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Abstract

A strong edge-colouring of an undirected graph G is an edge-colouring where every two
edges at distance at most 2 receive distinct colours. The strong chromatic index of G is
the least number of colours in a strong edge-colouring of G. A conjecture of Erdős and
Nešetřil, stated back in the 80’s, asserts that every graph with maximum degree ∆ should
have strong chromatic index at most roughly 1.25∆2. Several works in the last decades
have confirmed this conjecture for various graph classes. In particular, lots of attention
have been dedicated to planar graphs, for which the strong chromatic index decreases to
roughly 4∆, and even to smaller values under additional structural requirements.

In this work, we initiate the study of the strong chromatic index of 1-planar graphs,
which are those graphs that can be drawn on the plane in such a way that every edge is
crossed at most once. We provide constructions of 1-planar graphs with maximum degree ∆
and strong chromatic index roughly 6∆. As an upper bound, we prove that the strong
chromatic index of a 1-planar graph with maximum degree ∆ is at most roughly 24∆ (thus
linear in ∆). In the course of proving the latter result, we prove, towards a conjecture
of Hudák and Šugerek, that 1-planar graphs with minimum degree 3 have edges both of
whose ends have degree at most 29.

Keywords: strong edge-colouring; strong chromatic index; 1-planar graphs; light edges.

1. Introduction

Planar graphs are those graphs which can be drawn in the plane in such a way that
no two edges cross. Colouring planar graphs has been one of the most active fields of
graph theory, due in particular to the investigations that led to the well-known Four-
Colour Theorem [1, 2]. Since then, whenever considering new graph problems, it generally
makes sense wondering what happens for planar graphs. These graphs, however, are far
from catching the structure of real-world graphs; for a given problem, one possible next
direction can thus be to consider graph families that enclose planar ones.

One of the most natural generalizations of planar graphs is that of 1-planar graphs,
which are those graphs that can be drawn on the plane in such a way that every edge
is crossed at most once. These graphs were first considered by Ringel [19], as he was
investigating a possible generalization of the Four-Colour Theorem. Since then, many
aspects of 1-planar graphs have been considered in the literature, including structural
aspects, colouring aspects, topological aspects, and so on. We refer the interested reader
to the recent survey by Kobourov, Liotta and Montecchiani on this topic [17].

Our goal in this work is to initiate the study of the strong chromatic index of 1-planar
graphs. For a graph G, a strong edge-colouring of G is an edge-colouring where no two
edges at distance at most 2 are assigned the same colour. To make it more precise, let
us recall that two edges e, f are at distance 1 if they share an end, while e and f are
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at distance 2 if they are not at distance 1 and an end of e is adjacent to an end of f . A
strong edge-colouring of G can thus also be regarded as an edge-partition of G into induced
matchings, or as a proper vertex-colouring of the square of the line graph of G. The strong
chromatic index of G, denoted χ′s(G), is the least number of distinct colours assigned by a
strong edge-colouring of G.

The notion of strong edge-colouring was first introduced by Fouquet and Jolivet [11].
One of the leading conjectures in this field is that of Erdős and Nešetřil [8], stated back in
the 1980’s (when no confusion is possible, we here and further denote by ∆ the maximum
degree of a given graph):

Conjecture 1.1 (Erdős, Nešetřil [8]). For every graph G, we have

χ′s(G) ≤

{
5
4∆2 if ∆ is even,
1
4(5∆2 − 2∆ + 1) if ∆ is odd.

Conjecture 1.1 is still wide open in general. It was verified for graphs with maximum
degree ∆ = 3 by Andersen [3] and Horák, Qing and Trotter [15], while, already for every
∆ ≥ 4, it is not known whether the conjecture is true or not. To date, certainly the most
investigated class of graphs is that of planar graphs, which were first considered by Faudree,
Gyárfás, Schelp and Tuza [10]. Using a nice combination (to be described in Section 3) of
the Four-Colour Theorem and Vizing’s Theorem, they proved that every planar graph G
has strong chromatic index at most 4∆+4, while, for every ∆ ≥ 2, there exist planar graphs
with maximum degree ∆ and strong chromatic index 4∆− 4. Thus, roughly speaking, the
maximum value of the strong chromatic index of a planar graph with maximum degree ∆
is of order 4∆.

Theorem 1.2 (Faudree et al. [10]). For every ∆ ≥ 2, the maximum strong chromatic
index over all planar graphs with maximum degree ∆ lies in between 4∆− 4 and 4∆ + 4.

Many works aimed at investigating conditions for the strong chromatic index of planar
graphs to drop to roughly 3∆ and even 2∆. Such conditions notably involve the value of
∆, of the girth (i.e., length of a smallest cycle), and of the maximum average degree (i.e.,
density of a densest subgraph). See [4, 6, 12, 14, 18] for several works in that line.

