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Abstract

In the paper, we propose a branch-cut-and-price algorithm for the
two-echelon capacitated vehicle routing problem in which delivery of
products from a depot to customers is performed using intermediate de-
pots called satellites. Our algorithm incorporates significant improve-
ments recently proposed in the literature for the standard capacitated
vehicle routing problem such as bucket graph based labeling algorithm
for the pricing problem, automatic stabilization, limited memory rank-
1 cuts, and strong branching. In addition, we make some specific prob-
lem contributions. First, we introduce a new route based formulation
for the problem which does not use variables to determine product
flows in satellites. Second, we introduce a new branching strategy
which significantly decreases the size of the branch-and-bound tree.
Third, we introduce a new family of satellite supply inequalities, and
we empirically show that it improves the quality of the dual bound at
the root node of the branch-and-bound tree. Finally, extensive numer-
ical experiments reveal that our algorithm can solve to optimality all
literature instances with up to 200 customers and 10 satellites for the
first time and thus double the size of instances which could be solved
to optimality.

1 Introduction

In a context of economic globalization, the growth of urban population leads
to an increase in freight transportation in cities. Freight transportation may
deteriorate the quality of the urban environment with, for example, high
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noise levels, greenhouse gas emissions, and decrease of air quality. More-
over, freight transportation faces several constraints such as reduced access
within cities and deliveries within time-windows. As a result, freight dis-
tribution patterns in city logistics change [Taniguchi and Thompson, 2002].
In the past, customers were delivered straight from depots located on the
outskirts of cities. Nowadays, transporters tend to use two-tier distribution
systems. In the first tier, large urban trucks ships freight from warehouses
or production sites to intermediate distribution facilities called satellites. In
satellites, freight is processed and consolidated. Freight is then loaded in
small city freighters which deliver customers located in city centers.

At the strategic level, two-tier distribution systems are considered in
location-routing problems [Crainic et al., 2011]. These are integrated prob-
lems in which we take decisions on both locating facilities and routing from
open facilities. At tactical and operational levels, locations of depots and
satellites are known. We plan only routing of vehicles. However, we should
take routing decisions on both levels at the same time to devise cost-effective
solutions in two-tier distribution systems. Such integration gave rise to two-
echelon routing problems [Crainic et al., 2009]. The first such problem pro-
posed in the literature by [Gonzalez-Feliu et al., 2007] is the two-echelon
capacitated vehicle routing problem (2E-CVRP).

In the 2E-CVRP, we must determine the number of goods to be shipped
from the depot to the satellites and from satellites to customers, and the
optimal routes connecting entities in each level such that vehicle capacities
are not exceeded. We aim at minimizing the sum of handling costs at satel-
lites and transportation costs depending on the total distance traveled by
all vehicles.

Recently, several exact algorithms for the 2E-CVRP have been proposed
in the literature. The most efficient one by [Baldacci et al., 2013] is based
on an enumeration of collections of first-level routes. Thus, it can efficiently
tackle only instances with a small number of satellites (up to six). More-
over, this algorithm solves to optimality instances with up to 100 customers
whereas the best exact algorithms for other vehicle routing problems can
handle up to 300 customers [Pecin et al., 2017a]. [Santos et al., 2015] pro-
posed the only branch-cut-and-price algorithm in the literature for the 2E-
CVRP. This algorithm can be used to solve instances with a larger number
of satellites, but experimentations show that it is less efficient than the one
of [Baldacci et al., 2013].

In this paper, we propose an improved branch-cut-and-price (BCP) al-
gorithm for the 2E-CVRP which is built on recent advances for the classical
capacitated vehicle routing problem (CVRP). To further improve the ef-
ficiency of our BCP algorithm, we propose the following problem-specific
enhancements:

• A new route based formulation for the problem which does not involve
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variables which explicitly define product flow in satellites. New level
balancing constraints guarantee flow conservation in satellites.

• A new family of inequalities to improve the quality of the linear pro-
gramming (LP) relaxation of the formulation. These inequalities are
inspired by the depot capacity constraints introduced for the capaci-
tated location-routing problem by [Belenguer et al., 2011].

• A new branching strategy which uses variables defining the number of
urban trucks visiting a subset of satellites.

To improve the current primal bound, we employed a column genera-
tion based heuristic in the course of the algorithm. Our BCP algorithm
with the embedded heuristic outperformed largely the state-of-the-art exact
approach by [Baldacci et al., 2013] for the problem, since it solved to opti-
mality all instances available in the literature with up to 200 customers and
10 satellites.

Finally, we generated a new set of large instances for the problem to
inspire further research on the 2E-CVRP. This set involves instances with
up to 300 customers and 15 satellites. These instances are derived from
ones recently proposed by [Schneider and Löffler, 2019] for the capacitated
location-routing problem.

The remaining of the paper is organized as follows. Section 2 reviews the
literature. Section 3 describes the standard and the new formulations of the
problem. Section 4 introduces the new family of satellite supply inequalities.
Section 5 describes the proposed branch-cut-and-price algorithm. Section 6
reveals and discusses the computational results. Section 7 concludes and
presents further research perspectives.

2 Literature review

[Gonzalez-Feliu et al., 2007] first considered the 2E-CVRP. They proposed
a freight-flow formulation enhanced by two families of valid inequalities.
Their branch-and-cut algorithm solved to optimality instances with up to
22 customers and 2 satellites. [Perboli et al., 2011] improved these results.
The authors strengthened the formulation with one family of valid inequal-
ities. They solved to optimality some instances with 33 customers. Two
matheuristics were also suggested. They found feasible solutions to instances
up to 50 customers with 10% of average gap from the lower bound.

Later, [Jepsen et al., 2013] pointed out that the formulation in [Perboli et al., 2011]
is not correct for instances with more than two satellites. They proposed
an alternative formulation that combines the relaxation of the split-delivery
CVRP by [Belenguer et al., 2000] for the first level and the model for the ca-
pacitated location routing problem by [Contardo et al., 2013] for the second
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level. Although this formulation is an outer approximation, its LP relaxation
is stronger than one of [Perboli et al., 2011]. Since this formulation has an
exponential number of constraints, the authors used a branch-and-cut al-
gorithm. A specialized branching scheme was employed to cut non-feasible
integer solutions. This approach solved to optimality instances with up to
50 customers and 5 satellites. It remains the best branch-and-cut algorithm
for the problem in the literature.

[Contardo et al., 2012] proposed another branch-and-cut algorithm for
the two-echelon capacitated location-routing problem. This problem is a
generalization of the 2E-CVRP in which there are several depots and opening
costs for satellites. Their branch-and-cut algorithm solved to optimality
instances with up to 50 customers and 10 potential satellites.

[Santos et al., 2015] proposed the first branch-cut-and-price algorithm
for the 2E-CVRP. They considered a route based formulation strengthened
by some valid inequalities from the CVRP literature. First-level routes
are enumerated whereas second-level routes are priced by the shortest path
problem with resource constraints. The pricing problem generates non-
elementarity routes. They used branching strategies in the following prior-
ity order: (1) branching on the number of vehicles traveling on a first-level
route, (2) branching on the number of second-level vehicles starting from
a satellite, and (3) branching on the use of an arc by a second-level route.
The computational results of [Santos et al., 2015] were similar to those by
[Jepsen et al., 2013].

The exact approach by [Baldacci et al., 2013] also uses a route based
formulation. The method is based on an intelligent enumeration of col-
lections of first-level routes. Authors devised lower and upper bounding
procedures to limit the number of subsets which may lead to an optimal
solution. By fixing a subset of first-level routes, the problem is reduced
to the multi-depot capacitated vehicle routing problem with limited de-
pot capacities. The latter was solved by an adaptation of the algorithm by
[Baldacci and Mingozzi, 2009]. Computational experiments showed that the
overall approach outperforms the one by [Jepsen et al., 2013]. [Baldacci et al., 2013]
could solve instances with up to 100 customers and 5 satellites. Their ap-
proach remains the best exact algorithm in the literature until now. How-
ever, the fact that collections of first-level routes are enumerated does not
allow one to employ this approach for instances with 10 satellites or more.

There are several heuristic approaches for the 2E-CVRP in the literature.
[Hemmelmayr et al., 2012] proposed an adaptive large neighborhood search
based heuristic that works for both 2E-CVRP and the location-routing prob-
lem. It largely improved the best feasible solutions found by [Perboli et al., 2011].
Moreover, the authors proposed a new test set of instances with up to 200
customers and 10 satellites.

[Zeng et al., 2014] suggested a hybrid heuristic which is composed of
a greedy randomized adaptive search procedure (GRASP) with a route-
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first cluster-second procedure embedded in a variable neighborhood descent
(VND). [Breunig et al., 2016] developed an improved large neighborhood-
based hybrid meta-heuristic. It combines enumerative local search with
destroy-and-repair principles, as well as some tailored operators to optimize
the selections of satellites. Both these approaches improved the best-known
solutions for many instances.

