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-Introduction

Profile relief and lead modifications on gear teeth are necessary whenever significant power is transmitted in order to avoid, i) abrupt load variations at engagement and recess (working interferences) and, ii) edge contacts in the presence of misalignments [START_REF] Walker | Gear tooth deflection and profile modification[END_REF][START_REF] Walker | Gear tooth deflection and profile modification[END_REF]. Profile modifications usually consist in removing material near the tip or root of the teeth and are often linear or parabolic in the profile direction (or MAAG-type diagrams). Lead modifications can be limited to tooth edges (chamfers for instance) or cover the entire tooth width. Beyond the optimization of tooth load pattern, it has been demonstrated that tooth shape modifications can also significantly alter the noise and vibration levels which, to a large extent, are correlated with the amplitudes of the time-variations of quasi-static transmission error under load ( S TE ). Many papers, only a few of which can be cited here [START_REF] Gregory | Dynamic behaviour of spur gears[END_REF][START_REF] Niemann | Transmission error, tooth stiffness, and noise of parallel axis gears[END_REF][START_REF] Kubo | Research on ultra-high speed gear devices[END_REF][START_REF] Özgüven | Mathematical models used in gear dynamics-A review[END_REF][START_REF] Kahraman | Non-linear dynamics of a spur gear pair[END_REF][START_REF] Velex | A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour[END_REF][START_REF] Terauchi | On the effect of the tooth profile modification on the dynamic load and the sound level of a spur gear[END_REF][START_REF] Sato | Effects of contact ratio and profile correction on gear rotational vibration[END_REF], have been published on this topic. They mainly rely on massive numerical simulations including systematic sweeps over modification parameters [START_REF] Tavakoli | Optimum profile modifications for the minimization of static transmission errors of spur gears[END_REF][START_REF] Munro | Optimum profile relief and transmission error in spur gears[END_REF][START_REF] Yildirim | A systematic approach to profile relief design of low and high contact ratio spur gears[END_REF][START_REF] Lee | Influence of Linear Profile Modification and Loading Conditions on The Dynamic Tooth Load and Stress of High-Contact-Ratio Spur Gears[END_REF][START_REF] Cai | The optimum modification of tooth profile for a pair of spur gears to make its rotational vibration equal zero[END_REF][START_REF] Lin | Dynamic loading of spur gears with linear or parabolic tooth profile modifications[END_REF][START_REF] Matsumura | Performance diagram of a helical gear pair having tooth surface deviation during transmission on light load[END_REF][START_REF] Maatar | Quasi-static and dynamic analysis of narrow-faced helical gears with profile and lead modifications[END_REF][START_REF] Kahraman | Effect of involute tip relief on dynamic response of gear pairs[END_REF][START_REF] Mohamad | Analysis of General Characteristics of Transmission Error of Gears With Convex Modification of Tooth Flank Form Considering Elastic Deformation Under Load[END_REF] or heuristic optimization methods such as genetic algorithms [START_REF] Fonseca | A genetic algorithm approach to minimize transmission error of automotive spur gear sets[END_REF][START_REF] Ghribi | A contribution to the design of robust profile modifications in spur and helical gears by combining analytical results and numerical simulations[END_REF][START_REF] Bonori | Optimum profile modifications of spur gears by means of genetic algorithms[END_REF][START_REF] Korta | Multi-objective micro-geometry optimization of gear tooth supported by response surface methodology[END_REF]. The vast majority of the results, however, show that, regardless of gear macro-geometry, there exist families of optimal modifications, which minimize the time-variations of S TE at a given load. Based on analytical results [START_REF] Velex | Some analytical results on transmission errors in narrow-faced spur and helical gears -Influence of profile modifications[END_REF][START_REF] Bruyère | Derivation of optimum profile modifications in narrow-faced spur and helical gears using a perturbation method[END_REF][START_REF] Bruyère | A simplified multi-objective analysis of optimum profile modifications in spur and helical gears[END_REF][START_REF] Mark | Tooth-meshing-harmonic static-transmission-error amplitudes of helical gears[END_REF], closed-form formulae have been proposed which give the optimum dimensionless depth and length of modification for symmetric linear profile relief defining so-called Master Curves [START_REF] Bruyère | Derivation of optimum profile modifications in narrow-faced spur and helical gears using a perturbation method[END_REF] valid for a range of spur and helical gears and loads. Comparisons with benchmark software codes are satisfactory and, as opposed to numerical simulation results, some general trends can be derived about the influence of gear geometry, profile relief parameters and loads.

