
HAL Id: hal-02112087
https://hal.science/hal-02112087v1

Submitted on 26 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern Matching in Link Streams: a Token-based
Approach

Clément Bertrand, Hanna Klaudel, Matthieu Latapy, Frédéric Peschanski

To cite this version:
Clément Bertrand, Hanna Klaudel, Matthieu Latapy, Frédéric Peschanski. Pattern Matching in
Link Streams: a Token-based Approach. 39th International Conference on Application and The-
ory of Petri Nets and Concurrency (PETRI NETS 2018), Jun 2018, Bratislava, Slovakia. pp.227–247,
�10.1007/978-3-319-91268-4_12�. �hal-02112087�

https://hal.science/hal-02112087v1
https://hal.archives-ouvertes.fr

Pattern Matching in Link Streams:
a Token-based Approach

Clément Bertrand1, Hanna Klaudel1,
Matthieu Latapy2, and Frédéric Peschanski2

1 IBISC, Univ Evry, Université Paris-Saclay, 91025, Evry, France
2 LIP6 – Sorbonne Université, Paris, France

Abstract. Link streams model the dynamics of interactions in complex
distributed systems as sequences of links (interactions) occurring at a
given time. Detecting patterns in such sequences is crucial for many ap-
plications but it raises several challenges. In particular, there is no generic
approach for the specification and detection of link stream patterns in
a way similar to regular expressions and automata for text patterns. To
address this, we propose a novel automata framework integrating both
timed constraints and finite memory together with a recognition algo-
rithm. The algorithm uses structures similar to tokens in high-level Petri
nets and includes non-determinism and concurrency. We illustrate the
use of our framework in real-world cases and evaluate its practical per-
formances.

Keywords: Timed pattern recognition, finite-memory automata, timed
automata, complex networks, link streams.

1 Introduction

Large-scale distributed systems involve a great number of remote entities (com-
puter nodes, applications, users, etc.) interacting in real-time following very com-
plex network topologies and dynamics. One classical way to observe the behavior
of such complex system is to take snapshots of the system at given times and
represent the global state as a very large and complex graph. The behavior of the
system is then observed as a timed sequence of graphs. The algorithmic detection
of patterns of behaviors in such large and dynamic graph sequences is a very
complex, most often intractable, problem. The link stream formalism [11] has
been proposed to model complex interactions in a simpler way. A link stream is
a sequence of timestamped links (t, u, v), meaning that an interaction (e.g. mes-
sage exchange) occurred between u and v at time t. The challenge is to develop
analysis techniques that can be performed on the link streams directly, without
having to build the underlying global graph sequence. The patterns of interests
in link stream involve both structural and temporal aspects, which raises serious
challenges regarding the description of such patterns and the design of detection
algorithms. The problems has been mostly approached from two different angles.
First, recognition algorithms have been developed for specific patterns such as

2 Clément Bertrand et al.

triangles in [12]. The focus is on the performance concerns, involving non-trivial
algorithmic issues. At the other end of the spectrum, complex event processing
(CEP) has been proposed as a higher-level formalism to describe more complex
interaction patterns in generic event streams [1,19]. These generic works do not
handle the specificity of the input streams, in particular the real-time and graph-
related properties of link streams. Our objective is to develop an intermediate
approach, generic enough to cover a range of interesting structural and tem-
poral properties, while taking into account the specificities of the link streams
abstraction.

Our starting point is that of regular expressions and finite state automata
for textual patterns. We interpret link streams as (finite) words and develop a
pattern language involving both structural and temporal features. We propose
a new kind of hybrid automata, the timed ν-automata, as recognizers for this
pattern language. They are build upon finite state automata (FSA) with both
timed [2,3] and finite-memory [10,6,7] features. The patterns themselves can be
specified by enriched regular expressions, and ”compiled” to timed ν-automata.
The problem of timed pattern matching has been addressed only quite recently
in e.g. [14,15,17,18]. while our model bears some resemblance with these propo-
sitions, the main novelty is the study of pattern matching in the presence of
real-time constraints together with finite memory. To our knowledge this has not
been addressed in the literature.

One interesting aspect of the automata model we propose is that the recog-
nition principles are based on a non-trivial token game. Indeed, our main inspi-
ration comes from high-level Petri nets. Based on this formalism, we developed a
prototype tool that we applied to real-world link streams analysis. Performance
issues are raised but the results are encourageing. In particular, our experiments
confirm the following key fact: timing properties often help in reducing the per-
formance cost induced by storage of information in memory.

The outline of the paper is as follows: In Section 2 we introduce the principles
of finding patterns in link streams. The automata model and pattern language
are formalized in Section 3. The prototype tool and practical experiments are
then discussed in Section 4.

2 Patterns in link streams

We consider link streams [11] defined as sequences of triples (ti, ui, vi), meaning
that we observe a link between nodes ui and vi at time ti. Figure 1 (left) shows
an example of a link stream that models interactions between nodes a, b, c and
d. For example at time t = 6 a link from node d to node b is observed, which
corresponds to a triple (6, d, b) in the stream.

A pattern in such a link stream can be seen as a series of (directed) subgraphs
observed in a given time frame. For example, at time t = 15 we observe the
subgraph described on the right of Figure 1. This graph has been formed in
the depicted time frame of 7s. One trivial way to detect such patterns is to
build all the intermediate graphs and solve the subgraph isomorphism problem

Pattern Matching in Link Streams 3

0 2 4 6 8 10 12 14 16 18 20

d

c

b

a

a

b

c

d

Fig. 1. A link stream (left) and its graph projection in time interval [8, 15] (right).

at each time step. This is however out of reach in most situations most notably
because: (1) real-world link streams involve very large graphs, and (2) subgraph
isomorphism is a NP-complete problem. Hence, in practice dedicated algorithms
are developed for specific kinds of subgraphs. One emblematic example is the
triangle for which specialized algorithms have been developed. A triangle is
simply the establishment of a complete subgraph of three nodes, in a directed
way. In network security this is a known trigger for attacks: two nodes that
may be identified as ”attackers” negotiate to ”attack” a third node identified as
the ”target”. Such a trigger can be observed in Figure 1 (right) with a and d
attackers targeting b. In real-world link streams, detecting such triangles is in
fact not trivial, as explained for example in [12].

