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General introduction  

 Regulatory RNAs have been identified in many bacteria, and in pathogenic bacteria 

such as Staphylococcus aureus, where they play major roles in the regulation of virulence or 

metabolic proteins synthesis, beside transcriptional factors and two component systems 

(Bischoff and Romby, 2016, Tomasini et al., 2014, Guillet et al., 2013, Caldelari et al., 2011). 

Most of them are non-coding RNAs (sRNAs) but some of them express small peptides. 

Certain sRNAs, acting in cis, are situated at the 5'-untranslated regions (UTR) of mRNAs, and 

act as sensors of metabolites, tRNA or environmental stimuli (temperature, pH, …) or at the 

3'-UTR. In contrast, the genes encoding sRNAs, which act in trans, sit on the opposite strand 

of the regulated mRNA or at genomic locations distant from the mRNAs they regulate. Cis-

encoding sRNAs, also called antisense RNAs (asRNA), are fully complementary to their 

targets. In contrast, trans-encoding sRNAs share only partial complementarity, and as a 

consequence, they can regulate many mRNAs. Most of them are encoding mainly on the core 

genome while few of them are localised within mobile elements, pathogenic islands or 

plasmids. In this review, we will focus on the most recent mechanisms of RNA regulation 

discovered in S. aureus and how regulatory RNAs are part of sophisticated networks that 

allow the bacteria to adapt quickly to its environment or survive into its host.  

 

5’-UTR of mRNAs contain riboswitches, T-boxes or thermosensors with potential impact for 

novel antibiotherapy 

 The riboswitches and T-box are found in the 5’-UTR of some mRNAs and contain 

highly structured domains, which recognize metabolites such as cofactors, vitamins, amino-

acids, nucleotides, second messenger cyclic di-GMP, Mg2+ or non aminoacylated tRNAs 

(Quereda and Cossart, 2017). Binding of these metabolites confers structural changes that 

modify the expression of the downstream mRNA, for example by inducing premature 

transcription arrest, repression/activation of translation, or cleavage. T-box senses the 

aminoacylation status of tRNAs and mainly control transcription of downstream genes that 

encode proteins involved in the biosynthesis, transport of amino acids or aminoacylation of 

tRNAs. Based on sequence and structure conservation, most of the T-box and riboswitches 

were predicted in S. aureus genomes (Caldelari et al., 2011). A large part of riboswitches 

control expression of genes involved in metabolic pathways. Because these genes are often 

essential for growth, they thus represent interesting targets for the development of alternative 

antimicrobial drugs in the battle against multi-drugs resistant S. aureus. This strategy was 

used with the guanine and the glucosamine-6-phosphate (GlcN6P) riboswitches. Mulhbacher 



et al. (2010) have identified a pyrimidine derivative that binds to the guanine riboswitch and 

represses the expression of guaA. This compound significantly reduced the infection by S. 

aureus in a mouse model of infection. In Gram-positive bacteria, the glmS mRNA is both a 

ribozyme, which catalyses its own cleavage and a riboswitch responding to GlcN6P. Its 

product encodes an essential enzyme, which converts fructose-6-phosphate into GlcN6P, a 

building block of bacterial peptidoglycan. A tight regulation of glmS mRNA is crucial to 

maintain a homeostatic level of GlcN6P in the cell. At high concentrations of GlcN6P, its 

binding to the 5’-UTR of glmS leads to a site-specific self-cleavage, which generates a 5′-

hydroxylated end molecule rapidly degraded by the RNase J1 (Collins et al., 2007, Lünse et 

al., 2011). A recent study leads to the design, synthesis, and characterization of a GlcN6P 

analogue, carba-GlcN6P, which constitutively activates the glmS ribozyme of vancomycin-

resistant S. aureus and destabilizes its mRNA (Lünse et al., 2011). This compound was 

experimentally shown to induce an efficient self-cleavage of the glmS mRNA similar to the 

natural metabolite and thus represented an important step in the development of antibiotics 

with a new mode of action. Very recently, a new approach called “Term-seq” revealed that 

several antibiotic resistance genes are under the control of riboswitches responding to 

commonly used antibiotics against Gram-positive pathogenic bacteria such as Listeria or 

Enterococcus faecalis (Dar et al., 2016). These results suggest that the same phenomenon 

could exist in S. aureus and that RNA-mediated regulation could play a broader role than 

expected in antibiotic resistance mechanisms.  

Not surprisingly, the presence of antibiotics can also modulate the regulatory activity 

of T-box. In S. aureus, an unusual glyS T-box regulates transcription antitermination of the 

unique glycyl-tRNA synthetase (glyRS) gene responsible to catalyse the aminoacylation of 

the five tRNAGly isoacceptors, independently of their anticodon (GCC or UCC) and with 

different binding affinities (Apostolidi et al., 2015). Thereafter, the T-box senses the 

availability of glycine not only for its incorporation into nascent polypeptide chains during 

translation but also for the formation of pentaglycine bridges into the peptidoglycan molecule, 

linking two essential pathways. Antibiotics targeting the small ribosomal subunit stabilized 

the T-box/tRNA complex and induced a read-through of transcription while chloramphenicol 

and linezolid attenuated glyS transcription (Stamatopoulou et al., 2017). The outcome 

depended on the binding sites of the protein synthesis inhibitors (Stamatopoulou et al., 2017). 