Recently, two matheuristics were proposed in the literature. [Wang et al., 2017]
employed a mixed-integer mathematical model for the 2E-CVRP, in which
arc variables are used for the first level, and path variables for the second
level. They used variable neighborhood search to construct the set of second-
level routes, and they then solved the mathematical model to improve the
obtained solution. The authors improved 13 best-known solutions. Finally,
[Amarouche et al., 2018] used a similar approach in which a pool of routes
is collected by a local search heuristic combined with a destroy-and-repair
method. Then, the route based formulation is solved with the hope to im-
prove the best solution found so far. This approach improves 7 best-known
solutions for the largest instances of the 2E-CVRP.

3 Formulation

Let us now formally define the problem. At the first level, a set K of ho-
mogeneous urban trucks ships freight from a depot denoted as 0 to a set
S of intermediate depots, called satellites. At the second level, a set L of
homogeneous city freighters picks freight at satellites and deliver it to a set
C of customers. Each vehicle must return to the place from where it started
its tour (depot for urban trucks and satellites for city freighters). Urban
trucks have a capacity of Q1 items, and city freighters have a capacity of Q2

items. A satellite s ∈ S can hold up to Ls city freighters and charges fHs
for each processed item of freight. Each customer c ∈ C asks for dc items of
freight and must be visited exactly once. At each satellite, the total amount
of freight delivered by urban trucks must be equal to the amount of freight
picked by city freighters that start at this satellite. The objective of the
problem is to minimize the sum of handling costs fH and transportation
costs fT .

We use the route based formulation to model the problem. The first
level is similar to the split-delivery CVRP since several urban trucks can
supply a satellite. However, the amount of freight delivered to each satellite
is not known. A complete undirected graph G1 = (V1, E1), V1 = {0} ∪ S,
represents the first level of the distribution system. Let P be the set of
feasible first-level routes and let z̃pe ∈ N denote the number of times path
p ∈ P uses edge e ∈ E1.

The second level corresponds to the multi-depot CVRP where depots are
satellites. Each customer is visited by one city freighter, and each satellite
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cannot supply more freight than the amount delivered to it by urban trucks.
This level is represented by an undirected graph G2 = (V2, E2) where V2 =
C ∪ S and E2 = {(i, j) | i ∈ S ∪ C, j ∈ C, i 6= j}. For any satellite s ∈ S, let
Rs be the set of feasible second-level routes starting and finishing in s. We
denote R = ∪s∈SRs. A second-level route r ∈ R is described by vector x̃r

where element x̃re ∈ N denotes the number of times route r uses edge e ∈ E2.
We also introduce vector ỹr where element ỹrc ∈ N denotes the number of
times route r visits customer c ∈ C. Given graph Gi, i = 1, 2, we denote as
δi(v) the set of edges in Ei incident to vertex v ∈ Vi.

The cost of traversing edge e ∈ E1 ∪ E2 is denoted by fTe . From now
on, we make two assumptions. First, transportation costs fT satisfy the
triangle inequality. Otherwise, we transform the instance to an equivalent
one: if the minimum cost path between two vertices v, v′ passes by other
vertices, we set the cost fT(v,v′) to the cost of the minimum path. The second
assumption is that transportation costs are symmetric. If this is not the
case, graphs G1 and G2 become directed ones, edges become arcs, and all
z̃e=(v,v′) and x̃e=(v,v′) depending on edges are replaced by z̃a=(v,v′) + z̃a=(v′,v)

and x̃a=(v,v′) + x̃a=(v′,v) depending on arcs. All instances in the 2E-CVRP
literature satisfy these two assumptions.

3.1 Standard formulation

We now describe the standard route based formulation for the 2E-CVRP,
used in [Baldacci et al., 2013, Santos et al., 2015, Amarouche et al., 2018].
Integer variable λp is equal to the number of urban trucks traveling on
first-level route p ∈ P . We denote as Sp the set of satellites visited by route
p ∈ P : Sp = {s ∈ S :

∑
e∈δ1(s) z̃

p
e = 2}. We denote as PS the set of first-level

routes visiting at least one satellite in S ⊆ S: PS = {p ∈ P : Sp ∩ S 6= ∅}.
Continuous variable wps is equal to the amount of freight that first-level
route p ∈ P{s} delivers to satellite s ∈ Sp. Binary variable µr is equal to
one if and only if a city freighter travels on second-level route r ∈ R. To
simplify the presentation, we introduce the continuous auxiliary variable bs
that is equal to the total amount of freight delivered to satellite s ∈ S.

(F1) min
∑
p∈P

∑
e∈E1

fTe z̃
p
eλp +

∑
r∈R

∑
e∈E2

fTe x̃
r
eµr +

∑
s∈S

fHs bs (1)

s.t.
∑
r∈R

∑
c∈C

ỹrcµr = 1 c ∈ C (2)∑
r∈Rs

µr ≤ Ls s ∈ S (3)

∑
r∈R

µr ≤ |L| (4)
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∑
p∈P

λp ≤ |K| (5)

∑
s∈Sp

wps ≤ Q1λp p ∈ P (6)

bs =
∑

p∈P{s}

wps s ∈ S (7)

bs =
∑
r∈Rs

∑
c∈C

dcỹ
r
cµr s ∈ S (8)

λp ∈ N p ∈ P (9)

µr ∈ {0, 1} r ∈ R (10)

wps ≥ 0 p ∈ P, s ∈ Sp (11)

Objective function (1) minimizes the sum of transportation and handling
costs. Constraints (2) ensures each customer is visited by exactly one second-
level route. Constraints (3), (4), and (5) are upper bounds on the number of
used vehicles. Constraints (6) make sure that the capacity of urban trucks
is not exceeded. Constraints (7) and (8) ensure the flow balance between
the two distribution levels. Constraints (9), (10) and (11) define domains of
variables.

3.2 Modified formulation

In (F1), we use variable w together with constraints (6) and (7) to ensure
the flow balance between two distribution levels. In the modified formu-
lation, we replace them by another set of constraints. To simplify further
the presentation, we introduce auxiliary integer variables uS that define the
number of urban trucks visiting a non-empty subset S ⊆ S of satellites. The
modified formulation is then

(F2) min (1)

s.t. (2)− (5), (8)− (10)

uS =
∑
p∈PS

λp S ⊆ S, S 6= ∅ (12)

∑
s∈S

bs ≤ Q1uS S ⊆ S, S 6= ∅ (13)

Constraints (12) define variables u. Level balancing constraints (13)
replace variables w and constraints (6), (7), (11). Validity of constraints (13)
follows from:∑

s∈S
bs

(7)
=
∑
s∈S

∑
p∈P{s}

wps =
∑
p∈PS

∑
s∈Sp

wps
(6),(12)

≤ Q1

∑
p∈PS

λp.
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We will now prove that constraints (13) are sufficient to guarantee the
existence of a feasible freight flow at satellites for every solution (λ̄, µ̄) of
formulation (F2). Remember that b and u are auxiliary variables. Their
values b̄ and ū can be computed from solution (λ̄, µ̄) using (8) and (12).
The proof is illustrated in Figure 1.

Q1λ̄p
b̄s1

b̄s2

b̄s3

b̄s4
s̃ t̃

P̄ S̄Ā1 Ā2 Ā3

S̄′P̄ ′

Figure 1: Illustration for graph Ḡ and its minimum cut in Proposition 1.

Proposition 1. For every feasible solution (λ̄, µ̄) to the LP relaxation of
formulation (F2) it exists a feasible solution (λ̄, µ̄, w̄) to the LP relaxation
of formulation (F1).

Proof. Given a solution (λ̄, µ̄) and its computed values (b̄, ū), we construct
a directed graph Ḡ = (V̄ , Ā). Set V̄ of nodes contains source s̃, sink t̃, set
P̄ = {p ∈ P : λ̄p > 0} of nodes representing first-level routes in the solution,
and set S̄ = {s ∈ S : b̄s > 0} of nodes representing satellites used in the
solution. Set Ā of arcs is the union of the following three sets: Ā1 connects
the source with P̄ , Ā2 connects P̄ with S̄, and Ā3 connects S̄ with the sink.
An arc (s̃, p) in Ā1 has capacity Q1λ̄p. An arc (p, s) belongs to Ā2 if and
only if s ∈ Sp and has infinite capacity. An arc (s, t̃) in Ā3 has capacity b̄s.

