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Abstract  30 

Hepatitis C Virus (HCV) envelope glycoprotein complex is composed of E1 and E2 subunits. 31 

E2 is the receptor-binding protein as well as the major target of neutralizing antibodies, 32 

whereas the functions of E1 remain poorly defined. Here, we took advantage of the recently 33 

published structure of the N-terminal region of E1 ectodomain to interrogate the functions of 34 

this glycoprotein by mutating residues within this 79 amino acid region in the context of an 35 

infectious clone. The phenotypes of the mutants were characterized to determine the effects 36 

of the mutations on virus entry, replication and assembly. Furthermore, biochemical 37 

approaches were also used to characterize the folding and assembly of E1E2 heterodimers. 38 

Thirteen out of nineteen mutations led to viral attenuation or inactivation. Interestingly, two 39 

attenuated mutants, T213A and I262A, were less dependent on claudin-1 for cellular entry in 40 

Huh-7 cells. Instead, these viruses relied on claudin-6, indicating a shift in receptor 41 

dependence for these two mutants in the target cell line. An unexpected phenotype was also 42 

observed for mutant D263A which was no longer infectious but still showed a good level of 43 

core protein secretion. Furthermore, genomic RNA was absent from these non-infectious 44 

viral particles, indicating that D263A mutation leads to the assembly and release of viral 45 

particles devoid of genomic RNA. Finally, a change in subcellular co-localization between 46 

HCV RNA and E1 was observed for D263A mutant. This unique observation highlights for 47 

the first time a crosstalk between HCV glycoprotein E1 and the genomic RNA during HCV 48 

morphogenesis. 49 

 50 

  51 
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Importance 52 

Hepatitis C virus (HCV) infection is a major public health problem worldwide. It encodes 53 

two envelope proteins, E1 and E2, which play a major role in the life cycle of this virus. E2 54 

has been extensively characterized, whereas E1 remains poorly understood. Here, we 55 

investigated E1 functions by using site-directed mutagenesis in the context of the viral life 56 

cycle. Our results identify unique phenotypes. Unexpectedly, two mutants clearly showed a 57 

shift in receptor dependence for cell entry, highlighting a role for E1 in modulating HCV 58 

particle interaction with cellular receptor(s). More importantly, another mutant led to the 59 

assembly and release of viral particles devoid of genomic RNA. This unique phenotype was 60 

further characterized and we observed a change in subcellular co-localization between HCV 61 

RNA and E1. This unique observation highlights for the first time a crosstalk between a viral 62 

envelope protein and the genomic RNA during morphogenesis. 63 

 64 

  65 
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Introduction 66 

Hepatitis C virus (HCV) infection is a major public health problem with around 170 million 67 

people infected worldwide (1). HCV infection has a high propensity for establishing a 68 

chronic infection and, in the long term, this can lead to cirrhosis and hepatocellular 69 

carcinoma. Although recent improvements in the standard of care therapy have been 70 

achieved, the available treatments remain very expensive and far from being accessible to the 71 

majority of HCV-infected patients (2). 72 

HCV is a plus-stranded RNA virus which belongs to Hepacivirus genus in the Flaviviridae 73 

family. The viral genome contains a single open reading frame generating a polyprotein 74 

which is sequentially processed by both cellular and viral encoded proteases into ten mature 75 

viral proteins. Among these polypeptides, the structural proteins (core, E1 and E2) are the 76 

components of the viral particle (reviewed in (3)).  77 

The E1 and E2 envelope glycoproteins are two highly glycosylated type I transmembrane 78 

proteins, each with an N-terminal ectodomain and a well-conserved C-terminal 79 

transmembrane domain. By being part of the viral particle, HCV envelope glycoproteins E1 80 

and E2 play an essential role in virion morphogenesis as well as in HCV entry into liver cells. 81 

These two steps necessitate timely and coordinated control of HCV glycoprotein functions. 82 

Furthermore, HCV entry is a complex multistep process involving at least four major entry 83 

factors. They include scavenger receptor BI (SR-BI)(4), tetraspanin CD81 (5) and tight-84 

junction proteins claudin-1 (CLDN1) (6), and occludin (OCLN) (7). 85 

Until recently, research on HCV glycoproteins has been mainly focused on E2 because it is 86 

the receptor-binding protein interacting with CD81 and SR-BI. E2 is also the major target of 87 

neutralizing antibodies and it was postulated to be the fusion protein (reviewed in (8)). 88 

However, the structure of E2 does not fit with what one would expect for a fusion protein (9, 89 

10), suggesting that E1 alone or in association with E2 might be responsible for the fusion 90 
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step. Interestingly, several studies characterizing novel inhibitors of late steps of HCV entry 91 

have shown that some resistant mutations can be found in E1 (11-13), re-enforcing the 92 

hypothesis that this protein plays a major role during the fusion process. Furthermore, E1 also 93 

plays a role in modulating the exposure of the CD81-binding region on E2 (14). Together, 94 

these observations indicate that E1 plays a more important role than previously thought in the 95 

HCV life cycle. It is therefore essential to better understand how E1 plays an active role in 96 

HCV entry and assembly.  97 

Recently, the crystal structure of the N-terminal half of E1 ectodomain has been reported 98 

(15). This partial structure reveals a complex network of covalently linked, intertwined 99 

homodimers. We took advantage of this reported information to investigate the functional 100 

role of E1 by alanine replacement of residues in the context of an infectious clone. Among 19 101 

mutants, eight showed reduced viral infectivity and five were no longer infectious. 102 

Interestingly, two attenuated mutants, T213A and I262A, showed a shift of dependence for 103 

virus entry factor from CLDN1 to CLDN6. Importantly, another mutation, D263A, which 104 

abolished virus infectivity, led to the secretion of viral particles devoid of genomic RNA but 105 

containing core protein and HCV glycoproteins, highlighting cross-talks between HCV 106 

glycoprotein E1 and the genomic RNA during HCV morphogenesis. 107 

 108 

Results 109 

Amino acid conservation in the N-terminal region of E1 ectodomain and mutagenesis 110 

rationale. The secondary structures present in the N-terminal 79 amino acid residues of E1 111 

are presented in Figure 1A (15). The analysis of the E1 amino acid sequence conservation 112 

among all HCV genotypes shows that the most conserved residues do not necessarily match 113 

with the secondary structure elements that have been identified in the crystallographic 114 

structure of the N-terminal domain of E1 ectodomain (Figure 1B). This highlights that both 115 
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the secondary structures and peculiar features of the loops, which contain crucial cysteine 116 

residues as well as glycosylation sites, are crucial for the biological function(s) of E1. It is 117 