Although T-box and riboswitches can be targets for antibiotics against important human 

pathogens as S. aureus, they also presented unexpected off-target effect.  

  RNA thermosensors are regulatory elements often localised at the 5’-UTR of mRNA 



encoding heat or cold shock proteins and virulence factors (for review Kortmann and 

Narberhaus, 2012). Briefly, at low temperatures, the mRNA cannot be translated since the 

Shine and Dalgarno (SD) sequence is trapped into a hairpin structure, which melts gradually 

when temperature increases. The best-studied example in Gram-positive bacteria is the 

thermosensor regulating the expression of the transcriptional factor prfA, which further 

activates most of the virulence genes in Listeria monocytogenes (Johansson et al., 2002, Loh 

et al., 2012). Such example has not been demonstrated yet in other Gram-positive bacteria 

including S. aureus.  

 

3’-UTRs of mRNAs act in cis or are reservoirs of sRNAs  

 Transcriptome analysis of the human pathogen S. aureus revealed that at least one-

third of mRNAs carry long 3’-UTRs, and thus might display multiple regulatory functions 

(Lasa et al., 2012). Some of them have direct action on the expression of their own mRNA 

(Lasa, et al., 2012, Ruiz de los Mozos et al., 2013). Long 3’-UTRs (>100 nucleotides) can 

end at an intrinsic Rho-independent terminator of transcription (TT), can be generated from a 

specific RNase cleavage, or from a terminating-read-through of the RNA polymerase. 

Remarkably, several 3’-UTRs contained riboswitches as the result of a metabolite-sensing 

regulation (Ruiz de los Mozos et al., 2013). Indeed, the TT of the riboswitch in an OFF 

conformation also serves as the TT of the gene encoded upstream of the riboswitch.  

A singular example of a new post-transcriptional regulatory mechanism was shown for 

the icaR mRNA, which possesses an unusual long 3’-UTR (390 bp). In this case, the 

expression of the mRNA is modulated through a long-distant interaction between 3'-UTR and 

5'-UTR (Ruiz de los Mozos et al., 2013). Because icaR codes for a transcriptional repressor of 

the icaADBC operon encoding enzymes involved in the synthesis of PIA-PNAG, the main 

polysaccharides of the biofilm matrix, the regulation has direct impact on biofilm formation. 

Base-pairing interactions between the long 3’-UTR of icaR mRNA and the SD sequence of 

the same mRNA hindered efficient translation initiation (Ruiz de los Mozos et al., 2013). This 

long range RNA duplex generated a specific site for the double-strand endoribonuclease III 

(RNase III) for cleavage. As a consequence, PIA-PNAG synthesis increased. Yet the 

mechanism allowing IcaR translation is unknown to prevent the action of the 3’-UTR as a cis-

acting antisense RNA (figure 1).  

It is also postulated that 3’-UTR length provides other types of transcript-specific 

regulation. Indeed in Salmonella sp., the 3’-UTRs are also reservoirs for sRNAs, which 

originated either by transcription from an internal promoter or by processing. In both cases, 



the sRNA generated from the 3’-UTR regulated trans-encoded mRNA targets. For instance, 

the sRNA CpxQ is cleaved by RNase E from the 3’-UTR of cpxP and repressed the 

translation of mRNAs encoding a family of envelope proteins while DapZ is transcribed from 

an internal promoter within the dapB gene and inhibited translation of the major ABC 

transporters, DppA and OppA (Chao et al., 2012, Chao and Vogel, 2016, for review see 

Miyakoshi et al., 2015). Recent works showed that such 3’-UTR-derived sRNA also existed 

in S. aureus although their functions remained to be addressed (Desgranges et al., 

unpublished data). 

 

AsRNAs in pervasive transcription and acting as anti-toxins  

  AsRNAs are transcribed from the opposite strand of the mRNAs they regulate, so 

that they display perfect complementarities with their target. Short asRNAs are often encoded 

on mobile elements such as plasmids, transposons, and phage-like elements. Such elements 

can ptentially be transferred horizontally to other bacterial species or be duplicated (Fozo et 

al., 2008). In S. aureus, they were first described to control plasmid conjugation and 

replication (Novick et al., 1989). The size of asRNAs can vary from 10 to thousands of 

nucleotides, because these RNAs can overlap with part of a gene (3’ or 5’ ends), the entire 

gene or a group of genes (figure 1). This phenomenon is called pervasive transcription. 

Initially pervasive transcription was considered as a non-functional transcriptional noise. 