Let us now prove by contradiction that the maximum value of the s̃- t̃
flow in graph Ḡ is equal to

∑
c∈C dc = d(C). Suppose that the maximum

flow is strictly less than d(C). Let V̄ ′ be the subset of V̄ obtained from a
minimum s̃-t̃ cut in Ḡ, s̃ ∈ V̄ ′. Let S̄′ = V̄ ′ \ S̄ and P̄ ′ = V̄ ′ \ P̄ . We
denote as δ(V̄ ′) = {(v, v′) ∈ Ā | v ∈ V̄ ′, v′ 6∈ V̄ ′} the set of arcs forming the
minimum cut. From the supposition and the max-flow-min-cut theorem it
follows that the total capacity of δ(V̄ ′) is less than d(C). Thus δ(V̄ ′) contains
at least one arc in Ā1 and does not contain all arcs in Ā3. Therefore, the
total capacity of arcs in Ā1 ∩ δ(V̄ ′) is strictly less than the total capacity of
arcs in Ā3 \ δ(V̄ ′): ∑

p∈P̄ ′

Q1λ̄p <
∑
s∈S̄′

b̄s. (14)
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Set δ(V̄ ′) does not contain any arc in Ā2 as they have infinite capacity.
Thus V̄ ′ ∩ P̄ ∩ PS̄′ is empty, and λ̄p = 0 for all p ∈ PS̄′ \ P̄ ′. From the
latter and (14), it follows that

∑
s∈S̄′ b̄s > Q1

∑
p∈PS̄′ λ̄p which violates con-

straints (12) and (13) for set S̄′ of satellites. Thus (λ̄, µ̄) is not a feasible
solution to the LP relaxation of (F2) which leads to a contradiction.

We have just proved that the maximum flow in graph Ḡ has value d(C).
We now set w̄ps equal to the flow from p ∈ P̄ to s ∈ S̄ for every (p, s) ∈ Ā2,
and to 0 otherwise. By construction of graph Ḡ, constraints (6) and (7) are
satisfied by (λ̄, b̄, w̄), and (λ̄, µ̄, w̄) is a feasible solution to the LP relaxation
of (F1).

Since the number of constraints (12) and (13) is exponential, we should
generate them dynamically. The proof of Proposition 1 gives a method to
separate both integer and fractional solutions of (F2). In the separation
procedure, we search for a minimum cut in graph Ḡ constructed from λ̄ and
µ̄. Once set S̄′ of satellites is found, it is further separated into subsets such
that there is no path in P̄ visiting two satellites in different subsets. Then,
we add constraints (12) and (13) for every such subset of satellites.

3.3 Valid inequalities

In our BCP algorithm, we use four families of valid inequalities. In this
section, we present the first three families. To simplify the presentation, we
introduce auxiliary variables x and y:

xse =
∑
r∈Rs

x̃reµr, s ∈ S, e ∈ E2, ysc =
∑
r∈Rs

ỹrcµr, s ∈ S, c ∈ C.

Integer variable xse is equal to the number of times edge e ∈ E2 is used by
city freighters started from satellite s ∈ S. Binary variable ysc is equal to
one if and only if customer c ∈ C is visited by a city freighter started from
satellite s ∈ S.

3.3.1 Rounded capacity cuts

Rounded capacity cuts were introduced by [Laporte and Nobert, 1983] for
the CVRP. Term dd(C)/Q2e is a lower bound on the number of city freighters
which have to visit at least one customer in C. Therefore, the next rounded
capacity cuts are valid:∑

s∈S

∑
e∈δ2(C)

xse ≥ 2

⌈
d(C)

Q2

⌉
, C ⊆ C. (15)

Constraints (15) are separated using the CVRPSEP package [Lysgaard, 2018]
which implements the heuristic by [Lysgaard et al., 2004].
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3.3.2 Chvátal-Gomory rank-1 cuts

Here we consider Chvátal-Gomory rounding of set-partitioning constraints (2)
relaxed to≤ inequalities. Consider a vector α of multipliers such that αc ≥ 0,
c ∈ C. Then, the following rank-1 cut is valid:

∑
s∈S

∑
r∈Rs

⌊∑
c∈C

αcỹ
r
c

⌋
µr ≤

⌊∑
c∈C

αc

⌋
. (16)

An inequality (16) obtained using a vector of multipliers with l positive
components is called an l-row rank-1 cut. If all positive components of
α are the same, the corresponding inequality is called a subset-row cut.
[Jepsen et al., 2008] first introduced 3-row subset-row cuts. [Pecin et al., 2017a]
used l-row subset-row cuts with l ≤ 5. General l-row rank-1 cuts with l ≤ 5
were considered by [Pecin et al., 2017b]. They determined all dominant vec-
tors of multipliers for such cuts: if an l-row rank-1 cut with l ≤ 5 is violated,
at least one rank-1 cut obtained using a dominant vector of multipliers is
violated.

Similarly to [Sadykov et al., 2017], separation of l-row rank-1 cuts with
l ≤ 5 is performed using a local search heuristic separately for every domi-
nant vector of multipliers. We employ the limited memory technique by [Pecin et al., 2017a]
to reduce the impact of rank-1 cuts on the solution time of the pricing prob-
lem.

3.3.3 Visited satellite inequalities

A customer can be visited by a route r ∈ Rs only if satellite s is visited by
at least one urban truck. Therefore, next visited satellite inequalities (VCI)
are valid:

ysc ≤ u{s}, c ∈ C, s ∈ S. (17)

Although inequalities (17) are rather straightforward, we did not find any
work in the literature which uses them. Separation of constraints (17) is
performed by enumeration of all pairs (c, s) ∈ C × S.

3.3.4 Lower bounds on the number of vehicles

We define lower bounds on the number of urban trucks∑
p∈P

λp ≥
⌈
d(C)
Q1

⌉
(18)

and the number of city freighters∑
r∈R

µr ≥
⌈
d(C)
Q2

⌉
(19)
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Moreover, a subset S of satellites must be visited by enough urban trucks
to supply the demand that cannot be delivered from satellites in S \ S.
Therefore, the next lower bound on uS is valid :

uS ≥

⌈
d(C)−

∑
s∈S\S LsQ2

Q1

⌉
, S ⊂ S (20)

Inequalities (20) are useful when the number of city freighters that can
start from satellites is limited (Ls < |L|, s ∈ S).

4 New family of valid inequalities

We propose a new family of satellite supply inequalities (SSI) inspired by the
depot capacity constraints introduced for the capacitated location-routing
problem by [Belenguer et al., 2011]. To simplify the presentation below, we
denote C{ = C\C and S{ = S\S. Let us introduce SSI through an example.

Example 1. Consider urban trucks with capacity Q1 = 10 and city freighters
with capacity Q2 = 6. Figure 2 shows a fractional solution (ū, µ̄) to the
LP relaxation of (F2). Here S = {s1, s2} and set C contains seven cus-
tomers. Consider subset C of customers with d(C) = 11. Consider also
subset S = {s2} of satellites with ūS = 1. Clearly, S can supply only de-
mand of at most Q1ūS = 10 units and thus cannot supply set C of customers
alone. In this fractional solution, C is supplied by 1.8 city freighters coming
from S and 0.2 city freighters coming from S{. The violated SSI states that
either two or more urban trucks should visit S = {s2} or at least one city
freighter coming from satellites in S{ = {s1} should visit some customers in
C: ∑

s∈S{

∑
e∈δ(C)

xse ≥ 2 · (2− uS) .

4.1 Satellite supply inequalities

We now define gC(u) as the function which gives a lower bound on the
number of city freighters required to cover the demand of a subset C of
customers that buc urban trucks cannot supply:

gC(u) = max

{
0,

⌈
d(C)−Q1buc

Q2

⌉}
.

Proposition 2. Given C ⊂ C and S ⊂ S, the following inequality is valid
for the 2E-CVRP ∑

s∈S{

∑
e∈δ2(C)

xse ≥ 2 · gC(uS). (21)
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Capacities:

10 items

5 items

Figure 2: Example of a satellite supply inequality, violated for given S and
C.

Proof. Consider a feasible solution (x̄, b̄, ū) of formulation (F2). The follow-
ing rounded capacity inequality is satisfied by x̄ and b̄:∑

s∈S{

∑
e∈δ2(C)

x̄se ≥ 2

⌈
d(C)−

∑
s∈S b̄s

Q2

⌉
(22)

From constraint (13) and the integrality of variable ūS , it follows∑
s∈S

b̄s ≤ Q1ūS = Q1būSc. (23)

By combining (22) and (23) we obtain that (21) is satisfied by x̄ and ū.

Function gC(u) is not linear and cannot be used directly. Instead, we use
the piecewise linear function, denoted as hC(u), which forms the convex hull
of the epigraph of gC(u). We denote as ũC the ordered vector of (integer)
values u of extreme points of hC :

ũC =
(
ũC0 = 0, ũC1 , . . . , ũ

C
k(C) = dd(C)/Q1e

)
.

Figure 3 depicts an example of functions gC and hC for Q1 = 10, Q2 = 4,
and d(C) = 32. In the left plot, the epigraph of gC is the grey area. In the
right plot, function hC is the bold line. Extreme points of hC are H0, H2,
H3, H4, but not H1. Therefore, ũC = (0, 2, 3, 4), and k(C) = 3.