In this paper, our motivation is to develop a more generic approach able to
handle not only such triangles but also other kinds of patterns: directed polygons,
paths, alternations (e.g. links that appear periodically), etc. We also require the
matching algorithms to be of practical use, hence with efficiency in mind. Our
starting point is the theory of finite-state automata (FSA) and regular expres-
sions. Indeed, if we ignore the timestamps, a link stream is similar to a finite
word, each symbol being a directed link (a pair of nodes). For example in the
time frame (8, 15) we observe the following ”word”:

(a, b)(d, b)(a, c)(a, d)(c, b).

Based on such a view, we can use FSA as pattern recognizers and regular ex-
pressions as a high-level specification language. A regular pattern for the triangle
example is as follows:(

((a→ d) | (d→ a)) · ((a→ b)⊗ (d→ b))
)
⊗ (@→ @)∗

This expression uses classical regular constructs such as concatenation ·, disjunc-
tion |, the Kleene star ∗ and shuffle ⊗. The symbol @ is used as a placeholder
for any possible node, hence (@ → @) means ”any possible link”. Based on
such specification, it is easy to build a finite-state automaton to recognize the
triangles in an untimed link stream very efficiently.

However, the ”regular language” approach fails to capture the timing prop-
erties of link streams. What we need is a form of real-time pattern matching.

4 Clément Bertrand et al.

Quite surprisingly, there are very few research works addressing this problem-
atic, despite the broad success of timed automata [2] in general. An important
starting point is the timed regular expressions formalism [3]. The basic principle
is to interpret input words, hence link streams, as timed event sequences: a suc-
cession of either symbols or delays corresponding to a passage of time. Below is
an example of a link stream as a timed event sequence:

(a, b)2(d, b)2(a, c)1(a, d)1(c, b).

A timed regular expression for the triangle pattern can then be specified, e.g.:(
((a→ d) | (d→ a)) · 〈(a→ b)⊗ (d→ b)〉[0,1]

)
⊗ (@→ @)∗

The delay construction 〈S〉[x,y] says that the subpattern S must be detected in
time interval [x, y]. For the triangle pattern it means that the nodes a and d are
only observed as ”attacking” target b if they simultaneously link to b in the time
interval of one second.

Another fundamental aspect that we intend to capture in link stream patterns
is that of incomplete knowledge. In classical and timed automata, symbols range
over a fixed and finite alphabet. In link streams, this means that the nodes of the
graphs must be known in advance, which is in general too strong an assumption.
In an attack scenario, for example, we must consider an open system: it is very
likely that only the target is known in advance, and the two attackers remain
undisclosed.

The kind of pattern we intend to support is e.g.:(
(]X →]Y) · 〈(X → b)⊗ (Y → b)〉[0,1]

)
⊗ (@→ @)∗.

In this pattern, the variables X and Y represent unknown nodes corresponding
to two ”attackers”. The construction]X means that the input symbol (hence
node) associated to X must be fresh, i.e., not previously encountered. In case of
a match this node is associated to X and kept in memory. With the operator X!
(the dual of]X), after matching a value associated to variable X, all the values
associated to it are discarded (i.e. the associated set is cleared).

The sub-pattern (]X →]Y) describes a link between two fresh nodes. Note
that since Y is matched after X, the freshness constraints impose that its asso-
ciated node is distinct from the one of X. To match the sub-expression (X → b),
the input must be a link from the node already associated with X in memory
to node b. This is a potential attack on the target b.

To handle such dynamic matching, one must consider a (countably) infinite
alphabet of unknown symbols. This has been studied in the context of quasi-
regular languages and finite memory automata (FMA) [10]. In this paper, we
build upon the model of ν-automata that we developed in a previous work [6,7].
It is a variant of FMA, which is tailor-made for the problem at hand. If compared
to the classical FMA model, the ν-automata can be seen as a generalization to
handle freshness conditions [13].

Pattern Matching in Link Streams 5

q0 q1
q2

c ≤ 1
q3

q4

a νX,X

c := 0 X, νX

b

c ∈ [0, 1]

b

νX,X

c ∈ [0, 1]

q5

q6

q7

@ @

@@

@ @

Fig. 2. Automaton for (@→ @)∗⊗
(

(a→ b)∨ a→]X · 〈(X!→]X)∗ · (X!→ b)
)
〉[0,1]

The resulting mixed model of timed ν-automata is quite capable in terms
of expressiveness. The automaton formalism is a combination of both the timed
constraint and clocks reset from timed automaton and the memory management
of the ν-automaton. As an illustration, Figure 2 depicts an automaton that
detects in a link stream all the paths from a node a to a node b such that each
link is established in at most one second. We suppose that the automaton is
defined for the alphabet Σ = {a, b}, i.e., only the nodes a and b are initially
known. The labels νX,X and X, νX are the automata variants of the operators
]X and X! discussed previously. An example of an accepting input is:

(a, y) 0.1 (y, z) 0.3 (y, b).

