# An improved branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem 

Guillaume Marques, Ruslan Sadykov, Jean-Christophe Deschamps, Rémy<br>Dupas

## - To cite this version:

Guillaume Marques, Ruslan Sadykov, Jean-Christophe Deschamps, Rémy Dupas. An improved branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem. Computers and Operations Research, 2019, 114, 10.1016/j.cor.2019.104833 . hal-02112287v1

## HAL Id: hal-02112287 <br> https://hal.science/hal-02112287v1

Submitted on 26 Apr 2019 (v1), last revised 3 Nov 2020 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# An improved branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem 

Guillaume Marques ${ }^{1,2,3}$, Ruslan Sadykov ${ }^{2,3}$, Jean-Christophe Deschamps ${ }^{1}$, and Rémy Dupas ${ }^{1}$<br>${ }^{1}$ IMS, Univ. of Bordeaux, Bordeaux INP, CNRS (UMR 5218), 351<br>Cours de la libération, 33405 Talence cedex, France<br>${ }^{2}$ Inria Bordeaux - Sud-Ouest, 200 Avenue de la Vieille Tour, 33405<br>Talence cedex, France<br>${ }^{3}$ IMB, Univ. of Bordeaux, CNRS (UMR 5251), Bordeaux INP, 351<br>Cours de la libération, 33405 Talence cedex, France


#### Abstract

In the paper, we propose a branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem in which delivery of products from a depot to customers is performed using intermediate depots called satellites. Our algorithm incorporates significant improvements recently proposed in the literature for the standard capacitated vehicle routing problem such as bucket graph based labeling algorithm for the pricing problem, automatic stabilization, limited memory rank1 cuts, and strong branching. In addition, we make some specific problem contributions. First, we introduce a new route based formulation for the problem which does not use variables to determine product flows in satellites. Second, we introduce a new branching strategy which significantly decreases the size of the branch-and-bound tree. Third, we introduce a new family of satellite supply inequalities, and we empirically show that it improves the quality of the dual bound at the root node of the branch-and-bound tree. Finally, extensive numerical experiments reveal that our algorithm can solve to optimality all literature instances with up to 200 customers and 10 satellites for the first time and thus double the size of instances which could be solved to optimality.


## 1 Introduction

In a context of economic globalization, the growth of urban population leads to an increase in freight transportation in cities. Freight transportation may deteriorate the quality of the urban environment with, for example, high
noise levels, greenhouse gas emissions, and decrease of air quality. Moreover, freight transportation faces several constraints such as reduced access within cities and deliveries within time-windows. As a result, freight distribution patterns in city logistics change Taniguchi and Thompson, 2002. In the past, customers were delivered straight from depots located on the outskirts of cities. Nowadays, transporters tend to use two-tier distribution systems. In the first tier, large urban trucks ships freight from warehouses or production sites to intermediate distribution facilities called satellites. In satellites, freight is processed and consolidated. Freight is then loaded in small city freighters which deliver customers located in city centers.

At the strategic level, two-tier distribution systems are considered in location-routing problems Crainic et al., 2011. These are integrated problems in which we take decisions on both locating facilities and routing from open facilities. At tactical and operational levels, locations of depots and satellites are known. We plan only routing of vehicles. However, we should take routing decisions on both levels at the same time to devise cost-effective solutions in two-tier distribution systems. Such integration gave rise to twoechelon routing problems Crainic et al., 2009. The first such problem proposed in the literature by Gonzalez-Feliu et al., 2007 is the two-echelon capacitated vehicle routing problem (2E-CVRP).

In the 2E-CVRP, we must determine the number of goods to be shipped from the depot to the satellites and from satellites to customers, and the optimal routes connecting entities in each level such that vehicle capacities are not exceeded. We aim at minimizing the sum of handling costs at satellites and transportation costs depending on the total distance traveled by all vehicles.

Recently, several exact algorithms for the 2E-CVRP have been proposed in the literature. The most efficient one by Baldacci et al., 2013 is based on an enumeration of collections of first-level routes. Thus, it can efficiently tackle only instances with a small number of satellites (up to six). Moreover, this algorithm solves to optimality instances with up to 100 customers whereas the best exact algorithms for other vehicle routing problems can handle up to 300 customers Pecin et al., 2017a. Santos et al., 2015 proposed the only branch-cut-and-price algorithm in the literature for the 2 E CVRP. This algorithm can be used to solve instances with a larger number of satellites, but experimentations show that it is less efficient than the one of Baldacci et al., 2013.

In this paper, we propose an improved branch-cut-and-price (BCP) algorithm for the $2 \mathrm{E}-\mathrm{CVRP}$ which is built on recent advances for the classical capacitated vehicle routing problem (CVRP). To further improve the efficiency of our BCP algorithm, we propose the following problem-specific enhancements:

- A new route based formulation for the problem which does not involve
variables which explicitly define product flow in satellites. New level balancing constraints guarantee flow conservation in satellites.
- A new family of inequalities to improve the quality of the linear programming (LP) relaxation of the formulation. These inequalities are inspired by the depot capacity constraints introduced for the capacitated location-routing problem by Belenguer et al., 2011.
- A new branching strategy which uses variables defining the number of urban trucks visiting a subset of satellites.

To improve the current primal bound, we employed a column generation based heuristic in the course of the algorithm. Our BCP algorithm with the embedded heuristic outperformed largely the state-of-the-art exact approach by Baldacci et al., 2013 for the problem, since it solved to optimality all instances available in the literature with up to 200 customers and 10 satellites.

Finally, we generated a new set of large instances for the problem to inspire further research on the 2E-CVRP. This set involves instances with up to 300 customers and 15 satellites. These instances are derived from ones recently proposed by Schneider and Löffler, 2019 for the capacitated location-routing problem.

The remaining of the paper is organized as follows. Section 2 reviews the literature. Section 3 describes the standard and the new formulations of the problem. Section 4 introduces the new family of satellite supply inequalities. Section 5 describes the proposed branch-cut-and-price algorithm. Section 6 reveals and discusses the computational results. Section 7 concludes and presents further research perspectives.

## 2 Literature review

Gonzalez-Feliu et al., 2007] first considered the 2E-CVRP. They proposed a freight-flow formulation enhanced by two families of valid inequalities. Their branch-and-cut algorithm solved to optimality instances with up to 22 customers and 2 satellites. Perboli et al., 2011 improved these results. The authors strengthened the formulation with one family of valid inequalities. They solved to optimality some instances with 33 customers. Two matheuristics were also suggested. They found feasible solutions to instances up to 50 customers with $10 \%$ of average gap from the lower bound.

Later, Jepsen et al., 2013 pointed out that the formulation in Perboli et al., 2011 is not correct for instances with more than two satellites. They proposed an alternative formulation that combines the relaxation of the split-delivery CVRP by Belenguer et al., 2000 for the first level and the model for the capacitated location routing problem by Contardo et al., 2013 for the second
level. Although this formulation is an outer approximation, its LP relaxation is stronger than one of Perboli et al., 2011. Since this formulation has an exponential number of constraints, the authors used a branch-and-cut algorithm. A specialized branching scheme was employed to cut non-feasible integer solutions. This approach solved to optimality instances with up to 50 customers and 5 satellites. It remains the best branch-and-cut algorithm for the problem in the literature.

Contardo et al., 2012 proposed another branch-and-cut algorithm for the two-echelon capacitated location-routing problem. This problem is a generalization of the 2E-CVRP in which there are several depots and opening costs for satellites. Their branch-and-cut algorithm solved to optimality instances with up to 50 customers and 10 potential satellites.

Santos et al., 2015 proposed the first branch-cut-and-price algorithm for the 2E-CVRP. They considered a route based formulation strengthened by some valid inequalities from the CVRP literature. First-level routes are enumerated whereas second-level routes are priced by the shortest path problem with resource constraints. The pricing problem generates nonelementarity routes. They used branching strategies in the following priority order: (1) branching on the number of vehicles traveling on a first-level route, (2) branching on the number of second-level vehicles starting from a satellite, and (3) branching on the use of an arc by a second-level route. The computational results of [Santos et al., 2015] were similar to those by Jepsen et al., 2013.

The exact approach by Baldacci et al., 2013 also uses a route based formulation. The method is based on an intelligent enumeration of collections of first-level routes. Authors devised lower and upper bounding procedures to limit the number of subsets which may lead to an optimal solution. By fixing a subset of first-level routes, the problem is reduced to the multi-depot capacitated vehicle routing problem with limited depot capacities. The latter was solved by an adaptation of the algorithm by Baldacci and Mingozzi, 2009. Computational experiments showed that the overall approach outperforms the one by Jepsen et al., 2013. Baldacci et al., 2013 could solve instances with up to 100 customers and 5 satellites. Their approach remains the best exact algorithm in the literature until now. However, the fact that collections of first-level routes are enumerated does not allow one to employ this approach for instances with 10 satellites or more.

There are several heuristic approaches for the 2E-CVRP in the literature. Hemmelmayr et al., 2012 proposed an adaptive large neighborhood search based heuristic that works for both 2E-CVRP and the location-routing problem. It largely improved the best feasible solutions found by Perboli et al., 2011. Moreover, the authors proposed a new test set of instances with up to 200 customers and 10 satellites.

Zeng et al., 2014 suggested a hybrid heuristic which is composed of a greedy randomized adaptive search procedure (GRASP) with a route-
first cluster-second procedure embedded in a variable neighborhood descent (VND). Breunig et al., 2016 developed an improved large neighborhoodbased hybrid meta-heuristic. It combines enumerative local search with destroy-and-repair principles, as well as some tailored operators to optimize the selections of satellites. Both these approaches improved the best-known solutions for many instances.

Recently, two matheuristics were proposed in the literature. Wang et al., 2017 employed a mixed-integer mathematical model for the 2E-CVRP, in which arc variables are used for the first level, and path variables for the second level. They used variable neighborhood search to construct the set of secondlevel routes, and they then solved the mathematical model to improve the obtained solution. The authors improved 13 best-known solutions. Finally, Amarouche et al., 2018 used a similar approach in which a pool of routes is collected by a local search heuristic combined with a destroy-and-repair method. Then, the route based formulation is solved with the hope to improve the best solution found so far. This approach improves 7 best-known solutions for the largest instances of the 2E-CVRP.

## 3 Formulation

Let us now formally define the problem. At the first level, a set $\mathcal{K}$ of homogeneous urban trucks ships freight from a depot denoted as 0 to a set $\mathcal{S}$ of intermediate depots, called satellites. At the second level, a set $\mathcal{L}$ of homogeneous city freighters picks freight at satellites and deliver it to a set $\mathcal{C}$ of customers. Each vehicle must return to the place from where it started its tour (depot for urban trucks and satellites for city freighters). Urban trucks have a capacity of $Q_{1}$ items, and city freighters have a capacity of $Q_{2}$ items. A satellite $s \in \mathcal{S}$ can hold up to $L_{s}$ city freighters and charges $f_{s}^{H}$ for each processed item of freight. Each customer $c \in \mathcal{C}$ asks for $d_{c}$ items of freight and must be visited exactly once. At each satellite, the total amount of freight delivered by urban trucks must be equal to the amount of freight picked by city freighters that start at this satellite. The objective of the problem is to minimize the sum of handling costs $f^{H}$ and transportation costs $f^{T}$.

We use the route based formulation to model the problem. The first level is similar to the split-delivery CVRP since several urban trucks can supply a satellite. However, the amount of freight delivered to each satellite is not known. A complete undirected graph $G_{1}=\left(V_{1}, E_{1}\right), V_{1}=\{0\} \cup \mathcal{S}$, represents the first level of the distribution system. Let $P$ be the set of feasible first-level routes and let $\tilde{z}_{e}^{p} \in \mathbb{N}$ denote the number of times path $p \in P$ uses edge $e \in E_{1}$.

The second level corresponds to the multi-depot CVRP where depots are satellites. Each customer is visited by one city freighter, and each satellite
cannot supply more freight than the amount delivered to it by urban trucks. This level is represented by an undirected graph $G_{2}=\left(V_{2}, E_{2}\right)$ where $V_{2}=$ $\mathcal{C} \cup \mathcal{S}$ and $E_{2}=\{(i, j) \mid i \in \mathcal{S} \cup \mathcal{C}, j \in \mathcal{C}, i \neq j\}$. For any satellite $s \in \mathcal{S}$, let $R_{s}$ be the set of feasible second-level routes starting and finishing in $s$. We denote $R=\cup_{s \in \mathcal{S}} R_{s}$. A second-level route $r \in R$ is described by vector $\tilde{x}^{r}$ where element $\tilde{x}_{e}^{r} \in \mathbb{N}$ denotes the number of times route $r$ uses edge $e \in E_{2}$. We also introduce vector $\tilde{y}^{r}$ where element $\tilde{y}_{c}^{r} \in \mathbb{N}$ denotes the number of times route $r$ visits customer $c \in \mathcal{C}$. Given graph $G_{i}, i=1$, 2 , we denote as $\delta_{i}(v)$ the set of edges in $E_{i}$ incident to vertex $v \in V_{i}$.