Proposition 3. Given subsets C ⊂ C, S ⊂ S, and an integer 0 < k ≤ k(C),
the following inequality is valid for the 2E-CVRP

∑
s∈S{

∑
e∈δ2(C)

xse ≥ 2 ·

(
hC(ũCk−1)−

hC(ũCk−1)− hC(ũCk )

ũCk − ũCk−1

(uS − ũCk−1)

)
(24)
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Figure 3: Example of functions gC (on the left) and hC (on the right).

Proof. The right-hand side of each constraint (24) corresponds to a linear
piece of function hC . Thus the proof follows from Proposition 2 and from
the fact that hC(u) ≤ gC(u) for all u ≥ 0.

4.2 Separation of SSI

Let (x̄, ū) be the values of variables x and u in a solution to the LP relaxation
of (F2). The following problem finds the most violated inequality.

max
S⊂S,C⊂C

2 · hC(ūS)−
∑
s∈S{

∑
e∈δ2(C)

x̄se (25)

The first and second terms of the objective function are non-linear func-
tions of C and S. Thus enumeration of C and S is required to compute (25)
exactly using an integer program. Since the number of subsets is exponen-
tial, we propose a heuristic to separate SSI. Although the heuristic does not
necessarily find the most violated inequality, it offers a good trade-off be-
tween the computational effort and the violation of found inequalities. Our
heuristic works with a fixed set of satellites. The following proposition gives
a dominance rule which will allow us to discard non-interesting subsets of
satellites.

Proposition 4. Consider a solution (x̄, ū) to the LP relaxation of (F2) and
a fixed set C of customers. If SSI (24) is violated for C and a set S1 of
satellites, then it is violated for C and any set S2 ⊇ S1 such that ūS2 = ūS1.
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Proof. The right-hand side of (24) is fixed for a fixed set C of customers
and a fixed value uS . Thus right-hand side of the SSIs for pairs (C, S1) and
(C, S2) is the same. For fixed values of variables x, the left-hand side of
the SSI for pair (C, S2) is not larger than one of the SSI for pair (C, S1), as
S{

2 ⊆ S{
1. Thus the violation of the SSI for pair (C, S2) is not smaller than

one of the SSI for pair (C, S1).

To enumerate all the non-dominated sets of satellites, we first build the
power set Ū of set S̄ of satellites used in the solution. Since we look for the
largest subsets of satellites, we append all satellites in S \ S̄ to each set in
Ū . Finally, we exclude from Ū all sets S1 such that there exists S2 ∈ Ū with
S2 ⊇ S1 and ūS2 = ūS1 . This is done by the exhaustive enumeration as the
cardinality of set Ū is not large for the instances of the literature.

V̄S

S

ŪS

W̄S

3

2

1

2

3

1 2

depot

i satellite si

0.2 vehicles

0.8 vehicles

1 vehicle

Figure 4: Separation graph Ḡ2(S) for the fractional solution in Example 1

Given a set S ∈ Ū of satellites, we now look for subsets of customers
that violate SSI. We split customers in three subsets. Let ŪS ⊂ C be the set
of customers visited only by routes started from S{, let V̄S ⊂ C be the set of
customers visited only by routes started from S, and let W̄S = C \(ŪS ∪ V̄S).
Figure 4 illustrates the partition of customers of Example 1. We then build
graph Ḡ2(S) in the following way.

• Graph Ḡ2(S) is the subgraph of G2 induced by vertices in ŪS∪W̄S∪S{.

• Weight of each edge e in Ḡ2(S) is equal to
∑

s∈S{ x̄se.

• Set ŪS ∪ S{ of vertices in Ḡ2(S) is merged into one vertex s̄ by suc-
cessively contracting all edges having two incident vertices in ŪS ∪S{.
Weight of each edge (s̄, c), c ∈ W̄S , in final graph Ḡ2(S) is then equal
to
∑

s∈S{

∑
i∈ŪS∪S{ x̄s(i,c).

Afterward, we compute the minimum cut in Ḡ2(S). Let C̄S be the subset of
vertices obtained from the minimum cut, s̄ 6∈ C̄S . First, we verify whether
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SSI based on set S of satellites and set C = C̄S∪ V̄S of customers is violated.
Afterward, we iteratively enlarge set C in a greedy manner and check the
violation of SSI based on S and C at each iteration. Customer c′ to include
in current set C (and exclude from W̄S) in each iteration is

c′ = arg max
c∈W̄S

{ ∑
s∈S{ dcȳ

s
c∑

s∈S{

∑
i∈Ū(S,C,c) x̄

s
(c,i)

}
, (26)

where Ū(S,C, c) = S{ ∪ ŪS ∪ W̄S \ {c}. The intuition behind (26) is that
we try to increase the first term of (25) while increasing not too much the
second term. The separation procedure is formally given in Algorithm 1.

Algorithm 1 Separation procedure for the satellites supply inequalities

We are given (λ̄, µ̄) and computed entities P̄ , ū, x̄, ȳ
I is the set of found violated SSI
Find set Ū of non-dominated subsets of satellites
for all S ∈ Ū do

Find ŪS , V̄S , W̄S and build graph Ḡ2(S)
Compute the minimum cut in Ḡ2(S) and corresponding set C̄S
C ← C̄S ∪ V̄S
repeat

If SSI based on S and C is violated by (ū, x̄), add the inequality
to I

Find customer c′ in W̄S using (26)
C ← C ∪ {c′}
W̄S ← W̄S \ {c′}

until W̄S = ∅
end for
Return a specified number of the most violated SSI in I

5 Branch-Cut-and-Price algorithm

Formulation (F2) together with valid inequalities (15), (16), (17), and (24)
is solved by an adaptation of the branch-cut-and-price algorithm proposed
by [Sadykov et al., 2017]. In this section, we describe the main ingredients
of this algorithm. The reader is invited to consult the original paper for all
details .

As the number of variables depends exponentially on the number of
satellites and customers, the LP relaxation of (F2), which we call the mas-
ter problem, is solved by the column and cut generation approach. As we
consider instances with at most 15 satellites, all first-level route variables
λ are added to the formulation from the start of the algorithm. All exact

15



algorithms in the literature which use the route based formulation for the
2E-VRP follow the same approach.

5.1 Pricing problem

Second-level route variables µ are dynamically generated by solving the pric-
ing problem. It is decomposed into |S| subproblems (SPs), one per satellite
s ∈ S. The set of feasible solutions to the pricing subproblem (SPs) is the
set Rs of paths in graph G2. A path r belongs to Rs if and only if :

• it starts and finishes in vertex s:
∑

e∈δ2(s) x̃
r
e = 2;

• it does not pass through other satellites:
∑

e∈δ2(S\{s}) x̃
r
e = 0;

• it passes through each customer at most once: ỹrc ≤ 1, ∀c ∈ C.

• its total delivered demand does not exceed the capacity of a city
freighter:

∑
c∈C ỹ

r
c ≤ Q2.

Let π, ψ, φ, ρ, τ , θ, ξ, and ζ be optimum dual values for the master
problem restricted to a subset of variables µ. These dual values correspond
to constraints (2), (3), (4), (8), (15), (16), (17), and (24). Let also K be the
collection of active rank-1 cuts corresponding to vectors (αk)k∈K , and Ms

be the collection of active SSI based on sets (Sm, Cm)m∈Ms , s ∈ S{
m. The

reduced cost of a path r ∈ Rs is then equal to

∑
e∈E2

fTe − ∑
C∈C:
e∈δ(C)

τC −
∑

m∈Ms:
e∈δ2(Cm)

ζm

 x̃re

−
∑
c∈C

∑
e∈δ2(c)

1

2
(πc + dcρs − ξsc) x̃re +

∑
k∈K

θk

⌊∑
c∈C

αkc ỹ
r
c

⌋
+ ψs + φ.

(27)

When rank-1 cuts (16) are absent, a path has a reduced cost that is
equal to the sum of reduced costs of its edges. In this case, pricing sub-
problem (SPs) is the resource constrained elementary shortest path prob-
lem. This problem can be time-consuming to solve. Therefore, we relax
the elementarity constraint and work with ng-paths [Baldacci et al., 2011].
This relaxation has an impact only on the strength of the LP relaxation
of (F2). However, the validity of (F2) is preserved. For each customer, its
ng-neighborhood is static and includes 8 closest customers including itself.

Presence of active rank-1 cuts makes the pricing problem more compli-
cated because each such cut adds a resource to the problem. To limit the
increase in difficulty of the pricing problem, we use the limited memory
technique proposed by [Pecin et al., 2017a]. For each cut (16) a memory is
associated. It consists of a subset of edges in E2. This memory makes the
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resource associated to the cut local: we need to track its consumption only
in a small part of the graph.

Each pricing subproblem (SPs) is solved by the bucket graph based bi-
directional labeling algorithm proposed by [Sadykov et al., 2017]. This al-
gorithm supports both ng-path relaxation and presence of dual values asso-
ciated with limited-memory rank-1 cuts. If the transportation costs fT are
symmetric, the algorithm exploits the forward-backward path symmetry.