In this work, we give first results towards understanding how the strong chromatic index
of 1-planar graphs behaves. In Section 3, we establish that the maximum value of the strong
chromatic index over all 1-planar graphs is of order at most roughly 24∆ (Corollary 3.4),
while, for every ∆ ≥ 5, there exist 1-planar graphs with maximum degree ∆ and strong
chromatic index roughly 6∆ (Proposition 3.1). Although our upper bound is probably far
from tight, it indicates that 1-planar graphs is yet another class of graphs for which the
maximum strong chromatic index is linear in ∆, and not quadratic in ∆ as stated in the
Erdős-Nešetřil bound from Conjecture 1.1.

The proof of our upper bound makes use of the presence, under some circumstances, of
light edges in 1-planar graphs, which are edges whose ends’ degree sum is somewhat small
(i.e., bounded by a constant). More precisely, by an (x, y)-edge of a graph, we mean an
edge one of whose ends is of degree x and the other of degree y. Light edges in 1-planar
graphs were first studied by Fabrici and Madaras, who notably proved that 1-planar graphs
are 7-degenerate, and 3-connected 1-planar graphs have (≤ 20,≤ 20)-edges [9]. Later on,
Hudák and Šugerek [16] proved that every 1-planar graph G with δ(G) ≥ 4 has a (4,≤ 13)-,
(5,≤ 9)-, (6,≤ 8)- or (7, 7)-edge. In the latter work, the authors also provided an optimal
result regarding the existence of light edges in 1-planar graphs G with δ(G) ≥ 5. Although
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there exist more results of this sort (see [17]), such a tight result on light edges in 1-planar
graphs G with δ(G) ≥ 3 is still not known to date. As an ingredient of our proof of
Corollary 3.4, we prove, in Section 2, that 1-planar graphs with minimum degree at least 3
have (≤ 29,≤ 29)-edges.

Terminology and notation. By a k-vertex (resp. k−-vertex (resp. k+-vertex )) of a graph
G, we mean a vertex with degree (resp. at most (resp. at least)) k. Assuming G is planar,
we denote by F (G) the set of all faces of G. The degree d(f) of a face f of G is the number
of edges of f . Similarly as for vertices, we will speak of a k-face, k−-face, k+-face when
that face has degree k, at most k, at least k, respectively. Two faces are said adjacent if
they have edges in common.

2. Light edges in 1-planar graphs with minimum degree 3

As an indication of what light edges one should expect to find in 1-planar graphs with
minimum degree at least 3, let us mention the following conjecture of Hudák and Šugerek:

Conjecture 2.1 (Hudák, Šugerek [16]). Let G be a 1-planar graph of minimum degree 3.
Then G contains a (3,≤ 20)-, (4,≤ 13)-, (5,≤ 9)-, (6,≤ 8)-, or (7, 7)-edge.

Towards that conjecture, we prove the following result:

Theorem 2.2. Every 1-planar graph G with δ(G) ≥ 3 has a (≤ 29,≤ 29)-edge.

Proof. Suppose the theorem is false, and let G be a counterexample to the theorem. If
δ(G) ≥ 4, then G has a (4,≤ 13)-, (5,≤ 9)-, (6,≤ 8)- or (7, 7)-edge, as proved by Hudák
and Šugerek [16], a contradiction. So we may assume that δ(G) = 3.

Consider a 1-planar embedding of G on the plane. We denote by G× the plane graph
obtained from G by replacing every edge crossing by a new 4-vertex. That is, if uu′ and
vv′ are crossing edges in G, then, in G×, these two edges are replaced by four edges uw,
wu′, vw and wv′, where w is a new vertex. We call such a resulting 4-vertex in G× a false
vertex.

A big vertex of G is a 30+-vertex. A small vertex of G is a 29−-vertex. Throughout
this proof, a light edge of G is more specifically a (≤ 29,≤ 29)-edge, i.e., an edge both of
whose ends are small. Since we assume that G has no light edge, for each edge at least one
of its ends is a big vertex.

Claim 1. Every edge of G is incident to a big vertex.

Using the discharging method on G×, we will prove that G has a light edge, a contra-
diction. We assign to each vertex v of G× an initial charge ω(v) = dG×(v)− 4. Similarly,
to each face f of G× we assign an initial charge ω(f) = dG×(f) − 4. Since G× is planar,
by Euler’s formula we have ∑

v∈V (G×)

ω(v) +
∑

f∈F (G×)

ω(f) = −8.

Towards a contradiction, we will move charges between the elements of G× without creating
any new charge, and eventually prove that the total sum of charges is non-negative, a
contradiction to the equality above.

