,	384	

but	not	virions,	into	the	apical	compartment,	towards	the	bile	duct,	using	a	new	model	of	polarized	385	

hepatocytes	in	transwells21.	This	result	is	in	line	with	previous	studies	detecting	HCV	RNA	in	bile40	386	

and	stool41	of	chronic	HCV	patients	and	strongly	argues	for	an	escape	mechanism	evolved	by	HCV,	387	

reducing	antiviral	innate	immune	responses	in	infected	cells	and	preventing	detection	of	secreted	388	

RNA	by	the	cellular	innate	immune	response.	Interestingly,	we	found	no	evidence	for	substantial	389	

secretion	of	viral	RNA	in	case	of	HAV	and	Dengue	virus	replicon	cells,	nor	did	blocking	of	exosome	390	

release	inhibit	viral	replication,	as	was	the	case	for	HCV.	Since	HAV	and	Dengue	virus	cause	only	391	

acute	infections	it	is	tempting	to	speculate	that	secretion	of	dsRNA	was	established	as	a	disposal	392	

mechanism	by	HCV	allowing	persistent	replication	in	the	same	hepatocyte.	393	
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In	summary,	we	report	a	novel	immune	escape	mechanism	employed	by	HCV	to	decrease	the	394	

activation	of	TLR3	in	HCV-infected	cells	by	secreting	dsRNA.	This	mechanism	underlines	the	395	

importance	of	TLR3-dependent	responses	in	the	course	of	HCV	infection	and	might	contribute	to	the	396	

establishment	and	maintenance	of	chronic	HCV	infections.	397	
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	512	

FIGURE	LEGENDS	513	

Figure	1:	Strand-specific	detection	of	HCV	RNA	in	cells	and	EVs	514	

(A)	Schematic	of	the	HCV	genome	used	for	infection	(upper)	and	the	subgenomic	replicon	used	to	515	

select	stable	cell	lines	(lower).	HCVcc	was	derived	from	the	genotype	2a	(chimera	Jc1),	while	516	

subgenomic	replicons	were	of	genotype	1b	(isolate	Con1)	and	genotype	2a	(isolate	JFH-1).	(B)	Huh7-517	

Lunet-CD81high	cells	were	infected	with	HCVcc	at	MOI	=	0.1.	After	72h,	HCV	positive	and	negative	518	

strand	RNA	was	quantified	in	intracellular	(i.c.)	RNA	and	RNA	from	EVs	by	strand-specific	RT-qPCR.	519	

Bars	represent	mean	values	with	range	from	independent	experiments	(n=2).	(C)	Huh7-Lunet-520	

CD81high	cells	were	infected	with	HCVcc	at	MOI	=	0.1.	At	the	respective	time	points,	positive	and	521	

negative	strand	RNA	was	quantified	in	EVs	isolated	from	infected	cells	by	strand-specific	RT-qPCR.	522	

Shown	are	mean	values	with	range	from	independent	experiments	(n=2).	(D)	PHH	were	infected	523	

with	HCVcc	at	MOI	=	0.1.	At	the	respective	time	points,	positive	and	negative	strand	RNA	was	524	

quantified	in	EVs	isolated	from	infected	cells	by	strand-specific	RT-qPCR.	Shown	are	mean	values	525	

with	range	from	two	wells	of	one	representative	donor.	(E)	HCV	positive	and	negative	strand	RNA	526	

was	quantified	in	i.c.	RNA	and	RNA	from	EVs	isolated	from	HCV-infected	PHH	72h	after	infection	by	527	

strand-specific	RT-qPCR.	Bars	represent	mean	values	with	SD	from	3	independent	donors	(n=3).	(F),	528	
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(G)	HCV	positive	and	negative	strand	RNA	was	quantified	in	i.c.	RNA	and	RNA	from	EVs	isolated	from	529	

HCV	replicon	cells	(F:	genotype	1b,	isolate	Con1;	G:	genotype	2a,	isolate	JFH-1)	by	strand-specific	RT-530	

qPCR.	Bars	represent	mean	values	with	SD	from	independent	experiments	(n=3).	(H)	The	data	from	531	

(B),	(E),	(F),	and	(G)	was	used	to	calculate	the	ratio	of	negative	to	positive	HCV	strands.	Bars	532	

represent	mean	values	with	SD.	Statistical	significance	was	assessed	by	Welch’s	test.	533	

Figure	2:	Detection	of	HCV	replication	complexes	in	the	late	endosomal	compartment	534	

(A)	Schematic	of	HCV	NS5A-mCherry	reporter	replicon	RNA	used	for	CLEM.	(B),(C)	Huh7-Lunet	cells	535	

were	electroporated	with	replicon	RNA	and	72	hours	after	electroporation,	CLEM	was	performed	to	536	

correlate	the	NS5A-mCherry	signal	with	the	ultrastructure	detected	by	EM.	Scale	bar	represents	200	537	

nm.	Asterisks	indicate	DMVs.		Areas	in	(C)	were	chosen	to	display	the	most	commonly	observed	538	