worth noting that the less conserved region in the N-terminal region of E1 ectodomain 118 

corresponds to the disordered loop between β4 to β5 that was not seen in the electron density 119 

of the crystallographic structure. 120 

Here, we mutated residues in the context of an infectious clone. The effects of mutation of 121 

cysteine residues and glycosylation sites have already been reported previously (14, 16), and 122 

these residues were therefore not included in this study. We produced a series of nineteen 123 

mutants in which residues were individually replaced by alanine residues, and we 124 

concentrated our study on structured segments (β1 to β5 and α-helix) or conserved amino 125 

acids located close to these secondary structures (Figure 1A). Mutations were introduced in a 126 

modified version of the plasmid encoding the full-length JFH1 genome in which the N-127 

terminal E1 sequence has been modified to reconstitute the A4 epitope, which is present in E1 128 

of genotype 1a (17), and therefore allows the identification of E1 of genotype 2a for which 129 

there is no antibody easily available. We did not introduce any mutation in β2 since it 130 

contains A4 epitope sequence. It worth noting that the introduction of the A4 epitope had no 131 

effect on HCV infectivity (data not shown), indicating that this modification is not interfering 132 

with the phenotype of E1 mutants characterized in our study. 133 

 134 

Effect of E1 mutations on HCV infectivity. We first determined whether our mutants are 135 

functional for replication. For this, we analyzed the expression of several HCV proteins at 136 

48h post-electroporation. For all the mutants, the levels of expression of E2 and NS5A were 137 

similar to the wild-type virus (Figure 2A). However, we observed a weaker signal for the E1 138 

glycoprotein in the case of Q193A and V194A mutants, which is likely due to a weaker 139 

recognition of E1 by Mab A4 whose minimum epitope has been mapped immediately 140 
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downstream of these two residues. Together, our data indicate that our mutations do not 141 

affect HCV genome replication. 142 

We then measured the effects of the mutations on the production of infectious virus by 143 

determining intra- and extra-cellular infectivities. As shown in Figure 2B, we observed three 144 

phenotypes for virus infectivity: (1) complete loss of infectivity, (2) no effect on infectivity or 145 

(3) reduced infectivity. In β1 strand we observed a slight decrease in extracellular infectivity 146 

for Q193A and V194A, indicating that these mutations only slightly affect HCV infectivity. 147 

Four mutations (S208A, T213A, V220A and L221A) in the α-helix had only a slight effect or 148 

no effect at all on HCV infectivity, whereas the others had a drastic reduction in HCV 149 

infectivity (I212A and Q215A) or totally abolished it (W214A and H222A). Most mutants 150 

within the β-sheet (β3 to β5) showed no change in infectivity (G233A, M264A and V265A) 151 

or only a slight decrease (R231A, V240A, P244A and I262A). However, for two of them 152 

(W239A and D263A) infectivity was totally abolished. Overall, the intracellular infectivity 153 

profiles were similar to those observed for extracellular viruses, excluding any effect of the 154 

mutations on infectious particles release. This first analysis indicates that the α-helix and the 155 

β-sheet contain essential residues for HCV infectivity.  156 

 157 

Determination of virion release. To determine the effect of mutations on viral secretion in 158 

the case of reduced or abolished infectivity, we measured the expression of core protein in 159 

cell lysates and supernatants. As shown in Figure 3A, the levels of intracellular core protein 160 

of the mutants were comparable to the wild-type, excluding any effect of the mutations on 161 

HCV genomic replication. In contrast, the levels of extracellular core protein were reduced 162 

for several mutants (Figure 3B). For most mutants, the levels of extracellular core protein 163 

paralleled those of extracellular infectivity (compare Figures 2 and 3). However, mutant 164 

D263A showed a good level of core release despite the absence of infectivity in the 165 
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supernatant (Figure 3B), which was confirmed in an additional experiment in the presence of 166 

a mutant virus defective in virus assembly (Figure 3C), suggesting that this mutation leads to 167 

the release of non-infectious viral particles.  168 

 169 

Effect of E1 mutations on HCV glycoproteins folding and E1E2 heterodimerization. 170 

Given the cooperativity between E1 and E2 on their respective folding, we analyzed the 171 

effect of E1 mutations on the formation of E1E2 heterodimers. To study the effect of 172 

mutations on the folding of E1 and E2, we used a pulldown assay using CD81-LEL that 173 

recognizes correctly folded E2. As shown in Figure 4A, E2 from all the mutants was 174 

recognized by CD81-LEL. However, a lower signal was observed for several of them: I212A, 175 

T213A, W214A, Q215A, V220A, H222A, R231, W239A and D263A. Importantly, for some 176 

mutants, the presence of E1 was not detected or barely detected (Q193A, V194A, I212A , 177 

H222A, W239A, I262A and D263A) or reduced (T213A). As discussed above, the weaker 178 

E1 signal for mutants Q193A and V194A is likely due to the involvement of these two 179 

residues in A4 epitope. For the other mutants, the absence or drastic decrease of E1 co-180 

precipitation suggests that these mutations affect the interaction between E1 and E2, at least 181 

in the context of properly folded E2. Since these mutants (I212A, H222A, W239A, I262A 182 

and D263A) are also affected in their infectivity (Figure 2B), our data suggest that the 183 

assembly defect of the E1E2 heterodimer could be responsible for the decrease in infectivity. 184 

However, in the case of I262A mutant, infectivity was only 1 Log10 lower than the wild-type 185 

(Figure 2B), suggesting that the residual interaction between E1 and E2 is sufficient to 186 

maintain a certain level of infectivity. In contrast, E1 and E2 from mutants W214A and 187 

Q215A were precipitated by CD81 despite loss of infectivity, suggesting that the functional 188 

defect for these mutants is not due to a global effect on E1E2 folding, but rather on the virion 189 

assembly itself.  190 
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To further characterize the folding of E1E2 complex, we also performed an 191 

immunoprecipitation experiment with conformation-sensitive Mabs. We first used Mab 192 

AR5A that recognizes a conformational epitope shared between E1 and E2 (18). For five of 193 

our mutants (I212A, H222A, W239A, I262A and D263A), HCV glycoproteins were not 194 

detected or weakly recognized by Mab AR5A (Figure 4B), which correlated with the data 195 

obtained with CD81 pulldown of E1E2. Since these mutants were also altered in their 196 

infectivity, one can expect that alteration in protein folding is responsible for the phenotype 197 

of these viruses. 198 

Finally, we also used the conformation sensitive anti-E1 Mab IGH526 whose core epitope is 199 

located at amino acid positions 314-324 (19). For this analysis, we focused mainly on 200 

mutants showing alterations in infectivity. As shown in Figure 4C, a decrease in the 201 

recognition of E1 was observed for I212A, T213A, H222A, W239A and D263A mutants, 202 

which correlated with an alteration in recognition of E1E2 complex by CD81 and AR5A 203 

