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Abstract Recent years have witnessed the develop-

ment of so-called relaxation tribometers, the free os-

cillation of which is altered by the presence of frictional

stresses within the contact. So far, analysis of such oscil-

lations has been restricted to the shape of their decay-

ing envelope, to identify in particular solid or viscous

friction components. Here, we present a more general

expression of the forces possibly acting within the con-

tact, and retain six possible, physically relevant terms.

Two of them, which had never been proposed in the

context of relaxation tribometry, only affect the oscil-

lation frequency, not the amplitude of the signal. We

demonstrate that each of those six terms has a unique

signature in the time-evolution of the oscillation, which

allows efficient identification of their respective weights

in any experimental signal. We illustrate our method-

ology on a PDMS sphere/glass plate torsional contact.

Keywords Relaxation tribometer · Damped oscil-

lations · Amplitude decay curve · Frequency shift ·
Nonlinear contact forces · Two-times averaging method

1 Introduction

The energy dissipated during relative motion of solid

surfaces in contact corresponds to the work of the fric-

tion force. It is therefore appealing to measure friction

forces without force sensors, just from the energy decay
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that they induce in a frictional system. This is precisely

what the so-called relaxation tribometry is about. The

basic idea is to place a tribological interface in an oscil-

lator, provide the latter with a certain amount of initial

mechanical energy, and let it oscillate and relax back to

its equilibrium position. The time-rate of such a relax-

ation informs about the amplitude of the friction force,

while the envelope of the decaying oscillation charac-

terizes the type of dissipative mechanism involved.

The idea of measuring a viscous damping coeffi-

cient by monitoring the decay of vibration of an os-

cillator dates back to Rayleigh, who described the log-

arithmic decrement technique in his famous treatise [1,

p.46]. But relaxation tribometry actually starts with

the remark that a velocity-independent friction coeffi-

cient can also be measured from the time-decay of the

envelope of the vibration [2,3]. When both friction and

viscous dissipation are present, the solution of the gov-

erning equation of an oscillator and its amplitude de-

cay curve was found by Markho [4]. This led Feeny and

al. [5,6] to extend the decrement method to measure si-

multaneously viscous and friction coefficients, while Wu

and al. [7] proposed to apply the method to nonlinear

viscous damping. Rigaud et al. [8] performed similar si-

multaneous measurements, not from the amplitude but

from the energy decay, on contacts lubricated by water-

glycerol solutions.

Recently, renewed interest for relaxation tribometry

has emerged as a unique tool to measure low forces

efficiently and accurately [9–11]. The reason is that the

smaller the friction force, the smaller the decrement,

the more measurable oscillations before rest and thus

the more data available to estimate the force.

Moreover, the method is so accurate that non-conven-

tional behaviours, neither purely frictional nor purely

viscous, could be detected. On the one hand, nonlin-
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ear dissipative forces have been identified and mea-

sured [12]. On the other hand, a progressive shift of

the oscillation frequency has been observed with a ro-

tational tribometer [13]. Both observations confirm that

tribological interfaces are complex [14] and thus cannot

be fully described with a simple combination of viscous

and friction coefficients. A sliding contact, in transla-

tion or torsion, is in particular made of a multitude

of micro-contacts [15,16], possibly implying different

materials [17]. It can also be divided into coexisting

slip and stick zones [18,19]. The question thus arises

of which nonlinear forces can actually be detected by

relaxation tribometry.

In this paper, we propose a generic description of

the type of signals recovered using relaxation tribome-

try. By applying systematically the two-times averaging

method already used in [8], we describe the character-

istic signatures of six relevant contact forces, in terms

not only of the decay of their amplitude, but also of the

frequency shift.

2 Theoretical development

The principle of a relaxation tribometer consists in ob-

serving the free vibration of an oscillator equipped with

a sample rubbing on a surface. The decay of vibration,

due to friction and other sources of dissipation, holds in-

formation on contact forces acting on the sample. Thus,

a simple measurement of the motion allows to extract

the friction force without using a force probe. Note that

relaxation tribometry, in essence, probes the transient

(as opposed to steady sliding) response of a frictional

interface over the characteristic time scale of the os-

cillator’s period. Two types of tribometer have been

reported in the literature [8,13] depending on the kine-

matics followed by the rubbing sample: translation or

torsion (see Fig. 1).