The cost of traversing edge $e \in E_{1} \cup E_{2}$ is denoted by $f_{e}^{T}$. From now on, we make two assumptions. First, transportation costs $f^{T}$ satisfy the triangle inequality. Otherwise, we transform the instance to an equivalent one: if the minimum cost path between two vertices $v, v^{\prime}$ passes by other vertices, we set the cost $f_{\left(v, v^{\prime}\right)}^{T}$ to the cost of the minimum path. The second assumption is that transportation costs are symmetric. If this is not the case, graphs $G_{1}$ and $G_{2}$ become directed ones, edges become arcs, and all $\tilde{z}_{e=\left(v, v^{\prime}\right)}$ and $\tilde{x}_{e=\left(v, v^{\prime}\right)}$ depending on edges are replaced by $\tilde{z}_{a=\left(v, v^{\prime}\right)}+\tilde{z}_{a=\left(v^{\prime}, v\right)}$ and $\tilde{x}_{a=\left(v, v^{\prime}\right)}+\tilde{x}_{a=\left(v^{\prime}, v\right)}$ depending on arcs. All instances in the 2E-CVRP literature satisfy these two assumptions.

### 3.1 Standard formulation

We now describe the standard route based formulation for the 2E-CVRP, used in Baldacci et al., 2013, Santos et al., 2015, Amarouche et al., 2018. Integer variable $\lambda_{p}$ is equal to the number of urban trucks traveling on first-level route $p \in P$. We denote as $S_{p}$ the set of satellites visited by route $p \in P: S_{p}=\left\{s \in \mathcal{S}: \sum_{e \in \delta_{1}(s)} \tilde{z}_{e}^{p}=2\right\}$. We denote as $P_{S}$ the set of first-level routes visiting at least one satellite in $S \subseteq \mathcal{S}: P_{S}=\left\{p \in P: S_{p} \cap S \neq \emptyset\right\}$. Continuous variable $w_{p s}$ is equal to the amount of freight that first-level route $p \in P_{\{s\}}$ delivers to satellite $s \in S_{p}$. Binary variable $\mu_{r}$ is equal to one if and only if a city freighter travels on second-level route $r \in R$. To simplify the presentation, we introduce the continuous auxiliary variable $b_{s}$ that is equal to the total amount of freight delivered to satellite $s \in \mathcal{S}$.

$$
\begin{array}{rlr}
\text { (F1) } \min & \sum_{p \in P} \sum_{e \in E_{1}} f_{e}^{T} \tilde{z}_{e}^{p} \lambda_{p}+\sum_{r \in R} \sum_{e \in E_{2}} f_{e}^{T} \tilde{x}_{e}^{r} \mu_{r}+\sum_{s \in \mathcal{S}} f_{s}^{H} b_{s} \\
\text { s.t. } & \sum_{r \in R} \sum_{c \in \mathcal{C}} \tilde{y}_{c}^{r} \mu_{r}=1 & c \in \mathcal{C} \\
& \sum_{r \in R_{s}} \mu_{r} \leq L_{s} & s \in \mathcal{S} \\
& \sum_{r \in R} \mu_{r} \leq|\mathcal{L}| & \tag{4}
\end{array}
$$

$$
\begin{align*}
\sum_{p \in P} \lambda_{p} & \leq|\mathcal{K}| & &  \tag{5}\\
\sum_{s \in S_{p}} w_{p s} & \leq Q_{1} \lambda_{p} & & p \in P  \tag{6}\\
b_{s} & =\sum_{p \in P_{\{s\}}} w_{p s} & & s \in \mathcal{S}  \tag{7}\\
b_{s} & =\sum_{r \in R_{s}} \sum_{c \in \mathcal{C}} d_{c} \tilde{y}_{c}^{r} \mu_{r} & & s \in \mathcal{S}  \tag{8}\\
\lambda_{p} & \in \mathbb{N} & & p \in P  \tag{9}\\
\mu_{r} & \in\{0,1\} & & r \in R  \tag{10}\\
w_{p s} & \geq 0 & & p \in P, s \in S_{p} \tag{11}
\end{align*}
$$

Objective function (1) minimizes the sum of transportation and handling costs. Constraints (2) ensures each customer is visited by exactly one secondlevel route. Constraints (3), (4), and (5) are upper bounds on the number of used vehicles. Constraints (6) make sure that the capacity of urban trucks is not exceeded. Constraints (7) and (8) ensure the flow balance between the two distribution levels. Constraints (9), (10) and (11) define domains of variables.

### 3.2 Modified formulation

In (F1), we use variable $w$ together with constraints (6) and (7) to ensure the flow balance between two distribution levels. In the modified formulation, we replace them by another set of constraints. To simplify further the presentation, we introduce auxiliary integer variables $u_{S}$ that define the number of urban trucks visiting a non-empty subset $S \subseteq \mathcal{S}$ of satellites. The modified formulation is then

$$
\begin{array}{ll}
\text { (F2) } \begin{array}{ll}
\text { min } & \text { (1) } \\
\text { s.t. } & (2)-(5),(8)-10) \\
& u_{S} \\
& =\sum_{p \in P_{S}} \lambda_{p} \quad S \subseteq \mathcal{S}, S \neq \emptyset \\
& \sum_{s \in S} b_{s} \leq Q_{1} u_{S} \quad S \subseteq \mathcal{S}, S \neq \emptyset
\end{array}, ~
\end{array}
$$

Constraints (12) define variables $u$. Level balancing constraints (13) replace variables $w$ and constraints (6), (7), (11). Validity of constraints (13) follows from:

$$
\sum_{s \in S} b_{s} \stackrel{\sqrt[\boxed{7}]{=}}{=} \sum_{s \in S} \sum_{p \in P_{\{s\}}} w_{p s}=\sum_{p \in P_{S}} \sum_{s \in S_{p}} w_{p s} \stackrel{\sqrt[67]{\sqrt[412]]{|c|}}}{=} Q_{1} \sum_{p \in P_{S}} \lambda_{p} .
$$

We will now prove that constraints (13) are sufficient to guarantee the existence of a feasible freight flow at satellites for every solution $(\bar{\lambda}, \bar{\mu})$ of formulation (F2). Remember that $b$ and $u$ are auxiliary variables. Their values $\bar{b}$ and $\bar{u}$ can be computed from solution $(\bar{\lambda}, \bar{\mu})$ using (8) and (12). The proof is illustrated in Figure 1 .


Figure 1: Illustration for graph $\bar{G}$ and its minimum cut in Proposition 1 .

Proposition 1. For every feasible solution $(\bar{\lambda}, \bar{\mu})$ to the LP relaxation of formulation (F2) it exists a feasible solution $(\bar{\lambda}, \bar{\mu}, \bar{w})$ to the LP relaxation of formulation (F1).

Proof. Given a solution $(\bar{\lambda}, \bar{\mu})$ and its computed values $(\bar{b}, \bar{u})$, we construct a directed graph $\bar{G}=(\bar{V}, \bar{A})$. Set $\bar{V}$ of nodes contains source $\tilde{s}$, sink $\tilde{t}$, set $\bar{P}=\left\{p \in P: \bar{\lambda}_{p}>0\right\}$ of nodes representing first-level routes in the solution, and set $\bar{S}=\left\{s \in \mathcal{S}: \bar{b}_{s}>0\right\}$ of nodes representing satellites used in the solution. Set $\bar{A}$ of arcs is the union of the following three sets: $\bar{A}_{1}$ connects the source with $\bar{P}, \bar{A}_{2}$ connects $\bar{P}$ with $\bar{S}$, and $\bar{A}_{3}$ connects $\bar{S}$ with the sink. An $\operatorname{arc}(\tilde{s}, p)$ in $\bar{A}_{1}$ has capacity $Q_{1} \bar{\lambda}_{p}$. An $\operatorname{arc}(p, s)$ belongs to $\bar{A}_{2}$ if and only if $s \in S_{p}$ and has infinite capacity. An $\operatorname{arc}(s, \tilde{t})$ in $\bar{A}_{3}$ has capacity $\bar{b}_{s}$.

Let us now prove by contradiction that the maximum value of the $\tilde{s}-\tilde{t}$ flow in graph $\bar{G}$ is equal to $\sum_{c \in \mathcal{C}} d_{c}=d(\mathcal{C})$. Suppose that the maximum flow is strictly less than $d(\mathcal{C})$. Let $\bar{V}^{\prime}$ be the subset of $\bar{V}$ obtained from a minimum $\tilde{s}-\tilde{t}$ cut in $\bar{G}$, $\tilde{s} \in \bar{V}^{\prime}$. Let $\bar{S}^{\prime}=\bar{V}^{\prime} \backslash \bar{S}$ and $\bar{P}^{\prime}=\bar{V}^{\prime} \backslash \bar{P}$. We denote as $\delta\left(\bar{V}^{\prime}\right)=\left\{\left(v, v^{\prime}\right) \in \bar{A} \mid v \in \bar{V}^{\prime}, v^{\prime} \notin \bar{V}^{\prime}\right\}$ the set of arcs forming the minimum cut. From the supposition and the max-flow-min-cut theorem it follows that the total capacity of $\delta\left(\bar{V}^{\prime}\right)$ is less than $d(\mathcal{C})$. Thus $\delta\left(\bar{V}^{\prime}\right)$ contains at least one arc in $\bar{A}_{1}$ and does not contain all arcs in $\bar{A}_{3}$. Therefore, the total capacity of arcs in $\bar{A}_{1} \cap \delta\left(\bar{V}^{\prime}\right)$ is strictly less than the total capacity of $\operatorname{arcs}$ in $\bar{A}_{3} \backslash \delta\left(\bar{V}^{\prime}\right)$ :

$$
\begin{equation*}
\sum_{p \in \bar{P}^{\prime}} Q_{1} \bar{\lambda}_{p}<\sum_{s \in \bar{S}^{\prime}} \bar{b}_{s} \tag{14}
\end{equation*}
$$

Set $\delta\left(\bar{V}^{\prime}\right)$ does not contain any arc in $\bar{A}_{2}$ as they have infinite capacity. Thus $\bar{V}^{\prime} \cap \bar{P} \cap P_{\bar{S}^{\prime}}$ is empty, and $\bar{\lambda}_{p}=0$ for all $p \in P_{\bar{S}^{\prime}} \backslash \bar{P}^{\prime}$. From the latter and (14), it follows that $\sum_{s \in \bar{S}^{\prime}} \bar{b}_{s}>Q_{1} \sum_{p \in P_{S^{\prime}}} \bar{\lambda}_{p}$ which violates constraints (12) and (13) for set $\bar{S}^{\prime}$ of satellites. Thus $(\bar{\lambda}, \bar{\mu})$ is not a feasible solution to the LP relaxation of (F2) which leads to a contradiction.

We have just proved that the maximum flow in graph $\bar{G}$ has value $d(\mathcal{C})$. We now set $\bar{w}_{p s}$ equal to the flow from $p \in \bar{P}$ to $s \in \bar{S}$ for every $(p, s) \in \bar{A}_{2}$, and to 0 otherwise. By construction of graph $\bar{G}$, constraints (6) and (7) are satisfied by $(\bar{\lambda}, \bar{b}, \bar{w})$, and $(\bar{\lambda}, \bar{\mu}, \bar{w})$ is a feasible solution to the LP relaxation of (F1).

Since the number of constraints (12) and (13) is exponential, we should generate them dynamically. The proof of Proposition 1 gives a method to separate both integer and fractional solutions of (F2). In the separation procedure, we search for a minimum cut in graph $\bar{G}$ constructed from $\bar{\lambda}$ and $\bar{\mu}$. Once set $\bar{S}^{\prime}$ of satellites is found, it is further separated into subsets such that there is no path in $\bar{P}$ visiting two satellites in different subsets. Then, we add constraints (12) and (13) for every such subset of satellites.

### 3.3 Valid inequalities

In our BCP algorithm, we use four families of valid inequalities. In this section, we present the first three families. To simplify the presentation, we introduce auxiliary variables $x$ and $y$ :

$$
x_{e}^{s}=\sum_{r \in R_{s}} \tilde{x}_{e}^{r} \mu_{r}, \quad s \in \mathcal{S}, e \in E_{2}, \quad y_{c}^{s}=\sum_{r \in R_{s}} \tilde{y}_{c}^{r} \mu_{r}, \quad s \in \mathcal{S}, c \in \mathcal{C}
$$

Integer variable $x_{e}^{s}$ is equal to the number of times edge $e \in E_{2}$ is used by city freighters started from satellite $s \in \mathcal{S}$. Binary variable $y_{c}^{s}$ is equal to one if and only if customer $c \in \mathcal{C}$ is visited by a city freighter started from satellite $s \in \mathcal{S}$.

### 3.3.1 Rounded capacity cuts

Rounded capacity cuts were introduced by Laporte and Nobert, 1983 for the CVRP. Term $\left\lceil d(C) / Q_{2}\right\rceil$ is a lower bound on the number of city freighters which have to visit at least one customer in $C$. Therefore, the next rounded capacity cuts are valid:

$$
\begin{equation*}
\sum_{s \in \mathcal{S}} \sum_{e \in \delta_{2}(C)} x_{e}^{s} \geq 2\left\lceil\frac{d(C)}{Q_{2}}\right\rceil, \quad C \subseteq \mathcal{C} . \tag{15}
\end{equation*}
$$

Constraints (15) are separated using the CVRPSEP package Lysgaard, 2018 which implements the heuristic by Lysgaard et al., 2004.