Since G is 1-planar, it can easily be seen that G× cannot have adjacent false vertices.
False vertices of G× are of degree 4, and might thus be incident to a light edge of G×.
Because G has no light edge, we can actually state the following.
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(e) Rule R4

Figure 1: Rules applied during the first discharging phase. Big white vertices, except in Subfigure (d), are
big vertices of G×. Small black vertices are small vertices of G×. Squared vertices are false vertices of G×.

Claim 2. The graph G× has no two adjacent false vertices. Therefore, for every light edge
uv of G×, u is a false vertex of G× and v is a light vertex of G (or vice versa).

To ease the understanding of the whole discharging procedure, we carry it out through
two different phases.

First discharging phase.

Set α = 13
15 . During this first phase, the following discharging rules (depicted in Fig-

ure 1) are applied; let us emphasize that, though the discharging is performed in G×, some
of the discharging conditions are based on the structure of G.

(R1) Every big vertex v gives ω(v)
dG(v) ≥ α to its adjacent small neighbours in G.

(R2) For every edge uv of G such that u and v are big, u gives ω(u)
2dG(u) ≥

α
2 to the two faces

of G that are incident to the edge uv. If the edge uv is not in G×, i.e., there is a false
vertex w corresponding to a crossing involving the edge uv, then u gives ω(u)

2dG(u) ≥
α
2

to the two faces of G× that are incident to the edge uw. The same applies to v.

(R3) Every 5+-face f in G× gives ω(f)
dG× (f) ≥

1
5 to each of its adjacent faces.

By a bad 3-face f of G× (see Figure 1 (e)), we mean a 3-face f = uvwu where u and v
are big, w is false, and the other two vertices adjacent to w (which are adjacent to u and
v, respectively, in G) are small. The edges uw, vw are called the side edges of f .

(R4) Every 4−-face gives 1
15 to each of its adjacent bad 3-faces for which the shared edge

is a side edge.
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For any vertex or face x of G×, let us denote by ω′(x) the charge of x after the
application of the first discharging phase. We consider six cases, depending on x.

1. If x is a small vertex of G, then x does not give any charge to any adjacent/incident
element. However, since G has no light edges, all vertices adjacent to x in G are big.
Through rule R1, x thus receives a charge at least αdG(x) from its dG(x) neighbours.
Thus ω′(x) ≥ ω(x) + αdG(x) > 0. More particularly, since dG(x) ≥ 3, we have
ω(x) ≥ −1 and thus ω′(x) ≥ αdG(x)− 1 ≥ 39

15 − 1 = 24
15 .

2. If x is a false vertex, then x does not give nor receive any charge from its adja-
cent/incident elements. Thus ω′(x) = ω(x) = 0 in that case.

3. If x is a big vertex of G, then x gives ω(x)
dG(x) to each of its small neighbours in G (rule

R1), while, for each of its adjacent big vertices in G, it gives a total of ω(x)
dG(x) to two

incident faces (rule R2). On the other hand, x does not receive any charge. Thus
ω′(x) = ω(x)− dG(x) ω(x)

dG(x) = 0.

4. Let us now assume that x is a 3-face of G×. We consider two subcases.

(a) If x is a bad 3-face uvwu where u and v are big and w is false, then we note that
the other face f sharing the side edge vw (and similarly uw) cannot be a bad
3-face. Indeed, for f to be a 3-face we need u′v to be an edge, where u′ is the
small vertex adjacent to w that is adjacent to u in G. Thus f includes a small
vertex, a big vertex and a false vertex, and thus does not meet the definition of
a bad 3-face.
From this, we get that if x is a bad 3-face, then x can only receive charges
during the first discharging phase. More precisely, by rule R2, it receives α

2
from u and v, and by rule R4, it receives 1

15 through its two side edges. Thus
ω′(x) ≥ ω(x) + 2× α

2 + 2
15 = 0.

(b) Assume now that x is a 3-face that is not bad. The only way for x to give
charges is through rule R4, i.e., when it is adjacent to some bad 3-faces (and
shared edges are side edges). We claim that, this way, x can be adjacent to at
most one bad 3-face. Indeed, let us assume that uvwu is a bad 3-face, where u
and v are big, w is false, and let u′ and v′ denote the other two neighbours of w,
where u′ is adjacent to u in G, and v′ is adjacent to v in G. As said earlier, the
only way for a 3-face to share the side edge, say vw, is that vu′ is an edge. Let
us thus suppose that x = vwu′v. On the one hand, for the other face sharing
wu′ to be a 3-face, we need u′v′ to be an edge, which would mean that G has
a light edge, namely u′v′, a contradiction. On the second hand, we note that
the other face sharing vu′ has one big vertex (v) adjacent to a small vertex (u′),
and thus cannot be a bad 3-face.
From this, we get that x can give charge to at most one adjacent bad 3-face.
Therefore ω′(x) ≥ ω(x)− 1

15 = −16
15 .