However, considering the large number of asRNAs expressed from the entire genome and in 

several bacterial species, these RNAs might play an important role in the regulation of gene 

expression. Genome-wide analysis of S. aureus highlighted that the expression of a significant 

proportion (75%) of antisense transcripts to annotated open reading frames are synthesized 

from the complementary strand and that these sense/antisense duplexes are digested by 

RNase III generating short fragments all along the genome (Lasa et al., 2011). Another study 

using RIP-Seq approach confirmed the involvement of RNase III in the regulation of 

sense/antisense transcripts and overlapping UTRs (Lioliou et al., 2012). The situation might 

be even more complex as recent results suggested that the termination factor Rho play a major 

role to prevent pervasive transcription in B. subtilis, but also in S. aureus (Bidnenko et al., 

2017, Mäder et al., 2016). Although the biological outcome of pervasive transcription is not 

clearly understood, some of the produced asRNAs are functional and control several 

biological processes (Lasa et al., 2012).  

 Type I toxin-antitoxin (TA) systems are particular cases of short asRNAs, in which 

the antitoxin is an asRNA regulating the translation or the fate of the toxin encoding mRNA, 



whereas in the type III system, the anti-toxin sequesters the toxin (review by Goeders et al., 

2016; Coray et al., 2017). In S. aureus, several type I TA module systems have been 

described (review of Brielle et al., 2016). One of them, called SprF1/SprG1, expresses SprF1 

as the asRNA and sprG1 mRNA, which encodes two short secreted peptides with haemolytic 

and antibacterial activity (Pinel-Marie et al., 2014). The anti-toxin SprF1 binds to the 3’-end 

of sprG1 mRNA that leads to mRNA degradation and inhibition of peptide synthesis to 

protect cells against lethality (Pinel-Marie et al., 2014). The SprA1/asSprA1 pair is another 

intriguing and unconventional system. The asSprA1 is transcribed from the opposite strand of 

the sprA1 mRNA producing a cytolytic peptide. Their 3’ends overlapped by 35 nucleotides 

but experimental data indicated that the functional domain of asSprA1 is outside the 

complementary sequence with sprA1 mRNA. Both RNAs were expressed concomitantly and 

asSprA1 5’ base-paired with the ribosome-binding site (RBS) of sprA1 impairing its 

translation (Sayed et al., 2012). Thus asSprA1 acts as a trans regulator with its 

complementary target, suggesting that it can potentially interact with other RNA targets. 

Finally, a cluster of five genes encoding sRNAs specific to the S. aureus Newman strain 

contained a putative TA system (Bronsard et al., 2017) (figure 1). Three genes were 

transcribed from the positive strand, two from the negative strand. Moreover, one small open 

reading frame was detected within one of the gene from the minus strand and coded for a 

secreted peptide with similarity to the RelE toxin (Neubauer et al., 2009). Whether these two 

overlapping genes corresponded to a novel TA system remained to be addressed. Interestingly 

this locus was expressed in a growth-phase dependent manner, in nutriment starvation and 

oxidative stress. Type I TA systems have been involved in many functions (membrane 

depolarization, plasmid maintenance) mainly in Escherichia coli among which persistence 

(for review Berghoff and Wagner, 2017), but not in S. aureus until now (Brielle et al., 2016).    

   

Transcriptional factors and sRNAs build complex regulatory networks 

 Trans-acting sRNAs regulate mRNAs by imperfect base-pairings, which signifies that 

one sRNA can modulate several targets and one target can be controlled by several sRNAs. In 

S. aureus, the annealing region between sRNA and mRNAs are often longer than in E. coli 

and mostly targets the ribosome binding site (RBS) of mRNAs affecting translation. In 

several cases, a second distinct site of interaction occurs in the coding region. Unlike Gram-

negative bacteria, in which Hfq and ProQ proteins participate to the sRNA regulation by 

stabilizing and facilitating their pairings with mRNA targets (see reviews Updegrove et al., 

2016; Attaiech et al., 2017), no RNA chaperones have been yet identified in S. aureus. 



Indeed, proQ is not encoded and the role of Hfq is still unclear. Recent work has shown that 

the rim domain of Hfq has an amino-acid composition (low in arginine) incompatible with 

RNA annealing activity compared to E. coli Hfq (Zheng et al., 2016). The sRNAs belong to 

intricate networks of regulation and their synthesis is often dependent of transcription factors 

or of two components systems, in addition sRNAs can also control transcription factors at the 

post-transcriptional level (figure 2). Examples will be described below.  

 AgrA, the responsive regulator of the agr quorum sensing system, activates the 

transcription of RNAIII. This bifunctional RNAIII codes for δ-hemolysin and regulates the 

expression of virulence genes at the post-transcriptional level (see below). It interacts with 

various mRNAs either to activate or to repress translation. The RBS of hla mRNA encoding 

α-hemolysin is embedded into a hairpin, which prevents the ribosome to bind and start 

translation. The 5’-UTR of RNAIII possesses complementary sequences to the leader region 

of hla. Interactions between both RNAs would recruit ribosomes to initiate Hla translation. In 

its 3’-UTR, RNAIII carries conserved UCCC motifs that are used as the seed sequences to 

bind with the RBS of the target mRNAs coding for the Protein A, the coagulase, the Sbi 

protein, the transcription factor Rot, the repressor of exotoxins, and the endopeptidase LytM 

(for review, Bronesky et al., 2016). Moreover, AgrA repressed the sRNA ArtR, which 

inhibits translation of the SarA homolog SarT (Xue et al., 2014) and activated RsaE (see 

below, Geissmann et al., 2009) (figure 2). 