θ

sample
surface

P θ

sample

surface

mass m

x
P

inertia I

Fig. 1 Left: principle of a torsional pendulum with a
sphere/plane contact at the extremity of the rotation axis.
Right: principle of a translational oscillator with a sphere in
contact with a plane and attached to the moving mass.

In this section, we will argue on the basis of a tor-

sional relaxation tribometer (Fig. 1, left), with no loss

of generality. For a translational relaxation tribometer

(Fig. 1, right), one should simply replace the angle θ

with the dimensionless position mω2
0x/P , and the an-

gular speed θ̇ with the dimensionless speed mω2
0 ẋ/P

where m is the moving mass, ω0 the natural frequency

and P the normal load.

In a torsional relaxation tribometer, an axisymmet-

ric sample is pressed against a surface by a load P and is

submitted to torsional oscillations. The governing equa-

tion is:

θ̈ + ω2
0θ = −ω2

0f(θ, θ̇) (1)

where ω0 is the contactless natural frequency of the os-

cillator and f(θ, θ̇) a dimensionless force induced by the

sample rubbing on the surface and/or by a non-ideal be-

haviour of the pendulum. Here f = −M/(Iω2
0) where

M is the external torque on and I the total inertia of

the pendulum. If we had considered a translational tri-

bometer, then f = −T/P where T is the transverse

force. The origin θ = 0 is conventionally fixed at equi-

librium. By construction, the pendulum is symmetric.

The force f is odd with respect to parity and time re-

versal, so that:

f(−θ,−θ̇) = −f(θ, θ̇). (2)

The reactive force f may still take a wide variety of

forms, two special cases being of particular interest.

On the one hand, when the force is a dissipative re-

action of the contact (typically friction), it is usually

assumed to depend on the sliding speed θ̇ only, and not

on the position θ and Eq. (2) imposes f(−θ̇) = −f(θ̇).
For instance, a linear viscous force f(θ̇) ∝ θ̇ as well

as any drag force f(θ̇) ∝ θ̇n with n odd, satisfies this

condition. Another example is the solid friction force

f(θ̇) ∝ sgn(θ̇), which is discontinuous at zero. The gen-

eral form including these examples and matching the

dissipative condition −f(θ̇)θ̇ < 0 is an odd pseudo-

polynomial of the type f(θ̇) = λsgn(θ̇) + 2ζθ̇/ω0 +

δθ̇2sgn(θ̇)/ω2
0 + o(θ̇2), where λ, ζ and δ are positive

dimensionless constants.

On the other hand, when f is conservative, it derives

from a potential and consequently does not depend on

θ̇. Since f is an odd function of θ (by Eq. 2) and con-

tinuous at zero, a pseudo-polynomial series expansion

gives f(θ) = αθ + νθ2sgn(θ) + εθ3 + o(θ3) where the

constants may be positive or negative.

Limiting ourselves to the above orders (2 in θ̇ and

3 in θ), we are therefore left with six terms to study:

a constant friction force f = λsgn(θ̇), a linear viscous

force f = 2ζθ̇/ω0, a quadratic dissipative force f =

δθ̇2sgn(θ̇)/ω2
0 , a linear elastic force f = αθ, a quadratic
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elastic force f = νθ2sgn(θ), and a cubic elastic force

f = εθ3.

For weakly nonlinear systems – when f is small –

the solution of Eq. (1) may be approximated by:

θ(t) = a(t) cos [ω0t+ φ(t)] (3)

where a(t) and φ(t) are slowly varying functions, i.e.

over times much larger that 2π/ω0. The magnitude a(t)

and phase φ(t) will now be obtained by applying the

two-times averaging method [20–22] (see Appendix for

a brief review of the method).

In practice, the force f acting on the pendulum is

not known. One has to determine it by observing the

behaviour of the pendulum. Thus, the time evolution

of the magnitude, a(t), and of the phase, φ(t), will con-

stitute the only available information to identify the

relevant terms in the right-hand side of Eq. (1).

2.1 Decaying envelope

The magnitude a(t) constitutes the envelope of vibra-

tion, the decay of which indicates the energy lost in the

sample. When the six forces are present simultaneously

and are small, the two-times averaging method applies.

