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Abstract

Some original analytical developments and resultthe formulation of transmission error in
solid spur and helical gears are presented, whiall to closed-form formulae defining the
optimum combinations of profile relief and lead wro minimising the time-variation
amplitudes of transmission error. Extensive congwas with the results of benchmark
software codes prove that the analytical findings sound and can be used at the initial
design stage to define optimum modifications witimimum effort. Some qualitative general
trends can also be derived. In particular, it isvat that optimum tooth modifications depend
on a limited number of dimensionless parametemnsietyathe profile and face contact ratios,
the normalised depth and extent of profile modtfmas along with the normalised lead
crown amplitude. The influence of the latter isriduo strongly depend on a specific function
of face contact ratio, which controls the displaeatrof optimum profile relief either towards
the smaller or larger depths of modification atthoips. Finally, the analytical formulae (and
the numerical simulations) indicate that the optimmodifications are approximately located
along a line segment in the relief versus crownlaoge plane.

Keywords: gears; transmission error; profile modificatioresad crown; analytical formulae;
face contact ratio

1 - Introduction

Profile relief and lead modifications on gear teath necessary whenever significant
power is transmitted in order to avoid, i) abrupad variations at engagement and recess
(working interferences) and, ii) edge contactshi& presence of misalignments [1-2]. Profile
modifications usually consist in removing matem&lar the tip or root of the teeth and are
often linear or parabolic in the profile directiofor MAAG-type diagrams). Lead
modifications can be limited to tooth edges (chamfer instance) or cover the entire tooth
width. Beyond the optimization of tooth load patteit has been demonstrated that tooth
shape modifications can also significantly alter tioise and vibration levels which, to a large
extent, are correlated with the amplitudes of theetvariations of quasi-static transmission

error under load [Es). Many papers, only a few of which can be citecei{8-10], have been

published on this topic. They mainly rely on masesimumerical simulations including
systematic sweeps over modification parameters2[fler heuristic optimization methods
such as genetic algorithms [21-24]. The vast mgjasf the results, however, show that,
regardless of gear macro-geometry, there existli@snbf optimal modifications, which

minimize the time-variations of &5 at a given load. Based on analytical results [2F-2

closed-form formulae have been proposed which tiieeoptimum dimensionless depth and
length of modification for symmetric linear profikelief defining so-called Master Curves
[26] valid for a range of spur and helical gearsl dmads. Comparisons with benchmark
software codes are satisfactory and, as opposedni@rical simulation results, some general
trends can be derived about the influence of gemmgtry, profile relief parameters and
loads.

The objective of this paper is to extend the clefeeth definition of optimal profile
relief to the case of combined profile and lead ications. It is demonstrated that, for



moderate crown amplitudes (typically less than #werage mesh deflection), a simple
dimensionless formula can be derived which givegad estimate of the combinations of
linear profile relief and parabolic lead crown mmizing transmission error for a variety of
gears and a range of loads. The specific influeficbe face contact ratio is highlighted and it
is shown that, depending on its value, contrastéidieance of lead crown on TEs can be
expected from detrimental to beneficial includirages for which, nearly no influence can be
reported.

Nomenclature
b : contact width

b, , - face width of pinion, of gear
B': dimensionless lead crown amplitug®rmalized with respect to the average static mesh
deflectiond,).

e(M)=¢(M+g(M

eE( M) , dimensionless profile relief (sum of the pinioxdagear normal deviations with
respect to ideal flanks at any generic contacttpn )(normalized with respect to the
average static mesh deflectidp)

eB( M), dimensionless lead crown modification (sum ofpiréon and gear normal
deviations with respect to ideal flanks at any giensontact pointM )(normalized with
respect to the average static mesh defleadgn

E": dimensionless depth of profile relief at tootbstinormalized with respect to the average
static mesh deflectio®,) .

FN ; total normal mesh force.

h, ..: addendum coefficient on pinion, on gear

h¢, ¢ ,: dedendum coefficient on pinion, on gear

1
K, :_[ I k(M) dM dr average mesh stiffness in the absence of toorestheviations
0 )

MOLy(7,

and errorsiftegrated over the theoretical contact Ieng;(v)) :

K,: constant or average mesh stiffness per unit ofam length.

k( M), mesh stiffness per unit of contact lengtH\vat .