(Figures 4A and B). It is noteworthy, that I262A mutant was relatively well recognized by 204 

IGH526 Mab (Figure 4C), which contrasts with the altered recognition by CD81 and AR5A, 205 

suggesting that E1 might have achieved an advanced state of folding for this mutant despite 206 

alterations in E1E2 interactions. A decrease in E1 recognition by Mab IGH526, which 207 

correlated with a slight reduction of recognition by CD81, was also observed for R231A 208 

mutant (Figure 4C). This could again explain the slight decrease in infectivity observed for 209 

this mutant (Figures 4A).  210 

 211 

Effect of E1 mutations on sensitivity to antibody neutralization and inhibition by CD81 212 

co-receptor. The above analyzes of the effects of E1 mutations on the folding of the 213 

envelope proteins were performed in the context of intracellular proteins. However, 214 

incorporation of the envelope glycoproteins on the surface of the viral particle during the 215 
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assembly process leads to conformational changes that occur in the quaternary structure of 216 

these proteins (15, 20). The biochemical analysis of the glycoproteins associated with the 217 

viral particle are not easily performed because they require high amounts of viral particles. A 218 

more sensitive alternative approach is to determine the sensitivity of the mutant viruses to 219 

inhibition mediated by the presence of CD81-LEL or neutralizing Mabs. We therefore used 220 

CD81-LEL as well as Mabs AR5A and IGH526 for these experiments. In these analyses, we 221 

focused on infectious mutants showing a decrease in infectivity of approximately 1 log10 222 

(T213A, R231A, I262A) and S208A mutant was used as control. Interestingly, we observed a 223 

strong decrease in sensitivity to inhibition by CD81-LEL, AR5A and IGH526 for T213A and 224 

I262A mutants (Figure 5). These results indicate conformational changes in the envelope 225 

proteins present on the surface of these two mutants, which are in line with the alterations 226 

observed in our biochemical approach (Figure 4), suggesting a similar effect of the mutations 227 

on the conformation of HCV glycoproteins present on the surface of the viral particle. 228 

However, for some mutants, discrepancies were observed between biochemical analyses and 229 

neutralization results. Indeed, R231A mutant showed some alteration in the biochemical 230 

approach, but was neutralized at the wild-type level. On the opposite, I262A mutant was well 231 

recognized by IGH526 in the immunoprecipitation experiment, but was much less sensitive 232 

to neutralization by this antibody. This indicates that the biochemical results do not 233 

necessarily parallel the functional phenotype. 234 

 235 

Effect of E1 mutations on the recognition of HCV receptors. To further characterize the 236 

phenotype of T213A, R231A and I262A mutants, we analyzed their dependence on known 237 

receptors. For this, we analyzed the sensitivity of our mutants to inhibition by anti-receptor 238 

Mabs previously reported to affect HCV entry. Similar dose-dependent decreases in 239 

infectivity were observed for mutant (S208A, T213A, R231A and I262A) and wild-type 240 
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viruses in the presence of anti-CD81 Mab JS81 or anti-SR-BI Mab C167 (Figure 6A and B). 241 

In contrast, T213A and I262A mutants were less inhibited by anti-CLDN1 Mab OM8A9-A3 242 

(Figure 6C), suggesting that these viruses were less dependent on CLDN1 to infect Huh-7 243 

cells. Since these cells also express CLDN6, another tight-junction protein that can be used 244 

by some viruses in the absence of CLDN1 (21), we also tested the sensitivity of T213A and 245 

I262A mutants to inhibition by anti-CLDN6 Mab 342927. As shown in Figure 6D, T213A 246 

and I262A mutants were more sensitive than the wild-type virus to inhibition by anti-CLDN6 247 

Mab, whereas S208A and R231A mutants showed the same profile as the wild-type virus 248 

(data not shown). Furthermore, when we co-incubated these mutants with both anti-CLDN1 249 

and anti-CLDN6 Mabs, T213A and I262A mutants were inhibited to a similar extent as the 250 

wild-type virus (Figure 6E). In the absence of antibodies against OCLN, we used a cell line 251 

knocked out for this receptor (22) to determine the dependence of our mutants to OCLN for 252 

virus entry. None of our mutants were able to infect this cell line (data not shown), indicating 253 

a similar dependence on OCLN. Altogether, our data indicate that T213A and I262A 254 

mutations induce a shift in receptor usage from CLDN1 toward CLDN6. 255 

 256 

Characterization of the D263A mutant. Since it had lost infectivity but showed a good 257 

level of core protein secretion, D263A mutant was further characterized. For this, we 258 

analyzed the released viral material on an iodixanol density gradient. As a negative control, 259 

we used a viral genome carrying a large in-frame deletion in E1E2 coding region known to 260 

affect the release of viral particles (ΔE1E2). The different fractions obtained after gradient 261 

sedimentation were analyzed to determine infectivity as well as the content in core protein 262 

and genomic RNA. As shown in Figure 7B, core protein of the wild-type virus showed two 263 

peaks, one in fractions 1-2 and the other one in fractions 5-7. Fractions 1-2 corresponded to 264 

the peak of infectivity and the first peak of genomic RNA, whereas fractions 5-7 265 
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corresponded to the second peak of genomic RNA which was non-infectious (Figure 7A). 266 

Although core protein of D263A mutant was detected in fractions 1-9, the majority peaked in 267 

fractions 5-7 together with the non-infectious peak of the wild type-virus (Figure 7A). 268 

Surprisingly, HCV RNA was at background level for D263A mutant very similarly to the 269 

control ΔE1E2 which is defective in virus assembly (Figure 7B). This was not due to the 270 

absence of viral replication since intracellular RNA levels were similar for both D263A 271 

mutant and wild-type virus (Figure 7C). Together, our data indicate that D263A mutation 272 

leads to the assembly and release of particulate material devoid of genomic RNA.  273 

To further understand the molecular basis of the absence of genomic RNA in secreted virus 274 

particles in the context of D263A mutation, we investigated whether the core protein was 275 

able to oligomerize into capsid-like structures. Oligomerization of core proteins expressed by 276 

this mutant was analyzed on a iodixanol gradient by ultracentrifugation, as described in 277 