5.2 Column and cut generation

We use three-stage column generation to speed up convergence. In the
first two stages, the pricing problem is solved by the same heuristic labelling
algorithms as in [Sadykov et al., 2017]. In the last stage, the pricing problem
is solved by the exact labelling algorithm. For each subproblem, heuristic
pricing generates at most 30 columns, and exact pricing generates at most
150 columns. We also apply automatic dual pricing smoothing stabilization
suggested by [Pessoa et al., 2018] to further speed-up the convergence of
column generation.

We use the bucket arc elimination procedure [Sadykov et al., 2017]. It
reduces the size of graph G2 by removing arcs which are proved to be absent
from any improving solution to the problem. The procedure is first per-
formed after the first column generation convergence, and then each time
the primal-dual gap decreases by more than 10%. Note that graph reduction
is not the same in different pricing subproblems.

After each call to the bucket arc elimination procedure, we use the el-
ementary route enumeration technique by [Baldacci et al., 2008]. For each
pricing subproblem, this procedure tries to enumerate all elementary routes
with reduced cost smaller than the current primal-dual gap. If the enu-
meration succeeds, the pricing subproblem is solved by inspection in future
column generation iterations, similarly to [Contardo and Martinelli, 2014].
If the total number of enumerated routes in all subproblems is less than
5000, all the routes are added to formulation (F2) and the latter is solved
by the MIP solver.

We define variables u only for subsets with 5 satellites or less in order to
limit the size of the formulation and the number of candidates for branching.
Moreover, we define variables uS = t1 −

∑
p 6∈PS

λp where t1 is the total
number of urban trucks used. It allows us to keep the coefficient matrix
sparse. Variables uS are replaced by t1 −

∑
p 6∈PS

λp when |S| ≥ 6. In the
beginning, all constraints (13) are added to formulation (F2) for instances
with at most 10 satellites. For other instances, only constraints (13) for sets
S ⊂ S, |S| ≤ 5, are added. Other constraints are dynamically separated as
described in Section 3.2.

In each cut generation round, we add at most 100 rounded capacity
cuts (15), 450 rank-1 cuts (16), 50 VCI (17), and 150 SSI (24) to the master
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problem. The cut generation is stopped either by the tailing-off condition
or when the time spent to solve at least one pricing subproblem exceeds
1 second. The tailing-off condition is satisfied when after 3 cut generation
rounds the primal-dual gap decreases by less than 2% per round.

5.3 Branching

We perform branching on: the number of first-level routes visiting a subset of
satellites (variables u), the use of first-level routes (variables λ), the use of an
edge in E2 (variables x), the assignment of a customer to a satellite (variable
y), the number of first-level routes (

∑
p∈P λp), the number of second-level

routes (
∑

r∈R µr), and the number of second-level routes started from a
satellite s (

∑
r∈Rs

µr). We use a multi-phase strong branching procedure,
similar to [Sadykov et al., 2017], to choose the most promising branching
candidate.

The branching procedure first chooses at most 50 branching candidates.
Up to half of the candidates are chosen according to the branching history
using pseudo-costs. In the first phase, we solve the LP relaxation of the
restricted master problem. Three candidates with the largest product of
lower bound improvements in the branches are chosen for the next phase. In
the second phase, column generation is performed, but the pricing problem is
solved with only heuristic labeling algorithms. The best candidate is chosen
using the same product rule. In the third phase, the exact column and cut
generation is performed in both branches of the chosen candidate using the
same parameters as in the root node.

5.4 Primal heuristic

After each node in the branch-and-bound tree, a heuristic looks for improv-
ing feasible solutions to the 2E-CVRP. We first tried the standard restricted
master heuristic [Sadykov et al., 2018] in which the MIP solver solves the
current restricted master problem. However, we have not been satisfied with
the performance of this heuristic, especially for instances with large capacity
of city freighters. The reason is that sometimes only a small part of columns
in the restricted master are elementary, thus making the solution space of
the restricted master very small or even empty.

Instead, we use the heuristic based on an artificial primal bound and
the elementary route enumeration, similar to [Pessoa et al., 2009]. In an
iterative procedure, we decrease the artificial bound in order to divide the
primal-dual gap by two in each iteration. Then, we perform elementary
route enumeration for each pricing subproblem. The iterative procedure
stops when the enumeration succeeds for all subproblems. Afterward, we
pick 10000 elementary routes with the smallest reduced cost and add them
to the master problem. Finally, IBM CPLEX MIP solver tries to solve
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for the resulting problem within |C|/2.5 seconds. We activate the polishing
heuristic [Rothberg, 2007] implemented in CPLEX.

6 Computational Results

The model and the separation algorithms for constraints (12), (13), VCI (17),
and SSI (24) were implemented in Julia 0.6 language using JuMP [Dunning et al., 2017]
and LightGraphs packages. We also used:

• BaPCod C++ library [Vanderbeck et al., 2019] which implements the
BCP framework;

• C++ code, developed by [Sadykov et al., 2017], which implements the
bucket graph based labeling algorithm, bucket arc elimination proce-
dure, elementary route enumeration, and the separation of limited-
memory rank-1 cuts;

• CVRPSEP C++ library [Lysgaard, 2018] which implements heuristic
separation of rounded capacity cuts;

• IBM CPLEX Optimizer version 12.8.0 as the LP solver in column
generation and as the solver for the enumerated MIPs.

Experiments were run on a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3
servers at 2.5 GHz. On each server, we solved 24 instances with up to
200 customers and up to 10 satellites that share 128Go of RAM. Larger
instances having either 300 customers or 15 satellites were solved by batches
of 4 instances sharing 128Go of RAM. Each instance is solved on a single
thread.

6.1 Instances

Table 1 shows the sets of instances from the literature that we used. Con-
straints (3) limiting the number of city freighters per satellite are required
only for set 4B. Therefore, constraints (20) are useful only for set 4B. Set
5 duplicates each instance: the first instance has the standard capacity of
city freighters, and the second one, with suffix “b”, has the double capacity.
Only set 6B has non-zero handling costs. We do not consider instances of
set 3, proposed in [Gonzalez-Feliu et al., 2007], as they are easily solved by
our algorithm and by [Baldacci et al., 2013].

As all instances were solved to optimality by our BCP algorithm, we
generated 51 additional instances involving up to 300 customers and 15
satellites. They are based on instances of families a, b, and c proposed
by [Schneider and Löffler, 2019] for the capacitated location-routing prob-
lem. In comparison with the original instances, we added the position of the
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Table 1: Sets of instances from the literature used for experiments
Set # |S| |C| Notes Authors

4A 54 2, 3, 5 50 Ls < |L| [Crainic et al., 2010]
4B 54 2, 3, 5 50 [Crainic et al., 2010]
5 18 5, 10 100, 200 low and high Q2 [Hemmelmayr et al., 2012]
6A 27 4, 5, 6 50, 75, 100 [Baldacci et al., 2013]
6B 27 4, 5, 6 50, 75, 100 fHs > 0 [Baldacci et al., 2013]

depot, capacity of urban trucks, the number of urban trucks, and the num-
ber of city freighters. We put the depot at location (0, 0). We set Q1 = 9·Q2,
|K| = d1.75 · d(C)/Q1e, and |L| = d2.5 · d(C)/Q2e.

6.2 Experimental analysis of BCP variants

In the first experiment, we compare different variants of our BCP algorithm
for solving the 54 largest literature instances from sets 5, 6A, and 6B with 75,
100, and 200 customers. To eliminate randomness related to improvement of
primal bounds, all variants were executed without primal heuristic and with
the initial primal bound equal to the optimum solution value (plus small ε)
for each instance. We tested the following variants.

BCP0 — the base variant which uses formulation (F1), without separating
VCI and SSI, and without branching on variables u. It can be consid-
ered as a straightforward adaptation of the BCP algorithm in [Sadykov et al., 2017]
for solving the 2E-CVRP.

BCP+u — the base variant with branching on variables u.

BCPbest — the best variant, which is based on formulation (F2), with VCI
and SSI separation, and with branching on variables u.

BCPbest−u — the best variant without branching on variables u.

BCPbest-VCI — the best variant without separating VCI.

BCPbest-SSI — the best variant without separating SSI.

BCPbest-(F1) — the best variant, but based on formulation (F1).

Table 2 gives the comparison of the BCP variants. It contains average
values for the root gap, geometric mean values for the root solution time, the
number of branch-and-bound nodes, the geometric mean of total solution
time in seconds, and the number of instances solved within the time limit
set to 3 hours. For unsolved instances, the solution time is set to the time
limit.
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Table 2: Comparison of variants of the BCP algorithm
Root

Variant Gap (%) Time (s) Nodes Time (s) Solved

BCP0 4.29 83.6 76.0 2333.0 31/54
BCP+u 4.28 99.5 24.5 1020.5 44/54

BCPbest-(F1) 0.68 177.8 5.9 421.4 49/54

BCPbest-SSI 1.64 115.5 12.5 426.1 49/54
BCPbest-VCI 0.71 238.6 6.6 501.0 50/54
BCPbest−u 0.67 161.2 7.0 384.7 50/54

BCPbest 0.68 159.0 6.3 361.7 51/54

We see that the base variant BCP0 is the worst as it solves only 31 out of
54 instances. Adding branching on variables u improves significantly BCP0

as variant BCP+u solves 13 more instances. The best variant BCPbest solves
7 more instances to optimality within the time limit. Table 2 shows that
all our contributions improve the efficiency of the BCP algorithm. The root
gap decreases significantly when VCI and SSI are separated. Although the
root solution time increases when additional inequalities are separated, the
overall time decreases due to the much smaller size of the branch-and-bound
tree. Thus, branching on variables u has a small effect on the performance
of BCPbest. However, adding branching on variables u is the simplest way
to make BCP0 much more efficient.