IQ(M), dimensionless mesh stiffness per unit of cortamth atM (normalized with respect

to the average mesh stiffndg3.

IE(T,XS), dimensionless time-varying, non-linear meshrstifls functiorinormalized with

respect to the average mesh stiffless).
L(T,XS),LO(T): time-varying (possibly non-linear) contact lengteoretical contact length.
M : module

Myo: point at the entry of the contact zonera0 (Figure 4).
N : outward unit normal vector with respect to pinfanks.

NLTE( T): no-load transmission error.
E, : apparent base pitch.

T, : mesh period.

T, T, : limits of base plane (Figure 4)

TES(T),TES(T) : actual and dimensionless quasi-static transmissimr under load

(normalized with respect to the average static nuzftectiond),)

x, , - profile shift coefficient on pinion, on gear

Z 7 : axial and dimensionless axial coordinatés<( z/ b)
Z,,Z, : tooth number on pinion, on gear

a : pressure angle

,56, ﬁj: helix angle, base helix angle

F
J,, = static mesh deflection with average mesh stiirfes ideal gears

K

£, : theoretical profile contact ratio (with no cortténgth reduction)

g, =(1—2/\)£a: actual profile contact ratio

€ 5 : face contact ratio (overlap contact ratio)

r = _L_: dimensionless extent of profile modification wéét, is the length (or extent) of
ga Pba

relief measured in the base plane



[ =1-J&,, dimensionless extent of modification for the sdied long relief

A, contact length reduction factt@ccounts for delayed engagement and prematureend
recess)
1 1 1

'7(&3) = (nsﬁ)z - (ﬂsﬁ)tan(nsﬂ) -3 see Figure 5

Q. , pinion rotational speed

t . . .
T =—, dimensionless time
Tm

~_ A . . I : .
A:E’ for any generic variabl&; normalization with respect to the nominal averagsh

1
stiffnessk,, :I I k(M) dM dr in the absence of tooth shape deviations andserror
0 MOLy(7)

* A . . FN .
A :E’ for any generic variabla such thatd,, = PR (Fy is the normal mesh forpe

m m

2 - Theory
2-1 Profile and lead modifications

In this paper, combinations of profile and lead ificdations are considered which
comprise a) symmetric linear relief on pinion amgigtips or roots and, b) a parabolic crown
in the lead direction on the pinion and/or the g@tie geometries of the corresponding tooth
shape modifications are represented in Figs. 12and

€} (1)

0 ['e

(3

Figure 1 — Definition of tooth profile modificatisr(linear symmetric relief)



Following a tooth pair from its engagement to sl ®f recess, the composite profile
relief on the pinion and gear tips (Fig. 1) canexpressed in terms of the dimensionless

coordinate along the line of actien= x/ p, ( B, is the apparent base pitch) as:

—E*(—+1J O0<r<Teg,

e (r)= —E(L—%HJ (1-T)e, <7<, (D)

0 otherwise

where

['£,is the dimensionless extent of modification measane the line of action,

*

E F
E =—, E is the actual depth of modification at tooth timlad,, =— is the

Sn K

average mesh deflectiofi( is the normal mesh force ag , the average mesh
stiffness for perfect, unmodified tooth flanks).

The trace of the parabolic crown shown in Figis2expressed in terms of the

dimensionless axial coordinate and dimensionless crowning amplltLBie=; as:

m

e;(z*)=—B(1—4*z+4*i) 0< 'zl 'z=2z/b (2)

€p- 1 z*=7/b

-B*

Figure 2 — Lead modification (parabolic crown)



The resulting total tooth surface modificatiothie sum of the deviations generated by
profile relief and lead crowning (Figure 3) anddsa

e*(r,z*)=*%(r)+ *g(*z) (3)

Figure 3 — Composite tooth shape deviations (suséipn of profile and lead modifications)