Materials and Methods. The core protein complexes of the wild-type were detected in 278 

fractions 6 to 8 (Figure 8). These fractions correspond to highly ordered multimeric 279 

complexes (23). A similar profile of sedimentation was observed with D263A mutant as well 280 

as with the assembly-defective control ΔE1E2 (Figure 8). However, there was a slight shift 281 

towards lower density for D263A mutant. Furthermore, a small proportion of the core protein 282 

was found in fractions 2 and 3 for both mutants D263A and ΔE1E2. This likely corresponds 283 

to monomeric and/or dimeric forms of the core protein as previously suggested (24). When 284 

the wild-type core protein was treated with 1% SDS before ultracentrifugation, only the 285 

monomeric form of the core protein was detected in fractions 1 and 2 at the top of the 286 

gradient. This profile is due to disruption of core protein complexes by SDS, as shown 287 

previously (23) (Figure 8). These results therefore suggest that the D263A mutation does not 288 

drastically affect core protein multimerization. 289 
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Finally, we recently showed that E1 forms homotrimers during the assembly process (20). 290 

We therefore also tested the capacity of D263A mutant to form such trimers, but we did not 291 

detect any defect in E1 trimerization (data not shown). 292 

 293 

Subcellular localization of HCV proteins during the assembly process of D263A mutant. 294 

Since D263 mutant leads to the production of viral particles devoid of genomic RNA, we 295 

further investigated the subcellular co-localization of HCV proteins to determine whether this 296 

mutation would induce a mislocalization of E1 glycoprotein. For this, Huh-7 cells were 297 

electroporated with D263A mutant RNA, and the cells were fixed with paraformaldehyde at 298 

48h post-electroporation before being processed for immunofluorescence. E1 mutated at 299 

position D263 showed a co-localization with E2 similar to what was observed for the wild-300 

type virus (Figure 9). Furthermore, there was no difference in core and NS5A co-localization 301 

with lipid droplets, the site where HCV assembly is supposed to take place (25). Finally, we 302 

also analyzed whether D263A mutation affects the colocalization of core or E1 with the viral 303 

RNA. For this, we analyzed the localization of HCV RNA by FISH. Although D263A 304 

mutation did not change the co-localization of core protein with HCV RNA (Figure 10A), a 305 

significant decrease in subcellular co-localization between HCV RNA and E1 was observed 306 

for this mutant (Figure 10B and C), supporting the hypothesis that E1 could play a role in the 307 

recruitment of HCV RNA during virus assembly  308 

 309 

Discussion  310 

For a long time, E1 remained poorly studied. However, recent structural studies on E2 311 

suggest that E1 might play an active role in the fusion process (26), prompting us to initiate a 312 

functional study of this protein based on the recently published structure of its N-terminus 313 

(15). Our data identify residues in the α-helix and the β-sheet that are important for the 314 
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assembly and release of infectious viral particles. Characterization of our mutants also 315 

highlights crosstalks between E1 and E2 during HCV morphogenesis. Furthemore, 316 

neutralization experiments indicate that mutations in two of our mutants induce a shift in 317 

receptor usage from CLDN1 toward CLDN6. Finally, characterization of the mutant D263A 318 

shows that this virus leads to assembly and release of viral particles devoid of genomic RNA, 319 

indicating that E1 plays a role in the incorporation of HCV RNA into the nucleocapsid. 320 

Several mutations in E1 affect the folding of E2. This is the case for I212A , T213A, H222A 321 

and W239A mutants, as shown by CD81 pulldown. CD81 is often used as a probe to 322 

determine the folding of E2 since its binding region is located in E2 and it is conformation 323 

dependent (27). HCV glycoproteins have been shown to assemble as a noncovalent E1E2 324 

heterodimer (28), and these proteins are known to cooperate for the formation of a functional 325 

complex(29). The folding of E1 has indeed initially been shown to be dependent on the co-326 

expression of E2 (30, 31). Later on, it was reported that E1 can also affect the folding of E2 327 

(32, 33). Our observation that mutations in E1 can affect the recognition of E2 by CD81 is 328 

therefore in line with the fact that E1 can play an active role in the folding of E2 in the 329 

context of E1E2. It is however to be noted that E2 expressed alone is well recognized by 330 

CD81(5), suggesting that mutations in E1 can push E2 towards a conformation poorly 331 

recognized by CD81, which is in line with the crosstalks observed between these two proteins 332 

(34, 35). I212, T213 and H222 correspond to highly conserved residues located in the α-helix 333 

of E1 (Figure 11), whereas W239 belongs to the β4 strand.  334 

Several mutations in E1 affect E1E2 interaction. This is particularly the case for mutants 335 

W239A, I262A and D263A, as shown by the lack of E1 signal after CD81 pulldown. 336 

Residues involved in E1E2 interactions have been identified in the transmembrane domains 337 

of these two proteins (36). Moreover, a study based on chimeric E1E2 heterodimers derived 338 
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from different genotypes has also recently identified residues in the ectodomain of E1, at 339 

positions 308, 330 and 345, as being involved in functional interactions between E1 and E2 340 

(35). However, in the study of Douam and coworkers, no biochemical analysis was 341 

performed to determine the physical interaction between these two proteins. Amino acid 342 

residues W239A, I262A and D263A identified in our study as affecting E1E2 interaction are 343 

located in a β-sheet structure identified in the N-terminal region of E1 (Figure 11) (15). I262, 344 

D263 and W239 belong to the β4 and β5 strands respectively and are close in space in the 345 

structure of E1. Indeed the D263 residue is directly facing the W239 residue. Therefore, our 346 

data suggest that this β-sheet is involved in interactions with E2. Interestingly, D263 and 347 

W239, two highly conserved residues, are part of a rather hydrophobic surface that has been 348 

described by El Omari et al. as being likely involved in interaction with another protein 349 

partner (15). It has to be noted that one of our mutations, I262A, is not lethal for the virus, 350 

suggesting that alteration in E1E2 interactions does not necessarily abolish viral infectivity. 351 

However, for this particular mutant, E1E2 interaction was not totally abolished, and the 352 

remaining infectivity might be explained by this residual interaction. If I262 is close to D263 353 

and W239 residues, its side-chain does not point out in the same direction. Indeed, the side-354 

chains of D263 and W239 are exposed to the E1 surface, directly available to potentially 355 

interact with another protein, whereas the side-chain of I262 is buried in the E1 structure and 356 

makes hydrophobic contacts with the α-helix (Figure 11). Thus the side-chain of I262 is 357 

unlikely to be directly involved in the interaction with E2, and this may explain the peculiar 358 

phenotype observed for I262 mutant. 359 

Our data indicate that mutations in E1 can affect the tropism of HCV for CLDN1. Indeed, 360 