### 3.3.2 Chvátal-Gomory rank-1 cuts

Here we consider Chvátal-Gomory rounding of set-partitioning constraints (2) relaxed to $\leq$ inequalities. Consider a vector $\alpha$ of multipliers such that $\alpha_{c} \geq 0$, $c \in \mathcal{C}$. Then, the following rank- 1 cut is valid:

$$
\begin{equation*}
\sum_{s \in S} \sum_{r \in R_{s}}\left\lfloor\sum_{c \in \mathcal{C}} \alpha_{c} \tilde{y}_{c}^{r}\right\rfloor \mu_{r} \leq\left\lfloor\sum_{c \in \mathcal{C}} \alpha_{c}\right\rfloor . \tag{16}
\end{equation*}
$$

An inequality (16) obtained using a vector of multipliers with $l$ positive components is called an l-row rank-1 cut. If all positive components of $\alpha$ are the same, the corresponding inequality is called a subset-row cut. Jepsen et al., 2008 first introduced 3-row subset-row cuts. Pecin et al., 2017a used $l$-row subset-row cuts with $l \leq 5$. General $l$-row rank- 1 cuts with $l \leq 5$ were considered by Pecin et al., 2017b. They determined all dominant vectors of multipliers for such cuts: if an $l$-row rank- 1 cut with $l \leq 5$ is violated, at least one rank-1 cut obtained using a dominant vector of multipliers is violated.

Similarly to Sadykov et al., 2017, separation of l-row rank-1 cuts with $l \leq 5$ is performed using a local search heuristic separately for every dominant vector of multipliers. We employ the limited memory technique by Pecin et al., 2017a to reduce the impact of rank- 1 cuts on the solution time of the pricing problem.

### 3.3.3 Visited satellite inequalities

A customer can be visited by a route $r \in R_{s}$ only if satellite $s$ is visited by at least one urban truck. Therefore, next visited satellite inequalities (VCI) are valid:

$$
\begin{equation*}
y_{c}^{s} \leq u_{\{s\}}, \quad c \in \mathcal{C}, s \in \mathcal{S} \tag{17}
\end{equation*}
$$

Although inequalities 17) are rather straightforward, we did not find any work in the literature which uses them. Separation of constraints 17 is performed by enumeration of all pairs $(c, s) \in \mathcal{C} \times \mathcal{S}$.

### 3.3.4 Lower bounds on the number of vehicles

We define lower bounds on the number of urban trucks

$$
\begin{equation*}
\sum_{p \in P} \lambda_{p} \geq\left\lceil\frac{d(\mathcal{C})}{Q_{1}}\right\rceil \tag{18}
\end{equation*}
$$

and the number of city freighters

$$
\begin{equation*}
\sum_{r \in R} \mu_{r} \geq\left\lceil\frac{d(\mathcal{C})}{Q_{2}}\right\rceil \tag{19}
\end{equation*}
$$

Moreover, a subset $S$ of satellites must be visited by enough urban trucks to supply the demand that cannot be delivered from satellites in $\mathcal{S} \backslash S$. Therefore, the next lower bound on $u_{S}$ is valid :

$$
\begin{equation*}
u_{S} \geq\left\lceil\frac{d(\mathcal{C})-\sum_{s \in \mathcal{S} \backslash S} L_{s} Q_{2}}{Q_{1}}\right\rceil, \quad S \subset \mathcal{S} \tag{20}
\end{equation*}
$$

Inequalities (20) are useful when the number of city freighters that can start from satellites is limited $\left(L_{s}<|\mathcal{L}|, s \in \mathcal{S}\right)$.

## 4 New family of valid inequalities

We propose a new family of satellite supply inequalities (SSI) inspired by the depot capacity constraints introduced for the capacitated location-routing problem by Belenguer et al., 2011. To simplify the presentation below, we denote $C^{\complement}=\mathcal{C} \backslash C$ and $S^{\llcorner }=\mathcal{S} \backslash S$. Let us introduce SSI through an example.

Example 1. Consider urban trucks with capacity $Q_{1}=10$ and city freighters with capacity $Q_{2}=6$. Figure 2 shows a fractional solution $(\bar{u}, \bar{\mu})$ to the $L P$ relaxation of (FQ). Here $\mathcal{S}=\left\{s_{1}, s_{2}\right\}$ and set $\mathcal{C}$ contains seven customers. Consider subset $C$ of customers with $d(C)=11$. Consider also subset $S=\left\{s_{2}\right\}$ of satellites with $\bar{u}_{S}=1$. Clearly, $S$ can supply only demand of at most $Q_{1} \bar{u}_{S}=10$ units and thus cannot supply set $C$ of customers alone. In this fractional solution, $C$ is supplied by 1.8 city freighters coming from $S$ and 0.2 city freighters coming from $S^{\complement}$. The violated SSI states that either two or more urban trucks should visit $S=\left\{s_{2}\right\}$ or at least one city freighter coming from satellites in $S^{\complement}=\left\{s_{1}\right\}$ should visit some customers in $C$ :

$$
\sum_{s \in S^{\complement}} \sum_{e \in \delta(C)} x_{e}^{s} \geq 2 \cdot\left(2-u_{S}\right)
$$

### 4.1 Satellite supply inequalities

We now define $g^{C}(u)$ as the function which gives a lower bound on the number of city freighters required to cover the demand of a subset $C$ of customers that $\lfloor u\rfloor$ urban trucks cannot supply:

$$
g^{C}(u)=\max \left\{0,\left\lceil\frac{d(C)-Q_{1}\lfloor u\rfloor}{Q_{2}}\right\rceil\right\}
$$

Proposition 2. Given $C \subset \mathcal{C}$ and $S \subset \mathcal{S}$, the following inequality is valid for the 2E-CVRP

$$
\begin{equation*}
\sum_{s \in S^{\complement}} \sum_{e \in \delta_{2}(C)} x_{e}^{s} \geq 2 \cdot g^{C}\left(u_{S}\right) \tag{21}
\end{equation*}
$$



Figure 2: Example of a satellite supply inequality, violated for given $S$ and $C$.

Proof. Consider a feasible solution ( $\bar{x}, \bar{b}, \bar{u}$ ) of formulation (F2). The following rounded capacity inequality is satisfied by $\bar{x}$ and $\bar{b}$ :

$$
\begin{equation*}
\sum_{s \in S^{\natural}} \sum_{e \in \delta_{2}(C)} \bar{x}_{e}^{s} \geq 2\left\lceil\frac{d(C)-\sum_{s \in S} \bar{b}_{s}}{Q_{2}}\right\rceil \tag{22}
\end{equation*}
$$

From constraint (13) and the integrality of variable $\bar{u}_{S}$, it follows

$$
\begin{equation*}
\sum_{s \in S} \bar{b}_{s} \leq Q_{1} \bar{u}_{S}=Q_{1}\left\lfloor\bar{u}_{S}\right\rfloor . \tag{23}
\end{equation*}
$$

By combining (22) and (23) we obtain that (21) is satisfied by $\bar{x}$ and $\bar{u}$.
Function $g^{C}(u)$ is not linear and cannot be used directly. Instead, we use the piecewise linear function, denoted as $h^{C}(u)$, which forms the convex hull of the epigraph of $g^{C}(u)$. We denote as $\tilde{u}^{C}$ the ordered vector of (integer) values $u$ of extreme points of $h^{C}$ :

$$
\tilde{u}^{C}=\left(\tilde{u}_{0}^{C}=0, \tilde{u}_{1}^{C}, \ldots, \tilde{u}_{k(C)}^{C}=\left\lceil d(C) / Q_{1}\right\rceil\right) .
$$

Figure 3 depicts an example of functions $g^{C}$ and $h^{C}$ for $Q_{1}=10, Q_{2}=4$, and $d(C)=32$. In the left plot, the epigraph of $g^{C}$ is the grey area. In the right plot, function $h^{C}$ is the bold line. Extreme points of $h^{C}$ are $H_{0}, H_{2}$, $H_{3}, H_{4}$, but not $H_{1}$. Therefore, $\tilde{u}^{C}=(0,2,3,4)$, and $k(C)=3$.

Proposition 3. Given subsets $C \subset \mathcal{C}, S \subset \mathcal{S}$, and an integer $0<k \leq k(C)$, the following inequality is valid for the $2 E-C V R P$

$$
\begin{equation*}
\sum_{s \in S^{\complement}} \sum_{e \in \delta_{2}(C)} x_{e}^{s} \geq 2 \cdot\left(h^{C}\left(\tilde{u}_{k-1}^{C}\right)-\frac{h^{C}\left(\tilde{u}_{k-1}^{C}\right)-h^{C}\left(\tilde{u}_{k}^{C}\right)}{\tilde{u}_{k}^{C}-\tilde{u}_{k-1}^{C}}\left(u_{S}-\tilde{u}_{k-1}^{C}\right)\right) \tag{24}
\end{equation*}
$$



Figure 3: Example of functions $g^{C}$ (on the left) and $h^{C}$ (on the right).

Proof. The right-hand side of each constraint (24) corresponds to a linear piece of function $h^{C}$. Thus the proof follows from Proposition 2 and from the fact that $h^{C}(u) \leq g^{C}(u)$ for all $u \geq 0$.

### 4.2 Separation of SSI

Let $(\bar{x}, \bar{u})$ be the values of variables $x$ and $u$ in a solution to the LP relaxation of (F2). The following problem finds the most violated inequality.

$$
\begin{equation*}
\max _{S \subset \mathcal{S}, C \subset \mathcal{C}} 2 \cdot h^{C}\left(\bar{u}_{S}\right)-\sum_{s \in S^{C}} \sum_{e \in \delta_{2}(C)} \bar{x}_{e}^{s} \tag{25}
\end{equation*}
$$

The first and second terms of the objective function are non-linear functions of $C$ and $S$. Thus enumeration of $C$ and $S$ is required to compute (25) exactly using an integer program. Since the number of subsets is exponential, we propose a heuristic to separate SSI. Although the heuristic does not necessarily find the most violated inequality, it offers a good trade-off between the computational effort and the violation of found inequalities. Our heuristic works with a fixed set of satellites. The following proposition gives a dominance rule which will allow us to discard non-interesting subsets of satellites.

Proposition 4. Consider a solution ( $\bar{x}, \bar{u}$ ) to the LP relaxation of (F2) and a fixed set $C$ of customers. If SSI (24) is violated for $C$ and a set $S_{1}$ of satellites, then it is violated for $C$ and any set $S_{2} \supseteq S_{1}$ such that $\bar{u}_{S_{2}}=\bar{u}_{S_{1}}$.

Proof. The right-hand side of 24 is fixed for a fixed set $C$ of customers and a fixed value $u_{S}$. Thus right-hand side of the SSIs for pairs $\left(C, S_{1}\right)$ and $\left(C, S_{2}\right)$ is the same. For fixed values of variables $x$, the left-hand side of the SSI for pair $\left(C, S_{2}\right)$ is not larger than one of the SSI for pair $\left(C, S_{1}\right)$, as $S_{2}^{\complement} \subseteq S_{1}^{\complement}$. Thus the violation of the SSI for pair $\left(C, S_{2}\right)$ is not smaller than one of the SSI for pair $\left(C, S_{1}\right)$.

To enumerate all the non-dominated sets of satellites, we first build the power set $\overline{\mathcal{U}}$ of set $\bar{S}$ of satellites used in the solution. Since we look for the largest subsets of satellites, we append all satellites in $\mathcal{S} \backslash \bar{S}$ to each set in $\overline{\mathcal{U}}$. Finally, we exclude from $\overline{\mathcal{U}}$ all sets $S_{1}$ such that there exists $S_{2} \in \overline{\mathcal{U}}$ with $S_{2} \supseteq S_{1}$ and $\bar{u}_{S_{2}}=\bar{u}_{S_{1}}$. This is done by the exhaustive enumeration as the cardinality of set $\overline{\mathcal{U}}$ is not large for the instances of the literature.


Figure 4: Separation graph $\bar{G}_{2}(S)$ for the fractional solution in Example 1
Given a set $S \in \overline{\mathcal{U}}$ of satellites, we now look for subsets of customers that violate SSI. We split customers in three subsets. Let $\bar{U}_{S} \subset \mathcal{C}$ be the set of customers visited only by routes started from $S^{\complement}$, let $\bar{V}_{S} \subset \mathcal{C}$ be the set of customers visited only by routes started from $S$, and let $\bar{W}_{S}=\mathcal{C} \backslash\left(\bar{U}_{S} \cup \bar{V}_{S}\right)$. Figure 4 illustrates the partition of customers of Example 1. We then build graph $\bar{G}_{2}(S)$ in the following way.