The time derivative of the magnitude, ȧ, is given in Ap-

pendix, Eq. (17) where the right-hand side is obtained

by summing all terms 〈h sinϕ〉 given in Table 1. The

result is:

ȧ = − 2

π
ω0λ− aω0ζ −

4a2

3π
ω0δ. (4)

This is an ordinary differential equation of first order

on a. Let us remark that the constants α, ν, and ε do

not appear.

As observed in [2], a pure constant friction force f =

λsgn(θ̇) imposes a linear decreasing of the successive

local maxima. The equation of the envelope is obtained

by integrating (4) with ζ = δ = 0:

a(t) = a(0)− 2λ

π
ω0t. (5)

An interesting consequence of Eq. (5) is that since a(t) ≥
0, the vibration always stops after a finite duration

equal to a(0)π/2λω0. This is illustrated in Fig. 2, top

for initial angle θ(0) = 1 and speed θ̇(0) = 0.

A pure linear viscous force f = 2ζθ̇/ω0 imposes an

exponentially decreasing magnitude [1]. The equation

of the envelope is from (4) with λ = δ = 0:

a(t) = a(0) exp(−ζω0t). (6)

Thus the pendulum vibrates forever (Fig. 2, middle).

0 10 20 30 40 50 60 70
Time ω

0
 t

A
ng

le
 θ

Fig. 2 Time evolution of angle θ for various forces f . Top:
case of constant friction force λsgn(θ̇) for λ = 0.03. Mid-
dle: case of linear viscous force 2ζθ̇/ω0 for ζ = 0.05. Bottom:
case of quadratic dissipative force δθ̇2sgn(θ̇)/ω2

0 for δ = 0.9.
Solid line: numerical solution to Eq. (1) with initial condi-
tions θ(0) = 1, θ̇(0) = 0. Broken line: envelope by Eqs. (5),
(6), and (7).

The case of a pure quadratic dissipative force of type

f = δθ̇2sgn(θ̇)/ω2
0 is more original, and to our knowl-

edge has only been investigated in [12]. The integration

of (4) with λ = ζ = 0 gives:

a(t) =
1[

1
a(0) + 4δ

3πω0t
] (7)

This result is illustrated in Fig. 2, bottom.

The three other terms, linear elastic force f = αθ,

quadratic elastic force f = νθ2sgn(θ) and cubic elas-

tic force f = εθ3, are conservative. Consequently, the

corresponding magnitude a(t) = a(0) is constant over

large time scales. This is consistent with the fact that

α, ν, and ε do not appear in Eq. (4).

2.2 Varying frequency

The time evolution of the phase φ(t) is a typical non-

linear effect. The instantaneous frequency is given by:

ω =
d

dt
[ω0t+ φ(t)] = ω0 + φ̇(t) (8)

where φ̇ is the time-derivative of φ.
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Fig. 3 Evolution of frequency with amplitude for a pure
quadratic dissipative force δθ̇2sgn(θ̇)/ω2

0 . Symbols: numerical

solution to Eq. (1) with initial conditions θ(0) = 1, θ̇(0) = 0
(one value per half-period) with δ=0.05 (B), 0.1 (4), 0.3 (5)
or 0.8 (♦). Broken line: Eq. (9).

There exists analytical results for the value of the

angular frequency in the presence of some of the forces

considered here. The case of a linear elastic force f = αθ

is rather trivial since one can write Eq. (1) as θ̈+ω2
0(1+

α)θ = 0, so that the angular frequency of the oscillation

has a constant value ω0

√
1 + α. If a viscous damping

force f = 2ζθ̇/ω0 is added, the frequency of the oscilla-

tion remains constant during the oscillation, but with

the value ω∞ = ω0

√
1 + α

√
1− ζ2. It has been shown

in [5] that this conclusion remains true if a constant

friction force f = λsgn(θ̇) is added.