T213A and I262A mutants preferentially use CLDN6 instead of CLDN1 in Huh-7 cells. A 361 

similar shift in receptor dependence has recently been reported for another E1 mutant that has 362 

been selected by long-term culturing and passage of the HCV Jc1 isolate through CLDN1 363 
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KO Huh-7.5 cells (37). Together, these data point to a role for E1 in the HCV cell-entry 364 

process as a modulator of entry factor usage. It has been previously reported that many HCV 365 

isolates can naturally use both CDLN1 and CLDN6 for host cell entry (21, 38-40) , so a 366 

change in receptor dependence from CLDN1 to CLDN6 is not entirely surprising. However, 367 

it is not clearly known whether E1 interacts directly with CLDN1. It has been reported that 368 

mutations in E1 that affect the infectivity of pseudoparticles bearing HCV glycoproteins can 369 

modulate the binding of these particles to CLDN1-expressing cells, suggesting a role for E1 370 

in HCV glycoprotein interaction with CLDN1 (35). However, one cannot exclude that these 371 

E1 mutations may be functioning indirectly by influencing how E2 interacts with CLDN1. 372 

We have indeed already observed that mutations in E1 can affect E2-CD81 interaction, 373 

indicating that E1 plays a role in modulating the receptor binding capacity of E2 (14). The 374 

most surprising observation is that mutations located in different regions of the E1 primary 375 

sequence can affect the dependence on CLDN1. Indeed, the mutations identified in our work 376 

are at position 213 and 262 which belong to the α-helix and the β5 strand respectively 377 

(Figure 1), whereas the mutation identified by the group of Evans is located at position 316 378 

(37), which is located in the epitope of neutralizing Mab IGH526 (19). However, T213 in the 379 

α-helix and I262 in the β5 strand are proximate in space in the E1 structure. Moreover, I262 380 

establishes hydrophobic interactions with the α-helix that contribute to the folding back of 381 

this helix on the β-sheet of E1 (Figure 11). Interestingly, our biochemical and neutralization 382 

data indicate that both T213A and I262A mutations affect E1 recognition by IGH526, 383 

suggesting that amino acid positions 213, 262 and 316 might be in close proximity in the 3D 384 

structure of E1. Whether the alteration in CLDN1-dependence is clinically relevant remains 385 

to be determined. 386 

The most surprising observation of our study is the production of HCV particles devoid of 387 

genomic RNA in the case of D263A mutation. The D263 amino acid is highly conserved. 388 
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Indeed, an aspartate residue is present at this position in 18 out of 19 reference sequences 389 

from all confirmed genotypes and subtypes (Figure 1B) as well as in 96% of the full E1 390 

sequences from the euHCVdb (https:euhcvbd.ibcp.fr)(41)1. It has been shown that, in a cell-391 

free assay, HCV core proteins produced in bacteria self-assemble into nucleocapsids (42). 392 

However, in this case viral or nonviral RNA molecules were associated with the particles. 393 

Intracellular assembly of HCV capsids has also been described in the past (43). However, 394 

these particles were not secreted and they were shown to form abortive budding events. In 395 

our case, we detected secretion of viral particles that contain at least the core protein but no 396 

genomic RNA. Due to the low production of particles and the fact that we cannot amplify 397 

them by reinfection, we could not determine whether HCV envelope glycoproteins are 398 

associated with these particles. We presume that they should be present in the envelope. E1 399 

has been shown to interact with the capsid protein in the context of a heterologous expression 400 

system, at least after oligomerization of the capsid protein (44). Together with our data, this 401 

suggests that E1 plays a major role in HCV particle assembly. In the context of our D263A 402 

mutant, one can speculate that due to loss of interaction with E2, E1 might be able to directly 403 

interact with the capsid protein in the absence of interaction with the genomic RNA. 404 

Interestingly, we also observed a decrease in subcellular co-localization between HCV RNA 405 

and E1 for D263A mutant which is in line with the hypothesis that, through its interaction 406 

with core protein, E1 might play a role in recruiting the genomic RNA. As already mentioned 407 

above, in the E1 structure, the D263 residue that is located in the β-sheet has its side chain 408 

exposed at the molecular surface (Figure 11). Interestingly, the D263 carboxylic function of 409 

its side chain is at the center of a hydrogen bonds network, which comprises the R237, W239 410 

and H261 side chains (Figure 11B). This polar interaction network might be involved in the 411 

stabilization of D263, R237, W239 and H261 side chains toward an E1 conformation suitable 412 

to interact with an essential biological partner. 413 
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To conclude, our mutagenesis study highlights cross-talks between the E1 and E2 during 414 

HCV morphogenesis. Our data also indicate the role of E1 in modulating functional 415 

interactions between E1E2 complex and CLDN1. Finally, this study describes for the first 416 

time a cross-talk between E1 and the genomic RNA during HCV morphogenesis. 417 

 418 

Materials and Methods 419 

Cell culture. Huh-7 hepatoma cells (45) were grown in Dulbecco’s modified essential 420 

medium (DMEM; Thermofisher) supplemented with glutamax, 10% fetal calf serum and non 421 

essential aminoacids (NEAA). 422 

Antibodies. Anti-HCV monoclonal antibodies (Mabs) A4 (anti-E1) (46) and 3/11 (anti-E2; 423 

kindly provided by J. A. McKeating, University of Birmingham, Birmingham, UK)(47) were 424 

produced in vitro by using a MiniPerm apparatus (Heraeus) as recommended by the 425 

manufacturer. Anti-E1E2 Mabs AR5A (18) and anti-E1 Mab IGH526 (19) were kindly 426 

provided by M. Law (Scripps Research Institute, La Jolla, CA, USA). The anti-NS5A MAb 427 

9E10 (48) and a polyclonal antibody (49) were a gift from C. M. Rice (Rockefeller 428 

University, New York, NY) and M. Harris (University of Leeds, United Kingdom), 429 

respectively. Anti-core Mab ACAP-27 (50) was kindly provided by J. F. Delagneau (Bio-430 

Rad, France). Anti-SR-BI Mab C167 was a gift from A. Nicosia (Okairos, Rome Italy) (51). 431 

Anti-CLDN1 Mab OM8A9-A3 has been previously described (52). Commercially available 432 

anti-CD81 Mab JS81 (BD Pharmingen), anti-SR-BI polyclonal antibody (Abcam) and anti-433 

CLDN6 Mab clone 342927 (R&D Systems) were used in this work. Secondary antibodies 434 

used for immunofluorescence were purchased from Jackson Immunoresearch. Control anti-435 

tubulin antibody was from Sigma. 436 
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Structural model of E1. The structural model of the N-terminal region of E1 ectodomain was 437 

constructed using the JFH1 amino acid sequence and the crystallographic structure of E1 438 

from H77 strain (PDB code 4UOI, chain F) as template thanks to the Swiss-Model server 439 