6.3 Comparison with the state-of-the-art algorithm

Let us now compare BCP0 and BCPbest to the best exact algorithm by [Baldacci et al., 2013].
For a fair comparison, we do not use initial primal bounds in this experi-
ment. Instead, we rely on the primal heuristic presented in section 5.4 to find
feasible solutions. [Baldacci et al., 2013] did not set an overall time limit for
their algorithm. They set a limit on the number of collections of first-level
routes considered, as well as a time limit of 5000 seconds for solving each
subproblem with fixed first-level routes. In our BCP algorithm, we set the
time limit to 10 hours.

Table 3 shows the summary results of this experiment. For each set of
literature instances, we give the average gap between the root dual bound
and the best primal bound found (Rg), the geometric mean of the num-
ber of branch-and-bound nodes (Nds), the geometric mean of the solu-
tion time in seconds (t), and the number of instances solved to optimality
(Solved). For a fair comparison, the solution time of [Baldacci et al., 2013]
is divided by 1.6 because of the difference in computer speeds. The algo-
rithm in [Baldacci et al., 2013] was tested only on 6 out of 18 instances of
set 5. It has not been applied for instances with 10 satellites, as it is based
on an enumeration of subsets of first-level routes. Since our algorithms are
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free from this drawback, they were tested on all instances of set 5.

Table 3: Comparison of two BCP variants with the state-of-the-art exact
algorithm for the 2E-CVRP [Baldacci et al., 2013]

BCP0 BCPbest Literature
Set Rg(%) Nds t (s) Solved Rg(%) Nds t (s) Solved t (s) Solved
4A 5.76 14.2 772 51/54 0.91 3.3 144 54/54 271 50/54
4B 4.45 12.7 550 52/54 0.98 3.6 203 54/54 232 52/54
5 5.83 222.9 20612 6/18 1.41 22.5 3215 15/18 8405 3/6
6A 7.04 99.7 2604 24/27 0.89 4.9 233 27/27 802 22/27
6B 3.15 57.8 1562 24/27 0.46 4.3 196 27/27 513 19/27

The variant BCP0 solves to optimality more instances than the best algo-
rithm in the literature. However, the running time of the latter is on average
smaller. The variant BCPbest largely outperforms both other algorithms for
all sets of instances. Indeed, BCPbest solves to optimality 31 open instance
within 10 hours. Detailed results for the variant BCPbest are given in A.
The remaining 3 open instances were solved to optimality by providing the
best-known solution of the literature as initial primal bound and using a
special parameterisation. Detailed results for these instances are given in B.

Table 4 shows that our BCP algorithm could improve 10 best-known
solutions (BKS) for literature instances. Their optimum solution values are
given in column Opt. The improvement (Imp) in general is small. Thus, the
existing heuristics for the 2E-CVRP have very good quality (at least when
applied to literature instances).

Instance BKS Reference Opt Imp (%)

Set 5 100-5-1b 1103.55 [Amarouche et al., 2018] 1099.35 0.38
100-10-3b 849.73 [Amarouche et al., 2018] 848.16 0.19
200-10-1 1538.35 [Amarouche et al., 2018] 1537.52 0.05
200-10-1b 1175.81 [Amarouche et al., 2018] 1173.07 0.23
200-10-3 1779.68 [Amarouche et al., 2018] 1177.49 0.12
200-10-3b 1196.93 [Amarouche et al., 2018] 1192.35 0.38

Set 6A C-n101-4 1297.42 [Wang et al., 2017] 1292.04 0.41

Set 6B B-n101-4 1500.55 [Breunig et al., 2016] 1499.71 0.06
B-n101-5 1395.32 [Breunig et al., 2016] 1394.79 0.04
C-n101-5 1964.63 [Breunig et al., 2016] 1962.52 0.11

Table 4: Improved best-known solutions for the literature instances

6.4 Experimental results for new instances

We tested the variant BCPbest on the set of newly generated instances in-
volving 5 – 15 satellites and 100 – 300 customers. We set the time limit
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to 60 hours. We gave more time to the primal heuristic when solving the
largest instances. For instances with 300 customers and 10 satellites, this
time was set to 600 seconds. For instances with 15 satellites, this time was
set to 4 · |C| seconds.

Out of 51 instances, our algorithm solved to optimality 23 instances,
including some instances with 300 customers or with 15 satellites. The al-
gorithm found both dual and primal bounds for 17 instances. The primal
heuristic did not find any feasible solution for 9 instances having 300 cus-
tomers and/or 15 satellites. Only lower bounds are thus currently known for
these instances. We could not obtain dual bounds for 2 instances because
the LP solver spent more than one hour to solve the restricted master LP
during the first column generation convergence. Detailed results are given
in C.

The main goal of this experiment was to generate instances which our
best algorithm cannot solve in a reasonable time. This goal is achieved.

7 Conclusions

In this paper we proposed an improved branch-cut-and-price algorithm for
the two-echelon capacitated vehicle routing problem. Our BCP algorithm
includes both proposed techniques for the classic vehicle routing problems
recently and new problem-specific components such as new route based for-
mulation, two families of valid inequalities, and a new branching strategy.
The proposed algorithm is empirically shown to be highly efficient, as it
solved all instances available in the literature for the 2E-CVRP with up to
200 customers and 10 satellites. 34 instances were solved to optimality for
the first time.

In order to inspire further progress on solution approaches for the 2E-
CVRP and related problems, a new set of 51 instances is proposed to the
community. Among them, 28 instances are currently open. Testing our
algorithm on new instances revealed that it has some limitations. For the
largest instances, the size of the restricted master problem becomes very
large so that its resolution requires significant time. In some extreme cases,
a modern LP solver cannot solve it within 1 hour. Even when the LP
relaxation of the restricted master for large instances can be solved, the
primal heuristic based on solving the restricted master is often inefficient.
One of the possible remedies is to generate first-level routes dynamically.

Dynamic generation of first-level routes is also essential if one wants to
solve instances with more than 15 satellites. Our new formulation for the
problem without product flow variables simplifies this task. However, col-
umn generation of first-level routes is not straightforward even for the mod-
ified formulation. A first-level route has coefficient one in constraints (12)
if and only if it visits at least one satellite in a certain set. Thus, these con-
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straints resemble strong capacity constraints introduced in [Baldacci et al., 2008].
They are non-robust [Pessoa et al., 2008], i.e. they modify the structure of
the pricing problem for the first level.

Our BCP algorithm could be extended to the two-echelon location-
routing problem [Contardo et al., 2012] in which satellites have predefined
capacities and fixed opening costs. Our preliminary research showed that
additional valid inequalities are necessary for this variant of the problem. If
one separates only the valid inequalities considered in this paper, the LP re-
laxation of the route based formulation in general, does not produce strong
lower bounds.

Another important possible extension of our algorithm concerns the two-
echelon vehicle routing problem with time windows. This problem variant
was considered by [Dellaert et al., 2019]. However, the authors impose there
a restrictive assumption that city freighter can receive products from only
one urban truck. It would be useful to consider the 2E-CVRP with time
windows without this assumption.
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A Detailed BCP results for literature instances

In following tables, Rg stands for the root gap, Rt stands for the time spent
in the root node, BPB is the best primal bound found, and t stands for the
total time spent. Note that if the time in the column “Literature” has prefix
“>” for a given instance, [Baldacci et al., 2013] did not solve this instance
to optimality.