Thus, in all cases, if x is a 3-face, then ω′(x) ≥ −16
15 .

5. Assume now that x is a 4-face of G×. Recall that x can only give charges through rule
R4, i.e., it gives 1

15 to each of its adjacent bad 3-faces with which it shares a side edge.
We claim that x is adjacent to at most two bad 3-faces this way. Indeed, assume
uvwu is a bad 3-face, where u and v are big, w is false, and let u′ and v′ denote the
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other two neighbours of w, where u′ is adjacent to u in G, and v′ is adjacent to v in
G. The only way for x to share the side edge, say vw, is that there is a fourth vertex
y such that x = vwu′yv. Then we note that, for each edge e ∈ {wu′, u′y}, the other
face sharing e with x cannot be a bad 3-face having e as a side edge, as u′ is small.
So only the other face sharing vy can be a bad 3-face sharing a side edge with x.

From this, we get that x can give charge to at most two adjacent bad 3-faces. There-
fore ω′(x) ≥ ω(x)− 2

15 = − 2
15 .

6. Finally, if x is a 5+-face, then x gives ω(x)
dG× (x) to each of its adjacent faces in G× (rule

R3); thus ω′(x) ≥ ω(x)− ω(x)
dG× (x)dG×(x) = 0.

Therefore every vertex and every 5+-face of G× has non-negative charge at the end of
the first discharging phase. The second discharging phase will ensure that every 3-face and
every 4-face also has non-negative charge.

Second discharging phase.

During this phase, we apply the following rule.

(R5) Every small vertex gives charge −ω′(f) to each of its incident faces f with ω′(f) < 0.

For any vertex or face x of G×, let us denote by ω′′(x) the charge of x after the
application of the second discharging phase.

Claim 3. Every face has non-negative final charge.

Proof. It is clear that for every face f incident to at least one small vertex, ω′′(f) ≥ 0
(the small vertex gives the necessary charge to f for this to be true). For every 5+-face f ,
ω′′(f) = ω′(f) ≥ 0. It remains to consider 3-faces and 4-faces being not incident to any
small vertex.

1. Let us first consider a 4-face f being not incident to a small vertex. Recall that,
through the whole discharging process, f can only give charge to adjacent bad 3-
faces f ′ with which it shares a side edge (rule R4). As described earlier, this happens
only when f has a small vertex. So, in the case where f is not incident to a small
vertex, it does not send any charge; thus ω′′(f) ≥ ω(f) = 0.

2. Suppose now a 3-face f has no incident small vertex. Since f is not incident to any
small vertex, f does not give charge by rule R4. If f is incident to three big vertices,
then each of them gives it at least α (rule R2), and thus ω′′(f) = ω′(f) = 3α−1 ≥ 0.
Otherwise, f is incident to two big vertices and a false vertex. If the other two vertices
adjacent to the false vertex are small vertices, then f is a bad 3-face and f gets charge
α by rule R2 and at least 2

15 by rules R3 and R4, and thus ω′′(f) = ω′(f) ≥ 0. Finally,
if at least one of the two vertices adjacent to the false vertex is a big vertex, then f
gets at least α+ α

2 ≥ 1 by rule R2, and thus ω′′(f) = ω′(f) ≥ 0.

This concludes the proof of the claim.

Claim 4. Every vertex has non-negative final charge.
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Proof. As seen before, for every face f , ω′(f) ≥ −16
15 . In particular, every small 5+-vertex v,

which verifies ω′(v) ≥ ω(v) + αdG(v), has enough charge to give 1
dG(v) + α ≤ 1

5 + α = 16
15

to each of its incident faces (through rule R5), and thus verifies ω′′(v) ≥ 0. It remains to
consider 3-vertices and 4-vertices.

1. Suppose first v is a 3-vertex. We consider three subcases.

(a) Suppose v is incident to three 3-faces. Then none of its adjacent vertices can be
a false vertex (otherwise there would be a double edge in G) and since there is
no light edge, all adjacent vertices to v are big. Therefore v is adjacent to three
3-faces that each have a charge ω′ of at least α − 1, and ω′(v) ≥ 3α − 1. Then
by rule R5, ω′′(v) ≥ 3α− 1− 3(α− 1) = 2 ≥ 0.