- Graph $\bar{G}_{2}(S)$ is the subgraph of $G_{2}$ induced by vertices in $\bar{U}_{S} \cup \bar{W}_{S} \cup S^{\complement}$.
- Weight of each edge $e$ in $\bar{G}_{2}(S)$ is equal to $\sum_{s \in S^{\complement}} \bar{x}_{e}^{s}$.
- Set $\bar{U}_{S} \cup S^{\complement}$ of vertices in $\bar{G}_{2}(S)$ is merged into one vertex $\bar{s}$ by successively contracting all edges having two incident vertices in $\bar{U}_{S} \cup S^{\complement}$. Weight of each edge $(\bar{s}, c), c \in \bar{W}_{S}$, in final graph $\bar{G}_{2}(S)$ is then equal to $\sum_{s \in S^{\complement}} \sum_{i \in \bar{U}_{S} \cup S^{\complement}} \bar{x}_{(i, c)}^{s}$.

Afterward, we compute the minimum cut in $\bar{G}_{2}(S)$. Let $\bar{C}_{S}$ be the subset of vertices obtained from the minimum cut, $\bar{s} \notin \bar{C}_{S}$. First, we verify whether

SSI based on set $S$ of satellites and set $C=\bar{C}_{S} \cup \bar{V}_{S}$ of customers is violated. Afterward, we iteratively enlarge set $C$ in a greedy manner and check the violation of SSI based on $S$ and $C$ at each iteration. Customer $c^{\prime}$ to include in current set $C$ (and exclude from $\bar{W}_{S}$ ) in each iteration is

$$
\begin{equation*}
c^{\prime}=\underset{c \in \bar{W}_{S}}{\arg \max }\left\{\frac{\sum_{s \in S^{\complement}} d_{c} \bar{y}_{c}^{s}}{\sum_{s \in S^{\complement}} \sum_{i \in \bar{U}(S, C, c)} \bar{x}_{(c, i)}^{s}}\right\} \tag{26}
\end{equation*}
$$

where $\bar{U}(S, C, c)=S^{\complement} \cup \bar{U}_{S} \cup \bar{W}_{S} \backslash\{c\}$. The intuition behind (26) is that we try to increase the first term of 25 while increasing not too much the second term. The separation procedure is formally given in Algorithm 1 .

```
Algorithm 1 Separation procedure for the satellites supply inequalities
    We are given \((\bar{\lambda}, \bar{\mu})\) and computed entities \(\bar{P}, \bar{u}, \bar{x}, \bar{y}\)
    \(\mathcal{I}\) is the set of found violated SSI
    Find set \(\overline{\mathcal{U}}\) of non-dominated subsets of satellites
    for all \(S \in \overline{\mathcal{U}}\) do
        Find \(\bar{U}_{S}, \bar{V}_{S}, \bar{W}_{S}\) and build graph \(\bar{G}_{2}(S)\)
        Compute the minimum cut in \(\bar{G}_{2}(S)\) and corresponding set \(\bar{C}_{S}\)
        \(C \leftarrow \bar{C}_{S} \cup \bar{V}_{S}\)
        repeat
            If SSI based on \(S\) and \(C\) is violated by \((\bar{u}, \bar{x})\), add the inequality
    to \(\mathcal{I}\)
            Find customer \(c^{\prime}\) in \(\bar{W}_{S}\) using (26)
            \(C \leftarrow C \cup\left\{c^{\prime}\right\}\)
            \(\bar{W}_{S} \leftarrow \bar{W}_{S} \backslash\left\{c^{\prime}\right\}\)
        until \(\bar{W}_{S}=\emptyset\)
    end for
    Return a specified number of the most violated SSI in \(\mathcal{I}\)
```


## 5 Branch-Cut-and-Price algorithm

Formulation (F2) together with valid inequalities (15), (16), (17), and (24) is solved by an adaptation of the branch-cut-and-price algorithm proposed by Sadykov et al., 2017. In this section, we describe the main ingredients of this algorithm. The reader is invited to consult the original paper for all details.

As the number of variables depends exponentially on the number of satellites and customers, the LP relaxation of (F2), which we call the master problem, is solved by the column and cut generation approach. As we consider instances with at most 15 satellites, all first-level route variables $\lambda$ are added to the formulation from the start of the algorithm. All exact
algorithms in the literature which use the route based formulation for the $2 \mathrm{E}-\mathrm{VRP}$ follow the same approach.

### 5.1 Pricing problem

Second-level route variables $\mu$ are dynamically generated by solving the pricing problem. It is decomposed into $|\mathcal{S}|$ subproblems $\left(\mathrm{SP}_{s}\right)$, one per satellite $s \in \mathcal{S}$. The set of feasible solutions to the pricing subproblem $\left(\mathrm{SP}_{s}\right)$ is the set $R_{s}$ of paths in graph $G_{2}$. A path $r$ belongs to $R_{s}$ if and only if :

- it starts and finishes in vertex $s: \sum_{e \in \delta_{2}(s)} \tilde{x}_{e}^{r}=2$;
- it does not pass through other satellites: $\sum_{e \in \delta_{2}(\mathcal{S} \backslash\{s\})} \tilde{x}_{e}^{r}=0$;
- it passes through each customer at most once: $\tilde{y}_{c}^{r} \leq 1, \forall c \in \mathcal{C}$.
- its total delivered demand does not exceed the capacity of a city freighter: $\sum_{c \in \mathcal{C}} \tilde{y}_{c}^{r} \leq Q_{2}$.

Let $\pi, \psi, \phi, \rho, \tau, \theta, \xi$, and $\zeta$ be optimum dual values for the master problem restricted to a subset of variables $\mu$. These dual values correspond to constraints (2), (3), (4), (8), (15), (16), (17), and (24). Let also $K$ be the collection of active rank-1 cuts corresponding to vectors $\left(\alpha^{k}\right)_{k \in K}$, and $M_{s}$ be the collection of active SSI based on sets $\left(S_{m}, C_{m}\right)_{m \in M_{s}}, s \in S_{m}^{\complement}$. The reduced cost of a path $r \in R_{s}$ is then equal to

$$
\begin{align*}
& \sum_{e \in E_{2}}\left(f_{e}^{T}-\sum_{\substack{C \in \mathcal{C}: \\
e \in \delta(C)}} \tau_{C}-\sum_{\substack{m \in M_{s}: \\
e \in \delta_{2}\left(C_{m}\right)}} \zeta_{m}\right) \tilde{x}_{e}^{r}  \tag{27}\\
& -\sum_{c \in \mathcal{C}} \sum_{e \in \delta_{2}(c)} \frac{1}{2}\left(\pi_{c}+d_{c} \rho_{s}-\xi_{c}^{s}\right) \tilde{x}_{e}^{r}+\sum_{k \in K} \theta_{k}\left\lfloor\sum_{c \in \mathcal{C}} \alpha_{c}^{k} \tilde{y}_{c}^{r}\right\rfloor+\psi_{s}+\phi
\end{align*}
$$

When rank-1 cuts (16) are absent, a path has a reduced cost that is equal to the sum of reduced costs of its edges. In this case, pricing subproblem $\left(\mathrm{SP}_{s}\right)$ is the resource constrained elementary shortest path problem. This problem can be time-consuming to solve. Therefore, we relax the elementarity constraint and work with $n g$-paths Baldacci et al., 2011. This relaxation has an impact only on the strength of the LP relaxation of (F2). However, the validity of (F2) is preserved. For each customer, its $n g$-neighborhood is static and includes 8 closest customers including itself.

Presence of active rank- 1 cuts makes the pricing problem more complicated because each such cut adds a resource to the problem. To limit the increase in difficulty of the pricing problem, we use the limited memory technique proposed by Pecin et al., 2017a. For each cut (16) a memory is associated. It consists of a subset of edges in $E_{2}$. This memory makes the
resource associated to the cut local: we need to track its consumption only in a small part of the graph.

Each pricing subproblem $\left(\mathrm{SP}_{s}\right)$ is solved by the bucket graph based bidirectional labeling algorithm proposed by [Sadykov et al., 2017. This algorithm supports both $n g$-path relaxation and presence of dual values associated with limited-memory rank- 1 cuts. If the transportation costs $f^{T}$ are symmetric, the algorithm exploits the forward-backward path symmetry.

### 5.2 Column and cut generation

We use three-stage column generation to speed up convergence. In the first two stages, the pricing problem is solved by the same heuristic labelling algorithms as in Sadykov et al., 2017. In the last stage, the pricing problem is solved by the exact labelling algorithm. For each subproblem, heuristic pricing generates at most 30 columns, and exact pricing generates at most 150 columns. We also apply automatic dual pricing smoothing stabilization suggested by Pessoa et al., 2018 to further speed-up the convergence of column generation.

We use the bucket arc elimination procedure [Sadykov et al., 2017. It reduces the size of graph $G_{2}$ by removing arcs which are proved to be absent from any improving solution to the problem. The procedure is first performed after the first column generation convergence, and then each time the primal-dual gap decreases by more than $10 \%$. Note that graph reduction is not the same in different pricing subproblems.

After each call to the bucket arc elimination procedure, we use the elementary route enumeration technique by Baldacci et al., 2008. For each pricing subproblem, this procedure tries to enumerate all elementary routes with reduced cost smaller than the current primal-dual gap. If the enumeration succeeds, the pricing subproblem is solved by inspection in future column generation iterations, similarly to Contardo and Martinelli, 2014. If the total number of enumerated routes in all subproblems is less than 5000, all the routes are added to formulation (F2) and the latter is solved by the MIP solver.

We define variables $u$ only for subsets with 5 satellites or less in order to limit the size of the formulation and the number of candidates for branching. Moreover, we define variables $u_{S}=t_{1}-\sum_{p \notin P_{S}} \lambda_{p}$ where $t_{1}$ is the total number of urban trucks used. It allows us to keep the coefficient matrix sparse. Variables $u_{S}$ are replaced by $t_{1}-\sum_{p \notin P_{S}} \lambda_{p}$ when $|S| \geq 6$. In the beginning, all constraints (13) are added to formulation (F2) for instances with at most 10 satellites. For other instances, only constraints (13) for sets $S \subset \mathcal{S},|S| \leq 5$, are added. Other constraints are dynamically separated as described in Section 3.2.

In each cut generation round, we add at most 100 rounded capacity cuts (15), 450 rank- 1 cuts (16), 50 VCI (17), and $150 \mathrm{SSI}(24)$ to the master
problem. The cut generation is stopped either by the tailing-off condition or when the time spent to solve at least one pricing subproblem exceeds 1 second. The tailing-off condition is satisfied when after 3 cut generation rounds the primal-dual gap decreases by less than $2 \%$ per round.

### 5.3 Branching

We perform branching on: the number of first-level routes visiting a subset of satellites (variables $u$ ), the use of first-level routes (variables $\lambda$ ), the use of an edge in $E_{2}$ (variables $x$ ), the assignment of a customer to a satellite (variable $y)$, the number of first-level routes $\left(\sum_{p \in P} \lambda_{p}\right)$, the number of second-level routes $\left(\sum_{r \in R} \mu_{r}\right)$, and the number of second-level routes started from a satellite $s\left(\sum_{r \in R_{s}} \mu_{r}\right)$. We use a multi-phase strong branching procedure, similar to Sadykov et al., 2017, to choose the most promising branching candidate.

The branching procedure first chooses at most 50 branching candidates. Up to half of the candidates are chosen according to the branching history using pseudo-costs. In the first phase, we solve the LP relaxation of the restricted master problem. Three candidates with the largest product of lower bound improvements in the branches are chosen for the next phase. In the second phase, column generation is performed, but the pricing problem is solved with only heuristic labeling algorithms. The best candidate is chosen using the same product rule. In the third phase, the exact column and cut generation is performed in both branches of the chosen candidate using the same parameters as in the root node.

### 5.4 Primal heuristic

After each node in the branch-and-bound tree, a heuristic looks for improving feasible solutions to the 2E-CVRP. We first tried the standard restricted master heuristic [Sadykov et al., 2018 in which the MIP solver solves the current restricted master problem. However, we have not been satisfied with the performance of this heuristic, especially for instances with large capacity of city freighters. The reason is that sometimes only a small part of columns in the restricted master are elementary, thus making the solution space of the restricted master very small or even empty.

Instead, we use the heuristic based on an artificial primal bound and the elementary route enumeration, similar to Pessoa et al., 2009. In an iterative procedure, we decrease the artificial bound in order to divide the primal-dual gap by two in each iteration. Then, we perform elementary route enumeration for each pricing subproblem. The iterative procedure stops when the enumeration succeeds for all subproblems. Afterward, we pick 10000 elementary routes with the smallest reduced cost and add them to the master problem. Finally, IBM CPLEX MIP solver tries to solve
for the resulting problem within $|\mathcal{C}| / 2.5$ seconds. We activate the polishing heuristic Rothberg, 2007 implemented in CPLEX.