2-2 Transmission error,

Following [25], the dimensionless quasi-static sraission erroﬂ'E;(r) for spur and
helical gears with profile and lead modificatiomsde expressed as:

cosﬁb TE;(T) = M 4)

P



= j I€(M )dM which represents the mesh stiffness function

MO(L)

~ k(M . . . . .
k(M) = ( ) , dimensionless mesh stiffness per unit contagtteat pointvi

The integrals over the instant length of conthctabove can be simplified to a large
extent, if one considers a constant mesh stiffpessunit contact Iengtlk(M) [k, which
leads to the following expressions (Fourier selfi28)27]:

e = —ﬂ[l— Z,le cos{nk (e,+5,- 2)]} 5)
IkB:—B*(1—2A)E+iQchos[ﬂk(£a+£ﬁ— Zr)]} (6)

l, =(1- ZA){HZQ" co@k(é‘a +E, - Z)ﬂ 7)

with
QKE:%Sinc[kgﬁ]{(m-J)sm@k( t 2)g, |+( #7-1) Sifde, ( 4r-4)] Sifde, (r-1)]
(8)

2cog 7ike, |
Q, =2Sind k(T 2)¢, | L} J Singke,, |[+———F= 9)
(”k‘gﬂ)z (”kfﬂ)z
Q, =2Sind k(1 2)e, | Sinfke, ] (10)
“Sinc” is the classic sine cardinal function defires Sinc(x) :%m](m)

A is the contact length reduction parameter possibijuced by tooth shape
modifications such that the actual profile conteatto is (1— 2)I)£a upon assuming

symmetry between the meshing conditions at engagemed the end of recess
(developed in section 2-3 belpw

2-3 Approximate contact length reduction

In what follows, the following hypotheses are enygld in order to estimate analytically
the contact area reduction in the base plane ggskibught about by profile relief and
crowning:



a) Moderate crown amplitudes are considered so thatwidth of contact remains
approximately equal to the theoretical contact it

b) In the profile direction, contact length reductiocesn be characterised by using a
single parameterdefining the positions where the first and finahtacts occur in the
base plane (Figure 4) (symmetry is assumed betwegagement and the end of

recess).

T] TI T T': T T T| T'l T T'z T7 T
| / M, | ] B / M, B .
! / B ) D |
b : L pba -
; 1 ' h
: | 1 I
! ep,, 1 : e (1-21)p,, s
, 1 L o

¥ 1 S‘/}- Phl 8“7; by,

z 4 )
a) b)

Figure 4: a) Nominal meshing window and b) effeetimeshing window

Based on the developments in Annex 1, the apprdeiriaits of the active base
plane, which are valid as long &g >0.4, are obtained by solving the following equation:

A= A+T|1-T - 1* =0 (11)
E

whose only admissible solutionl € 0.5) is:

. 1—\/1—4I'(21—F—éj w2

It can be noticed that, in these conditions, thducgon in contact length is
independent of the crown amplitude and that thé lifinno contact reductionA=0) is given
by

1-T=— (13)

2-4 Time-variations of transmission error

Based on the developments presented in Annexe2ydhance (or squared RMS) of
the quasi-static transmission error under loadbsaapproximated as:



2 Z<{ sind{k(1- 2)¢,) Sinfle,)—~+

) (1-24)* cod g, =

e (12T~ o, sinde, 27 -4) i, (7)) -Sifs{ 1 4]

cos(nkgf)
(iesa)

-2B'sindk(1- 2)¢,)|| =- Singke,) +

3 (14)
(”kgﬁ)

Wl

The expression above can be simplified for inte§e? 0 leading to:

RMSZ( T%) _ 8B* i {Sin(( K1- 2/1)611)}2 (15)

(1-21)° cod g, & e’k
From a practical perspective, it can be observeat the time-variations of the

dimensionless transmission error functia'E;depend on a limited number of parameters,

which are: a)é‘aandfﬁ characterising gear geometry and, b) the dimetessnprofile and

lead modifications parametﬁ,ran(B. It can also be noticed that, for integral overlap
ratios€s, crowning can only increase the time-variation aiuges of transmission error.