NS5A	positive	ultrastructural	features,	DMVs	(area	2)	and	MVB	with	DMV	(area	3,	4).	(D)	NS5A-539	

positive	areas	were	scored	for	correlation	with	cellular	structures.	LD:	lipid	droplet.	Bars	represent	540	

mean	values	with	SD	of	5	cells	from	2	different	dishes.	(E)	NS5A-mCherry-positive	MVB/lysosomes	or	541	

unmarked	MVB/lysosomes	from	the	same	cells	were	scored	for	their	content.	If	a	DMV	or	MMV	was	542	

present	in	the	structure,	it	was	scored	as	positive.	Bars	represent	mean	values	with	SD	of	5	cells	543	

from	2	independent	experiments.		Statistical	significance	was	assessed	by	paired	t	test.	(F),	(G)	HCV	544	

subgenomic	replicon	cell	lines	were	stained	with	antibodies	against	dsRNA	(J2)	and	late	endosomal	545	

markers.	Scale	bar	represents	5	µm.	(H)	Percentage	of	dsRNA	signal	colocalizing	with	late	endosomal	546	

markers	was	determined	after	3D	reconstruction	of	HCV	replicon	cells.	8	cells	from	two	independent	547	

experiments	were	analyzed.	Error	Bars	represent	SD.		548	

Figure	3:	Impact	of	EV	release	block	on	dsRNA	levels	549	

HCV	replicon	cell	lines	were	transfected	with	siRNA	against	Rab27a,	or	left	untreated.	40	hours	after	550	

transfection,	untreated	cells	were	treated	with	1	µM	Bafilomycin	A	(BafA).	8h	later,	EVs	were	551	

isolated	from	the	supernatants,	and	cells	were	processed	for	immunofluorescence	and	microscopy.	552	

(A)	HCV	RNA	copies	in	EVs	were	detected	by	RT-qPCR.	Bars	represent	mean	values	with	SD	from	553	
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independent	experiments	(n=4).	(B)	HCV	RNA	copies	in	EVs	were	detected	by	RT-qPCR.	Bars	554	

represent	mean	values	with	SD	from	independent	experiments	(n=3).	(C)	dsRNA	in	Rab27a-555	

transfected	cells	was	detected	by	IF	staining	for	dsRNA.	10	cells	were	analyzed	from	2	independent	556	

experiments.	.	(D)	dsRNA	in	BafA-treated	cells	was	detected	by	IF	staining	for	dsRNA.	11	cells	were	557	

analyzed	from	2	independent	experiments.	(E,	G)	dsRNA	colocalized	with	CD63	(E)	or	Lamp1	(G)		was	558	

detected	in	siRab27a-	or	siNT	transfected	cells	by	IF	staining	and	confocal	microscopy.	At	least	11	559	

cells	were	analyzed	from	2	independent	experiments.	(F,	H)	dsRNA	colocalized	with	CD63	(F)	or	560	

Lamp1	(H)	was	detected	in	BafA-treated	or	control	cells	by	IF	staining	and	confocal	microscopy.	At	561	

least	11	cells	were	analyzed	from	2	independent	experiments.	Statistical	significance	was	assessed	562	

by	Welch’s	test.	563	

Figure	4:	Activation	of	TLR3	by	HCV	replication	564	

(A)	Huh7-Lunet	cells	overexpressing	PRRs	and	PHH	were	transfected	with	100	ng/well	poly(I:C)	or	565	

stimulated	with	50	µg/ml	poly(I:C)	in	the	supernatant	(SN)	for	endosomal	delivery.	8h	after	566	

stimulation,	total	RNA	was	isolated	and	IFIT1	mRNA	levels	were	quantified		by	RT-qPCR	as	readout	567	

for	PRR	activation.	Bars	represent	mean	values	with	SD	from	technical	triplicates	from	one	568	

experiment	(n=1).	(B)	Schematic	representation	of	HCV	luciferase	reporter	replicons.	(C)	Huh7-Lunet	569	

cells	stably	transduced	with	respective	PRRs	were	electroporated	with	HCV	luciferase	reporter	570	

replicon	RNA.	At	the	respective	timepoints,	RNA	was	isolated	and	IFIT1	mRNA	was	quantified	by	RT-571	

qPCR.	Values	shown	are	mean	values	with	SD	from	independent	experiments	(n=3).	HCV	replication	572	

was	monitored	in	parallel	by	luciferase	assay.	(D)	HCV	replication	in	Huh7-Lunet	empty/RIG-573	

I/MDA5/TLR3	cells	was	determined	by	luciferase	assay.	Mean	values	with	SD	from	independent	574	

experiments	are	shown	(n=3).	(E)	Schematic	representation	of	selectable	HCV	reporter	replicons.	(F),	575	

(G)	HCV	reporter	replicon	cell	lines	were	transduced	with	lentiviruses	coding	for	TLR3	or	a	control	576	

vector	at	MOI	=	5.	48	hours	after	transduction,	IFIT1	mRNA	was	measured	by	RT-qPCR	to	determine	577	