For the other three forces, we solved the evolution

of the angular frequency using the two-times averaging

method. Equation (18) of Appendix gives aφ̇ as a linear

combination of all terms 〈h cosϕ〉 given in Table 1. The

frequency ω = ω0 + φ̇ is then:

ω = ω0

(
1 +

α

2
+

4a

3π
ν +

3a2

8
ε

)
. (9)

Note that, according to the two-times averaging method,

Eqs. (4) and (9) correspond to a linear approxima-

tion in all small terms λ, ζ, δ, α, ν and ε. In partic-

ular, to this degree of approximation,
√

1− ζ2 ' 1 and√
1 + α ' 1 + α/2, so that ω∞ ' ω0(1 + α/2).

Also note that the constants λ, ζ, and δ do not ap-

pear in Eq. (9). In particular, although highly nonlin-

ear, the dissipative quadratic force (amplitude δ) does

not induce any time variation of the frequency (Fig. 3).

The situation is different for elastic forces. In the

case of a pure quadratic elastic force f = νθ2sgn(θ),

Eq. (9) gives ∆ω = ω − ω∞ = 4νaω0/(3π). Thus, a

quadratic elastic force exhibits a linear variation of fre-

quency versus magnitude of envelope. The sign of ν
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Fig. 4 Evolution of frequency with amplitude for a pure
quadratic elastic force νθ2sgn(θ). Symbols: numerical solu-
tion to Eq. (1) with initial conditions θ(0) = 1, θ̇(0) = 0 (one
value per half-period) with ζ = 0.05 and ν=-0.5 (B), -0.2 (4),
0.2 (5), 0.9 (♦). Broken lines: Eq. (9).
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Fig. 5 Evolution of frequency with amplitude for a pure cu-
bic elastic force εθ3). Symbols: numerical solution to Eq. (1)
with initial conditions θ(0) = 1, θ̇(0) = 0 (one value per half-
period) with ζ = 0.05 and ε=-0.9 (B), -0.1 (4), 0.5 (5), 1.5
(♦). Broken lines: Eq. (9).

controls the type of frequency evolution: an experiment

exhibiting an increasing frequency with increasing time,

i.e. with decreasing amplitude of the oscillation corre-

sponds to ν < 0. Conversely, if the period of the pendu-

lum increases with time, then ν > 0. Those results are

demonstrated on Fig. 4, which successfully compares

Eq. (9) with simulation results.

Finally, the case of a pure cubic elastic force, which

corresponds to the well known Duffing oscillator, is also

solved by Eq. (9) [20]. The frequency shift is now given

by ∆ω = ω − ω∞ = 3εa2/8, where the variation of
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frequency is quadratic in a. As for the quadratic elas-

tic force, the sign of ε may be determined by observ-

ing whether the pendulum experiences an increasing

(ε > 0) or decreasing (ε < 0) period as time increases.

Again, those results are found in good agreement with

simulation results (Fig. 5) although small discrepancies

are visible when ε is not small enough.

2.3 Identification of force strength

To get effective values of the six coefficients λ, ζ, δ, α, ν,

and ε, we start from the two curves a(t) and ω(t), both

assumed to be known with a sufficient precision. The

method to extract a(t) and ω(t) from the full measure-

ment of θ(t) is by no way important at this stage. We

admit that the magnitude a, its time-derivative ȧ, and

the frequency ω are known at a finite number of times

(see Fig. 6). Let ai = a(ti), ȧi = ȧ(ti) and ωi = ω(ti)

be these values, for i = 1, . . . , n.

ai

π/ωi

ai
.

ti time

Fig. 6 Estimation of magnitude ai, slope of magnitude ȧi,
and frequency ωi at time ti.

Let us first determine λ, ζ, and δ. By Eq. (4):

ȧi = − 2

π
ω0λ− aiω0ζ −

4a2i
3π

ω0δ i = 1, 2, . . . . (10)

Assembling these equations in a matrix form, we get:

ω0

− 2
π −a1 −

4a21
3π

. . . . . . . . .

− 2
π −an −

4a2n
3π


λ

ζ

δ

 =

 ȧ1
. . .

ȧn

 . (11)

This equation constitutes an overdetermined system of

linear equations. The solution in the least mean square

sense is given by:λ

ζ

δ

 =
1

ω0

(
LTL

)−1
LT

 ȧ1
. . .

ȧn

 , (12)

where L denotes the matrix in the left-hand side of

Eq. (11) and LT its transpose.