Table 5: Results of experiments on instances of set 4A

BCPbest with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)

Instance50-1.dat 1.41 30 3 1569.42 58 47
Instance50-2.dat 0.00 35 1 1438.33 35 101
Instance50-3.dat 1.50 30 3 1570.43 67 44
Instance50-4.dat 0.20 55 3 1424.04 106 64
Instance50-5.dat 0.24 44 3 2193.52 92 415
Instance50-6.dat 0.00 55 1 1279.87 55 27
Instance50-7.dat 1.04 32 3 1458.63 76 63
Instance50-8.dat 0.33 58 3 1363.74 124 1414
Instance50-9.dat 0.94 32 3 1450.27 56 53
Instance50-10.dat 0.44 38 3 1407.65 77 71
Instance50-11.dat 0.53 29 15 2047.46 302 212
Instance50-12.dat 0.00 14 1 1209.42 14 43
Instance50-13.dat 1.36 35 3 1481.83 72 58
Instance50-14.dat 0.06 58 3 1393.61 93 743
Instance50-15.dat 1.47 39 3 1489.94 72 45
Instance50-16.dat 0.02 48 3 1389.17 84 39
Instance50-17.dat 0.17 41 3 2088.49 98 191
Instance50-18.dat 0.65 47 3 1227.61 90 73
Instance50-19.dat 0.68 33 3 1564.66 56 146
Instance50-20.dat 0.66 66 3 1272.97 111 88
Instance50-21.dat 0.53 38 3 1577.82 67 137
Instance50-22.dat 0.00 55 1 1281.83 55 50
Instance50-23.dat 0.92 41 5 1807.35 88 944
Instance50-24.dat 0.00 49 1 1282.68 49 50
Instance50-25.dat 0.61 40 3 1522.42 80 210
Instance50-26.dat 0.12 49 3 1167.46 73 34
Instance50-27.dat 0.43 61 3 1481.57 115 222
Instance50-28.dat 0.73 68 3 1210.44 148 185
Instance50-29.dat 1.21 38 13 1722.04 287 >5683
Instance50-30.dat 1.30 87 3 1211.59 333 152
Instance50-31.dat 1.98 53 5 1490.33 226 >7226
Instance50-32.dat 1.31 73 3 1199.00 205 2506
Instance50-33.dat 1.37 55 3 1508.30 116 >8076
Instance50-34.dat 0.93 69 5 1233.92 307 129
Instance50-35.dat 1.55 42 5 1718.41 859 >12736
Instance50-36.dat 0.56 92 3 1228.89 196 96
Instance50-37.dat 1.62 77 7 1528.73 328 505
Instance50-38.dat 1.51 151 3 1169.20 409 1030
Instance50-39.dat 1.23 58 3 1520.92 119 434
Instance50-40.dat 2.02 83 3 1199.42 245 623
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BCPbest with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)

Instance50-41.dat 1.34 57 7 1667.96 375 840
Instance50-42.dat 0.27 133 3 1194.54 367 140
Instance50-43.dat 1.41 64 9 1439.67 376 685
Instance50-44.dat 1.62 99 3 1045.12 322 272
Instance50-45.dat 0.72 85 3 1450.96 154 484
Instance50-46.dat 1.57 68 7 1088.77 350 841
Instance50-47.dat 0.65 90 5 1587.29 274 979
Instance50-48.dat 0.07 58 3 1082.20 90 57
Instance50-49.dat 1.16 77 3 1434.88 181 447
Instance50-50.dat 2.11 117 5 1083.12 595 836
Instance50-51.dat 0.89 87 3 1398.05 144 468
Instance50-52.dat 2.60 94 5 1125.67 485 959
Instance50-53.dat 1.44 81 7 1567.77 1557 2640
Instance50-54.dat 1.80 83 3 1127.61 346 651

Table 6: Results of experiments on instances of set 4B

BCPbest with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)

Instance50-1.dat 1.61 40 5 1569.42 126 73
Instance50-2.dat 0.00 42 1 1438.33 42 118
Instance50-3.dat 1.46 41 5 1570.43 249 61
Instance50-4.dat 0.20 80 3 1424.04 146 72
Instance50-5.dat 0.25 41 3 2193.52 87 395
Instance50-6.dat 0.00 62 1 1279.87 62 33
Instance50-7.dat 0.09 36 3 1408.57 61 48
Instance50-8.dat 0.27 61 3 1360.32 117 2058
Instance50-9.dat 0.00 38 1 1403.53 38 51
Instance50-10.dat 0.00 47 1 1360.56 47 29
Instance50-11.dat 0.53 27 17 2047.46 445 282
Instance50-12.dat 2.37 89 5 1209.42 459 70
Instance50-13.dat 0.59 56 3 1450.93 321 59
Instance50-14.dat 0.04 63 3 1393.61 105 669
Instance50-15.dat 1.25 47 3 1466.83 168 66
Instance50-16.dat 0.44 59 3 1387.83 110 62
Instance50-17.dat 0.18 42 3 2088.49 86 224
Instance50-18.dat 1.16 52 5 1227.61 368 80
Instance50-19.dat 2.03 46 11 1546.28 474 183
Instance50-20.dat 0.67 65 3 1272.97 126 107
Instance50-21.dat 0.97 37 3 1577.82 78 157
Instance50-22.dat 0.00 70 1 1281.83 70 43
Instance50-23.dat 1.07 61 3 1652.98 122 121
Instance50-24.dat 0.00 33 1 1282.68 33 50
Instance50-25.dat 0.06 47 3 1408.57 89 97
Instance50-26.dat 0.03 68 3 1167.46 96 35
Instance50-27.dat 0.37 62 3 1444.50 122 124
Instance50-28.dat 1.99 81 5 1210.44 369 156
Instance50-29.dat 0.62 76 3 1552.66 123 162
Instance50-30.dat 2.34 94 5 1211.59 470 154
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BCPbest with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)

Instance50-31.dat 1.40 55 5 1440.86 257 164
Instance50-32.dat 1.36 79 5 1199.00 313 2383
Instance50-33.dat 1.14 73 7 1478.86 252 292
Instance50-34.dat 1.00 79 5 1233.92 363 180
Instance50-35.dat 2.34 88 5 1570.72 516 812
Instance50-36.dat 0.84 74 3 1228.89 186 113
Instance50-37.dat 2.03 91 19 1528.73 1184 >9076
Instance50-38.dat 0.63 161 5 1163.07 715 727
Instance50-39.dat 2.71 71 9 1520.92 822 1119
Instance50-40.dat 1.40 156 3 1163.04 630 218
Instance50-41.dat 1.26 97 3 1652.98 235 1482
Instance50-42.dat 0.71 120 3 1190.17 345 270
Instance50-43.dat 0.79 75 5 1406.11 235 6936
Instance50-44.dat 0.90 82 5 1035.03 353 242
Instance50-45.dat 1.81 67 7 1401.87 653 303
Instance50-46.dat 1.98 110 5 1058.11 339 267
Instance50-47.dat 0.82 96 3 1552.66 169 767
Instance50-48.dat 0.28 78 3 1074.50 142 78
Instance50-49.dat 1.21 91 5 1434.88 342 >8713
Instance50-50.dat 0.49 126 3 1065.25 225 318
Instance50-51.dat 2.22 111 5 1387.51 497 812
Instance50-52.dat 2.29 160 5 1103.42 1060 529
Instance50-53.dat 1.51 89 5 1545.73 273 1497
Instance50-54.dat 1.23 105 3 1113.62 234 642

Table 7: Results of experiments on instances of set 5

BCPbest with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)

2eVRP 100-5-1b.dat 1.97 121 443 1104.06* 35993 >15018
2eVRP 100-5-1.dat 0.89 59 189 1564.46 5331 5850
2eVRP 100-5-2b.dat 1.71 125 167 782.25 10643 >16312
2eVRP 100-5-2.dat 1.96 63 365 1016.32 8416 6574
2eVRP 100-5-3b.dat 1.14 147 5 828.54 531 >20434
2eVRP 100-5-3.dat 0.37 65 3 1045.29 95 1831
2eVRP 100-10-1b.dat 3.00 335 71 911.80 12139 –
2eVRP 100-10-1.dat 1.35 201 7 1124.93 621 –
2eVRP 100-10-2b.dat 0.73 311 7 766.28 1040 –
2eVRP 100-10-2.dat 0.66 133 7 985.40 346 –
2eVRP 100-10-3b.dat 2.34 351 71 848.16 16894 –
2eVRP 100-10-3.dat 0.54 243 3 1042.63 451 –
2eVRP 200-10-1b.dat 2.23 1653 19 1173.07* 35958 –
2eVRP 200-10-1.dat 1.06 633 11 1537.52 2804 –
2eVRP 200-10-2b.dat 0.81 1345 7 985.99 4132 –
2eVRP 200-10-2.dat 0.45 555 9 1352.87 1658 –
2eVRP 200-10-3b.dat 3.78 1611 27 1221.42* 36336 –
2eVRP 200-10-3.dat 0.35 775 15 1777.49 2988 –

* These best primal bounds have not been proved optimal. The gap between the best
dual bound and the best primal bound is 1.54% for 2eVRP 100-5-1.dat,
0.53% for 2eVRP 200-10-1b.dat, and 3.13% for 2eVRP 200-10-3b.dat.
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Table 8: Results of experiments on instances of set 6A

BCPbest with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)