3 — Minimisation of the RMS of transmission error -Master curves

Examining the various components in (14) for naegere,, it can be noticed that
the corresponding Fourier series converges rapidige it consists of terms proportional to

k—anith n=4, so that the first order approximatiok<1) is already a good estimate of the

RMS of transmission error. In these conditions,dbtial minimisation of the time-variations

of TE;is replaced by finding the tooth shape modificatmarameters that cancel the first

order terms in (14). By so doing, the following eegsion of the RMS of transmission error
will be used:



RMS ( TE §DCO§2@< sind{(1- 21)e,) - +

~2B'Sind{( - 24)£a)H%‘ (mlﬂ)"} ' (’Eﬁ)t:”(mﬁ)DZ

E*(l_%jl‘rz‘f [sinde, (-7 -1)) Sinde, (T-1)) -Sinf{ £ 2),)]  (16)

3-1 Cases with reduction in actual contact length or profile contact ratio (A >0)
The approximate expression of the RMS of transmissirror (16) can be simplified by

. A
introducing (11) (re-written ds (1—FJ(1—I' — ) =1) thus leading to:

RMS ( TE #Dcoéﬁb < 1_121 [sind(&, (1-T - 1)) Sinde, (T - 1)) ]

+2B'(¢,) Sind( 1- 2/1)5a)>2

(17)

with

,7(55) = (n‘:ﬁ)z - (mﬁ)t;n(ngﬁ) —51 which is represented in Figure 5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
€



Figure 5: Function (g, ) versus&;

The set of profile and lead modification parametE'é_an(B minimising the time-

variations of the quasi-static transmission ermodar load is therefore the solution of the
following two equations:

sing(e, (1-T - 1)) sinde, (M- 1))+ B(s,)( ¥ 2) S 2 D¢g,)=
(18)

E (1—%)(14—/1) =1 (19)

After developing th&incfunctions and simplifying, (18) is re-formulatest a

H(A)+2B'n(g;)=0 (20)

_ E sin(7z,(1-7=2)) sir(7, (T - 1))
[z, sin(7z, (1- 24))

a

(21)

Denoting 4, , the value of the contact length reduction fasterh thatH (4,) =0, it

can be observed, based on Figure 5, that the pchfm(gﬂ) is a small quantity as long as

& is not too close to integral values. A solution(20) can therefore be sought by using the
following first order development:

dH (A
H(A)T H A+ (1) S0) @)
di |, X
whose only physically admissible solutid@ for £, <2is:
sin(7z, (1-T = 4)) = 0 (23)
1
Hence A =1-T _5_ (24)

a

After some developments, it is found that:

dH(A)| _ E
|, T (25)



so that:

H{A)T~(A-) = 26)
and

A =)I0+2é B7(e5) =1—r—gi+ 2% B7(é,) (27)

a

which, when re-injected into (19) leads to:

E R Mo
= [2r—1+£_a—2?5/7(e,,)j(1— Zﬂ:aEB/](sp)]:] (28)

a

Finally, an explicit form of the set of profile amelad modifications can be obtained

2
considering thaE% B*n(eﬁ)} <<é B (g,) as:

or -1+ L

a

a

E' [ L{u ZB*n(sﬂ)(Zr - 1+3ﬂ (29)

Interestingly, (29) corresponds to the formulaagied for profile relief in [26-27]

multiplied by a lead crown correcting factap (gﬁ)[zr —1+ ij such that wherB* = 0 (no

gﬂ
crowning), the equation reduces to the Master Ciegaation for profile relief. It can
therefore be inferred that the influence of a positarying mesh stiffness per unit contact
length could be introduced, as for profile religflyg via the correcting term introduced in
[26], thus leading to the final equation for optimaooth profile and lead modifications:

E' O %[1— 0.3Cf:|{1+ 2877(55)( T- lrgiﬂ (30)
2r —1+£—

a

a

with

C=6(-F+T)+q&-T)- Zforr_2L<rs|'L

1
M. _1_5_ which corresponds to so-called long relief acauydbd [3]

a

3-2 Cases with no reduction in actual contact length (or profile contact ratio) (A =0)