 The staphylococcal accessory regulator SarA is synthesised from three distinct 

promoters (P1, P2, P3) and binds DNA or RNA (Bischoff and Romby, 2016). As a 

transcription factor, it regulates many genes involved in virulence, autolysis, biofilm 

formation, stress response, antibiotic resistance, or metabolism, but also two sRNAs, SprC 

and Srn_9340 located on the same pathogenicity island (Mauro et al., 2016). SprC prevented 

ribosomes to bind the SD of the atl mRNA coding for an autolysin, then reducing 

internalization by macrophages and attenuating virulence (Le Pabic et al., 2015). SarA 

repressed both sprC and srn_9340 transcription and required an ATTTTAT sequence in its 

binding site (Mauro et al., 2016). However, while SarA level remains relatively constant 

along the bacterial growth, the expression of SprC fluctuated, which suggest that additional 

factors might control its synthesis and that a mechanism of derepression should co-exist under 

specific conditions. These are very first examples of two sRNAs regulated by the same 

transcription factor.  

In the following, we will describe an sRNA, whose transcription is controlled by three 

independent transcription factors. The sRNA RsaE possesses two consensus sequence motifs 



UCCC as found in RNAIII, which interact with the RBS of several mRNAs involved in 

central metabolism to repress their translation (Geissmann et al., 2009, Bohn et al., 2010).  

RsaE is highly conserved between Staphylococcaceae and Bacillaceae families. Not only the 

sequence of RsaE is conserved between B. subtilis and S. aureus species, but also its 

regulation and functions. Recent studies have shown that its transcription is activated by the 

two component systems SrrAB (staphylococcal respiratory response) in response to NO and a 

binding site for the redox sensing repressor Rex has been predicted (Geissmann et al., 2009, 

Durand et al., 2015, 2017). In B. subtilis, the Rex-repression of RsaE (also called RoxS) has 

been proposed to readjust the cellular balance of NAD+/NADH upon various signals (Durand 

et al., 2017). 

 The alternative sigma B factor (sB) together with the RNA polymerase guides 

transcription of genes mainly in the stationary phase of growth and under stress conditions. Its 

regulon comprises more than 200 genes including several virulence factors, transcription 

factors and sRNAs (figure 2, Bischoff et al., 2004). Among the sRNAs induced by sB are 

SbrA, B, C activated by KOH (Nielsen et al., 2011) and RsaA (Geissman et al., 2009). The 

stability of RsaA depended on RNase III and the endoribonuclease RNase Y, which is part of 

the degradosome in S. aureus (Lioliou et al., 2012, Marincola et al., 2012, Roux et al., 2011). 

RsaA acts as an acute virulence attenuator in S. aureus (see below) by inhibiting translation of 

the MgrA transcription factor (figure 2, Romilly et al., 2014) and indirectly by activating the 

synthesis of several surface proteins (Tomasini et al., 2017). RsaA possesses two UCCC 

motifs, which in the case of mgrA mRNA bind to two distant regions, involving an imperfect 

duplex masking the SD sequence of the mRNA and a loop-loop interaction occurring 

downstream in the coding region. These two distant binding sites are required for efficient 

repression and RNase III-dependent degradation of the repressed mRNA (Romilly et al., 

2014). Finally, the sRNA Teg49 is generated from the sB- dependent P3 promoter of sarA and 

is most probably processed by RNase III and RNase Y with the help of the helicase CshA 

(Beaume et al., 2010, Kim et al., 2014, Manna et al., 2017). Transcriptomic analyses revealed 

that beside genes involved in virulence and autolysis, Teg49 might post-transcriptionally 

affected the SaeRS and LytRS two-component systems, yet the exact mechanism is not 

known (Manna et al., 2017). On top of that, another sRNA Teg48, whose role is not known, 

was processed from the P1 promoter of sarA (figure 2). Even if the maturation process and 

the function of Teg48 and Teg49 are not clearly established, it describes a putative novel 

reservoir of sRNA from long 5’-UTR of a mRNA encoding a master regulator of virulence in 

S. aureus. 



 

crRNA, tracrRNA and the CRISPR Cas adaptive immunity systems in S. aureus 

 Phages are the most abundant forms of life on earth and the natural killers of bacteria 

as in most cases their lytic life cycle ends with the death of the bacterial cell. Outnumbering 

their microbial hosts, phages impose a selective pressure to the diversification of microbial 

defense systems (Breitbart and Rohwer, 2005). These include various innate phage-resistance 

mechanisms such as restriction/modification enzymes, receptor masking, blocking DNA 

injection, abortive infection (Labrie et al., 2010; Westra et al., 2012), and the adaptive 

defense mechanism based on clustered, regularly interspaced short palindromic repeat 

(CRISPR) and CRISPR-associated (cas) genes (Barrangou et al., 2007; Makarova et al., 

2006). The latter RNA-interference-like mechanism relies on small non coding RNAs, crRNA 

and in some cases tracrRNA, through which prokaryotic hosts (bacteria and archaea) can 

acquire heritable resistance to genetic parasites like phages, but also plasmids and transposons 

(for reviews see (Westra et al., 2012; Wiedenheft et al., 2012)). To date, CRISPR-Cas 

systems have been found in about 50% of bacterial genomes and 95% of archaeal genomes 

(Grissa et al., 2007; Makarova et al., 2015). The CRISPR and the cas locus are often located 

next to each other in the genomes, sometimes organized into operons, but a significant 

number of genomes have also isolated cas loci and/or CRISPRs (Haft et al., 2005).  