TLR3	activation	and	luciferase	assay	was	performed	to	determine	replication	of	HCV.	(F)	IFIT1	mRNA	578	

levels.	Bars	represent	mean	values	with	range	from	independent	experiments	(n=2).	(G)	HCV	579	
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replication	was	determined	by	luciferase	assay.	Bars	represent	mean	values	with	SD	from	580	

independent	experiments	(n=3).	(H)	Huh7-Lunet-empty	or	-TLR3	cell	lines	were	electroporated	with	581	

HCV	reporter	replicon	RNA	and	co-cultured	with	mock-electroporated	Huh7-Lunet-TLR3	or	-empty	582	

cells,	respectively.	72h	after	electroporation,	RT-qPCR	was	performed	to	determine	IFIT1	mRNA	583	

levels.	Values	were	normalized	a	co-culture	of	mock-electroporated	Huh7-Lunet-empty	and	-TLR3	584	

cells.	Bars	represent	mean	values	with	SD	from	independent	experiments	(n=4).	Statistical	585	

significance	was	assessed	by	Welch’s	test.	586	

Figure	5:	Impact	of	EV	release	on	TLR3	activation	587	

(A),(B),(C),(D)	Huh7-Lunet-empty	or	-TLR3	cell	lines	were	electroporated	with	HCV	reporter	replicon	588	

RNA	and	indicated	siRNAs.	4h	after	electroporation,	cells	were	treated	with	10	µM	GW4869	or	589	

DMSO.	At	the	indicated	timepoints,	total	RNA	was	isolated	and	IFIT1	mRNA	was	quantified	by	RT-590	

qPCR.	HCV	replication	was	monitored	by	luciferase	activity.	Small	panels	below	the	graphs	show	591	

blow-ups	of		IFIT1	mRNA	levels	at	48h	((A),(B))	or	luciferase	activity	at	96h	after	electroporation	592	

((C),(D)).	(A)	IFIT1	mRNA	levels	in	Huh7-Lunet-empty	cells.	(B)	IFIT1	mRNA	levels	in	Huh7-Lunet-TLR3	593	

cells.	(C)	HCV	replication	as	determined	by	luciferase	assay	in	Huh7-Lunet-empty	cells.	(D)	HCV	594	

replication	as	determined	by	luciferase	assay	in	Huh7-Lunet-TLR3	cells.	(E),	(F)	Huh7-Lunet-595	

CD81high-empty	or	-TLR3	cells	were	transfected	with	siRNAs	against	Rab27a	or	a	control	siRNA.	16	596	

hours	after	transfection,	cells	were	infected	with	HCVcc	at	MOI=5.	6h	after	infection,	treatment	with	597	

GW4869	or	DMSO	was	started.	At	the	indicated	timepoints,	total	RNA	was	isolated	and	IFIT1	mRNA	598	

was	quantified	by	RT-qPCR.	IFIT1	mRNA	levels	of	empty	cells	are	shown	in	(E),	IFIT1	mRNA	levels	of	599	

TLR3	cells	are	shown	in	(F).	All	values	shown	are	mean	values	with	SD	from	independent	600	

experiments	(n=3	for	A,B,C,D;	n=2	for	E,F).	Statistical	significance	was	assessed	by	Welch’s	test.	601	

Figure	6:	Polarized	secretion	of	HCV	RNA		602	

HepG2-based	cell	clones	Clone	15	and	1SC3	were	polarized	on	transwell	dishes	and	infected	with	603	

HCVcc.	48	hours	after	infection,	RNA	was	isolated	from	apical	and	basolateral	supernatants.	(A,C)	604	
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HCV	positive	and	negative	strand	RNA	was	detected	by	strand-specific	RT-qPCR	in	supernatants	from	605	

Clone	15	and	Clone	1SC3,	respectively.	(B,D)	Ratio	of	negative	to	positive	stand	HCV	RNA	in	606	

supernatants	from	Clone	15	and	Clone	1SC3,	respectively.	All	bars	represent	mean	values	with	SD	607	

from	independent	experiments	(n=3	for	Clone	15,	n=2	for	clone	1SC3).	(E)	EVs	were	isolated	from	1	608	

ml	of	serum	from	chronic	HCV	patients,	and	used	for	strand-specific	RT-qPCR	for	HCV	RNA.	Shown	609	

are	mean	values	of	technical	triplicates	with	SD	from	each	donor.	Numbers	indicate	ratios	between	610	

positive	and	negative	strand	HCV	RNA.	Statistical	significance	was	assessed	by	Welch’s	test.	611	

Figure	7:	Model	of	novel	immune	attenuation	mechanism.		612	

(A)	HCV	dsRNA	from	the	replication	complexes	is	transported	to	the	LE/MVB.	From	there,	it	can	be	613	

degraded	in	the	lysosome,	secreted	at	the	apical	or	basolateral	compartments	in	EVs	or	activate	614	

TLR3	in	the	late	endosome,	inducing	the	induction	antiviral	ISGs	that	inhibit	HCV	replication.	(B)	615	

Blocking	of	EV	release	results	in	increased	dsRNA	levels,	enhancing	TLR3	activation.	This	leads	to	a	616	

stronger	production	of	antiviral	ISGs,	and	a	stronger	inhibition	of	HCV	replication.	617	

	618	

	619	

	620	
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