Initially, in state q0 the known symbol a is consumed while transiting to state
q1. The unknown symbol y is saved in the memory associated to variable X
while transiting to state q2. This only works because the symbol y is fresh, i.e.,
not previously encountered. The delay of 0.1 second is consumed in state q2
while increasing the value of the clock c to 0.1. The state constraint c ≤ 1 is
still satisfied. The next input y may either lead to q3 (because it was previously
associated toX) or q7 (because the symbol @ accepts any input). The recognition
principle is non-deterministic so both possibilities will be tried:

– if the transition q2
X,νX−−−−→ q3 is taken, X is no longer associated to any

symbol in q3. The next input is the unknown symbol z. From q3, only the

transition q3
νX,X−−−−→
c∈[0,1]

q2 is enabled. In q2 the variable X would be associated

to z. However, this path is doomed because the next (and last) link does not
start from z. Then at the end of the input sequence the path leads to state
q2 which is not a terminal state.

– if the transition q2
@−→ q7 is taken then the value associated to X is not

discarded and the input z leads back to the state q2 through transition

6 Clément Bertrand et al.

q7
@−→ q2. The input 0.3 increases the clock value to c = 0.4. The next input

y may again lead either to q7 or q3 as in the previous case. In state q3 the

input b enables only the transition q3
b−−−−→

c∈[0,1]
q4, which leads to the final

state q4 (since b ∈ Σ).

We reach an accepting state because the clock value c = 0.4 is still under 1
second. On the other hand, if the second delay is not 0.3 but e.g., 1.0 then the
link stream is not recognized because of a timeout in state q2.

3 Automata model and recognition principles

The automata model we propose can be seen as a layered architecture with:
(1) a classical (non-deterministic) finite-state automata layer, (2) a timed layer
(based on [3]) and (3) a memory layer (based on [7]). These layers are obviously
dependent but there is a rather clean interface between them.

3.1 The timed ν-automata

Definition 1. A timed ν-automaton is a tuple:

A = (Σ,Q, q0, F,∆︸ ︷︷ ︸
finite-state

, C, Γ︸︷︷︸
timed

, U , V︸︷︷︸
memory

)

The basic structure is that of a finite-state automaton. We first assume a finite
alphabet of known symbols denoted by Σ. The finite set Q is that of locations3.
The initial location is q0 and F is the set of final locations. The component ∆
is the set of transitions (explained in details below).

This basic structure is extended for the timed constraints with a set C of
clocks (ranging over c0, c1, . . .) and a map Γ that associates to each location
a set of timed constraints. A time constraint is a time interval of the form
[min,max] ∈ I = [R≥0, (R≥0 ∪ {+∞})] giving the minimum and maximum
values of the clock so that the automaton can “live” in the given location. A
transition can also be annotated with time constraints to restrict its firing. Note
that the maximum value may be infinite, which means there is no time limit
for crossing the transition. The only operations we need on intervals is that of
intersection I1 ∩ I2 and membership c ∈ I.

The memory component is a finite set V of variables (ranging over X,Y, . . .)
for the memory constraints. Each variable will be associated to a (possibly
empty) set of unknown symbols ranging over a countably infinite alphabet de-
noted by U . These symbols are all the symbols that may appear in an input

3 The notion of a location here corresponds to a state in classical automata theory. We
rather use the term state in the sense of actual state or configuration (as in FMAs
[10]), i.e., an element of the state-space: a location together with a memory content
and clock values.

Pattern Matching in Link Streams 7

sequence, which are not in Σ. Unlike FMA, which are limited by the number
of their registers, the ν-automata use variables of dynamic size, which allows to
recognize words composed of an arbitrary number of distinct unknown symbols.

Definition 2. A transition t ∈ ∆ of a timed ν-automaton is of the form:

q
ν, e, ν−−−−→
γ, ρ

q′

with q (res. q′) the starting (resp. ending) location, ν ⊂ V a set of variable
allocations, ν ⊂ V a set of variable releases. The event e is either a symbol in
the finite alphabet Σ, a use of a variable in V or an ε. The timed constraint γ is
a guard function of type C → I, associating to each clock a unique time interval.
Finally, ρ is the set of clocks to be reset to 0 while crossing the transition. To
simplify the notation of transitions, the empty sets are omitted.

3.2 Dynamics

For a variable X ∈ V , an allocation is a set MX of unknown symbols, a finite
subset of U , together with a flag. The flag may be M•X (read mode, default)
or M◦X (write mode). In read mode, the only available operation is to check if
an input symbol is already present in M•X . In write mode, only a fresh symbol
α /∈

⋃
X∈V MX may be added. An important property of the memory model is

the following.

Definition 3. A token is a pair k = (ktime, kmem) with ktime a function from
clocks to clock values, and kmem a mapping from variables to sets of allocations.

Definition 4. A configuration of an automaton is a mapping S from locations
Q to corresponding reachable clocks and memory valuations. 4.

We denote by S(q) the set of tokens associated to location q.

Property 1. INJ (memory injectivity)
For any pair of distinct variables X,Y we have MX ∩MY = ∅.

We denote by INJ(k) the fact that token k respects property 1. Although most
memory models do not work like this, this injectivity property is an essential
feature of finite-memory automata models (cf. [10]).

The initial configuration of every timed ν-automaton contains the single to-
ken ({X → ∅•|∀X ∈ V }, {c→ 0|∀c ∈ C}) in the initial location. The recognition
of a pattern in an input sequence in this setting is a non-deterministic process.
It corresponds to the propagation of tokens over locations of the automaton
representing the pattern. The input is accepted if after reading the whole input
sequence there is at least one token in some final location. The token itself allows
to retrieve the admissible clock values and memory content.

4 We reuse the token notion of high-level Petri nets because it is quite similar concep-
tually. The configuration roughly corresponds to the marking of a Petri net.