 Despite a large diversity of the CRISPR-cas systems, they share common features. 

Briefly, the CRISPR loci are characterized by an array of short and palindromic repetitive 

sequences interspaced by sequences called “spacers” that are coming from plasmid and 

viruses. These spacers are first integrated into the host genome to provide immunity to the 

host (acquisition step, i.e., (Horvath and Barrangou, 2010; Nunez et al., 2014)) and during a 

second event of infection they are transcribed and used as guides to inactivate the viral 

genome. This two-step pathway involves a variety of Cas proteins, leading to several major 

types of CRISPR-cas systems (reviewed in (Makarova et al., 2015; Marraffini, 2015)). 

However, the acquisition step involves two highly conserved Cas1 and Cas2 proteins 

(Makarova et al., 2015; Yosef et al., 2012). The Cas1-Cas2 integrase is a heterohexameric 

complex of four Cas1 and two Cas2 which preferentially incorporates foreign DNA at the first 

CRISPR repeat, participates in the discrimination against self-DNA and in the minimization 

of off-targeting insertions (Levy et al., 2015; Modell et al., 2017; Wright et al., 2017). Both 

proteins have been found in several S. aureus strains (Grissa et al., 2007). During the second 

step, activation of transcription from a promoter located in an AT-rich leader sequence 

preceding the first CRISPR repeat (Jansen et al., 2002; Pougach et al., 2010) leads to 



expression of the whole array into precursor CRISPR transcripts (pre-crRNA). The pre-

crRNAs are then processed into mature crRNAs consisting of partial repeat(s) and a single 

spacer sequence, each complementary to a unique invader sequence (Haurwitz et al., 2010). 

Different endonucleases participate into the maturation step, which might vary in different 

bacteria. Type I and III system performs the function by a multisubunit Cas protein complex 

and are characterized by Cas6 processing (Haurwitz et al., 2010). Type II uses another sRNA, 

tracrRNA, to direct RNase III-dependent maturation of the pre-crRNA in the presence of 

Cas9, the hallmark protein of the type II system (Deltcheva et al., 2011). Cas9 endonuclease 

remains associated to the dual-tracrRNA:crRNA structure which, during the interference 

phase, guides the cleavage of site-specific cognate target DNA (Jinek et al., 2012). Type I and 

II CRISPR-Cas systems target DNA (Brouns et al., 2008; Zhang and Ye, 2017), whereas type 

III systems provide immunity against DNA and RNA (Strutt et al., 2018). 

 With the completion of genome sequences of several S. aureus strains, it is now clear 

that CRISPR-Cas system is not prevalent and only few strains have been reported to harbor 

this system. Indeed, a CRISPR Finder analysis (Grissa et al., 2007) of the 115 sequenced S. 

aureus genomes present on the CRISPRdb (http://crispr.i2bc.paris-saclay.fr) showed that the 

majority of CRISPR-like loci contain only few spacers (1 or 2), a few have between 3 and 10 

spacers, while only one genome (from methicillin resistant S. aureus 08BA02176, isolated 

from a patient) has 15 spacers. The last example has been analyzed using CRISPRone 

(http://omics.informatics.indiana.edu/CRISPRone) (Zhang and Ye, 2017) showing the 

presence of elements belonging to the Type III-A CRISPR system (including Csm2, Cas1, 

Cas2 and Cas6; Figure 3A). Other isolates share similar organization of the CRISPR-Cas 

systems (MSHR1132, JS395, CIG290 and 21252) and more than 30 CRISPRs are predicted 

to be present in the available S. aureus genomes (draft or complete) (Holt et al., 2011; Zhang 

and Ye, 2017). Nevertheless, multi-locus sequencing typing (MLST) performed on one of 

these isolate (MSHR1132) has shown that it belongs to a divergent clonal complex which 

lacks the genes for production of staphyloxanthin, and which appears to be closely related to 

S. epidermidis and S. lugdunensis (Holt et al., 2011). It has been thus hypothesized that 

CRISPR/cas was present in a common ancestor of S. epidermidis, S. lugdunensis, and S. 

aureus and was later lost in most conventional S. aureus strains. Noteworthy, numerous 

repeat-spacer-like structures resemble CRISPR elements but lack spacer diversity, and have 

been classified as false-CRISPR (Zhang and Ye, 2017). Staphylococcus aureus repeat 

(STAR)-like elements (GC-rich direct repeats) also belong to this class of RNAs for which 

the functions remained to be addressed (Cramton et al., 2000; Purves et al., 2012). More 



recently, a type II-C CRISPR-Cas system was found in a methicillin-resistant S. aureus strain 

isolated from an Irish patient (Figure 3B). This CRISPR element is located on a pseudo SCC-

mec composite island, which has been most probably horizontally acquired from S. 