(b) Suppose v is incident to exactly two 3-faces. Let f be the 4+-face incident to v.
Let u1 and u3 be the neighbours of v incident to only one of those 3-faces and u2

the last neighbour of v. Suppose at least two of the ui’s are big vertices. Then at
least two of them are adjacent (either directly or through the false vertex u2 if the
big vertices are u1 and u3). Then the two 3-faces receive at least α in total by rule
R2. Furthermore, ω′(f) ≥ − 2

15 . Therefore v gives at most 2−α+ 2
15 during the

second discharging phase, and thus ω′′(v) ≥ ω′(v)−2+α− 2
15 ≥ 4α−3− 2

15 ≥ 0.
Suppose now that exactly one neighbour of v is a big vertex. Then, as no two
false vertices can be adjacent, u2 is a big vertex and u1 and u3 are false vertices.
But then f cannot be a 4-face, as otherwise there would be a double edge in
G. Thus it is a 5+-face, that gives at least 1

5 to each of the two 3-faces by
rule R3. If at least one of the vertices adjacent to u2 in G through u1 and u3

is a big vertex, then u2 gives at least α
2 to one of the 3-faces by rule R2, and

ω′′(v) ≥ ω′(v)− 2× 16
15 + α

2 + 2
5 ≥

7
2α−

41
15 ≥ 0. Otherwise, as two small vertices

cannot be adjacent in G, f is a 6+-face, that gives at least 1
3 to each of the

3-faces by rule R3, and ω′′(v) ≥ ω′(v)− 2× 16
15 + 2

3 ≥ 3α− 37
15 ≥ 0.

(c) Suppose v is incident to at most one 3-face. By rule R5, v needs to give at
most 16

15 to the 3-face and at most 2
15 to each incident 4+-face. Hence ω′′(v) ≥

ω′(v)− 16
15 − 2× 2

15 ≥ 3α− 7
3 ≥ 0.

2. Suppose now v is a 4-vertex. We consider two subcases.

(a) If v is incident to at least three 3-faces, then it is adjacent in G× to at least
two big vertices, two of which are adjacent in G, either directly along edges
incident to one of the 3-faces, or through a false neighbour of v. Therefore the
3-faces incident to v receive at least a total of α by rule R2. Hence ω′′(v) ≥
ω′(v)− 4× 16

15 + α = 5α− 64
15 ≥ 0.

(b) If v is incident to at most two 3-faces, then ω′′(v) ≥ ω′(v)− 2× 16
15 − 2× 2

15 =
4α− 36

15 ≥ 0.

This completes the proof of the claim.

Thus, by the previous claims, we get that

−8 =
∑

v∈V (G×)

ω(v) +
∑

f∈F (G×)

ω(f) =
∑

v∈V (G×)

ω′′(v) +
∑

f∈F (G×)

ω′′(f) ≥ 0,

which is a contradiction. Thus, G has a light edge, which concludes the proof of Theo-
rem 2.2.
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u1 u2

u3u4

u5 u6

Figure 2: A 1-planar graph K∗∆ with maximum degree ∆ ≥ 5 and strong chromatic index 6∆− 12.

3. Application to strong edge-colouring of 1-planar graphs

Using, in particular, the main result from the previous section, we study in this section
strong edge-colourings of 1-planar graphs.

3.1. Lower bounds
Let ∆ ≥ 5, and let K ′∆ be the graph obtained from K6 by attaching ∆ − 5 new

pendant vertices to every vertex. It can be observed that every two edges of K ′∆ are at
distance at most 2 apart. Furthermore, K ′∆ is clearly 1-planar since K6 is the biggest
1-planar complete graph (see e.g. [7]). Thus, for every ∆ ≥ 5 there are 1-planar graphs
with maximum degree ∆ and strong chromatic index 6∆− 15.

Actually, 1-planar graphs with maximum degree ∆ ≥ 5 and slightly larger strong
chromatic index exist, as attested by the following construction, depicted in Figure 2.
Start from a K6 on vertex set {u1, ..., u6}, and replace each of the edges u1u2, u3u4 and
u5u6 by a complete bipartite graph K2,∆−4. Denote the resulting graph by K∗∆.

By construction of K∗∆, all ui’s have degree ∆ (while the other vertices have degree 2),
and K∗∆ is 1-planar, as attested by the fact that K6 is 1-planar (see Figure 2). Its strong
chromatic index is deduced in the following proposition.

Proposition 3.1. Every graph K∗∆ has strong chromatic index 6∆ − 12. Consequently,
for every ∆ ≥ 5, there exist 1-planar graphs with maximum degree ∆ and strong chromatic
index 6∆− 12.