A-n51-4.dat 0.87 58 3 652.00 115 74
A-n51-5.dat 0.39 74 3 663.41 125 97
A-n51-6.dat 0.13 98 3 662.51 148 164
A-n76-4.dat 0.78 51 3 985.95 94 215
A-n76-5.dat 1.50 66 5 979.15 148 536
A-n76-6.dat 1.82 83 9 970.20 368 2080
A-n101-4.dat 1.25 91 5 1194.17 278 3732
A-n101-5.dat 0.63 104 5 1211.35 481 3015
A-n101-6.dat 1.74 131 27 1155.89 1483 >73798
B-n51-4.dat 0.31 45 3 563.98 80 36
B-n51-5.dat 0.03 72 3 549.23 118 82
B-n51-6.dat 0.00 64 1 556.32 64 78
B-n76-4.dat 0.36 49 3 792.73 77 209
B-n76-5.dat 0.59 60 3 783.93 95 382
B-n76-6.dat 0.54 78 3 774.17 133 1297
B-n101-4.dat 0.29 93 3 939.21 165 1570
B-n101-5.dat 0.68 130 5 967.82 330 4412
B-n101-6.dat 0.63 115 5 960.29 242 2358
C-n51-4.dat 0.26 54 3 689.18 112 49
C-n51-5.dat 0.94 83 3 723.12 181 270
C-n51-6.dat 0.62 87 3 697.00 182 104
C-n76-4.dat 0.92 50 3 1054.89 142 284
C-n76-5.dat 3.16 79 15 1115.32 775 1136
C-n76-6.dat 2.92 104 73 1060.52 3840 >29901
C-n101-4.dat 0.65 92 5 1292.04 304 >18516
C-n101-5.dat 0.71 119 5 1304.86 446 >6791
C-n101-6.dat 1.23 144 47 1284.48 2235 >17481

Table 9: Results of experiments on instances of set 6B

BCPbest with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)

A-n51-4.dat 0.05 50 3 744.24 95 55
A-n51-5.dat 0.42 48 3 811.51 69 54
A-n51-6.dat 0.63 69 3 930.11 140 240
A-n76-4.dat 0.65 62 3 1385.51 125 416
A-n76-5.dat 0.57 59 3 1519.86 106 311
A-n76-6.dat 0.30 69 3 1666.06 127 430
A-n101-4.dat 0.79 97 9 1881.44 589 2100
A-n101-5.dat 0.45 124 15 1709.06 1033 >6928
A-n101-6.dat 1.02 119 11 1777.69 886 >23948
B-n51-4.dat 0.00 58 1 653.09 58 20
B-n51-5.dat 0.02 38 3 672.10 60 27
B-n51-6.dat 0.48 67 3 767.13 122 77
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BCPbest with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)

B-n76-4.dat 0.46 43 3 1094.52 81 79
B-n76-5.dat 0.14 54 3 1218.12 96 82
B-n76-6.dat 0.17 71 3 1326.76 114 143
B-n101-4.dat 0.43 85 5 1499.71 232 >3673
B-n101-5.dat 0.96 117 11 1394.79 729 >20189
B-n101-6.dat 0.44 121 5 1445.97 300 >3970
C-n51-4.dat 0.22 63 3 866.58 108 75
C-n51-5.dat 0.74 72 3 943.12 138 149
C-n51-6.dat 0.49 76 3 1050.42 126 182
C-n76-4.dat 0.22 59 3 1438.96 94 114
C-n76-5.dat 0.79 68 5 1745.39 234 525
C-n76-6.dat 0.34 78 3 1756.46 139 902
C-n101-4.dat 0.57 76 25 2064.86 1900 >7550
C-n101-5.dat 0.50 126 11 1962.52 687 >7762
C-n101-6.dat 0.62 140 7 1860.73 616 >14553

B Detailed results for unsolved instances using a
special BCP parameterisation

We have run our BCP algorithm for three unsolved instances 2eVRP 100-5-
1b.dat, 2eVRP 200-10-1b.dat, and 2eVRP 200-10-3b.dat using a special pa-
rameterisation for each instance, and initial primal bounds which are greater
than the best known solution values. All instances were solved to optimality
within 60 hours. Table 10 provides the results for this three instances.

Table 10: Results for three instances unsolved with BCPbest in 10 hours
BCP with special parameterisation

Instance InitPB Rg (%) Rt (s) Nodes BPB t (s)

2eVRP 100-5-1b.dat 1104.00 1.39 166 809 1099.35 66212
2eVRP 200-10-1b.dat 1177.00 1.69 2634 47 1173.07 28667
2eVRP 200-10-3b.dat 1201.00 0.98 3288 159 1192.35 181652

C Detailed BCP results for new instances

Table 11: Results of experiments on instances of set 7

BCPbest with primal heuristic
Instance Rg (%) Rt (s) Nodes BLB BPB t (s)

2e-100-5-1c.dat 0.40 78 3 1284.59 1284.59 121
2e-100-5-2c.dat 0.49 68 3 821.42 821.42 98
2e-100-5-3c.dat 0.00 67 1 841.17 841.17 67
2e-100-5-4a.dat 2.56 53 11 895.37 895.37 339
2e-100-5-4b.dat 5.34 174 5 560.25 560.25 530
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BCPbest with primal heuristic
Instance Rg (%) Rt (s) Nodes BLB BPB t (s)

2e-100-10-1c.dat 0.52 221 5 961.61 961.61 401
2e-100-10-2c.dat 0.48 145 3 860.66 860.66 217
2e-100-10-3c.dat 0.48 105 3 815.32 815.32 155
2e-100-10-4a.dat 2.17 261 629 886.61 886.61 34096
2e-100-10-4b.dat 1.15 436 11 594.70 594.70 2458
2e-200-10-1c.dat 1.28 726 63 1513.95 1513.95 10180
2e-200-10-2c.dat 1.06 885 259 1370.65 1370.65 25385
2e-200-10-3c.dat 0.58 1206 415 1793.82 1793.82 85502
2e-200-10-4a.dat 1.23 1213 221 1411.80 1411.80 46575
2e-200-10-4b.dat 2.56 1960 19 896.96 910.23 217533
2e-200-15-1a.dat 2.01 3319 89 1512.42 1535.11 215920
2e-200-15-1b.dat 3.00 5165 99 982.56 1001.43 216404
2e-200-15-1c.dat 2.07 2822 203 1439.06 1461.80 215915
2e-200-15-2a.dat 0.42 1562 13 1493.41 1493.41 8153
2e-200-15-2b.dat 1.13 5461 5 916.78 916.78 22446
2e-200-15-2c.dat 0.72 2777 5 1275.75 1275.75 14201
2e-200-15-3a.dat 0.81 2988 35 1569.77 1569.77 50171
2e-200-15-3b.dat 0.57 3688 19 972.28 972.28 49405
2e-200-15-3c.dat 1.96 3528 209 1313.21 1330.52 216018
2e-200-15-4a.dat 4.40 4187 87 1317.25 1366.52 216174
2e-200-15-4b.dat ∞ 5391 13 859.95 ∞ 215936
2e-200-15-4c.dat 1.79 3159 319 1386.61 1403.5 215908
2e-300-10-1a.dat 0.75 3289 281 4223.34 4223.34 164537
2e-300-10-1b.dat 2.96 3913 103 2541.05 2596.69 215964
2e-300-10-1c.dat 3.59 2770 73 4781.32 4920.97 215908
2e-300-10-2a.dat 0.79 2420 381 4040.08 4060.08 215888
2e-300-10-2b.dat ∞ 2576 37 2286.88 ∞ 215907
2e-300-10-2c.dat 2.38 1989 115 3546.18 3613.03 215897
2e-300-10-3a.dat 0.94 2654 189 4008.59 4008.59 86489
2e-300-10-3b.dat ∞ 4677 75 2315.30 ∞ 216040
2e-300-10-3c.dat ∞ 2253 123 4590.85 ∞ 215907
2e-300-10-4a.dat 0.24 1846 11 4094.94 4094.94 4219
2e-300-10-4b.dat ∞ 2851 73 2339.32 ∞ 215907
2e-300-10-4c.dat 0.45 2495 225 3938.17 3938.17 59323
2e-300-15-1a.dat 3.20 6796 47 3948.09 4058.67 215828
2e-300-15-1b.dat ∞ 12431 45 2460.70 ∞ 216062
2e-300-15-1c.dat 2.42 6659 47 4135.19 4219.51 216136
2e-300-15-2a.dat 3.18 6177 49 3591.91 3671.50 215823
2e-300-15-2b.dat – – – – – –
2e-300-15-2c.dat ∞ 5902 57 3497.77 ∞ 215991
2e-300-15-3a.dat 3.98 6459 51 3410.43 3522.31 216034
2e-300-15-3b.dat 3.39 8563 19 2113.98 2175.68 215959
2e-300-15-3c.dat – – – – – –
2e-300-15-4a.dat ∞ 5571 47 3738.63 ∞ 215869
2e-300-15-4b.dat ∞ 10773 23 2173.11 ∞ 215818
2e-300-15-4c.dat 1.30 6976 201 3575.95 3600.79 215821

We cannot provide any result for instances 2e-300-15-2b.dat and 2e-300-
15-3c.dat because the LP solver could not solve the LP relaxation of the
restricted master during the first column generation convergence.
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