(53). 440 

Mutagenesis  and virus production. The virus used in this study is a modified version of the 441 

JFH1 isolate (genotype 2a; GenBank accession number AB237837) (54), kindly provided by 442 

T. Wakita (National Institute of Infectious Diseases, Tokyo, Japan) (17). Mutants were 443 

generated by site-directed mutagenesis. Selected residues were replaced by alanines. The 444 

restriction enzyme XbaI was used to linearize plasmids encoding viral RNAs. The linearized 445 

plasmids were then treated with mung bean nuclease (New England BioLabs) with the aim of 446 

obtaining blunt-ended DNA. For in vitro transcription, 2 μg of linearized DNA was 447 

transcribed using the Megascript kit according to the manufacturer’s protocol (Ambion). The 448 

in vitro transcription reaction mixture was set up and incubated at 37°C for 4 h, and 449 

transcripts were precipitated by the addition of equal volumes of LiCl and nuclease-free 450 

water. The mixture was chilled at - 20°C for 30 min and then centrifuged at 4°C for 15 min at 451 

14,000 g. The supernatants were then removed, and the RNA pellets were washed with 70% 452 

ethanol and resuspended in RNase-free water. Infectivity analyses were performed as 453 

previously described (14). Briefly, supernatants containing extracellular virus were removed 454 

at different times after electroporation, and cell debris was removed by centrifugation for 5 455 

min at 10,000 x g. Infected cells were washed with phosphate-buffered saline (PBS), 456 

harvested by treatment with trypsin, and intracellular viral particles were obtained after 4 457 

freeze-thaw cycles. Cell lysates were clarified by centrifugation at 10,000 x g for 7 min. 458 

Clarified supernatants containing extracellular virus and intracellular virus were used for 459 

infection of naïve Huh-7 cells. Infected cells were then fixed with ice-cold methanol (100%) 460 

and immunostained with anti-E1 or anti-NS5A antibodies. The non replicative control HCV 461 
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genome (GND) contained a GND mutation in the NS5B active site, as previously reported 462 

(55). The assembly-deficient control of HCV (∆E1E2) containing an in-frame deletion 463 

introduced into the E1E2 regions has been previously described (54).  464 

Immunofluorescence. Immunofluorescence analyses were performed as previously 465 

described (24). Briefly, Huh-7 cells electroporated with 10 μg of wild-type or mutant RNAs, 466 

were grown on 12-mm coverslips or in 96 well plates. After 48 h, the cells were washed 467 

twice with PBS and then fixed with cold methanol (100%) for 5 min. The methanol was 468 

removed by washing the cells twice with PBS. The cells were then blocked with 10% goat or 469 

horse serum for at least 10 min, followed by washing with PBS. The primary anti-E1, anti-E2 470 

and anti-NS5A antibodies were diluted in 10% goat serum/horse serum, and the coverslips 471 

were incubated with antibodies at room temperature for 25 min. The cells were then washed 472 

3 times in PBS. The secondary antibody was diluted in goat serum/horse serum (1/500), and 473 

coverslips were incubated with a Cy3-conjugated antibody for 20 min. The cells were washed 474 

again with PBS. Nuclei were stained with DAPI (4’,6-diamidino-2-phenylindole). The 475 

coverslips were mounted on glass slides using 7 μL of mounting medium (Mowiol 4-88, 476 

Calbiochem). Confocal microscopy was performed with a LSM 880 confocal laser-scanning 477 

microscope (Zeiss) using a x63/1.4 numerical aperture oil immersion lens. Double-label 478 

immunofluorescence signals were sequentially collected by using single fluorescence 479 

excitation and acquisition settings to avoid crossover. Images were processed by using Image 480 

J software. 481 

Equilibrium density gradient analysis. Equilibrium density gradient analyses were 482 

performed as previously described (14) after concentration of viral preparation by 483 

polyethylene glycol precipitation as described (56). Briefly, viruses were harvested 48 h 484 

following electroporation. Approximately 80 mL of virus supernatants was precipitated using 485 

polyethylene glycol (PEG) 6000 to a final concentration of 8%. The mixture was shaken for 1 486 
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h on ice, centrifuged at 8,000 rpm (Beckman JLA-10.5 rotor) for 25 min, and then 487 

resuspended in 1 mL sterile PBS. The virus was then loaded on a 10-50% iodixanol gradient. 488 

The gradients were spun for 16 h at 36,000 rpm in an SW41 rotor (Beckman) and 489 

fractionated from the top. 490 

Core oligomerization. Huh-7 cells electroporated with mutant and wild-type RNA genomes 491 

were lysed at 48 h postelectroporation in lysis buffer (PBS/0.3% NP-40 and a protease 492 

inhibitor cocktail (Roche)) for 15 min at room temperature. Cell lysates were precleared by 493 

centrifugation at 14,000 rpm for 5 min at 4°C. Each sample was layered on top of 11 ml 10-494 

50 % iodixanol gradient and centrifuged in a Beckman SW41 Ti rotor (Beckman) at 36,000 495 

rpm for 16 h at 4°C. Fractions of 1 ml were collected from the top of each tube and analyzed 496 

by SDS-PAGE and immunoblotting. 497 

HCV core quantification. HCV core was quantified by a fully automated chemiluminescent 498 

microparticle immunoassay according to the manufacturer’s instructions (Architect HCVAg; 499 

Abbott, Germany) as previously described (57, 58).  500 

Western blotting. Western blotting experiments were performed as previously described (13). 501 

Cells were lysed in PBS lysis buffer (1% Triton X-100, 20 mM NEM, 2 mM EDTA, protease 502 

inhibitor cocktail; Roche). Cell lysates were then precleared by centrifugation at 14,000 x g 503 

for 5 min at 4°C. Protein samples were heated for 7 min at 70°C in Laemmli sample buffer. 504 

Following separation with SDS-PAGE, the proteins were transferred onto nitrocellulose 505 

membranes (Hybond-ECL; Amersham) and detected with specific antibodies. Following 506 

incubation with primary antibodies, the membranes were incubated with the corresponding 507 

peroxidase-conjugated anti-rat (Jackson), anti-rabbit (Amersham), anti-sheep (Amersham) or 508 

anti-mouse (Dako) antibodies. The proteins were then detected by enhanced 509 

chemiluminescence (ECL) (Amersham) as recommended by the manufacturer. 510 

CD81 interaction and immunoprecipitation assays. CD81 pulldown and 511 
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immunoprecipitation experiments were performed as previously described (59). Cells were 512 

lysed in PBS lysis buffer (1% Triton X-100, 20 mM NEM, 2 mM EDTA, protease inhibitor 513 

cocktail; Roche). Cell lysates were then cleared by centrifugation at 14,000 x g for 15 min at 514 