Proof. Every edge of K∗∆ is incident to at least one of the ui’s, while the ui’s, with the
exception of the pairs {u1, u2}, {u3, u4} and {u5, u6}, are all adjacent. It is easy to see
that every two edges of K∗∆ are at distance at most 2 from each other. Consequently,
no two edges of K∗∆ can receive the same colour by a strong edge-colouring, and thus
χ′s(K

∗
∆) = |E(K∗∆)| = 6∆− 12.
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(a) ∆ = 3, χ′s = 10 (b) ∆ = 4, χ′s = 20

Figure 3: Examples of 1-planar graphs with maximum degree ∆ ∈ {3, 4} and large strong chromatic index.

For smaller values of ∆, i.e., ∆ ∈ {3, 4}, some blown-up C5’s are examples of 1-planar
graphs with larger strong chromatic index (see Figure 3). The blown-up C5 with maximum
degree 3 is an example of a 1-planar graph with maximum degree 3 and strong chromatic
index 10, which is the maximum possible value for the strong chromatic index of a graph
with maximum degree 3 (as proved in [3, 15]). The blown-up C5 with maximum degree 4
is an example of a 1-planar graph with maximum degree 4 and strong chromatic index 20.
While Erdős and Nešetřil have conjectured that this is the maximum strong chromatic
index of a graph with maximum degree 4 (recall Conjecture 1.1), this has not been proved
yet. We however know that the strong chromatic index of a graph with maximum degree 4
is at most 21, as recently proved by Huang, Santana and Yu [13]. Thus, it might be that
there exist 1-planar graphs with maximum degree 4 and strong chromatic index 21, in case
the Erdős-Nešetřil Conjecture turned out to be false.

3.2. Upper bounds
The upper bound on the strong chromatic index of planar graphs with maximum de-

gree ∆ in Theorem 1.2 relies on a nice combination of Vizing’s Theorem and the Four-
Colour Theorem. Let us recall that Vizing’s Theorem [20] states that every graph with
maximum degree ∆ has a proper ∆- or (∆ + 1)-edge-colouring, i.e., a colouring (with ∆ or
∆ +1 colours) of the edges where no two adjacent edges are assigned the same colour. The
Four-Colour Theorem [1, 2] states that every planar graph has a proper 4-vertex-colouring,
i.e., a colouring of the vertices with four colours where no two adjacent vertices are assigned
the same colour.

The proof of the upper bound in Theorem 1.2 goes as follows. Let G be a planar
graph. By Vizing’s Theorem, G admits a proper (∆ + 1)-edge-colouring φ. For every
colour i assigned by φ, let us consider the i-graph Mi being the graph of the i-coloured
edges being at distance exactly 2 in G. More precisely, the vertices ve of Mi are those
edges e of G with colour i by φ, and two such vertices ve and vf are joined by an edge in
Mi if the edges e and f are at distance exactly 2 in G. Translating a planar drawing of
G to one of Mi, it is not complicated to convince oneself that each Mi is planar. By the
Four-Colour Theorem, each Mi thus admits a proper 4-vertex-colouring ψi. This yields a
strong (4∆ + 4)-edge-colouring of G, where each edge e gets colour (φ(e), ψφ(e)(ve)).

Unfortunately, mimicking the exact same proof for 1-planar graphs is not immediate.
While Vizing’s Theorem can of course be applied on a 1-planar graph and there does exist
a 1-planar analogue of the Four-Colour Theorem, namely the Six-Colour Theorem (stating
that every 1-planar graph has a proper 6-vertex-colouring, as proved by Borodin [5]), it
can however be noted that, when G is 1-planar, an i-graph Mi might not be 1-planar
itself. To overcome this issue and get our upper bound, we will instead consider proper
edge-colourings avoiding certain patterns, that will ensure 1-planarity of every resulting
i-graph Mi.
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Figure 4: Fordibben patterns in good edge-colourings. Red thick edges represent sets of edges that cannot
all receive the same colour.

In what follows, for a 1-planar graph G, a good edge-colouring will refer to an edge-
colouring φ such that none of the following three configurations appears (see Figure 4).

1. Two adjacent edges e and f receiving the same colour by φ (Configuration A).

2. Two crossing edges e and f receiving the same colour by φ (Configuration B).

3. Three edges e, f and g′ receiving the same colour by φ, where e and f are at distance 2,
joined by an edge g crossing g′ (Configuration C).

The fact that Configuration A is forbidden implies that a good edge-colouring is always
proper. It also implies that, for every colour i assigned by φ, the i-graphMi is well defined.
We now prove that the fact that Configurations B and C are forbidden implies that each
graph Mi is 1-planar.

Lemma 3.2. Let G be a 1-planar graph, and φ be a good edge-colouring of G. For every
colour i assigned by φ, the i-graph Mi is 1-planar.