epidermidis strain (Kinnevey et al., 2013). The peculiarity of this system is that it contains a 

shorter version of Cas9 protein. The crystal structure of a complex containing SaCas9, the 

sgRNA (an artificial fusion product of a crRNA and a tracrRNA (Jinek et al., 2012)) and its 

target DNA provided a model to understand how crRNA and tracrRNA guide Cas9 on the 

target DNA and prepare it for double stranded DNA cleavages (Nishimasu et al., 2015). In 

this structure, the DNA duplex of the protospacer adjacent region (PAM) contains the signals 

recognized by the Cas9 PAM-interacting (PI) domain, which discriminates the invader DNA 

against self-DNA and facilitates the target DNA unwinding leading to the formation of 

heteroduplex. The beginning of the RNA–DNA heteroduplex (“seed” region) adopts a 

distorted structure critical for Cas9-catalyzed DNA cleavage. This conformation resulted from 

the RNA-DNA helix structure, the interactions with protein residues and the RNA helix 

formed by the repeat/anti-repeat regions mimicking the tracrRNA-crRNA interactions (Figure 

3C). The discovery of the smaller Cas9 protein led to recent improvements in genome editing 

(Ran et al., 2015). The seminal works of Jennifer Doudna and Emmanuelle Charpentier on the 

use of CRISPR-Cas systems for genome editing have inspired many studies showing the 

incredible potency of the system (Cong et al., 2013; Jinek et al., 2013; Mali et al., 2013). 

Using Cas9 from Streptococcus pyogenes (SpCas9) (Sakuma et al., 2014) directed by the 

sequence of a single-guide RNA (sgRNA), thousands of publications have reported its 

application for site-specific genome modifications, gene knockouts or replacements, gene 

expression control and functional genome screenings in over 40 different species. 

Interestingly, SaCas9 has been successfully used for eukaryotic genome editing since its 

smaller size makes it easier to be delivered via adeno-associated virus vectors to somatic 

tissues (Ran et al., 2015).  

 The fact that CRISPR-Cas has been mapped on mobile elements in S. aureus MRSA 

confirms the importance of horizontal genes transfer from other co-colinizing bacteria in the 

acquisition of novel functions and in the evolution of S. aureus strains. It remains to be 

analyzed what could be their advantages and why these CRISPR elements are rare in S. 

aureus. Interestingly, transcription of the CRISPR-Cas genes can be highly regulated and 

induced upon infection (Agari et al., 2010; Quax et al., 2013; Young et al., 2012) by 

membrane stress (Perez-Rodriguez et al., 2011) and, in Gram-negative bacteria, by quorum 

sensing (QS) signaling (Hoyland-Kroghsbo et al., 2017; Patterson et al., 2016). Recent work 



has developed genetic engineering tools in order to apply CRISPR/Cas9 system as an 

antimicrobial strategy against S. aureus (Park et al., 2017). Clearly, the CRISPR/Cas9 system 

offers an alternative therapeutic to the conventional antibiotics.  

 

Role of sRNAs in physiopathology 

 The pathogenesis related to S. aureus can take different forms depending on the 

infected tissue and the invading bacterial strain. This is often accompanied by the expression 

of various virulence factors involved in the colonization and the alteration of the tissue but 

also by the capacity to escape from the host immune response. Among key regulators of 

virulence, several sRNAs have been shown to modulate the synthesis of virulence factors in a 

dynamic manner, and some of them contribute to specific aspects of bacterial virulence in 

animal models of infection (Bischoff and Romby, 2016).  

 The most studied RNA in S. aureus is one of the main intracellular effectors of the 

quorum sensing system agr. As described above, RNAIII regulates expression of virulence 

factors known to be associated with infectious diseases. For instance, it represses the 

synthesis of protein A, which triggers inflammatory signalling pathways and contributes to 

evasion of the immune response. Conversely, RNAIII induces the synthesis of a battery of 

toxins, which contribute to the degradation of tissues and subversion of host defenses, such as 

the pore-forming toxins, and peptides with proinflammatory and lytic activities. A recent 

modelisation of the quorum sensing system and of its regulators has illustrated the importance 

of the agr system in promoting dissemination of the bacteria from biofilms or dense 

population (Audretsch et al., 2013; Nitzan et al., 2015). Nevertheless, despite the fact that 

many clinical isolates from acute infections express RNAIII, its steady state level varies 

considerably among them (Jelsbak et al., 2010; Song et al., 2012). In particular, higher level 

of RNAIII has been observed in the increased virulence community acquired MRSA strains 

as compared to other S. aureus lineages (Montgomery et al., 2010; 2008). Interestingly, a 

recent study showed that the level of RNAIII is lower in strains isolated from patients with 

sepsis than those from commensal carrier patients (Bordeau et al., 2016). Perhaps more 

surprisingly, heterogeneity has been reported in patients where agr-positive and agr-negative 

strains co-existed. This has been proposed as one of the criteria, which might modulate the 

outcome of the infections (Painter et al., 2014; Pollitt et al., 2014).  