8 Clément Bertrand et al.

The core of the recognition principle is a partial function δ that takes a token,
a transition, and an input symbol (ε if none) to produce either a new token to
put into the destination location, or nothing (⊥) if the transition is not enabled.

Definition 5. (update) Consider the transition t = q
ν,e,ν−−−→
γ,ρ

q′, a token k =

(ktime, kmem) present in q, and α an input symbol. If we pose k′time = δtime(t, ktime)
and k′mem = δmem(t, kmem, α), then the next token to put in location q′ is:

δ(t, (ktime, kmem), α) =

{
(k′time, k

′
mem) if k′time 6= ⊥ and k′mem 6= ⊥

⊥ otherwise

The next token only exists if neither the functions for time update δtime or
memory update δmem yield the undefined value ⊥.

The time update function δtime corresponds to the time model of [3].

Definition 6. (time update) Let C be a set of clocks, q a location and Γq the
time constraints function. The δtime function is defined as follows:

δtime(t, ktime) =

⊥ if ∃c ∈ C \ ρ, allow(c) ∩ Γq′(c) = ∅ (case 1.1)

∨∃c ∈ ρ, allow(c) = ∅ ∨ 0 /∈ Γq′(c) (case 1.2)
otherwise {c 7→ k′c | c ∈ C} (case 2)

with k′c =

{
0 if c ∈ ρ
ktime(c) otherwise

where allow(c) = ktime(c) ∩ γ(c) ∩ Γq(c) and γ is the time constraint on t.

If at least one of the non-reseted clocks c fails to satisfy either the transition
guard or the locations constraints (case 1.1) then no token is produced. Another
case of failure is if a reseted clock fails to satisfy the initial location constraint
and transitions guards, or zero is not accepted in the destination location as the
outgoing value of the clock (case 1.2). A token is otherwise produced (case 2),
which simply consists in updating the clock to the correct value (either 0 if there
is a reset for the clock, or to the value prescribed by the input token).

The principle of updating the memory is a little bit more complex. The
memory part of the next token is computed by the memory update function
δmem from the previous memory component depending on an input symbol α.
The computation respects the following ordering: the allocation of the variables
in set ν is performed before checking the consistency between the input and
transition label, and before releasing the variables in the set ν.

Pattern Matching in Link Streams 9

Definition 7. (memory update) Let V be a set of variables, and U an infinite
set of unknown symbols. The δmem function is defined as follows:

δmem(t, kmem, α) =

⊥ if e /∈ V ∧ α 6= e (c.1.1)
∨e ∈ V ∧ α /∈ U (c.1.2)
∨e ∈ V \ ν ∧ kmem(e) = M•e ∧ α /∈Me (c.1.3)
∨(e ∈ ν ∨ kmem(e) = M◦e) ∧ ∃Y, α ∈ kmem(Y) (c.1.4)

otherwise {X 7→ k′X | X ∈ V }

with k′X =

∅•, if X ∈ ν (c.2.1)
(MX ∪ {α})•, if X = e (c.2.2)
M◦X , if X ∈ ν (c.2.3)
kmem(X), otherwise (c.2.4)

where e ∈ V ∪Σ ∪ {ε} denote the input enabling transition t and the sets ν and
ν denote respectively the sets of allocated and freed variables.

In the first four cases no token can be produced. If the transition label e is
a known symbol in Σ, then the input α must exactly match else it is a failure
(c.1.1). If otherwise e corresponds to a variable, then α must be an unknown
symbol in U (c.1.2). A more subtle failure is (c.1.3) for a variable e ∈ V in
read mode. In this situation the input symbol must be already recorded in the
memory associated to e. Complementarily, if the variable e is in write mode (or
is put in write mode along the transition), then the input symbol must be fresh
(c.1.4).

If the next token is produced then for each variable X the associated memory
content MX is updated as follows. If X is to be released (in set ν) then the
memory is cleared and put in read mode (c.2.1). If it is not released and the
variable is to be read (i.e. X = e) then α is added to the memory content
(c.2.2). In (c.2.3) the variable is not read (X 6= e) but it is allocated (in set ν).
In this situation the memory content is put in write mode. Otherwise (c.2.4) the
memory is left unchanged for variable X.

q1 q2

c ≤ 1

νX,X

c := 0

input: w

q1 q2

c ≤ 1

νX,X

c := 0
X → {v}•
c→ 5

X → {v, w}•

c→ 0

Fig. 3. Passing a transition of the automaton from Figure 2 with input w

Example 1. Figure 3 illustrates the generation of a new token taking as an ex-

ample of the transition d = q1
{X},X,{}−−−−−−→
ρ={c}

q2 from the automaton in Figure 2.

Based on the token ({c → 5}, {X → {v}•}) in location q1, the input w enables
the transition d producing a new token in q2, computed as follows:

– for the time component, the value of clock c verifies the transition constraints.
In the arrival location q2 the clock is reseted and the clock value 0 verifies

10 Clément Bertrand et al.

the time invariant in q2. The transition would be disabled without the reset
because clock value 5 does not satisfy the invariant. Of course, the clock
value in the arrival token is c→ 0.

– for the memory component, the transition d is only enabled when the input
is an unknown symbol, because transition d is labeled with a variable. Since
the alphabet Σ of known symbols is {a, b}, the symbol w is considered as
unknown, i.e., w ∈ U . Because the allocations are applied before checking
the input, the variable X is allocated and then used to enable the transition.
So the symbol w should be added to MX in the newly generated token.
However, it is only possible if the input is fresh. Since MX = {v} and X is
the only variable, this freshness constraint is satisfied. Hence, the new token
associates the memory {v, w}• to X.