## 6 Computational Results

The model and the separation algorithms for constraints 12, , 13), VCI (17), and SSI 24 were implemented in Julia 0.6 language using JuMP Dunning et al., 2017 and LightGraphs packages. We also used:

- BaPCod C++ library Vanderbeck et al., 2019 which implements the BCP framework;
- C ++ code, developed by Sadykov et al., 2017, which implements the bucket graph based labeling algorithm, bucket arc elimination procedure, elementary route enumeration, and the separation of limitedmemory rank-1 cuts;
- CVRPSEP C++ library Lysgaard, 2018 which implements heuristic separation of rounded capacity cuts;
- IBM CPLEX Optimizer version 12.8 .0 as the LP solver in column generation and as the solver for the enumerated MIPs.

Experiments were run on a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3 servers at 2.5 GHz . On each server, we solved 24 instances with up to 200 customers and up to 10 satellites that share 128Go of RAM. Larger instances having either 300 customers or 15 satellites were solved by batches of 4 instances sharing 128Go of RAM. Each instance is solved on a single thread.

### 6.1 Instances

Table 1 shows the sets of instances from the literature that we used. Constraints (3) limiting the number of city freighters per satellite are required only for set 4B. Therefore, constraints (20) are useful only for set 4B. Set 5 duplicates each instance: the first instance has the standard capacity of city freighters, and the second one, with suffix "b", has the double capacity. Only set 6B has non-zero handling costs. We do not consider instances of set 3, proposed in Gonzalez-Feliu et al., 2007, as they are easily solved by our algorithm and by Baldacci et al., 2013.

As all instances were solved to optimality by our BCP algorithm, we generated 51 additional instances involving up to 300 customers and 15 satellites. They are based on instances of families $a, b$, and $c$ proposed by Schneider and Löffler, 2019 for the capacitated location-routing problem. In comparison with the original instances, we added the position of the

Table 1: Sets of instances from the literature used for experiments

| Set | $\#$ | $\|\mathcal{S}\|$ | $\|\mathcal{C}\|$ | Notes | Authors |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4A | 54 | $2,3,5$ | 50 | $L_{s}<\|\mathcal{L}\|$ | Crainic et al., 2010 |
| 4B | 54 | $2,3,5$ | 50 |  | Crainic et al., 2010 |
| 5 | 18 | 5,10 | 100,200 | low and high $Q_{2}$ | \| Hemmelmayr et al., 2012 |
| 6A | 27 | $4,5,6$ | $50,75,100$ |  | Baldacci et al., 2013 |
| 6B | 27 | $4,5,6$ | $50,75,100$ | $f_{s}^{H}>0$ | Baldacci et al., 2013 |

depot, capacity of urban trucks, the number of urban trucks, and the number of city freighters. We put the depot at location $(0,0)$. We set $Q_{1}=9 \cdot Q_{2}$, $|\mathcal{K}|=\left\lceil 1.75 \cdot d(\mathcal{C}) / Q_{1}\right\rceil$, and $|\mathcal{L}|=\left\lceil 2.5 \cdot d(\mathcal{C}) / Q_{2}\right\rceil$.

### 6.2 Experimental analysis of BCP variants

In the first experiment, we compare different variants of our BCP algorithm for solving the 54 largest literature instances from sets $5,6 \mathrm{~A}$, and 6 B with 75 , 100 , and 200 customers. To eliminate randomness related to improvement of primal bounds, all variants were executed without primal heuristic and with the initial primal bound equal to the optimum solution value (plus small $\epsilon$ ) for each instance. We tested the following variants.
$\mathrm{BCP}_{0}$ - the base variant which uses formulation (F1), without separating VCI and SSI, and without branching on variables $u$. It can be considered as a straightforward adaptation of the BCP algorithm in Sadykov et al., 2017 for solving the 2E-CVRP.
$\mathbf{B C P}_{+u}$ - the base variant with branching on variables $u$.
$\mathbf{B C P}_{\text {best }}$ - the best variant, which is based on formulation (F2), with VCI and SSI separation, and with branching on variables $u$.
$\mathbf{B C P}_{\text {best-u }}$ - the best variant without branching on variables $u$.
$\mathbf{B C P}_{\text {best-vCI }}$ - the best variant without separating VCI.
$\mathbf{B C P}_{\text {best-SSI }}$ - the best variant without separating SSI.
$\mathbf{B C P}_{\text {best-(F1) }}$ - the best variant, but based on formulation (F1).
Table 2 gives the comparison of the BCP variants. It contains average values for the root gap, geometric mean values for the root solution time, the number of branch-and-bound nodes, the geometric mean of total solution time in seconds, and the number of instances solved within the time limit set to 3 hours. For unsolved instances, the solution time is set to the time limit.

Table 2: Comparison of variants of the BCP algorithm

|  | Root |  |  |  |  |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Variant | Gap (\%) | Time (s) | Nodes | Time (s) | Solved |
| $\mathrm{BCP}_{0}$ | 4.29 | 83.6 | 76.0 | 2333.0 | $31 / 54$ |
| $\mathrm{BCP}_{+u}$ | 4.28 | 99.5 | 24.5 | 1020.5 | $44 / 54$ |
| $\mathrm{BCP}_{\text {best--F1) }}$ | 0.68 | 177.8 | 5.9 | 421.4 | $49 / 54$ |
| $\mathrm{BCP}_{\text {best-SSI }}$ | 1.64 | 115.5 | 12.5 | 426.1 | $49 / 54$ |
| $\mathrm{BCP}_{\text {best-VCI }}$ | 0.71 | 238.6 | 6.6 | 501.0 | $50 / 54$ |
| $\mathrm{BCP}_{\text {best-u }}$ | 0.67 | 161.2 | 7.0 | 384.7 | $50 / 54$ |
| $\mathrm{BCP}_{\text {best }}$ | 0.68 | 159.0 | 6.3 | 361.7 | $51 / 54$ |

We see that the base variant $\mathrm{BCP}_{0}$ is the worst as it solves only 31 out of 54 instances. Adding branching on variables $u$ improves significantly $\mathrm{BCP}_{0}$ as variant $\mathrm{BCP}_{+u}$ solves 13 more instances. The best variant $\mathrm{BCP}_{\text {best }}$ solves 7 more instances to optimality within the time limit. Table 2 shows that all our contributions improve the efficiency of the BCP algorithm. The root gap decreases significantly when VCI and SSI are separated. Although the root solution time increases when additional inequalities are separated, the overall time decreases due to the much smaller size of the branch-and-bound tree. Thus, branching on variables $u$ has a small effect on the performance of $\mathrm{BCP}_{\text {best }}$. However, adding branching on variables $u$ is the simplest way to make $\mathrm{BCP}_{0}$ much more efficient.

### 6.3 Comparison with the state-of-the-art algorithm

Let us now compare $\mathrm{BCP}_{0}$ and $\mathrm{BCP}_{\text {best }}$ to the best exact algorithm by Baldacci et al., 2013. For a fair comparison, we do not use initial primal bounds in this experiment. Instead, we rely on the primal heuristic presented in section 5.4 to find feasible solutions. Baldacci et al., 2013 did not set an overall time limit for their algorithm. They set a limit on the number of collections of first-level routes considered, as well as a time limit of 5000 seconds for solving each subproblem with fixed first-level routes. In our BCP algorithm, we set the time limit to 10 hours.

Table 3 shows the summary results of this experiment. For each set of literature instances, we give the average gap between the root dual bound and the best primal bound found ( Rg ), the geometric mean of the number of branch-and-bound nodes (Nds), the geometric mean of the solution time in seconds $(t)$, and the number of instances solved to optimality (Solved). For a fair comparison, the solution time of Baldacci et al., 2013 is divided by 1.6 because of the difference in computer speeds. The algorithm in Baldacci et al., 2013 was tested only on 6 out of 18 instances of set 5. It has not been applied for instances with 10 satellites, as it is based on an enumeration of subsets of first-level routes. Since our algorithms are
free from this drawback, they were tested on all instances of set 5 .

Table 3: Comparison of two BCP variants with the state-of-the-art exact algorithm for the 2E-CVRP Baldacci et al., 2013

| Set | $\mathrm{BCP}_{0}$ |  |  |  | $\mathrm{BCP}_{\text {best }}$ |  |  |  | Literature |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{Rg}(\%)$ | Nds | $t$ (s) | Solved | $\mathrm{Rg}(\%)$ | Nds | $t$ (s) | Solved | $t$ (s) | Solved |
| 4A | 5.76 | 14.2 | 772 | 51/54 | 0.91 | 3.3 | 144 | 54/54 | 271 | 50/54 |
| 4B | 4.45 | 12.7 | 550 | 52/54 | 0.98 | 3.6 | 203 | 54/54 | 232 | 52/54 |
| 5 | 5.83 | 222.9 | 20612 | 6/18 | 1.41 | 22.5 | 3215 | 15/18 | 8405 | 3/6 |
| 6 A | 7.04 | 99.7 | 2604 | 24/27 | 0.89 | 4.9 | 233 | 27/27 | 802 | 22/27 |
| 6B | 3.15 | 57.8 | 1562 | 24/27 | 0.46 | 4.3 | 196 | 27/27 | 513 | 19/27 |

The variant $\mathrm{BCP}_{0}$ solves to optimality more instances than the best algorithm in the literature. However, the running time of the latter is on average smaller. The variant $\mathrm{BCP}_{\text {best }}$ largely outperforms both other algorithms for all sets of instances. Indeed, $\mathrm{BCP}_{\text {best }}$ solves to optimality 31 open instance within 10 hours. Detailed results for the variant $\mathrm{BCP}_{\text {best }}$ are given in A . The remaining 3 open instances were solved to optimality by providing the best-known solution of the literature as initial primal bound and using a special parameterisation. Detailed results for these instances are given in B.

Table 4 shows that our BCP algorithm could improve 10 best-known solutions (BKS) for literature instances. Their optimum solution values are given in column Opt. The improvement ( $\operatorname{Imp}$ ) in general is small. Thus, the existing heuristics for the 2E-CVRP have very good quality (at least when applied to literature instances).

| Instance |  | BKS | Reference | Opt | Imp (\%) |
| :--- | :--- | ---: | :--- | ---: | ---: |
| Set 5 | $100-5-1 \mathrm{~b}$ | 1103.55 | Amarouche et al., 2018 | 1099.35 | 0.38 |
|  | $100-10-3 \mathrm{~b}$ | 849.73 | Amarouche et al., 2018 | 848.16 | 0.19 |
|  | 200-10-1 | 1538.35 | Amarouche et al., 2018 | 1537.52 | 0.05 |
|  | 200-10-1b | 1175.81 | Amarouche et al., 2018 | 1173.07 | 0.23 |
|  | 200-10-3 | 1779.68 | Amarouche et al., 2018 | 1177.49 | 0.12 |
|  | 200-10-3b | 1196.93 | Amarouche et al., 2018 | 1192.35 | 0.38 |
| Set 6A | C-n101-4 | 1297.42 | Wang et al., 2017 | 1292.04 | 0.41 |
| Set 6B | B-n101-4 | 1500.55 | Breunig et al., 2016 | 1499.71 | 0.06 |
|  | B-n101-5 | 1395.32 | Breunig et al., 2016 | 1394.79 | 0.04 |
|  | C-n101-5 | 1964.63 | Breunig et al., 2016 | 1962.52 | 0.11 |

Table 4: Improved best-known solutions for the literature instances

### 6.4 Experimental results for new instances

We tested the variant $\mathrm{BCP}_{\text {best }}$ on the set of newly generated instances involving $5-15$ satellites and $100-300$ customers. We set the time limit
to 60 hours. We gave more time to the primal heuristic when solving the largest instances. For instances with 300 customers and 10 satellites, this time was set to 600 seconds. For instances with 15 satellites, this time was set to $4 \cdot|\mathcal{C}|$ seconds.

Out of 51 instances, our algorithm solved to optimality 23 instances, including some instances with 300 customers or with 15 satellites. The algorithm found both dual and primal bounds for 17 instances. The primal heuristic did not find any feasible solution for 9 instances having 300 customers and/or 15 satellites. Only lower bounds are thus currently known for these instances. We could not obtain dual bounds for 2 instances because the LP solver spent more than one hour to solve the restricted master LP during the first column generation convergence. Detailed results are given in C.

The main goal of this experiment was to generate instances which our best algorithm cannot solve in a reasonable time. This goal is achieved.

## 7 Conclusions

In this paper we proposed an improved branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem. Our BCP algorithm includes both proposed techniques for the classic vehicle routing problems recently and new problem-specific components such as new route based formulation, two families of valid inequalities, and a new branching strategy. The proposed algorithm is empirically shown to be highly efficient, as it solved all instances available in the literature for the 2E-CVRP with up to 200 customers and 10 satellites. 34 instances were solved to optimality for the first time.

In order to inspire further progress on solution approaches for the $2 \mathrm{E}-$ CVRP and related problems, a new set of 51 instances is proposed to the community. Among them, 28 instances are currently open. Testing our algorithm on new instances revealed that it has some limitations. For the largest instances, the size of the restricted master problem becomes very large so that its resolution requires significant time. In some extreme cases, a modern LP solver cannot solve it within 1 hour. Even when the LP relaxation of the restricted master for large instances can be solved, the primal heuristic based on solving the restricted master is often inefficient. One of the possible remedies is to generate first-level routes dynamically.