 S. aureus is also frequently exposed to other microbes during colonization and 

infection, providing opportunities to acquire mobile genetic elements that contribute to the 

evolution of the genome. Some of these genomic islands play key roles in pathogenesis 



through the complementation of new virulence factors (pathogenicity islands) or through the 

synthesis of novel regulators modulating the expression of genes of the core genome. As an 

example, SprD is an important small regulatory sRNA (142-nts long nucleotides) expressed 

from a pathogenic island, which promoted significantly S. aureus diseases in a mouse sepsis 

model of infection (Chabelskaya et al., 2010; Pichon and Felden, 2005). SprD interacted 

through base-pairings with the sbi mRNA, which encodes an immune evasion molecule 

protecting the bacteria against the host immune responses (Haupt et al., 2008; Zhang et al., 

1998). However, the phenotype of the ∆sprD mutant strain was not linked to the SprD-

dependent regulation of sbi since the ∆sbi mutant strain behaved as the wild type strain in the 

mouse sepsis model (Chabelskaya et al., 2010). Therefore, these data strongly suggested that 

SprD might regulate the expression of other proteins important for infection. 

 SSR42 (for small stable RNAs) is a 891-nts long sRNA whose stability is greatly 

enhanced under stationary phase of growth (Anderson et al., 2006; Morrison et al., 2012). It 

regulated the expression of approximately 80 mRNAs in two genetically different S. aureus 

strain backgrounds. While it increased the expression of capsule Cap5a, SSR42 down-

regulated the expression of protein A, α and γ hemolysin, and Panton Valentin Leukocidin 

(PVL) (Morrison et al., 2012). Because no direct binding was evidenced between SSR42 and 

mRNAs encoding virulence determinants, the effect was predicted to be indirect through the 

modulation of the expression of a transcriptional regulator. Phenotypically, the deletion of 

SSR42 gene affected erythrocyte lysis, resistance to opsonisation killing, and pathogenesis in 

a murine model of skin and soft tissue infections (Morrison et al., 2012). More recently, 

SSR42 was selected as an important gene for the intracellular virulence after screening of a 

transposon mutant library pool. After internalization in epithelial cells, the ∆SSR42 mutant 

strain was significantly enriched in the intracellular fraction most likely due to an attenuated 

cytotoxicity (Das et al., 2016) . 

 In contrast to RNAIII, SprD and SSR42, which contributed to enhance virulence of S. 

aureus, other regulatory RNAs behave as attenuators of virulence. This is for instance the 

case of another encoded pathogenicity island sRNA, the so-called SprC (Pichon & Felden, 

2005). Indeed, the virulence of the isogenic strain lacking SprC was significantly and 

reproducibly improved in a mouse systemic model. Futhermore, SprC reduces S. aureus 

phagocytosis by human monocytes and macrophages, and resistance to oxidative stress. This 

phenotype appears to be due, at least in part to the formation of base pairings between SprC 

and atl mRNA which encodes the staphylococcal autolysin (ATL) (Le Pabic et al., 2015). 

Another example is the Psm-mec RNA, which is a bifunctional RNA located into the 



SCCmec mobile genetic element. It encodes a phenol-soluble modulin (PSMmec) cytolytic 

toxin and acted as a translational repressor through direct binding with agrA mRNA (Kaito et 

al., 2013). AgrA activated the transcription of all psm genes such as the PSMα. Therefore, the 

deletion of the psm-mec RNA increased the expression of AgrA which resulted in an increase 

of toxin and PSMα production and enhanced virulence in mice (Kaito et al., 2013). 

Interestingly, community acquired methicillin resistant S. aureus (CA-MRSA) that do not 

carry the psm-mec gene has been shown to be more virulent than the hospital associated 

MRSA that harbors the gene (Kaito et al., 2013; 2011). Finally, a mutant strain that did not 

express the non coding RNA RsaA attenuated the severity of acute systemic infection in a 

mouse model (Romilly et al., 2014). This deletion is linked to the deregulation of MgrA, a 

master regulator of capsule synthesis and clumping (Crosby et al., 2016). This phenotype in 

pathogenesis is most probably linked to the high sensitivity of the mutant strain to 

opsonophagocytosis by host PMNs. Because the expression of these three sRNAs is 

detrimental for bacterial spreading into colonized organisms, one may suggest that during 

evolution they have favour commensalism with the host.  

 In order to evaluate the impact of the sRNA expression in the context of the host 

infection, two studies have explored the possible relationships between infection severity and 

RNA expression levels. In the first study, the expression levels of five sRNAs (RNAIII, 

RsaA, RsaE, RsaG and RsaH) were analyzed in samples from acute cutaneous infection, 

cystic fibrosis sputum or nasal colonization. The expression profiles did not correlate with the 

type of infection but the authors have noticed that the expression of these five RNAs were 

more homogenous in the nasal colonization isolates than in those responsible for infection 