As both δtime and δmem can compute a new value, a new token is generated for
the location q2. �

q2

c ≤ 1

q3

X, νX input: v

q2

c ≤ 1

q3

X, νXX → {v, w}•

c = 0.5
X → {}•
c = 0.5

Fig. 4. Passing a transition of the automaton from Figure 2 with input v

Example 2. Figure 4 presents another example of transition in the automaton
of the Figure 2. This example illustrates a case of memory evolution with δmem.
Here the variable X is used as the trigger and then freed. The variable’s freeing
occurs simultaneously to reset of the clocks, after checking of guards. As X is not
allocated during the transition and was neither allocated before, the transition is
enabled only if the input is an unknown symbol and belongs to MX . The input
is actually the unknown symbol v /∈ Σ = {a, b}. Furthermore, v ∈ {v, w} = MX ,
so the transition may be passed and the variable X is cleared in the newly
generated token. �

The important property of memory injectivity must be preserved through
δmem to fulfill the freshness constraints.

Proposition 1. (preservation of injectivity) Let k be a token such that INJ(k),
and suppose k′ = δ(t, k, α) 6= ⊥ for some transition t and input α. Then we have
INJ(k′).

Proof. In the token k = (ktime, kmem) only the memory component kmem is
affected by the injectivity property. The main hypothesis INJ(k) means that
∀X,Y (X 6= Y), kmem(X) ∩ kmem(Y) = ∅.

Suppose that the transition t = q
ν,e,ν−−−→
γ,ρ

q′ produces token k′ = δ(t, k, α) =

(k′time, k
′
mem). We have to show INJ(k′), i.e. k′mem(X)∩ k′mem(Y) = ∅ for the same

Pattern Matching in Link Streams 11

pairs of distinct variables. In the definition of δmem (Definition 7) we are mostly
concerned with cases (c.2.1) to (c.2.4) because we expect a token as output. The
memory update depends on the value of the transition trigger e and is as follows:

– If e is not a variable: e ∈ ε ∪ Σ, then the case c.2.2 of δmem cannot occur.
So, in the token k′ the variable domains are either empty (case c.2.1), or
the same as in k (case c.2.3 or c.2.4). Given the hypothesis INK(k) and the
fact that ∅ is the zero element of intersection, we trivially have INK(k′) as
expected.

– If e is a variable: e ∈ V then the case c.2.2 occurs for exactly one variable
of the generated token. As presented above, the variable domains generated
with the cases c.2.1, c.2.3 and c.2.4 have empty intersections with each other.
Only the domains generated by case c.2.2 must be handled with care. We
have to consider two situations:

• if α ∈ kmem(e) then the set Me is not modified, so the Property 1 is
trivially verified;

• or α 6∈ kmem(e) then case c.1.4 ensures that α is absent in all the domains
of the other variables. Thus, Property 1 is verified as well. �

Given a global configuration S and an input α, a new configuration is com-
puted with function σ. It consists in producing all new tokens by the enabled
transitions and propagating them through all the ε-transitions.

Definition 8. (global update)

σ(S, α) =

{
σclosure(S, α) if α ∈ R+ (time delay)
σclosure(σstep(S, α), 0) otherwise (symbol)

The input may be either a known or unknown symbol, or a time delay. In case
of a time delay the token should just be propagated through the ε-transitions,
defined by σclosure presented below. If the input is a symbol, then new tokens
shall be produced through the non ε-transitions, which is expressed by σstep,
and then propagated through the ε-closure.

Definition 9. (event handling)

σstep(S, α) = {q′ 7→ {δ(t, k, α) | t = q
ν,e,ν−−−→
γ,ρ

q′ ∧ k ∈ S(q)} | q′ ∈ Q}

The σstep function simply consists in applying the local update function δ at all
locations for all non ε-transitions. The tokens belonging to S are not kept in the
new configuration.

The resulting tokens are propagated for ε transitions with a time delay fixed
to 0. In the case of a time delay, the ε-closure is applied with this fixed delay
as argument. The function σclosure thus handles the time propagation in the
automaton. It produces all the possible next tokens in all locations reachable
through an ε-path.

12 Clément Bertrand et al.

Definition 10. (ε-closure)

σclosure(S, x) = { q 7→ {k | ∃q0
ν1,ε,ν1−−−−→
γ1,ρ1︸ ︷︷ ︸
t1

q1
ν2,ε,ν2−−−−→
γ2,ρ2︸ ︷︷ ︸
t2

· · · qn−1
νn,ε,νn−−−−−→
γn,ρn︸ ︷︷ ︸
tn

q ∈ ∆

∧∃k0 ∈ S(q0), ∃x0 + x1 + · · ·+ xn = x
∧∀i ∈ [1, n], ∃ki = δ(ti, shift(ki−1, xi−1), ε)
∧k = shift(kn, xn),∀c ∈ C, ktime(c) ∈ Γq(c)}

| q ∈ Q}

where shift((ktime, kmem), x) = ({c→ ktime(c) + x|c ∈ C}, kmem).
The idea behind the above is to compute a decomposition of the given delay

x as a sum x1+· · ·+xn corresponding to a specific way of waiting in the locations
encountered on the ε-path. In fact, only the existence of the decomposition is
required. Indeed, for two distinct decompositions the final value retained for a
clock c in the next token is the same (either the delay added to the initial value,
or 0 for a reseted clock).

q0 q1 q2
ε

c ∈ [0, 1]

ε, νX

νX, ε

ε

c ∈ [2, 4]

step tokens in q0 tokens in q1 tokens in q2

0 k0 : (X → {u, v}•, c→ 0)

1 k0 : (X → {u, v}•, c→ 0) k1 : (X → {u, v}•, c→ 0)