Dynamic generation of first-level routes is also essential if one wants to solve instances with more than 15 satellites. Our new formulation for the problem without product flow variables simplifies this task. However, column generation of first-level routes is not straightforward even for the modified formulation. A first-level route has coefficient one in constraints (12) if and only if it visits at least one satellite in a certain set. Thus, these con-
straints resemble strong capacity constraints introduced in Baldacci et al., 2008. They are non-robust Pessoa et al., 2008, i.e. they modify the structure of the pricing problem for the first level.

Our BCP algorithm could be extended to the two-echelon locationrouting problem Contardo et al., 2012 in which satellites have predefined capacities and fixed opening costs. Our preliminary research showed that additional valid inequalities are necessary for this variant of the problem. If one separates only the valid inequalities considered in this paper, the LP relaxation of the route based formulation in general, does not produce strong lower bounds.

Another important possible extension of our algorithm concerns the twoechelon vehicle routing problem with time windows. This problem variant was considered by Dellaert et al., 2019. However, the authors impose there a restrictive assumption that city freighter can receive products from only one urban truck. It would be useful to consider the $2 \mathrm{E}-\mathrm{CVRP}$ with time windows without this assumption.

## Acknowledgments

We are grateful to François Vanderbeck whose efforts contributed to obtaining the Ph.D. studentship for the first author. We also want to thank Artur Alves Pessoa who inspired the idea of the modified formulation presented in the paper.

Experiments presented in this paper were carried out using the PlaFRIM (Federative Platform for Research in Computer Science and Mathematics), created under the Inria PlaFRIM development action with support from Bordeaux INP, LABRI and IMB and other entities: Conseil Régional d'Aquitaine, Université de Bordeaux, CNRS and ANR in accordance to the "Programme d'Investissements d'Avenir".

## References

## References

[Amarouche et al., 2018] Amarouche, Y., Guibadj, R. N., and Moukrim, A. (2018). A Neighborhood Search and Set Cover Hybrid Heuristic for the Two-Echelon Vehicle Routing Problem. In Borndörfer, R. and Storandt, S., editors, 18 th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), volume 65 of OpenAccess Series in Informatics (OASIcs), pages 11:1-11:15, Dagstuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[Baldacci et al., 2008] Baldacci, R., Christofides, N., and Mingozzi, A. (2008). An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Mathematical Programming, 115:351-385.
[Baldacci and Mingozzi, 2009] Baldacci, R. and Mingozzi, A. (2009). A unified exact method for solving different classes of vehicle routing problems. Mathematical Programming, 120(2):347-380.
[Baldacci et al., 2011] Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem. Operations Research, 59(5):1269-1283.
[Baldacci et al., 2013] Baldacci, R., Mingozzi, A., Roberti, R., and Calvo, R. W. (2013). An exact algorithm for the two-echelon capacitated vehicle routing problem. Operations Research, 61(2):298-314.
[Belenguer et al., 2011] Belenguer, J.-M., Benavent, E., Prins, C., Prodhon, C., and Calvo, R. W. (2011). A branch-and-cut method for the capacitated location-routing problem. Computers $\xi^{\circ}$ Operations Research, 38(6):931-941.
[Belenguer et al., 2000] Belenguer, J. M., Martinez, M. C., and Mota, E. (2000). A lower bound for the split delivery vehicle routing problem. Operations Research, 48(5):801-810.
[Breunig et al., 2016] Breunig, U., Schmid, V., Hartl, R., and Vidal, T. (2016). A large neighbourhood based heuristic for two-echelon routing problems. Computers and Operations Research, 76:208-225.
[Contardo et al., 2013] Contardo, C., Cordeau, J.-F. C., and Gendron, B. (2013). A computational comparison of flow formulations for the capacitated location-routing problem. Discrete Optimization, 10(4):263-295.
[Contardo et al., 2012] Contardo, C., Hemmelmayr, V., and Crainic, T. G. (2012). Lower and upper bounds for the two-echelon capacitated locationrouting problem. Computers \& Operations Research, 39(12):3185-3199.
[Contardo and Martinelli, 2014] Contardo, C. and Martinelli, R. (2014). A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints. Discrete Optimization, 12:129 146.
[Crainic et al., 2010] Crainic, T. G., Perboli, G., Mancini, S., and Tadei, R. (2010). Two-echelon vehicle routing problem: A satellite location analysis. Procedia - Social and Behavioral Sciences, 2(3):5944-5955.
[Crainic et al., 2009] Crainic, T. G., Ricciardi, N., and Storchi, G. (2009). Models for evaluating and planning city logistics systems. Transportation science, 43(4):432-454.
[Crainic et al., 2011] Crainic, T. G., Sforza, A., and Sterle, C. (2011). Location-routing models for two-echelon freight distribution system design. Technical Report 2011-40, CIRRELT.
[Dellaert et al., 2019] Dellaert, N., Saridarq, F. D., Woensel, T. V., and Crainic, T. G. (2019). Branch and price based algorithms for the twoechelon vehicle routing problem with time windows. Transportation Science, In Press.
[Dunning et al., 2017] Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A modeling language for mathematical optimization. SIAM Review, 59(2):295-320.
[Gonzalez-Feliu et al., 2007] Gonzalez-Feliu, J., Perboli, G., Tadei, R., and Vigo, D. (2007). The two-echelon capacitated vehicle routing problem. Technical Report DEIS OR.INGCE 2007/2, Department of Electronics, Computer Science, and Systems, University of Bologna,.
[Hemmelmayr et al., 2012] Hemmelmayr, V. C., Cordeau, J.-F., and Crainic, T. G. (2012). An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Computers \& Operations Research, 39(12):3215-3228.
[Jepsen et al., 2008] Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-routing problem with time windows. Operations Research, 56(2):497-511.
[Jepsen et al., 2013] Jepsen, M., Spoorendonk, S., and Ropke, S. (2013). A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transportation Science, 47(1):23-37.
[Laporte and Nobert, 1983] Laporte, G. and Nobert, Y. (1983). A branch and bound algorithm for the capacitated vehicle routing problem. Operations-Research-Spektrum, 5(2):77-85.
[Lysgaard, 2018] Lysgaard, J. (2018). CVRPSEP: a package of separation routines for the capacitated vehicle routing problem.
[Lysgaard et al., 2004] Lysgaard, J., Letchford, A. N., and Eglese, R. W. (2004). A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, 100(2):423-445.
[Pecin et al., 2017a] Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017a). Improved branch-cut-and-price for capacitated vehicle routing. Mathematical Programming Computation, 9(1):61-100.
[Pecin et al., 2017b] Pecin, D., Pessoa, A., Poggi, M., Uchoa, E., and Santos, H. (2017b). Limited memory rank-1 cuts for vehicle routing problems. Operations Research Letters, 45(3):206-209.
[Perboli et al., 2011] Perboli, G., Tadei, R., and Vigo, D. (2011). The twoechelon capacitated vehicle routing problem: Models and math-based heuristics. Transportation Science, 45(3):364-380.
[Pessoa et al., 2008] Pessoa, A., de Aragão, Marcus, M. P., and Uchoa, E. (2008). Robust branch-cut-and-price algorithms for vehicle routing problems. In Golden, B., Raghavan, S., and Wasil, E., editors, The Vehicle Routing Problem: Latest Advances and New Challenges, volume 43 of $O p$ erations Research/Computer Science Interfaces, pages 297-325. Springer US.
[Pessoa et al., 2018] Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2018). Automation and combination of linear-programming based stabilization techniques in column generation. INFORMS Journal on Computing, 30(2):339-360.
[Pessoa et al., 2009] Pessoa, A., Uchoa, E., and Poggi de Aragão, M. (2009). A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing problem. Networks, 54(4):167-177.
[Rothberg, 2007] Rothberg, E. (2007). An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on Computing, 19(4):534-541.
[Sadykov et al., 2017] Sadykov, R., Uchoa, E., and Pessoa, A. (2017). A bucket graph based labeling algorithm with application to vehicle routing. Cadernos do LOGIS 7, Universidade Federal Fluminense.
[Sadykov et al., 2018] Sadykov, R., Vanderbeck, F., Pessoa, A., Tahiri, I., and Uchoa, E. (2018). Primal heuristics for branch-and-price: the assets of diving methods. INFORMS Journal on Computing, In Press.
[Santos et al., 2015] Santos, F. A., Mateus, G. R., and da Cunha, A. S. (2015). A branch-and-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem. Transportation Science, 49(2):355-368.
[Schneider and Löffler, 2019] Schneider, M. and Löffler, M. (2019). Large composite neighborhoods for the capacitated location-routing problem. Transportation Science, 53(1):301-318.
[Taniguchi and Thompson, 2002] Taniguchi, E. and Thompson, R. G. (2002). Modeling city logistics. Transportation research record, 1790(1):45-51.
[Vanderbeck et al., 2019] Vanderbeck, F., Sadykov, R., and Tahiri, I. (2019). BaPCod - a generic Branch-And-Price Code.
[Wang et al., 2017] Wang, K., Shao, Y., and Zhou, W. (2017). Matheuristic for a two-echelon capacitated vehicle routing problem with environmental considerations in city logistics service. Transportation Research Part D: Transport and Environment, 57:262-276.
[Zeng et al., 2014] Zeng, Z.-Y., Xu, W.-S., Xu, Z.-Y., and Shao, W.-H. (2014). A hybrid GRASP+VND heuristic for the two-echelon vehicle routing problem arising in city logistics.. Mathematical Problems in Engineering, pages 1-11.

## A Detailed BCP results for literature instances

In following tables, Rg stands for the root gap, $\mathrm{R} t$ stands for the time spent in the root node, BPB is the best primal bound found, and $t$ stands for the total time spent. Note that if the time in the column "Literature" has prefix " $>$ " for a given instance, Baldacci et al., 2013 did not solve this instance to optimality.

Table 5: Results of experiments on instances of set 4A

| Instance | $\mathrm{BCP}_{\text {best }}$ with primal heuristic |  |  |  |  | Literature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rg (\%) | $\mathrm{R} t$ (s) | Nodes | BPB | $t$ (s) | $t(\mathrm{~s})$ |
| Instance50-1.dat | 1.41 | 30 | 3 | 1569.42 | 58 | 47 |
| Instance50-2.dat | 0.00 | 35 | 1 | 1438.33 | 35 | 101 |
| Instance50-3.dat | 1.50 | 30 | 3 | 1570.43 | 67 | 44 |
| Instance50-4.dat | 0.20 | 55 | 3 | 1424.04 | 106 | 64 |
| Instance50-5.dat | 0.24 | 44 | 3 | 2193.52 | 92 | 415 |
| Instance50-6.dat | 0.00 | 55 | 1 | 1279.87 | 55 | 27 |
| Instance50-7.dat | 1.04 | 32 | 3 | 1458.63 | 76 | 63 |
| Instance50-8.dat | 0.33 | 58 | 3 | 1363.74 | 124 | 1414 |
| Instance50-9.dat | 0.94 | 32 | 3 | 1450.27 | 56 | 53 |
| Instance50-10.dat | 0.44 | 38 | 3 | 1407.65 | 77 | 71 |
| Instance50-11.dat | 0.53 | 29 | 15 | 2047.46 | 302 | 212 |
| Instance50-12.dat | 0.00 | 14 | 1 | 1209.42 | 14 | 43 |
| Instance50-13.dat | 1.36 | 35 | 3 | 1481.83 | 72 | 58 |
| Instance50-14.dat | 0.06 | 58 | 3 | 1393.61 | 93 | 743 |
| Instance50-15.dat | 1.47 | 39 | 3 | 1489.94 | 72 | 45 |
| Instance50-16.dat | 0.02 | 48 | 3 | 1389.17 | 84 | 39 |
| Instance50-17.dat | 0.17 | 41 | 3 | 2088.49 | 98 | 191 |
| Instance50-18.dat | 0.65 | 47 | 3 | 1227.61 | 90 | 73 |
| Instance50-19.dat | 0.68 | 33 | 3 | 1564.66 | 56 | 146 |
| Instance50-20.dat | 0.66 | 66 | 3 | 1272.97 | 111 | 88 |
| Instance50-21.dat | 0.53 | 38 | 3 | 1577.82 | 67 | 137 |
| Instance50-22.dat | 0.00 | 55 | 1 | 1281.83 | 55 | 50 |
| Instance50-23.dat | 0.92 | 41 | 5 | 1807.35 | 88 | 944 |
| Instance50-24.dat | 0.00 | 49 | 1 | 1282.68 | 49 | 50 |
| Instance50-25.dat | 0.61 | 40 | 3 | 1522.42 | 80 | 210 |
| Instance50-26.dat | 0.12 | 49 | 3 | 1167.46 | 73 | 34 |
| Instance50-27.dat | 0.43 | 61 | 3 | 1481.57 | 115 | 222 |
| Instance50-28.dat | 0.73 | 68 | 3 | 1210.44 | 148 | 185 |
| Instance50-29.dat | 1.21 | 38 | 13 | 1722.04 | 287 | >5683 |
| Instance50-30.dat | 1.30 | 87 | 3 | 1211.59 | 333 | 152 |
| Instance50-31.dat | 1.98 | 53 | 5 | 1490.33 | 226 | $>7226$ |
| Instance50-32.dat | 1.31 | 73 | 3 | 1199.00 | 205 | 2506 |
| Instance50-33.dat | 1.37 | 55 | 3 | 1508.30 | 116 | >8076 |
| Instance50-34.dat | 0.93 | 69 | 5 | 1233.92 | 307 | 129 |
| Instance50-35.dat | 1.55 | 42 | 5 | 1718.41 | 859 | >12736 |
| Instance50-36.dat | 0.56 | 92 | 3 | 1228.89 | 196 | 96 |
| Instance50-37.dat | 1.62 | 77 | 7 | 1528.73 | 328 | 505 |
| Instance50-38.dat | 1.51 | 151 | 3 | 1169.20 | 409 | 1030 |
| Instance50-39.dat | 1.23 | 58 | 3 | 1520.92 | 119 | 434 |
| Instance50-40.dat | 2.02 | 83 | 3 | 1199.42 | 245 | 623 |