Using (16) and setting =0 directly lead to the following equation:

1+ 2B'n(¢,)
(1-r)[1-sinde, (1-T)) Sinde,r) / Sings,) ] (31)

from which, the expression of the optimal tooth ifiodtions is derived as for (30) by
introducing a correcting function for position-nf-) varying mesh stiffness per unit
contact length [26] as:

1+ 2B
_ I '7(8‘?_) _ (1-0c))
(1-T)[1-Sindg, (1-T)) Sin¢e,r) / Sinfs,) | (32)
with
C,=-18r2 +12r -1ifr>r,
C; =C, otherwise
3-3 Synthesis

The combination of (30) and (32) finally makes ibspible to estimate the
combinations of profile and lead modifications miiging transmission error over the entire
range of profile relief parameters and for crownplides that do not exceed the average
mesh deflection. Based on (13), the respectivesardwre formulae (30) or (32) hold are

visualized in the( E*,r) plane as shown in Figure 6 (remembering thatriatier defined by

1
(13) is independent of the crown amplitude). It dennoticed that wheh =I'| =1-—

(long relief), the solutions from (30) and (32) @entical (the two curves always intersect at
this point). The transition between (30) and (32defined by the conditionl =0, which

using (13), is expressed under the farm 1—éand corresponds to the dotted curve in Fig.
6 separating the two solution domains. Continuiggween the solutions given by the two

equations (30) and (32) is not ensured and, strgpleaking, the optimum modifications
cannot be represented by a unique curve. Howewmeapproximate curve can be defined by

keeping the results of (32) for extents of modiiimas abovel | (a limit beyond which it is

not interesting to go) and solutions from (30) fo<I"| (corresponding to the vast majority
of the cases in practice). This approximation sdugroughout the paper in what follows.



0.30 1

0.20 A

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 6 — Solution domains for optimum tooth shayalifications.

Physically speaking, it transpires from the forneuia (30) and (32) that, rather than
the sole crown amplitude, the relevant parametdhésproductB*n(gﬂ) combining lead

crown amplitude and face contact r&jo Sincely(e‘ﬂ) can either be positive or negative

depending oré;(see Figure 5), contrasted results in terms ofrifieence of lead crown on

‘optimal’ tooth shape modifications are expectedpérticular, the optimum curve can either
move towards larger or smaller profile relief arhples when a range of face contact ratios is
considered.

4 — Elements of validation

The proposed formulae (30) and (32) rely on a nurebéypotheses (the rectangular
shape of the contact area in the base plane, it#@gligigher-order terms in Fourier series and
Taylor expansions, etc.) whose influence on thelrepiality needs to be assessed. To this
end, extensive numerical simulations have beeropedd using:

a- A lumped parameter model (VSA) [8], [18] and a q@oehensive hybrid 3D model
[29], [30] (Figure 7) combining two condensed sthokstures with 20-node brick FE
for the structural parts (pinion and gear bodidgfts) but with the same mesh
interface model using:



* atime-varying, non-linear Winkler foundation modiet the mesh interface based
on the analytical formulae of Weber and BanascBék [
» distributed time-varying initial separations to siate tooth shape deviations [8]
b- The benchmark software code LDP [32-34] developeth@ Ohio State University
which is widely used in industry.

The main objective is to compare the optimum tootbdifications obtained by
numerical simulations after systematic sweeps twerelief and crown parameters with the
results derived from the analytical formulae (30) 432). Several solid gear sets have been
tested whose geometrical characteristics are ligte@able 1. Experimental results over
sufficiently broad ranges of profiles and lead nfiodtions have not been found in the
literature so that direct comparisons between exmartal and numerical master curves are
not possible. However, both simulation codes haenbvalidated based on numerous test rig
measurements [35-36] and are considered as repaiserof actual gear behaviour.