2 k0 : (X → {u, v}•, c→ 0)
k1 : (X → {u, v}•, c→ 0)

k′1 : (X → {u, v}•, c→ 2)

3 k0 : (X → {u, v}•, c→ 0)
k1 : (X → {u, v}•, c→ 0)

k′1 : (X → {u, v}•, c→ 2)

k2 : (X → {}•, c→ 0)

k′2 : (X → {}•, c→ 2)

4

k0 : (X → {u, v}•, c→ 0)

k′0 : (X → {}◦, c→ 0)

k′′0 : (X → {}◦, c→ 2)

k1 : (X → {u, v}•, c→ 0)

k′1 : (X → {u, v}•, c→ 2)

k2 : (X → {}•, c→ 0)

k′2 : (X → {}•, c→ 2)

5

k0 : (X → {u, v}•, c→ 0)

k′0 : (X → {}◦, c→ 0)

k′′0 : (X → {}◦, c→ 2)

k1 : (X → {u, v}•, c→ 0)

k′1 : (X → {u, v}•, c→ 2)

k′′1 : (X → {}◦, c→ 0)

k′′′1 : (X → {}◦, c→ 2)

k2 : (X → {}•, c→ 0)

k′2 : (X → {}•, c→ 2)

6
k0 : (X → {u, v}•, c→ 4)

k′0 : (X → {}◦, c→ 4)

k1 : (X → {u, v}•, c→ 4)

k′′1 : (X → {}◦, c→ 4)
k2 : (X → {}•, c→ 4)

Fig. 5. Example of ε-closure with an input delay 4

Example 3. Figure 5 illustrates the propagation of tokens in an ε-closure, ex-
pressed by the function σclosure. The token will be propagated with the delay

Pattern Matching in Link Streams 13

α = 4 as an input to exhibit its effect. In this example, we begin with the
configuration of step 0 containing only one token in location q0.

The tokens of this automaton are composed of a variable X and a clock c.
The initial configuration, in step 0, contains only one token k0 in q0. This token
is initialized with X in read mode and a set containing the unknown symbols
u and v. There is only one clock c initialized to 0. In step 1, the token k0
is propagated through the transition t01 = q0

ε−−−−→
c∈[0,1]

q1, which generates the

token k1 in location q1. Since t01 has no side-effect (clock or memory update),
k1 is a copy of k0. In step 2, the token k1 is propagated through the transition
t11 = q1

ε−−−−→
c∈[2,4]

q1 generating the token k′1 in location q1. The transition has no

side-effect so the memory of k′1 is the same as the memory of k1. However, to
fulfill the time constraint c ∈ [2, 4], the value of c has to be at least 2. To cross
the transition, the clocks values should consume some amount of the input delay

α. In step 3, both k1 and k′1 can be propagated through t12 = q1
ε,νX−−−→ q2. This

transition has as a side-effect to clear the variable X. So both the tokens k2 and
k′2 generated respectively from k1 and k′1 have for variable X the value {}• (an
empty set of symbols in read mode). Step 4 consists in the propagation of tokens

k2 and k′2 through the transition t20 = q2
νX,ε−−−→ q0. This transition has as a side

effect to allocate X. However, as t20 is an ε-transition, the set associated to X
will not be modified and X will be in write mode on the generated tokens. In
step 5 two tokens are generated in location q1, but both come from the token
k′0. As k′′0 has c→ 2, it cannot enable t01 because the clock constraint c ∈ [0, 1]
is not respected. The token with c → 0 crosses t01 and the transition t11 (as in
step 2) generating two tokens, k′′1 and k′′′1 , in q1 with different clock values. After
step 5 it is not possible to generate any new token in a location with a different
value than the tokens already present in it. In step 6 the propagation is over and
all the clocks are increased to k0time

(c) + α = 0 + 4.
However, only one token is kept at a location if several are generated with

identical clock and memory valuations. The step 6 corresponds to the configu-
ration returned by σclosure. �

Since there may be an infinite number of ε-paths from a given starting loca-
tion q, the following is an important Property wrt. decidability.

Proposition 2. For a given configuration S and time delay x, the function
σclosure can only produce a finite amount of tokens.

Proof. To prove the proposition, we show that both the possible memory and
clocks states are finite over the propagation through the ε-closure.

First, we prove that the number of memory states is finite. An ε-transition
does not read any symbol. So, the only memory operations present in an ε-
closure are the allocation ν and the freeing ν. Let X be a variable of initial
valuation Ma

X , where MX is the set associated to X and a the initial mode of
X. Its reachable values in the ε-closure are :

– Ma
X in all ε-paths with no operations on X,

14 Clément Bertrand et al.

– M◦X in all ε-paths where X is only allocated,
– ∅• in all ε-paths where the last memory operation used on X is a freeing ν,
– ∅◦ in all ε-paths where X was freed at least once and the last memory

operation on X is an allocation ν.

As a consequence, if the tokens are composed of n variables, after the propagation
in an ε-closure at most 4n variations of each initial memory valuation can be
generated.

To prove that the number of clock valuations is finite we recall that our time
model is based on timed pattern matching [3], which implies that clock resets can
only be on non ε-transitions. Thus, the final clock values after the propagation
over an ε-closure are the initial values increased by a possible delay given as an
input. The number of clock valuations is constant through the propagation.

As the number of memory states and clocks states are both finite, the number
of combinations between them is finite too. An upper bound for the number of
tokens generated in an ε-closure is nbtokens ·4nbvars ·nbstates, where nbtokens is the
number of tokens composing the initial configuration (as an upper bound for the
number of memory valuations), nbvars is the number of variables composing a
token, and nbstates is the number of states composing the ε-closure. �

3.3 Pattern language

The description of non-trivial patterns in link streams can become tedious if
specified directly as automata. Indeed, even simple patterns can yield very large
automata. We are looking for a more concise way to describe the patterns, in the
spirit of regular expressions. We propose the language of timed ν-expressions to
specify patterns for link streams.