|  | BCP $_{\text {best }}$ with primal heuristic |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\mathrm{Rg}(\%)$ | $\mathrm{R} t(\mathrm{~s})$ | Nodes | BPB | $t(\mathrm{~s})$ |  | $t(\mathrm{~s})$ |
| Instance50-41.dat | 1.34 | 57 | 7 | 1667.96 | 375 |  | 840 |
| Instance50-42.dat | 0.27 | 133 | 3 | 1194.54 | 367 |  | 140 |
| Instance50-43.dat | 1.41 | 64 | 9 | 1439.67 | 376 |  | 685 |
| Instance50-44.dat | 1.62 | 99 | 3 | 1045.12 | 322 |  | 272 |
| Instance50-45.dat | 0.72 | 85 | 3 | 1450.96 | 154 | 484 |  |
| Instance50-46.dat | 1.57 | 68 | 7 | 1088.77 | 350 | 841 |  |
| Instance50-47.dat | 0.65 | 90 | 5 | 1587.29 | 274 | 979 |  |
| Instance50-48.dat | 0.07 | 58 | 3 | 1082.20 | 90 | 57 |  |
| Instance50-49.dat | 1.16 | 77 | 3 | 1434.88 | 181 | 447 |  |
| Instance50-50.dat | 2.11 | 117 | 5 | 1083.12 | 595 | 836 |  |
| Instance50-51.dat | 0.89 | 87 | 3 | 1398.05 | 144 | 468 |  |
| Instance50-52.dat | 2.60 | 94 | 5 | 1125.67 | 485 | 959 |  |
| Instance50-53.dat | 1.44 | 81 | 7 | 1567.77 | 1557 | 2640 |  |
| Instance50-54.dat | 1.80 | 83 | 3 | 1127.61 | 346 | 651 |  |

Table 6: Results of experiments on instances of set 4B

| Instance | $\mathrm{BCP}_{\text {best }}$ with primal heuristic |  |  |  |  | Literature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rg (\%) | R t (s) | Nodes | BPB | $t$ (s) | $t$ (s) |
| Instance50-1.dat | 1.61 | 40 | 5 | 1569.42 | 126 | 73 |
| Instance50-2.dat | 0.00 | 42 | 1 | 1438.33 | 42 | 118 |
| Instance50-3.dat | 1.46 | 41 | 5 | 1570.43 | 249 | 61 |
| Instance50-4.dat | 0.20 | 80 | 3 | 1424.04 | 146 | 72 |
| Instance50-5.dat | 0.25 | 41 | 3 | 2193.52 | 87 | 395 |
| Instance50-6.dat | 0.00 | 62 | 1 | 1279.87 | 62 | 33 |
| Instance50-7.dat | 0.09 | 36 | 3 | 1408.57 | 61 | 48 |
| Instance50-8.dat | 0.27 | 61 | 3 | 1360.32 | 117 | 2058 |
| Instance50-9.dat | 0.00 | 38 | 1 | 1403.53 | 38 | 51 |
| Instance50-10.dat | 0.00 | 47 | 1 | 1360.56 | 47 | 29 |
| Instance50-11.dat | 0.53 | 27 | 17 | 2047.46 | 445 | 282 |
| Instance50-12.dat | 2.37 | 89 | 5 | 1209.42 | 459 | 70 |
| Instance50-13.dat | 0.59 | 56 | 3 | 1450.93 | 321 | 59 |
| Instance50-14.dat | 0.04 | 63 | 3 | 1393.61 | 105 | 669 |
| Instance50-15.dat | 1.25 | 47 | 3 | 1466.83 | 168 | 66 |
| Instance50-16.dat | 0.44 | 59 | 3 | 1387.83 | 110 | 62 |
| Instance50-17.dat | 0.18 | 42 | 3 | 2088.49 | 86 | 224 |
| Instance50-18.dat | 1.16 | 52 | 5 | 1227.61 | 368 | 80 |
| Instance50-19.dat | 2.03 | 46 | 11 | 1546.28 | 474 | 183 |
| Instance50-20.dat | 0.67 | 65 | 3 | 1272.97 | 126 | 107 |
| Instance50-21.dat | 0.97 | 37 | 3 | 1577.82 | 78 | 157 |
| Instance50-22.dat | 0.00 | 70 | 1 | 1281.83 | 70 | 43 |
| Instance50-23.dat | 1.07 | 61 | 3 | 1652.98 | 122 | 121 |
| Instance50-24.dat | 0.00 | 33 | 1 | 1282.68 | 33 | 50 |
| Instance50-25.dat | 0.06 | 47 | 3 | 1408.57 | 89 | 97 |
| Instance50-26.dat | 0.03 | 68 | 3 | 1167.46 | 96 | 35 |
| Instance50-27.dat | 0.37 | 62 | 3 | 1444.50 | 122 | 124 |
| Instance50-28.dat | 1.99 | 81 | 5 | 1210.44 | 369 | 156 |
| Instance50-29.dat | 0.62 | 76 | 3 | 1552.66 | 123 | 162 |
| Instance50-30.dat | 2.34 | 94 | 5 | 1211.59 | 470 | 154 |


|  | $\mathrm{BCP}_{\text {best }}$ with primal heuristic |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\mathrm{Rg}(\%)$ | $\mathrm{R} t(\mathrm{~s})$ | Nodes | BPB | $t(\mathrm{~s})$ | $t(\mathrm{~s})$ |
| Instance50-31.dat | 1.40 | 55 | 5 | 1440.86 | 257 | 164 |
| Instance50-32.dat | 1.36 | 79 | 5 | 1199.00 | 313 | 2383 |
| Instance50-33.dat | 1.14 | 73 | 7 | 1478.86 | 252 | 292 |
| Instance50-34.dat | 1.00 | 79 | 5 | 1233.92 | 363 | 180 |
| Instance50-35.dat | 2.34 | 88 | 5 | 1570.72 | 516 | 812 |
| Instance50-36.dat | 0.84 | 74 | 3 | 1228.89 | 186 | 113 |
| Instance50-37.dat | 2.03 | 91 | 19 | 1528.73 | 1184 | $>9076$ |
| Instance50-38.dat | 0.63 | 161 | 5 | 1163.07 | 715 | 727 |
| Instance50-39.dat | 2.71 | 71 | 9 | 1520.92 | 822 | 1119 |
| Instance50-40.dat | 1.40 | 156 | 3 | 1163.04 | 630 | 218 |
| Instance50-41.dat | 1.26 | 97 | 3 | 1652.98 | 235 | 1482 |
| Instance50-42.dat | 0.71 | 120 | 3 | 1190.17 | 345 | 270 |
| Instance50-43.dat | 0.79 | 75 | 5 | 1406.11 | 235 | 6936 |
| Instance50-44.dat | 0.90 | 82 | 5 | 1035.03 | 353 | 242 |
| Instance50-45.dat | 1.81 | 67 | 7 | 1401.87 | 653 | 303 |
| Instance50-46.dat | 1.98 | 110 | 5 | 1058.11 | 339 | 267 |
| Instance50-47.dat | 0.82 | 96 | 3 | 1552.66 | 169 | 767 |
| Instance50-48.dat | 0.28 | 78 | 3 | 1074.50 | 142 | 78 |
| Instance50-49.dat | 1.21 | 91 | 5 | 1434.88 | 342 | $>8713$ |
| Instance50-50.dat | 0.49 | 126 | 3 | 1065.25 | 225 | 318 |
| Instance50-51.dat | 2.22 | 111 | 5 | 1387.51 | 497 | 812 |
| Instance50-52.dat | 2.29 | 160 | 5 | 1103.42 | 1060 | 529 |
| Instance50-53.dat | 1.51 | 89 | 5 | 1545.73 | 273 | 1497 |
| Instance50-54.dat | 1.23 | 105 | 3 | 1113.62 | 234 | 642 |

Table 7: Results of experiments on instances of set 5

| Instance | $\mathrm{BCP}_{\text {best }}$ with primal heuristic |  |  |  |  | Literature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rg (\%) | $\mathrm{R} t$ (s) | Nodes | BPB | $t(\mathrm{~s})$ | $t(\mathrm{~s})$ |
| 2eVRP_100-5-1b.dat | 1.97 | 121 | 443 | 1104.06* | 35993 | >15018 |
| 2eVRP_100-5-1.dat | 0.89 | 59 | 189 | 1564.46 | 5331 | 5850 |
| 2eVRP_100-5-2b.dat | 1.71 | 125 | 167 | 782.25 | 10643 | >16312 |
| 2eVRP_100-5-2.dat | 1.96 | 63 | 365 | 1016.32 | 8416 | 6574 |
| 2eVRP_100-5-3b.dat | 1.14 | 147 | 5 | 828.54 | 531 | >20434 |
| 2eVRP_100-5-3.dat | 0.37 | 65 | 3 | 1045.29 | 95 | 1831 |
| 2eVRP_100-10-1b.dat | 3.00 | 335 | 71 | 911.80 | 12139 |  |
| 2eVRP_100-10-1.dat | 1.35 | 201 | 7 | 1124.93 | 621 |  |
| 2eVRP_100-10-2b.dat | 0.73 | 311 | 7 | 766.28 | 1040 |  |
| 2eVRP_100-10-2.dat | 0.66 | 133 | 7 | 985.40 | 346 |  |
| 2eVRP_100-10-3b.dat | 2.34 | 351 | 71 | 848.16 | 16894 |  |
| 2eVRP_100-10-3.dat | 0.54 | 243 | 3 | 1042.63 | 451 |  |
| 2eVRP_200-10-1b.dat | 2.23 | 1653 | 19 | 1173.07* | 35958 |  |
| 2eVRP_200-10-1.dat | 1.06 | 633 | 11 | 1537.52 | 2804 |  |
| 2eVRP_200-10-2b.dat | 0.81 | 1345 | 7 | 985.99 | 4132 |  |
| 2eVRP_200-10-2.dat | 0.45 | 555 | 9 | 1352.87 | 1658 |  |
| 2eVRP_200-10-3b.dat | 3.78 | 1611 | 27 | 1221.42* | 36336 |  |
| 2eVRP_200-10-3.dat | 0.35 | 775 | 15 | 1777.49 | 2988 |  |
| * These best primal bounds have not been proved optimal. The gap between the best dual bound and the best primal bound is $1.54 \%$ for 2eVRP_100-5-1.dat, $0.53 \%$ for 2 eVRP_200-10-1b.dat, and $3.13 \%$ for 2eVRP_200-10-3b.dat. |  |  |  |  |  |  |

Table 8: Results of experiments on instances of set 6A

|  | $\mathrm{BCP}_{\text {best }}$ with primal heuristic |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\mathrm{Rg}(\%)$ | $\mathrm{R} t(\mathrm{~s})$ | Nodes | BPB | $t(\mathrm{~s})$ | $t(\mathrm{~s})$ |
| A-n51-4.dat | 0.87 | 58 | 3 | 652.00 | 115 | 74 |
| A-n51-5.dat | 0.39 | 74 | 3 | 663.41 | 125 | 97 |
| A-n51-6.dat | 0.13 | 98 | 3 | 662.51 | 148 | 164 |
| A-n76-4.dat | 0.78 | 51 | 3 | 985.95 | 94 | 215 |
| A-n76-5.dat | 1.50 | 66 | 5 | 979.15 | 148 | 536 |
| A-n76-6.dat | 1.82 | 83 | 9 | 970.20 | 368 | 2080 |
| A-n101-4.dat | 1.25 | 91 | 5 | 1194.17 | 278 | 3732 |
| A-n101-5.dat | 0.63 | 104 | 5 | 1211.35 | 481 | 3015 |
| A-n101-6.dat | 1.74 | 131 | 27 | 1155.89 | 1483 | $>73798$ |
| B-n51-4.dat | 0.31 | 45 | 3 | 563.98 | 80 | 36 |
| B-n51-5.dat | 0.03 | 72 | 3 | 549.23 | 118 | 82 |
| B-n51-6.dat | 0.00 | 64 | 1 | 556.32 | 64 | 78 |
| B-n76-4.dat | 0.36 | 49 | 3 | 792.73 | 77 | 209 |
| B-n76-5.dat | 0.59 | 60 | 3 | 783.93 | 95 | 382 |
| B-n76-6.dat | 0.54 | 78 | 3 | 774.17 | 133 | 1297 |
| B-n101-4.dat | 0.29 | 93 | 3 | 939.21 | 165 | 1570 |
| B-n101-5.dat | 0.68 | 130 | 5 | 967.82 | 330 | 4412 |
| B-n101-6.dat | 0.63 | 115 | 5 | 960.29 | 242 | 2358 |
| C-n51-4.dat | 0.26 | 54 | 3 | 689.18 | 112 | 49 |
| C-n51-5.dat | 0.94 | 83 | 3 | 723.12 | 181 | 270 |
| C-n51-6.dat | 0.62 | 87 | 3 | 697.00 | 182 | 104 |
| C-n76-4.dat | 0.92 | 50 | 3 | 1054.89 | 142 | 284 |
| C-n76-5.dat | 3.16 | 79 | 15 | 1115.32 | 775 | 1136 |
| C-n76-6.dat | 2.92 | 104 | 73 | 1060.52 | 3840 | $>29901$ |
| C-n101-4.dat | 0.65 | 92 | 5 | 1292.04 | 304 | $>18516$ |
| C-n101-5.dat | 0.71 | 119 | 5 | 1304.86 | 446 | $>6791$ |
| C-n101-6.dat | 1.23 | 144 | 47 | 1284.48 | 2235 | $>17481$ |
|  |  |  |  |  |  |  |