The determination of ν and ε is done following the

same approach. By Eq. (9), and remembering that ω∞ '
ω0(1 + α/2):

ω0

 4a1
3π

3a21
8

. . .
4an
3π

3a2n
8

( ν
ε

)
=

∆ω1

. . .

∆ωn

 . (13)

where ∆ωi = ωi − ω∞ is the frequency shift. The solu-

tion in the least mean square sense is given by:(
ν

ε

)
=

1

ω0

(
MTM

)−1
MT

∆ω1

. . .

∆ωn

 , (14)

where M denotes the matrix of Eq. (13).

The five coefficients λ, ζ, δ, ν and ε are determined

by Eqs. (12), (14). The coefficient α is determined as

α = ω2
∞/ω

2
0 − 1.

Note that the above method, based on linear ma-

trix equations, is qualitatively different from the clas-

sical decrement method. In addition, it is not limited

to the six forces previously discussed. Any other non-

linear force f = γh(θ, θ̇/ω0) may easily be included in

the analysis by calculating its signature on the enve-

lope and frequency shift. The terms ω0γ〈h sinϕ〉 and

ω0γ〈h cosϕ〉 (Appendix) must respectively be added to

the right-hand sides of Eqs. (4) and (9). If the force

modifies the envelope, the matrix L of Eq. (11) will

contain a fourth column whose entries are 〈h sinϕ〉i,
estimated at all time ti and γ will appear as a sup-

plementary unknown. If it modifies the frequency shift,

then 〈h cosϕ〉i at time ti constitutes a third column

of M and γ appears as unknown. More generally, a

force may have a signature on both the envelope and

frequency shift. This raises the question of the unic-

ity of the signature of a given force on envelope and

frequency. In general, there is no such unicity. For in-

stance, both forces θ̇2sgn(θ̇) and θ2sgn(θ̇) have the ex-

act same mean values 〈h sinϕ〉 and 〈h cosϕ〉, making

them indistinguishable by the method presented here.

3 Experimental illustration

We illustrate here the method presented above on the

example of a measurement performed with the torsional

magnetic levitation tribometer described in [13]. The

natural moment of inertia of the pendulum is I0 =

1.24 kg·mm2. A mass m = 0.90 g has been added at a

distance l = 10.0 mm from its rotation axis, yielding an

effective moment of inertia I = I0+ml2 = 1.33 kg·mm2.

A spherical cap of radius R = 1.17 mm is attached at

the pendulum’s tip, made of Sylgard 184 PolyDiMethyl-

Siloxane (PDMS), prepared as in [16,23]. The PDMS

sphere is set into contact against a glass plate under

normal load P = 15.9 mN. We consider the data such

that the amplitude of the oscillation decays from about

0.3 rad to 0.02 rad, when the vertical discretization of

the digital signal becomes significant.

Figure 7 shows the time-evolution of θ (solid line).

The coefficients λ, ζ, δ, ν and ε have been calculated

by applying Eqs. (12) and (14), where the values of
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Fig. 7 Time evolution of θ for a PDMS-sphere/glass-plate
torsional contact. Solid line: measurement. Dash-dot line: so-
lution to Eq. (1) with λ, ζ, and δ. Dashed line: with λ, ζ, δ,
ν, and ε.

ai, ȧi, and ωi have been assessed at 76 instants from

the full measurement of θ(t). In practice, each of 78

half-periods is first fitted using a half-sine function of

amplitude bi, with an extremum reached at time ti.

We then compute ai = (bi+1 + bi−1)/2, ȧi = (bi+1 −
bi−1)/(ti+1 − ti−1) and ωi = 2π/(ti+1 − ti−1). The an-

gular frequency ω∞ = 9.91 rad/s is taken as the last

computed value of ωi, where the influence of nonlin-

ear forces is the least. The obtained values are λ =

−0.000023, ζ = 0.0097, δ = 0.037, ν = −0.40, and ε =

0.30. In Fig. 7, the dash-dotted line corresponds to the

numerical solution of Eq. (1) with the three dissipative

forces only, f = λsgn(θ̇)+2ζθ̇/ω0+δθ̇2sgn(θ̇)/ω2
0 , while

the dashed line corresponds to the solution with all five

forces (the effect of α is already accounted for in ω∞),

f = λsgn(θ̇)+2ζθ̇/ω0+δθ̇2sgn(θ̇)/ω2
0 +νθ2sgn(θ)+εθ3.