Node n, n1, n2 . . . ::= k (known node)
X (variable, unknown node)
@ (arbitrary node)

Expression e, e1, e2, . . . ::= n (node)
n1 → n2 (link)

(regular) e1 . e2 (concatenation)
e1 | e2 (disjunction)
e1 ⊗ e2 (shuffle)
e∗ (iteration)

(time) 〈e〉[x,y] (delay5)
(memory)]{X1, . . . , Xn}e (allocation)

e{X1, . . . , Xn}! (release)

Table 1. The (core) pattern language

The syntax of the core constructs is given in Table 1. The basic constructs
are those of traditional regular expressions. The symbols are referring to known,

5 Following [3] the expression inside a delay should not be empty.

Pattern Matching in Link Streams 15

unknown or arbitrary nodes. The link construct n1 → n2 symbolizes a non-
breaking connection between two nodes. The delay construct for time constraints
is the same as in [3]. The constructs for memory management are based on
variable occurrences (for unknown nodes), allocations and releases. The notation
]{X1, . . . , Xn}e (resp. e{X1, . . . , Xn}!) means that the variables X1, . . . , Xn are
allocated (resp. released) before (resp. after) recognizing the subexpression e.
The shuffle operator ⊗ is present in the language to ease the description of
patterns with independent parts.

The semantics of the pattern language is given in terms of a generated timed
ν-automaton. By lack of space, we do not describe the translation formally in
this paper but only describe it informally. We intend to investigate the formal
properties of the language (e.g. language equivalence) in a future work. Note
that the translation is relatively straightforward. The translation rules for the
regular expression constructs are the classical ones. A special case is the link
expression n1 → n2 that corresponds to a basic automaton with three states
and two transitions, one for n1 and the second for n2. One important property
is that this construction is non-breaking (e.g. it is atomic for the shuffle). For
the delay construct a thorough explanation is given in [3]. It mostly remains to
explain the translation of the memory operations.

aut(e)

q′0 q0

ν{X1,...,Xn},ε

aut(]{X1, . . . , Xn}e)

aut(e)
qfi qf

ε,ν{X1,...,Xn}

aut(e{X1, . . . , Xn}!)

Table 2. Automata for memory operators

Table 2 illustrates how the allocation and release operators are translated:

– The function aut : expression → automaton translates a timed ν-expression
to the corresponding timed ν-automaton.

– The translation of]{X1, . . . , Xn}e gives rise to a new initial location q′0 and
a ε-transition between q′0 and the initial location of the automaton generated
from e, which allocates the variables X1, . . . , Xn. The new initial location of
the automaton is q′0. The translation of e{X1, . . . , Xn}! leads to the creation
of a new final location qf and a new transition from each final location of
the automaton generated for e to qf , each of them releasing the variables
X1, . . . , Xn. The new unique final location is qf .

In the experiments we often used the following derived constructs:

– allocation and use:]X
def
=]{X}X

– use and release: X!
def
= X{X}!

– allocation, use and release]X!
def
=]{X}X{X}!

The whole translation has been implemented in a prototype tool described
in the next section.

16 Clément Bertrand et al.

4 Experiments

Our main objective is to develop a practical pattern matching tool for link stream
analysis. An early implementation of the tool is available online6. In this section
we present early experiments with this prototype to real-world link streams.

For starters, the worst-case complexity of our pattern matching algorithm is
exponential on the size of the link stream (the number of links). This complexity
is reached for instance in the case depicted in Figure 6, which is a ”memory-
only” scenario. If the input is a sequence of distinct symbols then the number of
tokens associated to the unique location of the automaton will double each time
a symbol is consumed. For instance, in the Figure, the 8 tokens are associated
to distinct versions of the variable U (the Ui’s) after consuming the input a b c:
one for each subset of the alphabet.

νU.U

U

νN.N.νN

U0

a

b

c

U1

a

b

U2

a

c

U3

b

c

U4

a

U5

b

U6

c

U7

ε

Fig. 6. A subset automaton after input a b c.

However, timed constraints most often improve the situation by removing
expired tokens. Thus, in practice there are ways to avoid the worst-case scenarios.
This is similar to the practical ”regex” tools, which in general go well beyond
regular expressions, also leading to exponential blowups in the worst case [4,5].

This makes experimental evaluation of our method particularly appealing
to estimate its practical performances and applicability. In order to do so, we
consider two link streams built from two different real-world datasets: (1) a
recording of traffic routed by a large internet trans-Pacific router [8], and (2) a
one month capture of tweets on Twitter France.

In the case of internet traffic, our motivation is to detect potential coordi-
nated attacks. To do so, we define a variant of the triangle pattern discussed in
section 2, namely 2x2 bicliques, i.e. squares, which [16] identified as meaningful
to this regard. Since there is approximately one link every 2µs in the stream and
the stream lasts for a whole day, it must be clear that we may not detect all
untimed patterns in the stream. In this context, the time frame of an attack is
in general quite sudden and precise, and so time is a crucial feature.

We present results for two different time frames in Figure 7. It displays
the total running time as a function of the number of processed links, together
with the number of found instances of the pattern. As expected, the number of
instances of the pattern increases with the time frame. Also, the tool processes
less links in a given amount of time (85 hours in this experiment). Although our

6 The MaTiNa tool repository is at: https://github.com/clementber/MaTiNA

https://github.com/clementber/MaTiNA

Pattern Matching in Link Streams 17

Fig. 7. DDoS pattern recognition with time frames δ = 0.01 (top) and δ = 0.02
(bottom).