Proof. Consider a 1-planar embedding of G in the plane, and let us focus on the i-graph
Mi defined by φ for some assigned colour i. From the embedding of G, we can directly
derive a corresponding embedding of Mi, where each vertex of Mi is “shaped” just as the
associated edge in G, and every edge of Mi, which results from any corresponding edge of
G, is drawn in Mi the same way as in G. Note that the fact that Configurations A and B
are forbidden implies that, in the resulting embedding, no two vertices of Mi overlap. The
fact that Configuration C is forbidden implies that, in the embedding, no edge of Mi goes
“through” a vertex. Thus, vertices of Mi are drawn in well separate locations, and the only
crossing elements of Mi are edges.

Now, by the embedding above, we get that the edges of Mi correspond to actual edges
of G, embedded in the similar way in the plane. From this we directly get that Mi cannot
have an edge crossed more than once, as otherwiseG would have one as well, a contradiction
to the choice of its embedding.

We now prove an upper bound on the minimum number of colours in a good edge-
colouring of a 1-planar graph.

Theorem 3.3. Every 1-planar graph G admits a good µ-edge-colouring, where µ = max{3∆+
55, 4∆− 1}.

Proof. To make our arguments work, we need to prove a stronger statement dealing with
missing edges that could be involved in crossings. More precisely, we define a ghost triplet
as an ordered triplet (u, v, xy) where:
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• u, v, x, y are four pairwise distinct vertices;

• uv 6∈ E(G) and xy ∈ E(G);

• xy is not crossed;

• the embedding of G can be extended directly to a 1-planar embedding of G+uv (i.e.,
all vertices and edges (different from uv) remain drawn the same) in such a way that
uv and xy cross.

In what follows, to prove the existence of good edge-colourings of G, we focus on even
more restricted edge-colourings. Namely, given a set T of ghost triplets of G where each
edge xy is involved in only one triplet (u, v, xy) ∈ T , we prove that G admits what we
call a µ-T -edge-colouring φ, which is a good µ-edge-colouring where the following bad
configuration also does not appear.

4. A ghost triplet (u, v, xy) ∈ T where an edge incident to u, an edge incident to v, and
xy receive the same colour by φ (Configuration D).

The proof is by induction on the number of vertices and edges of a 1-planar graph G.
We also prove it by looking at G as a graph being a subgraph of a graph with maximum
degree ∆. This notion of ∆ is important to keep track of the number of ghost triplets
(u, v, xy) involving a given vertex u. In particular, below, the number of ghost triplets
involving u will never exceed ∆ − d(u). The number of colours we use is with respect to
∆ (not the actual ∆(G)) which is favourable, since ∆(G) ≤ ∆ and there are thus more
colours available (compared to what the real maximum degree of G would allow).

Since the claim is obviously true when G is small, we focus on the general case. Let Γ
be a fixed 1-planar embedding of G in the plane, T be a set of ghost triplets, and consider
any edge uv of G. To use induction, we will consider the smaller graph G′ = G− uv, with
T ′ being defined from T as follows:

• If uv is crossed by an edge xy, then T ′ = T ∪ (u, v, xy);

• Otherwise, i.e., uv is not crossed in G, then T ′ = T .

An important point, to make the notion of ghost triplets usable, is that we consider G′

embedded in the plane following Γ, i.e., the 1-planar embedding of G′ is directly inherited
from the 1-planar embedding of G. Note also that ∆(G′) ≤ ∆(G) ≤ ∆. Since G′ is smaller
than G, it has a µ-T ′-edge-colouring φ by the induction hypothesis, which we wish to
extend to G with T , i.e., to uv. To that aim, we need to assign a colour α to uv that
does not create any of the Configurations A, B, C, or D. Let us describe why forbidding
Configuration D is important: assume that, in G, edge uv is crossed by an edge xy. If, in
G′, one edge incident to u, one edge incident to v, and xy all receive the same colour by φ,
then note that Configuration C would be created in G no matter what colour is assigned
to uv.

Let us now describe the constraints applying to α.

• To avoid creating Configuration A, α must be different from all colours assigned by φ
to the edges incident to u and v. This is a set of nA = nA,u +nA,v forbidden colours,
with nA,u = dG′(u) ≤ ∆− 1 and nA,v = dG′(v) ≤ ∆− 1.

• To avoid creating Configuration B, α must be different from the colour of the unique
edge crossing uv, if it exists. This is a set of nB = 0 or nB = 1 forbidden colours.
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• To avoid creating Configuration C, α must be different from:

– the colours assigned to the nC,x = dG′(x)− 1 ≤ ∆− 1 edges incident to x in G′,
if xy is the (unique) edge crossing uv;

– the colours assigned to the nC,u ≤ dG′(u) − 1 ≤ ∆ − 1 edges crossing an edge
incident to u;

– the colours assigned to the nC,v ≤ dG′(v) − 1 ≤ ∆ − 1 edges crossing an edge
incident to v.