It is clear that both curves, based on either three or five

forces, well capture the envelope of the measurement.

However, the curve for three forces (dash-dotted line)

rapidly shows a phase shift and is even out-of-phase af-

ter few periods. The curve for five forces (dashed line)

does not have this shortcoming and is in perfect agree-

ment with the measurements over the full time window.

This result highlights that the presence of nonlinear

elastic forces is essential to explain the frequency shift

observed on the tribometer.

4 Discussion

4.1 Values of the experimental parameters

As shown in section 2.3, α can be estimated from the

knowledge of ω0 and ω∞. With the magnetic levitation
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Fig. 8 Relative importance of solid friction force (λ), viscous
force (ζ), and quadratic dissipative force (δ), as a function of
the angle, for the experiment shown in Fig. 7.

tribometer used here, accessing ω0 is not direct, be-

cause the pendulum cannot be operated in the absence

of a mechanical contact. To estimate ω0, we thus per-

formed an experiment on a contact which is expected

to be submitted to a small frictional torque. We chose a

contact between steel and graphite (SG), for which the

measured coefficient of friction µ = 0.05 is the small-

est among all cases investigated with this rotational

tribometer. For a normal load P = 16.5 mN, close

to that used for the PDMS/glass contact, we found

ω∞,SG=8.87 rad/s, which is an upper limit for ω0, if

the steel/graphite contact had a vanishing frictional

torque. Assuming that ω0 = ω∞,SG, we infer that the
PDMS/glass contact torsional stiffness is estimated by

Kc ≈ I(ω2
∞,PDMS−ω2

0) = 25.9 10−6 N·m. The torsional

stiffness of a non-slipping elastic sphere of radius a is

Kc = 16Ga3/3 where G is the shear modulus of the

elastic material [24]. We measured a = 0.20 mm by

direct visualization through the glass and with G =

0.53 MPa [16], it yields Kc ≈ 22.6 10−6 N.m, which

is in reasonable agreement with the value found from

the analysis of the oscillation. This agreement suggests

that the change in final frequency is due to the finite

torsional elasticity of the elastomer contact.

Once the coefficients of all forces are known, it is in-

teresting to assess the relative weights of those forces in

the signal. Those weights depend not only on the non-

dimensional coefficients, but also on the current ampli-

tude of θ or θ̇. Approximating ω ' ω0, one can estimate

the weight of each of the five considered forces by: λ,

2ζθ, δθ2, 4νθ/(3π) and 3εθ2/8. As an example, in Fig. 8,

the weights of the three forces affecting the amplitude

in the PDMS/glass experiment of Fig. 7 are shown. For
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Fig. 9 Relative importance of quadratic (ν) and cubic (ε)
elastic forces on the phase shift, as a function of the angle,
for the experiment shown in Fig. 7.

the experimental values of the coefficients and the ex-

perimental range of angles, one can see that the viscous

force dominates and is thus responsible of most of the

dissipation in the pendulum. Such a dominance does

not necessarily indicate that the interfacial friction is

strongly viscous (and indeed, [25,26] found negligible

velocity-dependence of friction at similar PDMS/glass

interfaces). Actually, this viscous force term presum-

ably also combines viscous dissipation in the air around

the pendulum, in the viscoelastic bulk of the PDMS,

and in the magnetic device. In comparison, the con-

tribution of a solid-friction-like term (λ-term) is found

completely negligible. The obtained value is even nega-

tive, which likely suggests that the uncertainty on λ is

larger than its value.

Figure 9 shows the relative importance of the two

conservative forces, νθ2sgn(θ) and εθ3, in the same ex-

periment. The quadratic elastic force νθ2sgn(θ) clearly

dominates and imposes the phase shift in the pendu-

lum. This nonlinear force may be due to a combination

of a nonlinear stiffness of the torsional contact, a nonlin-

ear elastic behaviour law of the PDMS and a nonlinear

restoring force due to the magnetic device.