4-1 VSA results

Figures 7 and 8 show examples of the optimum zanésrms of transmission error
(shaded areas) obtained by numerical simulatiomggUgSA when sweeping over a broad
range of dimensionless profile depEiand extenkt, for no lead crown and a lead crown of
maximum amplitude according to the proposed thé®&y=1). The curves corresponding to
the analytical formulae (30) and (32) have beersoposed and it can be noticed that they

gear ‘ A B C
a,(°) 20 20 25
A0 19.5 14.7 13
2,2, 25:;33 23,33 35: 68
mg (mm) 12 10 2.5
b(mm) 180 100 40
£, 1.56 1.5€ 1.1F
&p 1.59 0.81 1.39
X1, %o 0.14;0.03 0;0.0¢ 0.275;0.31
0, (Hm) 14.2 23.4 17.4
ha ; ha 1.1:11 1;1 0.976 ; 0.97
hf; ; hf, 1.25:1.25 1.25;1.25 1.262 ; 1.268
p 0.4 0.4 0.2t
N(ep) -0.235 0.399 -0.80

Table 1 — Gear data

agree well with the area of minimurt time-variation amplitudes as found by the software
code. It can be also verified that, depending car geometry, the presence of a lead crown



displaces the optimum area towards the smaller. (Bigr larger (Fig. 8) relief amplitudes.
The analytical formulae capture this effect ani iconfirmed thatB*q(gﬁ) (and its sign) is

crucial with regard to crowning contribution.

0.5 1

0.4 1

0.14

Figure 7 — Comparisons between (30), (32) (thelimes) and the optimum profile reliefs
obtained by numerical sweeps using VSA (the shadeals) for no crown and a crown
amplitude equal to the average mesh deflectionr Géa Table 1.

0.4 1

0.1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 8 — Comparisons between (30), (32) (thelimes) and the optimum profile reliefs
obtained by numerical sweeps using VSA (the shadeals) for no crown and a crown
amplitude equal to the average mesh deflectionr 8éa Table 1.



4-2 Hydrid model results:

The pinion and gear shaft geometry are describédgare 9-a whereas gear data can
be found in Table 1 (gear C). Three-dimensionalkbfinite elements are used to simulate the
structural parts (Figure 9-b) and lumped stiffnelesnents represent the bearings (shaded on
the FE grid). The finite element models of the pmiand gear shafts are condensed and
connected by a time-varying non-linear Winkler fdation along with two mortar interfaces
in order to avoid compatibility problems betweer ttontinuous and discrete models at play
[30].

40
—
43
T
o . [ofe e e o2

H

a)

b)

Figure 9: Hybrid model: a) pinion and gear geomet)yFE model and bearing locations.

A first series of simulations similar to those wNMSA has been performed and the
corresponding transmission error level curves alettqe in Figure 10. The curves
representing the analytical formulae are superimgand, here again, a good agreement is
observed. Some complementary results are showngird=11 where the length of profile



modification [ is kept constant while the lead crown and religfplitudes are varied.
Examining the structure of (30) and (32), it is riduthat the optimum set of parameters

should lie along a straight line in tr(E*, B*) plane. This finding is confirmed in Figure 11

where the minimum RMS zones derived from numesgeaeps are reasonably centred on the
straight line deduced from (30) and (32). Simiksults have already been found in [18].

B*=0
l ’ ( CORMSTE
0.4+ o —e— MasterCurve |
2 |
o
0.35¢ ﬁ %
03+ &
0.25-
—
0.2+
0.15 B 0.015551 ‘-—-—______ i ]
0.05 0.015551 —
7
01+ 608 ——— 0.027608 — -
0.05 i
0 1 1 i 1 1
0 1 2 3 4 5
E*
a)
B* =0.431
CORMSTE
0.4 —8— MasterCurve
03r
—_
0.2
0.07
5.
01+ 983 — 0.015583
0 1 i 1 1 1
0 1 2 3 4 5
E*
b)

Figure 10: Comparisons between this level curves obtained by using the hybrid

model and the analytical results with a) no leanher and, b) a moderate crown amplitude.
Gear C in Table 1.
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Y1000
0.077572
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Figure 11: Comparisons between thi level curves obtained by using the hybrid
model and the analytical results. RepresentatidheifE*, B*) plane for two different extents
of profile modification. Gear C in Table 1.