4°C. For CD81 pulldown, Glutathione-Sepharose beads (glutathione-Sepharose 4B; 515 

Amersham Bioscience) were washed twice with cold PBS to remove the storage buffer. For 516 

each cell lysate sample, 50 μL of glutathione beads was incubated with 10 μg of human 517 

CD81 (hCD81) large extracellular loop (LEL) glutathione S-transferase (GST) recombinant 518 

protein in 1 mL cold PBS containing 1% Triton X-100 for 2 h at 4°C. Following incubation, 519 

the glutathione-Sepharose beads were washed with cold PBS. Cell lysate samples containing 520 

E1E2 proteins were then incubated with CD81-LEL complexed with glutathione beads 521 

overnight at 4°C. The following day, the beads were washed five times with cold PBS and 522 

1% Triton X-100. Finally, the beads were resuspended in 30 μL of Laemmli buffer. Samples 523 

were heated at 70°C and loaded onto 10% SDS-PAGE, followed by western blotting to 524 

reveal the proteins of interest. For immunoprecipitation, 70 μL of protein A Sepharose beads 525 

was incubated with 10 μg of Rabbit anti-human IgG (Dako) in 1 mL cold PBS and 1% 526 

Triton X-100  for 2 h at 4°C. In parallel, 100 μL of cell lysates were incubated with 2 μg of 527 

Mab AR5A (anti-E1E2) or Mab IGH526 (anti-E1) in 400 μL cold PBS and 1% Triton X-100 528 

for 2 h at 4°C. Next, Protein A Sepharose beads were washed twice with cold PBS and 1% 529 

Triton X-100 and added to cell lysates. The mixture was then incubated for 90 min at 4°C. 530 

After incubation, the beads were washed five times with cold PBS and 1% Triton X-100. 531 

Finally, the beads were resuspended in 30 μL of Laemmli buffer. The presence of HCV 532 

envelope glycoproteins was then detected by western blotting.  533 

Entry inhibiton assays and neutralization assays. Viruses or cells were preincubated with 534 

human CD81-LEL, Mab AR5A, Mab IGH526 or anti-receptor antibodies for 2 h at 37°C. 535 

The viruses were then put in contact with Huh-7 cells. At 6 h post-infection, the inoculum 536 
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was removed and the cells were further incubated for 72 h with complete medium. The cells 537 

were then processed for immunofluorescence to measure residual infectivity.  538 

Fluorescence in situ hybridization (FISH) and colocalization with viral proteins. In Situ 539 

hybridization was performed as previously described (60). Briefly, cells were washed once 540 

with PBS and fixed with 500 µl of 4% paraformaldehyde for 20 min at room temperature, 541 

followed by three times washing with PBS. Fixed cells were processed for FISH analysis, 542 

using the QuantiGene ViewRNA ISH Cell Assay (Affymetrix) as recommended by the 543 

manufacturer.  544 

Graphs and statistics. Prism v5.0c (GraphPad Software Inc., La Jolla, CA) software was 545 

used to prepare graphs and to determine statistical significance of differences between data 546 

sets using the Mann-Whitney test.  547 

 548 
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Figure legends  766 

 767 

Figure 1: E1 N-terminal region sequence analyses. The E1 aa 192–270 sequence from 768 

HCV JFH1 strain (AB047639 ; genotype 2a) is indicated with respect to the polyproteins 769 

numbering. (A) Secondary structure of E1 N-terminal 79 aa region. E1 sequence of JFH1 770 

isolate with A4 epitope (specific of genotype 1a) engineered at its N-terminus (aa 197-207) is 771 

presented. The secondary structures corresponding to the α-helix and β-strands previously 772 

identified are highlighted in blue and yellow, respectively. Amino acid mutated in this study 773 

are indicated by a red dot. (B) Amino acid repertoires of the N-terminal region of E1 774 

ectodomain. The aa repertoire was deduced from the ClustalW multiple alignment of 19 775 

reference sequences from all confirmed genotypes and subtypes (http://www.euhcvdb.fr). 776 

Amino acids observed at a given position in fewer than two distinct sequences were not 777 

included. Amino acids observed at a given position in more than 17 distinct sequences are 778 

shown in capital letter. The degree of aa conservation at each position can be inferred from 779 

the extent of variability (with the observed aa listed in decreasing order of frequency from top 780 

to bottom) together with the similarity index according to ClustalW convention (asterisk, 781 

invariant; colon, highly similar; dot, similar).  782 

 783 

Figure 2: Effects of mutations on viral protein expression and infectivity. (A) Effects of 784 

mutations on viral protein expression. Huh-7 cells were electroporated with viral RNA 785 

transcribed from JFH1-derived mutants, and they were lysed at 48 h post-electroporation. 786 

Viral proteins were separated by SDS-PAGE and detected by western blotting with MAbs A4 787 

(anti-E1), 3/11 (anti-E2) and anti-NS5A. A western blotting analyzed with an anti-beta-788 

tubulin antibody was performed in parallel to verify that equal amounts of cell lysates had 789 

been loaded. (B) Infectivity of E1 mutants. Huh-7 cells were electroporated with viral RNA 790 
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transcribed from JFH1-derived mutants. At 48, 72, and 96 h post-electroporation, infectivities 791 

of the supernatants and intracellular viruses were determined by titration. Error bars indicate 792 

standard errors of the mean (SEM) from at least three independent experiments. P<0.05 for 793 

intracellular mutants Q193A, V194A, I212A, T213A, W214A, Q215A, V220A, L221A, 794 

H222A, R231A, G233A, W239A, V240A, P244A, I262A, D263A and M264A. P<0.05 for 795 

extracellular mutants I212A, T213A, W214A, Q215A, H222A, W239A and D263A. 796 

 797 

Figure 3: Analysis of core protein release for E1 mutants. Huh-7 cells were electroporated 798 

with viral RNA transcribed from JFH1-derived mutants. At 48 h postelectroporation, the 799 

amount of intracellular core antigen was determined in cell lysates (A), as well as in 800 

supernatants (B). A control experiment with a genome defective in virus assembly, ΔE1E2, is 801 

shown in panel C.  HCV core was quantified by a fully automated chemiluminescent 802 

microparticle immunoassay. Error bars indicate SD. P<0.05 for extracellular mutants I212A, 803 