It is interesting to compare the value of ε found with

that expected if the pendulum was a pure pendulum un-

der gravity. In that case, the second order approxima-

tion of sin θ, which enters the exact equation of motion

of the pendulum, is sin θ ' θ − θ3/6. This means that

the expected value of ε would be −1/6. The fact that

we find a value about twice bigger in magnitude and of

opposite sign indicates that apart from gravity, there is

a stronger cubic elastic force in the system, presumably

due to the magnetic levitation device.

0 0.05 0.1 0.15 0.2 0.25 0.3
θ [rad]

9.5
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10

ω
 [r

ad
/s

]

Measurement
Eq. (9)

Fig. 10 Evolution of angular frequency, ω, versus magnitude
of oscillation, a, for the experiment shown in Fig. 7.

Also of interest is the instantaneous frequency ω ver-

sus the magnitude a of oscillation (Fig. 10), for the

measured curve θ(t) of Fig. 7. ω(a) is almost linear, as

shown in Fig. 4. This observation is fully consistent with

the dominance of the ν term compared to the ε term,

already demonstrated in Fig. 9. Furthermore, the nega-

tive slope of ω(a) proves that ν < 0. Note that a similar,

affine-like behaviour of ω(a) had already been obtained,

for the same tribometer, on a steel/glass contact [13],

suggesting that a similar quadratic elastic force was also

important in that case.

4.2 General comments

The analysis in terms of the weights of the various forces

reveals several generic features. Concerning the decay of

amplitude, the quadratic term δθ2 will always dominate

at large amplitude, at the beginning of an experiment.

In particular, it will be larger than the viscous term

for amplitudes a > 2ζ/δ (except of course if this value

exceeds π, the maximum possible initial angle). For our

experiment of Figs. 7 and 8, it would correspond to

amplitudes above about 0.5.

Another general results is that, at small amplitudes,

the constant λ-term will always dominate. This means

that in any situation in which λ 6= 0, the oscillation

will vanish at a finite time. A rough estimate of this

arrest time can be obtained as follows. At small ampli-

tudes, the λ-term will dominate when the amplitude a

will become smaller that aλ = λ/(2ζ) (equating λ and

2ζa). After that instant, assuming that λ is the only

term important for the amplitude decay, one can use

Eq. (5) to estimate the remaining oscillation time to

be πaλ/(2λω0) = π/(4ζω0). So, after the amplitude aλ
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is reached, the oscillation will cease after a time of the

order of π/(4ζω0).

Similarly, concerning the frequency shift, the ε-term,

which is quadratic in amplitude, will always dominate

the ν-term for amplitudes a > 32ν/(9πε). For our ex-

periment of Figs. 7 and 9, it would correspond to am-

plitudes above about 4.76. This value is larger than

π, the largest possible initial angle, which means that,

in our experimental case, event for the largest ampli-

tudes, ω(a)− ω0 will always remain dominantly linear.

In general, the linear ν-term will always dominate at

small amplitudes, when the angular measurement may

become less accurate, due to discretizaton effects. Our

conclusion is that, in this regime, a linear extrapolation

of ω(a) for small a is a priori a correct approximation

of the behaviour of the system.

More generally, friction being an hysteretic phenome-

non, it cannot always be described only as a function

of the instantaneous angle and angular velocity, as as-

sumed in Eq. (1). In transient regimes, like the os-

cillations considered in relaxation tribometry, a more

complete description of the interface should incorpo-

rate one or several state variables, as in the rate-and-

state (RS) friction framework [27,28]. Although most

RS models use a typical contact-related time as a state

variable [29–32], here we believe that the most relevant

state variable would be related to the oscillating history

of the contact. When the contact is brought to its initial

angle, only a central circular part of radius c0 of the con-

tact has remained in a stuck state, while its periphery

has already been slipping [18]. When the contact has

completed its first half-cycle of oscillation and is back

to vanishing angular velocity, it has an angle the abso-

lute value of which is smaller than the initial one, and

thus the stick radius is now c1 > c0. As a consequence,

when the oscillator goes back to a vanishing angle, the

annulus between c1 and c0 in the contact region has

stored a shear strain state which is different from that

of the first contact, and which will survive all along the

subsequent decaying oscillation of the contact. Such a

scenario occurs over and over at each half-cycle, build-

ing up a complex, onion-ring-like shear strain field, the

description of which involves knowledge of the series of

ci reached at all half-cycles. Incorporating such a com-

plex state variable in the analysis of relaxation tribom-

etry data is an interesting future challenge. It will likely

require extension of studies limited to the first loading

of elastic contacts [24,18,19], to decaying oscillations.