(Song et al., 2012). More recently, the expression levels of RNAIII and SprD were measured 

in 40 strains cultivated from patients with sepsis or septic shock and compared to 21 strains 

isolated from asymptomatic colonized carriers. It appeared that strains from septic shock had 

significantly lower levels of RNAIII and to a lesser extent for SprD (Bordeau et al., 2016). It 

is important to note that this analysis was performed on clinical isolates cultured in vitro and 

does not necessarily reflect the expression of these RNAs during infection within the host. In 

fact, studies to assess the role and importance of RNAs in the establishment or evolution of 

infection are difficult to achieve. The great variability of S. aureus strains, the difficulty to 

obtain highly controlled cohorts of patients, the reliability of sampling protocols, sample 

processing and RNA expression analysis are all obstacles to overcome. Moreover, biological 

variables may influence the analysis since the relationships between host immune system and 

microbe seems to be particularly individualized and can influence the disease outcome 



(Krismer et al., 2017; Brown et al., 2014). Furthermore, interspecies interactions between 

bacterial pathogens and the commensal microbiota, as well as limited nutrients play major 

roles in promoting or in preventing S. aureus colonization (Krismer et al., 2017). 

Interestingly, it was shown that the agr system is repressed by high concentrations of 

haemoglobin in the nasal fluids leading to the expression of several cell surface proteins and 

favouring nasal colonization (Pynnonen et al., 2011). Similar data were observed when S. 

aureus was co-cultivated with the nasal strain of Corynebacterium striatum (Ramsey et al., 

2016). A recent study also demonstrated that the commensal S. epidermidis can influence the 

expression of one ncRNA of S. aureus (Hermansen et al., 2018).  

 Clearly, we are just at the beginning to better appreciate the roles of regulatory sRNAs 

during colonization and in the pathophysiology of S. aureus infections.  
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Figures legends 

 

Figure 1: Several mechanisms of RNA regulation in Staphylococcus aureus. A. Schematic 

drawing of the flavin mononucleotide (FMN) riboswitch. The 5' UTR adopts a particular 

structure recognized by FMN which in turn leads to the stabilization of a stem-loop structure 

sequestrating the Shine and Dalgarno sequence (SD) to inhibit translation. 30S is for the small 

ribosomal subunit. B. The 3’-UTR of the biofilm repressor IcaR possesses a cytosine-rich 

motif, which binds to the Shine-Dalgarno (SD) and hinders ribosomes from its binding site on 

the mRNA  (see text for details). C. Overlapping 5’-UTRs of tagG and tagH mRNAs are 

processed by the endoribonuclease III (Rnase III). Shorter 5’ends might facilitate ribosome 

recruitment. D. The anti-toxin RNA SprF1 interacted at the 3’end of the toxin encoding by 

sprG1 and triggered its degradation. E. A cluster of five sRNAs was sequenced in the S. 

aureus Newman strain that encodes a putative toxin-antitoxin system (see text for details). F 

and G. sRNAs act by an antisense mechanism. Binding of the 5’-UTR of RNAIII to the 5’-

UTR of hla mRNA liberated its SD and activated translation (F) whereas the 3’ domain of 

RNAIII acted as a repressor domain, which contains C-rich motifs for base-pairing with the 

SD of mRNA as coa mRNA depicted in the figure (G). Green bars represent SD sequence, 

black circles are for RNase III (for references and more details, see text). 

 

Figure 2: Examples of complex network between sRNAs and transcriptional factors in 

Staphylococcus aureus in response to stress. Arrows are for activation, bars for repression. In 

blue, are the transcriptional regulators, in green the two-component systems and in red the 

regulatory sRNAs. Red lines corresponded to post-transcriptional regulation and black lines to 

transcriptional regulation. Dotted lines are for the target mRNAs that were not experimentally 

validated. For clarity, only sRNA-dependent mRNA targets encoding transcriptional factors 

were depicted in the figure.  

 

Figure 3. A. Genomic organization of the loci for the Type III-A CRISPR system of the 

Staphylococcus aureus 08BA02176 strain. Type III is the typical S. aureus CRISPR 

organization. The scheme has been obtained using CRISPRone (Zhang and Ye, 2017) and the 

GenBank deposited 08BA02176 genome sequence (RefSeq accession number 

GCF_000296595.1). B. Genomic organization of the loci for the Type II-C CRISPR system 

of the Staphylococcus aureus M06/0171 strain. The CRISPR-Cas genes have been found on a 

staphylococcal cassette chromosome mec (SCCmec) inserted into the 3′ end of the 



chromosomally located orfX gene. The scheme has been obtained using CRISPRone (Zhang 

and Ye, 2017) and the GenBank deposited SCCmec sequence (GenBank accession number 

HE980450.1). C. Cartoon (RNA and DNA) and surface (Cas9) representations of the 

SaCas9–sgRNA–target DNA complex (pdb file 5AXW (Nishimasu et al., 2015)). The SaCas9 

sgRNA consists of the crRNA guide region (crGUIDE represented in pale yellow color) 

forming a heteroduplex with the target DNA strand (tDNA in magenta) and the repeat/anti-

repeat helix (in blue the repeat crRNA derived strand, in green the anti-repeat trascrRNA 

derived strand). The PAM containing DNA duplex is red. Cas9 domains are colored as 

follow: WED domain is cyan, REC domain is pale orange, NUC domain is grey. Molecular 

graphics images have been prepared using PyMol (Schrodinger, 2015). 
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