4-3 Comparisons with LDP results:

The main interest of this final set of compariseteans from the elastic mesh interface
model used in LDP, which is totally different frotihat in VSA and the Hybrid Model. A
variable thickness plate model is employed for gtractural deflections of the teeth and the
contact algorithm is based on influence coeffigemistead of distributed lumped stiffness
elements, as is the case in VSA but also in thé/acel approach in this paper. Two different
gear geometries have been considered and resulteiwith those in the previous sections
are presented. Figures 12 and 13 display the mweks of the RMS of transmission error as
calculated by LDP along with the curves for theimpin tooth modifications based on (30)
and (32). It can be observed that, here too, tteyacal curves are near the numerical
optimum. The comparisons are extended by keepiegettients of profile modifications
constant and varying the relief and lead crown #oges (as in section 4-2). The results in
Figures 14 and 15 clearly show that a very goo@emgent is obtained for a broad range of
tooth modification parameters and that the analytresults are able to predict that no
optimum shape modifications can be found for cerggar geometries.
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Figure 12 — Comparisons between tHg; level curves obtained by using LDP and

the analytical results with a) no lead crown and brown amplitudeB" =1- Gear A in Table
1



0.54

0.4

0.0 T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

E‘K

0.5 1

0.4 1

0.3 4

0.24

0.14

0.0 T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Figure 13 — Comparisons between tHg; level curves obtained by using LDP and

the analytical results with a) no lead crown and brown amplitudeB” =1- Gear B in Table
1
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of profile modification. Gear A in Table 1.
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Figure 15 — Comparisons between tHg; level curves obtained by using LDP and
the analytical results (30) and (32). Represema'm'dhe( E, B*) plane for different extents
of profile modification. Gear B in Table 1.

Conclusion

An original analytical approach has been presentdith leads to closed-form
expressions for the optimum tooth shape modificationinimising transmission error in
narrow-faced helical gears. The theory is limitedsymmetric linear profile relief combined
with parabolic lead crown of moderate amplitude,,isuch that the actual contact width
remains close to the theoretical one. The analytiesults are consistent with the previous
formulae derived for profile relief only [25-27]r&le they have similar structures and only
differ by a correcting term proportional to leadwn amplitude. Extensive comparisons with
several software code results based on various mtesfiace models show that the proposed
formulae agree well with numerical predictions oadsroad range of gear geometry and load
thus validating the proposed analytical findingsorf a fundamental viewpoint, it is found
that the contribution of lead crown is largely aoiled by a particular function of the face
contact ratio (Figure 5), which can be positivegatese or nil depending on gear geometry.
The corresponding optimum shape modifications floegeexhibit contrasted sensitivity to
lead crown and, in some cases, can be virtuallgpaeddent of it. Interestingly, the analytical
results point to a simple linear relationship betwéhe optimum relief and crown amplitudes
if the extent of profile modification is kept coast. The numerical results by two different
models confirm this finding. It is also confirmelgiat, for errorless gears with integral face
contact ratios, the introduction of lead crown camy be detrimental with regard to



transmission error. Because of their general clarait is believed that the analytical results
presented in this paper might help shed light endéfinition of the influential geometrical

parameters on transmission error and therefore defuluat the early design stage. The
proposed formulae can also generate initial sabstidor more advanced numerical
simulations, which can be required for thin-webbed wide-faced gears for instance.
Developments are currently under way to introdueeabpolic profile modifications and

investigate further the shape modifications miningstransmission error in relation to the
notion of equivalent contact ratio as suggested[2@] for instance. Finally, beyond

transmission error and load distribution, tooth pghanodifications are known to have an
impact on gear efficiency [37-39] and wear [40-&ljalytical investigations in these areas (in
line with [27] for instance) on the specific cobtitions of combined profile and lead
modifications would therefore be interesting extens of the present work.
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Annex 1

It has been demonstrated [26] that the quasi-dt@atie on one tooth at any potential
point of contact can be expressed as:

F(r.Z)=cosgTE(7)+ &(r.2) (I-1)

WhereTE;(T) is the quasi-static transmission error aﬁ@r, z ) represents the actual tooth

shape normal at the point M of coordina(esz* ) in the base plane.
F (r, z*)strictly positive corresponds to an actual pointaftact M whereas a negative

value of this function implies that there is no tzart at M.