18 Clément Bertrand et al.

Fig. 8. Triangle detection in Twitter exchanges with running time and number of
detected instances (top) and local running time (bottom).

Pattern Matching in Link Streams 19

implementation is not optimized at all, the linear time cost of the computations
w.r.t. the number of processed links clearly appears.

Our second experiment targets communities of Twitter users. We consider
tweets over a period of a month, leading to a stream of 1.3 million links 7. The
pattern we seek is an undirected complete graph between k users for a given k,
i.e. cliques of size k occurring in a time frame of ten minutes. Figure 8 presents
the results for k = 3, i.e. triangle detection. The running time experiences sharp
increases at specific times, that correspond to peak periods in Twitter exchanges.
This is confirmed by plotting the execution time at each step of the computation
(right part of the Figure). During such peaks of tweets, the tool has to store more
data than usual, leading to a more costly processing of links. One way to improve
this issue would be to consider a variable time rate by e.g. decomposing the link
stream in distinct sub-streams processed with different time frame.

5 Conclusion

The language of timed ν-expressions we propose to specify patterns in link
streams is heavily inspired by regular expressions, but enriched with timed and
memory features. The language is rather low-level but with well-chosen derived
constructs we think it is usable (and has been used) by domain experts. The
language has a straightforward translation to the core outcome of our research:
the timed ν-automata formalism and the corresponding recognition principles.
Beyond the formalities, we developed a functional, and freely available, proto-
type that we experimented in a realistic setting. Non-trivial patterns have been
detected on real-world link streams, with decent performances for such an early
prototype. These early experiments give us confidence regarding the relevance
of our approach.

For future work, we plan both theoretical investigations and more practical
work at the algorithmic and implementation level. We also expect to broaden
the application domains. In particular, since our detection is performed online,
one potential area of application is that of monitoring open systems at runtime
for e.g. security or safety properties. At the theoretical level, we plan to study
the pattern language and its more precise relation to the automata framework.
Since the semantics are based on a token game, the formalism is in a way closed
to the Petri nets than it is from classical automata. Hence, interesting extensions
of the formalism could be developed based on a high-level Petri net formalism,
e.g. in the spirit of [9]. Our prototype tool uses a relatively naive interpreter for
pattern matching. We plan to improve its performances by first introducing a
compilation step. Moreover, there is an important potential for parallelization
of the underlying token game.

7 The data come from the Politoscope project by the CNRS Institut des Systèmes
Complexes Paris Ile-de-France (https://politoscope.org)

20 Clément Bertrand et al.

References

1. Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient
pattern matching over event streams. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pages 147–160.

2. Rajeev Alur and D.L. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

3. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal
of the ACM, 49(2):172–206, 2002.

4. Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical regular
expressions. Int. J. Found. Comput. Sci., 14(6):1007–1018, 2003.

5. Benjamin Carle and Paliath Narendran. On extended regular expressions. In
LATA 2009, volume 5457 of LNCS, pages 279–289. Springer, 2009.

6. Aurelien Deharbe and Frédéric Peschanski. The omniscient garbage collector: A
resource analysis framework. In ACSD 2014. IEEE Computer Society, 2014.

7. Aurélien Deharbe and Frédéric Peschanski. The Omniscient Garbage Collector: a
Resource Analysis Framework. Research report, LIP6 UPMC Sorbonne Univer-
sités, France, 2014. URL: https://hal.archives-ouvertes.fr/hal-01626770.

8. Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. MAW-
ILab: Combining Diverse Anomaly Detectors for Automated Anomaly Labeling
and Performance Benchmarking. In ACM CoNEXT ’10, 2010.

9. Vijay K. Garg and M. T. Ragunath. Concurrent regular expressions and their
relationship to petri nets. Theor. Comput. Sci., 96(2):285–304, 1992.

10. Michael Kaminski and Nissim Francez. Finite-memory automata. Theoritical Com-
puter Science, 134:329–363, 1994.

11. Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link
streams for the modeling of interactions over time. CoRR, abs/1710.04073, 2017.
arXiv:1710.04073.

12. Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in temporal
networks. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, WSDM ’17, pages 601–610. ACM, 2017.

13. Nikos Tzevelekos. Fresh-register automata. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT, POPL ’11, pages 295–306. ACM, 2011.

14. Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Timed Pattern
Matching. Formal Modeling and Analysis of Timed Systems, 8711, 2014.

15. Dogan Ulus, Oded Maler, Eugene Asarin, and Thomas Ferrère. Online Timed
Pattern Matching Using Derivatives. LNCS, 9636:7–8, 2016.

16. Tiphaine Viard, Raphaël Fournier-S’niehotta, Clémence Magnien, and Matthieu
Latapy. Discovering patterns of interest in IP traffic using cliques in bipartite link
streams. CoRR, abs/1710.07107, 2017.

17. Masaki Waga, Takumi Akazaki, and Ichiro Hasuo. A boyer-moore type algorithm
for timed pattern matching. In Formal Modeling and Analysis of Timed Systems,
2016.

18. Masaki Waga, Ichiro Hasuo, and Kohei Suenaga. Efficient online timed pattern
matching by automata-based skipping. In Formal Modeling and Analysis of Timed
Systems, 2017.

19. Haopeng Zhang, Yanlei Diao, and Neil Immerman. On complexity and optimiza-
tion of expensive queries in complex event processing. 2014.

https://hal.archives-ouvertes.fr/hal-01626770
http://arxiv.org/abs/1710.04073

	Pattern Matching in Link Streams:a Token-based Approach