5 Conclusion

We have shown that relaxation tribometry is not lim-

ited to the measurement of constant friction and vis-

cous coefficients as is usually done using the decrement

method. More complex dissipative forces but also elas-

tic forces can be unambiguously identified and quanti-

fied using the general procedure proposed in this study.

The key is to exploit the two-times averaging method

to analyse not only the time-evolution of the vibration

decay, but also that of the frequency shift. The mag-

nitudes of forces are then solutions of a linear system,

although the forces are themselves nonlinear. This pro-

cedure, which has been applied to six relevant types of

contact forces, can easily be extended to any other de-

sired nonlinear force, to identify its characteristic sig-

nature, both on the amplitude and frequency. Those

results suggest that relaxation tribology has a vast, but

still insufficiently exploited potential, both fundamental

(identification of the forces at play) and applied (quan-

tification of those forces).

A two-times averaging method

The right-hand side of Eq. (1) is written f = εh(θ, θ′) where
ε << 1 and θ′ = θ̇/ω0 denotes the derivative of θ with respect
to dimensionless time. We seek the solution of the form θ =
a cosϕ, where ϕ = ω0t+φ and a(t) and φ(t) are slowly varying
functions. Substituting in Eq. (1) gives:

ä cosϕ− 2ȧ(ω0 + φ̇) sinϕ− aφ̈ sinϕ− 2aφ̇ω0 cosϕ
−aφ̇2 cosϕ = −εω2

0h.
(15)

Considering that ä, ȧφ̇, φ̈, and φ̇2 are second order terms in
ε and can thus be neglected in Eq. (15):

2ȧω0 sinϕ+ 2aφ̇ω0 cosϕ = εω2
0h. (16)

We must now develop h at order zero in ε since the left-hand
side if of order one in ε. At order 0, θ = a cosϕ and θ̇/ω0 =
−a sinϕ therefore h = h(a cosϕ,−a sinϕ). Then substituting
in Eq. (16) and averaging over a time-period (with ȧ and φ̇

constant) gives the so-called averaged equations:

ȧ =
εω0

2π

∫ 2π

0

h(a cosϕ,−a sinϕ) sinϕdϕ = ω0ε〈h(ϕ) sinϕ〉 (17)

aφ̇ =
εω0

2π

∫ 2π

0

h(a cosϕ,−a sinϕ) cosϕdϕ = ω0ε〈h(ϕ) cosϕ〉(18)

where 〈·〉 denotes mean value over 2π. These are two first-
order ordinary differential equations on a and φ.

For instance, consider the case of a quadratic dissipative
force f = εθ̇2sgn(θ̇)/ω2

0 . Then h(θ, θ′) = θ′2sgn(θ′) and h(ϕ) =
−a2 cos2 ϕsgn(sinϕ). By averaging:

〈h sinϕ〉 = −
4a2

3π
, (19)

〈h cosϕ〉 = 0. (20)

The two differential equations are therefore ȧ = −4a2εω0/3π

and φ̇ = 0. After integration, a(t) =
[
a−1
0 + 4εω0t/3π

]−1

(Eq. 7) and φ(t) = φ0, a0 and φ0 being the initial values
of a and φ.

A second interesting example is f = εθ2sgn(θ̇) for which
h(θ, θ′) = θ2sgn(θ′) and h(ϕ) = −a2 cos2 ϕsgn(sinϕ). By av-
eraging:

〈h sinϕ〉 = −
2a2

3π
, (21)

〈h cosϕ〉 = 0, (22)
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Table 1 Averaged values of h of Eqs. (17) and (18) for the
six considered forces

h sgn(θ′) θ′ θ′2sgnθ′ θ θ2sgnθ θ3

〈h sinϕ〉 − 2
π

−a
2

−4a2

3π
0 0 0

〈h cosϕ〉 0 0 0 a
2

4a2

3π
3a3

8

which gives the same signature ȧ ∝ a2 as in Eq. (19).
Similar results for all considered contact forces are sum-

marized in Table 1.
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