T213A, W214A, Q215A, H222A and W239A. 804 

 805 

Figure 4: Effect of E1 mutations on HCV glycoproteins folding and E1E2 806 

heterodimerization. (A) Interaction of viral glycoproteins with HCV entry factor CD81. At 807 

48h post-electroporation, lysates were analyzed by GST pulldown using CD81-LEL-GST 808 

fusion protein. Pulled-down E1 and E2 were analyzed by SDS-PAGE and detected by 809 

western blotting with MAbs A4 and 3/11. (B and C) Interaction of HCV glycoproteins with 810 

the conformation-sensitive anti-E1E2 Mab AR5A (B) and anti-E1 Mab IGH526 (C). At 48h 811 

post-electroporation, E1 and E2 from cell lysates were analyzed by immunoprecipitation with 812 

Mabs AR5A and IGH526. Precipitated E1 and E2 were then separated by SDS-PAGE and 813 

detected by western blotting with Mabs A4 and 3/11. The weaker E1 signal observed with 814 
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two of our mutants (Q193A and V194A) is likely due to the involvement of these two 815 

residues in A4 epitope.  816 

 817 

Figure 5: Effect of E1 mutations on sensitivity to antibody neutralization and inhibition 818 

by CD81. CD81 inhibiton assays (A), AR5A neutralization experiments (B) and IGH526 819 

neutralization experiments (C), were performed by incubating E1 mutants or WT virus with 820 

increasing concentrations of human CD81-LEL, Mab AR5A or Mab IGH526. After 2 h of 821 

incubation at 37°C, the mixtures were put into contact with target cells, and the inoculum was 822 

replaced by fresh medium at 6h post-infection. At 72h post-infection, residual infectivity was 823 

measured by immunofluorescence. The values are the combined data from three independent 824 

experiments. The error bars represent SEM. P<0.05 for mutants T213A and I262A in all 825 

inhibitory conditions. 826 

 827 

Figure 6: Effect of E1 mutations on the recognition of HCV receptors. Huh-7 cells were 828 

pre-incubated for 2h at 37°C with increasing concentrations of antibodies targeting HCV 829 

receptors: anti-CD81 Mab JS81 (A), anti-SR-BI Mab C167 (B), anti-CLDN1 Mab OM8A9-830 

A3 (C) or anti-CLDN6 Mab  342927 (D). Cells were then incubated with E1 mutants or WT 831 

virus, and the inoculum was replaced by fresh medium at 6h post-infection. At 72h post-832 

infection, cells were processed for immunofluorescence to quantify the residual infectivity. 833 

The values are the combined data from three independent experiments. The error bars 834 

represent SEM. P<0.05 for mutants T213A and I262A in the presence of anti-CLDN1 and 835 

anti-CLDN6 antibodies. (E) Effect of E1 mutations on the recognition of CLDN1 and 836 

CLDN6. Huh-7 cells were pre-incubated for 2h at 37°C with a combination of anti-CLDN1 837 

(5 µg/ml) and anti-CLDN6 (10 µg/ml) Mabs. Cells were then incubated with E1 mutants or 838 

WT virus, and the inoculum was replaced by fresh medium at 6h post-infection. At 72h post-839 
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infection, cells were processed for immunofluorescence to quantify the residual infectivity. 840 

The values are the combined data from three independent experiments. The error bars 841 

represent SEM. 842 

 843 

Figure 7: Characterization of the secreted form of D263A mutant. Concentrated 844 

supernatant of cells electroporated with HCV were separated by sedimentation through a 10-845 

50% iodixanol gradient. Fractions were collected from the top and analyzed for their 846 

infectivity as well as their viral RNA (A) and core protein content (B). (C) Analyses of 847 

intracellular genomic replication for D263A mutant. Intracellular HCV genome copies in 848 

electroporated cells were quantified at different times post-electroporation. Control 849 

experiments with WT and ∆E1E2 and GND mutants were performed. The error bars 850 

represent SD. 851 

 852 

Figure 8: Analysis of core protein oligomerization by velocity sedimentation. Cells 853 

electroporated with  D263A mutant, ΔE1E2 or wild-type JFH1 RNA genomes were lysed at 854 

48 h post-electroporation. Lysates were subjected to velocity sedimentation on a 10 to 50% 855 

iodixanol density gradient, followed by western blot analysis of core protein. Fractions were 856 

collected from the top. A control gradient was performed in parallel with extracts of cells 857 

electroporated with the wild-type genome that had been treated with 1% SDS (lower panel). 858 

The input represents 8% of lysates. 859 

 860 

Figure 9: Subcellular localization of HCV proteins in the context of D263A mutant.  861 

Electroporated cells grown on coverslips were fixed at 48h post-electroporation and 862 

processed for immunofluorescence with antibodies against viral proteins (E1, E2, core or 863 

NS5A). Lipid droplets were stained with BODIPY 493/503 (green). Rat anti-E2 Mab 3/11 864 
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was used for the colocalization with E1 (mouse anti-E1 Mab A4). Anti-core Mab ACAP27 865 

was used for the colocalization with lipid droplets (LD). The NS5A protein was labeled with 866 

anti-NS5A (9E10). Nuclei were stained with DAPI (blue). Representative confocal images of 867 

individual cells are shown with the merge images in the right column. Bar, 25 µm. 868 

 869 

Figure 10: Subcellular localization of D263A mutant and wild-type RNA by fluorescent 870 

in situ hybridization (FISH). Huh-7 cells were electroporated with D263A and wild-type 871 

(WT) RNA genomes, fixed at 48h post-electroporation and processed for HCV positive 872 

strand specific RNA detection, followed by immunofluorescence staining for core with Mab 873 

ACAP27 (A) or for E1 with Mab A4 (B). Scale bar is 20 μm. (C) Pearson’s correlation 874 

coefficient. Error bars represent standard deviation from 21 different images (*** p = 875 

0.0004).  876 

 877 

Figure 11: Position of identified amino acid residues on the 3D structure of E1 N-878 

terminal region. The residues identified in this study are highlighted on the structural model 879 

of the N-terminal region of E1 from the JFH1 isolate. This model was built using the Swiss-880 

Model web server (53) with the crystallographic structure of E1 (H77 strain) (PDB code 881 

4UOI) as template. (A) Residues for which the mutation toward an alanine showed an 882 

interesting or lethal phenotype are colored in green and orange respectively and their side 883 

chain shown as stick. (B) Hydrogen bonds network established by the D263 residue with 884 

others residues from the β4 and β5 strands. The figure was generated using the PyMOL 885 

Molecular Graphics System, Version 1.8 Schrödinger, LLC.  886 
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