The problem of finding the reduction in contactgtmis formulated as to find the

particular position on the line of actidd =/ &, such that the average tooth force in the face
width direction is nil, hence:

jﬁ(rﬂz/\ga,z*) dz =0 (I-2)
0
Re-written as:

cosﬁbTE;(rA)+ e*E(rA)+ eB( *z) dz=C (1-3)

Oty

Introducing the analytical expressions of the peadind lead modifications (1) and (2) and
assuming tha#l <I" give:

cos,q)TE;(rA) -E (1——)——D ( (1-4)
Injecting in (I-4) the following main order approxation of transmission error

. 1=l —lg T+E(T=A) B
cos,é’bTES(rA)D kTZO keo = F(1-21) — (I-5)




leads to the following quadratic equation:
Fr+E(r-A)°+€ (A1-r)(1-24)0 0 (I-6)

whose only physically acceptable solution in teohsontact length reductio(vl < 0.5) is :

: 1—\/1—4r(;—r— 1/E")

A (1-7)

which gives an approximate analytical expressiothefcontact length reduction.



Annex 2:

Consider two 1-periodic functions of the form:
f(r)=f,+af (7)

o(r)= g +ag1) "

with
:;ak cos(nk( x-¢g, —5[;))
Ag(7)= Zk: b, cos(nk( X-¢, —sﬁ))

The following equalities can be deriveEE(') represents the average of a funcjion

E(f(r))=f

E(o(r))=9

E(f(r)+g(7) )—f+go (11-2)
E(af (7)) = E(2g(r)) =0

Using Parseval’s theorem, one obtains:
2 — 2 1 2
E(f (T))— f, +§Zk:ak
E(gz(r)): 95*%2 0] (11-3)
E((1(0)+ o)) )= (6+ @) +5 2 (a+ b)

From which, the variances of functiohg andf+g can be derived as:

var(g(7)) = E(¢*(7))- & :12 kf (11-4)



Assuming that the varying paf$ (7)and Ag(7) are small compared with their

averages fo and g,, the ratio p(r):% can be approximated by using a first order
o(r

Taylor's expansion of the form:

p()0 [p(r)](fmgo) +Af (T){"%}ET)LQO) +Ag(7)[agéf)lfoy%)

(11-5)
- &+Af (7) _Ag(r) f,
% % %
the variance can be expressed as:
var(p(1)) =€((o() - E(o(1))))
0 E((Af ) —Ag(rz) f(’ﬂ (11-6)
9% Y%

0l E(af?(7)) +f_02 E(Agz(r))—Zf—OS E(af(r)ayr))

%o o %

The following relationships are used:

E(Afz(r)) =var(Af (r))+[E(Af(r))]2 = var(Af (7)) = vaf (7)) :%Zaf

k

(11-7)
and the corresponding expressions for funogon
along with:
2E(af (r)Ag(r)) = 2cov (r) ,0(r))
=var( f (1) +g(r)) - var( f (7)) - vag(7))
1 2 1 1
=5 2(acrh) X4 2 (11-8)
1 2 5
=52 [(a+b) £~ t]

=>.ah

k



The variance of the ratip(7) :Mcan be approximated by:

9(7)
var(p(7))0 Z—;SZk:aj +2_§§Zk: B2 —onng: a.h

B

(11-9)

<\ % 9%

Considering the case of transmission error, EG(18) lead to the following closed-form
expressions:

(11-10)

which, combined with (lI-9), finally gives the varice of transmission error as defined in (4)
under the form:

* _ 2 _ E E _ 2 .
var(cosq)TE;)Dz(l_—lm)sz:[Q{}E (I'r A) L@ 2;) + (rr A) Q. —(1-21)B'Q,

(II-11)