Table 9: Results of experiments on instances of set 6B

|  | $\mathrm{BCP}_{\text {best }}$ with primal heuristic |  |  |  |  |  | Literature |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\mathrm{Rg}(\%)$ | $\mathrm{R} t(\mathrm{~s})$ | Nodes | BPB | $t(\mathrm{~s})$ | $t(\mathrm{~s})$ |  |
| A-n51-4.dat | 0.05 | 50 | 3 | 744.24 | 95 | 55 |  |
| A-n51-5.dat | 0.42 | 48 | 3 | 811.51 | 69 | 54 |  |
| A-n51-6.dat | 0.63 | 69 | 3 | 930.11 | 140 | 240 |  |
| A-n76-4.dat | 0.65 | 62 | 3 | 1385.51 | 125 | 416 |  |
| A-n76-5.dat | 0.57 | 59 | 3 | 1519.86 | 106 | 311 |  |
| A-n76-6.dat | 0.30 | 69 | 3 | 1666.06 | 127 | 430 |  |
| A-n101-4.dat | 0.79 | 97 | 9 | 1881.44 | 589 | 2100 |  |
| A-n101-5.dat | 0.45 | 124 | 15 | 1709.06 | 1033 | $>6928$ |  |
| A-n101-6.dat | 1.02 | 119 | 11 | 1777.69 | 886 | $>23948$ |  |
| B-n51-4.dat | 0.00 | 58 | 1 | 653.09 | 58 | 20 |  |
| B-n51-5.dat | 0.02 | 38 | 3 | 672.10 | 60 | 27 |  |
| B-n51-6.dat | 0.48 | 67 | 3 | 767.13 | 122 | 77 |  |


|  | BCP $_{\text {best }}$ with primal heuristic |  |  |  |  |  | Literature |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\mathrm{Rg}(\%)$ | $\mathrm{R} t(\mathrm{~s})$ | Nodes | BPB | $t(\mathrm{~s})$ | $t(\mathrm{~s})$ |  |
| B-n76-4.dat | 0.46 | 43 | 3 | 1094.52 | 81 | 79 |  |
| B-n76-5.dat | 0.14 | 54 | 3 | 1218.12 | 96 | 82 |  |
| B-n76-6.dat | 0.17 | 71 | 3 | 1326.76 | 114 | 143 |  |
| B-n101-4.dat | 0.43 | 85 | 5 | 1499.71 | 232 | $>3673$ |  |
| B-n101-5.dat | 0.96 | 117 | 11 | 1394.79 | 729 | $>20189$ |  |
| B-n101-6.dat | 0.44 | 121 | 5 | 1445.97 | 300 | $>3970$ |  |
| C-n51-4.dat | 0.22 | 63 | 3 | 866.58 | 108 | 75 |  |
| C-n51-5.dat | 0.74 | 72 | 3 | 943.12 | 138 | 149 |  |
| C-n51-6.dat | 0.49 | 76 | 3 | 1050.42 | 126 | 182 |  |
| C-n76-4.dat | 0.22 | 59 | 3 | 1438.96 | 94 | 114 |  |
| C-n76-5.dat | 0.79 | 68 | 5 | 1745.39 | 234 | 525 |  |
| C-n76-6.dat | 0.34 | 78 | 3 | 1756.46 | 139 | 902 |  |
| C-n101-4.dat | 0.57 | 76 | 25 | 2064.86 | 1900 | $>7550$ |  |
| C-n101-5.dat | 0.50 | 126 | 11 | 1962.52 | 687 | $>7762$ |  |
| C-n101-6.dat | 0.62 | 140 | 7 | 1860.73 | 616 | $>14553$ |  |

## B Detailed results for unsolved instances using a special BCP parameterisation

We have run our BCP algorithm for three unsolved instances 2eVRP_100-51b.dat, 2eVRP_200-10-1b.dat, and 2eVRP_200-10-3b.dat using a special parameterisation for each instance, and initial primal bounds which are greater than the best known solution values. All instances were solved to optimality within 60 hours. Table 10 provides the results for this three instances.

Table 10: Results for three instances unsolved with $\mathrm{BCP}_{\text {best }}$ in 10 hours

|  | BCP with special parameterisation |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | InitPB | $\mathrm{Rg}(\%)$ | $\mathrm{R} t(\mathrm{~s})$ | Nodes | BPB | $t(\mathrm{~s})$ |
| 2eVRP_100-5-1b.dat | 1104.00 | 1.39 | 166 | 809 | 1099.35 | 66212 |
| 2eVRP_200-10-1b.dat | 1177.00 | 1.69 | 2634 | 47 | 1173.07 | 28667 |
| 2eVRP_200-10-3b.dat | 1201.00 | 0.98 | 3288 | 159 | 1192.35 | 181652 |

## C Detailed BCP results for new instances

Table 11: Results of experiments on instances of set 7

|  | $\mathrm{BCP}_{\text {best }}$ with primal heuristic |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\mathrm{Rg}(\%)$ | $\mathrm{R} t(\mathrm{~s})$ | Nodes | BLB | BPB | $t(\mathrm{~s})$ |
| 2e-100-5-1c.dat | 0.40 | 78 | 3 | 1284.59 | 1284.59 | 121 |
| 2e-100-5-2c.dat | 0.49 | 68 | 3 | 821.42 | 821.42 | 98 |
| 2e-100-5-3c.dat | 0.00 | 67 | 1 | 841.17 | 841.17 | 67 |
| 2e-100-5-4a.dat | 2.56 | 53 | 11 | 895.37 | 895.37 | 339 |
| 2e-100-5-4b.dat | 5.34 | 174 | 5 | 560.25 | 560.25 | 530 |


| Instance | $\mathrm{BCP}_{\text {best }}$ with primal heuristic |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rg (\%) | $\mathrm{R} t$ ( s ) | Nodes | BLB | BPB | $t(\mathrm{~s})$ |
| 2e-100-10-1c.dat | 0.52 | 221 | 5 | 961.61 | 961.61 | 401 |
| 2e-100-10-2c.dat | 0.48 | 145 | 3 | 860.66 | 860.66 | 217 |
| 2e-100-10-3c.dat | 0.48 | 105 | 3 | 815.32 | 815.32 | 155 |
| 2e-100-10-4a.dat | 2.17 | 261 | 629 | 886.61 | 886.61 | 34096 |
| 2e-100-10-4b.dat | 1.15 | 436 | 11 | 594.70 | 594.70 | 2458 |
| 2e-200-10-1c.dat | 1.28 | 726 | 63 | 1513.95 | 1513.95 | 10180 |
| 2e-200-10-2c.dat | 1.06 | 885 | 259 | 1370.65 | 1370.65 | 25385 |
| 2e-200-10-3c.dat | 0.58 | 1206 | 415 | 1793.82 | 1793.82 | 85502 |
| 2e-200-10-4a.dat | 1.23 | 1213 | 221 | 1411.80 | 1411.80 | 46575 |
| 2e-200-10-4b.dat | 2.56 | 1960 | 19 | 896.96 | 910.23 | 217533 |
| 2e-200-15-1a.dat | 2.01 | 3319 | 89 | 1512.42 | 1535.11 | 215920 |
| 2e-200-15-1b.dat | 3.00 | 5165 | 99 | 982.56 | 1001.43 | 216404 |
| 2e-200-15-1c.dat | 2.07 | 2822 | 203 | 1439.06 | 1461.80 | 215915 |
| 2e-200-15-2a.dat | 0.42 | 1562 | 13 | 1493.41 | 1493.41 | 8153 |
| 2e-200-15-2b.dat | 1.13 | 5461 | 5 | 916.78 | 916.78 | 22446 |
| 2e-200-15-2c.dat | 0.72 | 2777 | 5 | 1275.75 | 1275.75 | 14201 |
| 2e-200-15-3a.dat | 0.81 | 2988 | 35 | 1569.77 | 1569.77 | 50171 |
| 2e-200-15-3b.dat | 0.57 | 3688 | 19 | 972.28 | 972.28 | 49405 |
| 2e-200-15-3c.dat | 1.96 | 3528 | 209 | 1313.21 | 1330.52 | 216018 |
| 2e-200-15-4a.dat | 4.40 | 4187 | 87 | 1317.25 | 1366.52 | 216174 |
| 2e-200-15-4b.dat | $\infty$ | 5391 | 13 | 859.95 | $\infty$ | 215936 |
| 2e-200-15-4c.dat | 1.79 | 3159 | 319 | 1386.61 | 1403.5 | 215908 |
| 2e-300-10-1a.dat | 0.75 | 3289 | 281 | 4223.34 | 4223.34 | 164537 |
| 2e-300-10-1b.dat | 2.96 | 3913 | 103 | 2541.05 | 2596.69 | 215964 |
| 2e-300-10-1c.dat | 3.59 | 2770 | 73 | 4781.32 | 4920.97 | 215908 |
| 2e-300-10-2a.dat | 0.79 | 2420 | 381 | 4040.08 | 4060.08 | 215888 |
| 2e-300-10-2b.dat | $\infty$ | 2576 | 37 | 2286.88 | $\infty$ | 215907 |
| 2e-300-10-2c.dat | 2.38 | 1989 | 115 | 3546.18 | 3613.03 | 215897 |
| 2e-300-10-3a.dat | 0.94 | 2654 | 189 | 4008.59 | 4008.59 | 86489 |
| 2e-300-10-3b.dat | $\infty$ | 4677 | 75 | 2315.30 | $\infty$ | 216040 |
| 2e-300-10-3c.dat | $\infty$ | 2253 | 123 | 4590.85 | $\infty$ | 215907 |
| 2e-300-10-4a.dat | 0.24 | 1846 | 11 | 4094.94 | 4094.94 | 4219 |
| 2e-300-10-4b.dat | $\infty$ | 2851 | 73 | 2339.32 | $\infty$ | 215907 |
| 2e-300-10-4c.dat | 0.45 | 2495 | 225 | 3938.17 | 3938.17 | 59323 |
| 2e-300-15-1a.dat | 3.20 | 6796 | 47 | 3948.09 | 4058.67 | 215828 |
| 2e-300-15-1b.dat | $\infty$ | 12431 | 45 | 2460.70 | $\infty$ | 216062 |
| 2e-300-15-1c.dat | 2.42 | 6659 | 47 | 4135.19 | 4219.51 | 216136 |
| 2e-300-15-2a.dat | 3.18 | 6177 | 49 | 3591.91 | 3671.50 | 215823 |
| 2e-300-15-2b.dat | - | - | - | - | - |  |
| 2e-300-15-2c.dat | $\infty$ | 5902 | 57 | 3497.77 | $\infty$ | 215991 |
| 2e-300-15-3a.dat | 3.98 | 6459 | 51 | 3410.43 | 3522.31 | 216034 |
| 2e-300-15-3b.dat | 3.39 | 8563 | 19 | 2113.98 | 2175.68 | 215959 |
| 2e-300-15-3c.dat | - | - | - | - | - |  |
| 2e-300-15-4a.dat | $\infty$ | 5571 | 47 | 3738.63 | $\infty$ | 215869 |
| 2e-300-15-4b.dat | $\infty$ | 10773 | 23 | 2173.11 | $\infty$ | 215818 |
| 2e-300-15-4c.dat | 1.30 | 6976 | 201 | 3575.95 | 3600.79 | 215821 |

We cannot provide any result for instances $2 \mathrm{e}-300-15-2 \mathrm{~b}$.dat and $2 \mathrm{e}-300-$ $15-3 c . d a t$ because the LP solver could not solve the LP relaxation of the restricted master during the first column generation convergence.