This is a set of nC = nC,x + nC,u + nC,v forbidden colours.

• To avoid creating Configuration D, α must be different from:

– the colours assigned to the nD,x = dG′(x)− 1 ≤ ∆− 1 edges incident to x in G′,
if uv is involved in a (unique) ghost triplet (x, y, uv);

– the colours assigned to the at most nD,u ≤ ∆ − dG′(u) edges xy such that
(u, a, xy) is a ghost triplet;

– the colours assigned to the at most nD,v ≤ ∆ − dG′(v) edges xy such that
(a, v, xy) is a ghost triplet.

This is a set of nD = nD,x + nD,u + nD,v forbidden colours.

We note that each edge distinct from uv and incident to u can forbid at most two
colours for uv, namely because of Configurations A and C (the case where that edge is
crossed). This is because, on the other hand, if an edge incident to u is missing, we only
have to deal with Configuration D, which yields only one constraint. Also, the case bringing
the most constraints is when uv is crossed, in which case there are at most ∆ constraints
because of Configurations B and C, compared, when uv is not crossed, to the worst case
which is when uv is in a ghost triplet (in which case there are at most ∆ − 1 constraints
because of Configuration D). From these arguments, in general the case bringing the most
constraints is when u, v have degree ∆, and all their incident edges are crossed.

To prove our claim, we apply these arguments by considering light structures in G. We
distinguish the following three cases.

1. Assume δ(G) ≥ 3. Since G is 1-planar, according to Theorem 2.2, it has a (≤ 29,≤
29)-edge uv. We here consider G′ = G− uv, and T ′ defined as mentioned earlier. In
particular, we retain the 1-planar embedding Γ of G for G′. Since G′ is smaller than
G, it has a µ-T ′-edge-colouring φ by the induction hypothesis, which we wish extend
to G and T , i.e., to uv. According to the arguments above, the worst case scenario
is when u and v have degree precisely 29 in G′ and are each involved in ∆− 29 ghost
triplets, and uv is crossed by an edge xy where dG′(x) = dG′(y) = ∆. In that case,
we have nA,u = nA,v = nC,u = nC,v = 28, nB = 1, nC,x = ∆ − 1, nD,x = 0, and
nD,u = nD,v = ∆−29. There are thus at most 3∆ + 54 colours forbidden for uv, and
we can thus extend φ with an available colour.

2. Assume G has a 1-vertex u with unique neighbour v. We again consider G′ = G−uv,
and T ′ defined as previously. Let us consider a µ-T ′-edge-colouring φ of G′. This
time, because dG(u) = 1, we have nA,u = nC,u = 0. Then, the most constraints is
when u is involved in ∆−1 ghost triplets, and when uv is crossed and v has degree ∆.
In that very case, nA,u = nCu = nD,x = nD,v = 0, nA,v = nC,v = nC,x = nD,u =
∆ − 1, and nB = 1. Thus, there are at most 4∆ − 3 colours forbidden for uv by φ,
and we can thus extend φ with an available colour.
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3. Assume G has a 2-vertex u, and let v be any neighbour of u. Consider G′, T ′ and φ
as before. Because dG(u) = 2, we have nA,u = nC,u = 1. Then, the most constraints
is when u is involved in ∆ − 2 ghost triplets, and when uv is crossed and v has
degree ∆. In such a case, we have nA,u = nB = nC,u = 1, nA,v = nC,v = nC,x = ∆−1,
nD,u = ∆−2, and nD,x = nD,v = 0. Thus, there are at most 4∆−2 colours forbidden
for uv by φ, and we can thus extend φ with an available colour.

In all cases, we can thus extend φ to uv because we have a pool of µ colours while there
are at most µ− 1 constraints around. This concludes the proof of Theorem 3.3.

Corollary 3.4. For every 1-planar graph G, χ′s(G) ≤ 6 ·max{3∆ + 55, 4∆− 1}.

Proof. By Theorem 3.3, G has a good (max{3∆ + 55, 4∆− 1})-edge-colouring φ. Now, by
Lemma 3.2, for every colour i assigned by φ, the graph Mi is 1-planar, and thus admits a
proper 6-vertex-colouring ψi. Every two adjacent edges of G are assigned different colours
by φ, while, for every two edges at distance 2 being assigned colour i by φ, the two
corresponding vertices in Mi receive different colours by ψi. Thus φ and the ψi’s yield a
strong (6 ·max{3∆ + 55, 4∆− 1})-edge-colouring of G.
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