The objective of this paper is to extend the closed-form definition of optimal profile relief to the case of combined profile and lead modifications. It is demonstrated that, for moderate crown amplitudes (typically less than the average mesh deflection), a simple dimensionless formula can be derived which gives a good estimate of the combinations of linear profile relief and parabolic lead crown minimizing transmission error for a variety of gears and a range of loads. The specific influence of the face contact ratio is highlighted and it is shown that, depending on its value, contrasted influence of lead crown on TEs can be expected from detrimental to beneficial including cases for which, nearly no influence can be reported. 

-Theory

2-1 Profile and lead modifications

In this paper, combinations of profile and lead modifications are considered which comprise a) symmetric linear relief on pinion and gear tips or roots and, b) a parabolic crown in the lead direction on the pinion and/or the gear. The geometries of the corresponding tooth shape modifications are represented in Figs. 1 and2. Following a tooth pair from its engagement to its end of recess, the composite profile relief on the pinion and gear tips (Fig. 1) can be expressed in terms of the dimensionless coordinate along the line of action / b t x P τ = ( bt P is the apparent base pitch) as: ( ) ( ) The resulting total tooth surface modification is the sum of the deviations generated by profile relief and lead crowning (Figure 3) and reads: 
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which represents the mesh stiffness function

( ) ( ) ˆm k M k M k =
, dimensionless mesh stiffness per unit contact length at point M

The integrals over the instant length of contact L above can be simplified to a large extent, if one considers a constant mesh stiffness per unit contact length ( ) 0 k M k  which leads to the following expressions (Fourier series) [START_REF] Velex | Some analytical results on transmission errors in narrow-faced spur and helical gears -Influence of profile modifications[END_REF][START_REF] Bruyère | Derivation of optimum profile modifications in narrow-faced spur and helical gears using a perturbation method[END_REF][START_REF] Bruyère | A simplified multi-objective analysis of optimum profile modifications in spur and helical gears[END_REF]:
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"Sinc" is the classic sine cardinal function defined as

( ) ( ) sin Sinc = x x x
π π λ is the contact length reduction parameter possibly induced by tooth shape modifications such that the actual profile contact ratio is ( )

1 2 α λ ε
upon assuming symmetry between the meshing conditions at engagement and the end of recess (developed in section 2-3 below).

2-3 Approximate contact length reduction

In what follows, the following hypotheses are employed in order to estimate analytically the contact area reduction in the base plane possibly brought about by profile relief and crowning: a) Moderate crown amplitudes are considered so that the width of contact remains approximately equal to the theoretical contact width b, b) In the profile direction, contact length reductions can be characterised by using a single parameterλ defining the positions where the first and final contacts occur in the base plane (Figure 4) (symmetry is assumed between engagement and the end of recess). 
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It can be noticed that, in these conditions, the reduction in contact length is independent of the crown amplitude and that the limit of no contact reduction ( 0
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2-4 Time-variations of transmission error

Based on the developments presented in Annex 2, the variance (or squared RMS) of the quasi-static transmission error under load can be approximated as:
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The expression above can be simplified for integer
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From a practical perspective, it can be observed that the time-variations of the , and E B Γ

. It can also be noticed that, for integral overlap ratios β ε , crowning can only increase the time-variation amplitudes of transmission error.

-Minimisation of the RMS of transmission error -Master curves

Examining the various components in [START_REF] Lee | Influence of Linear Profile Modification and Loading Conditions on The Dynamic Tooth Load and Stress of High-Contact-Ratio Spur Gears[END_REF] for non-integer β ε , it can be noticed that the corresponding Fourier series converges rapidly since it consists of terms proportional to TE is replaced by finding the tooth shape modification parameters that cancel the first order terms in [START_REF] Lee | Influence of Linear Profile Modification and Loading Conditions on The Dynamic Tooth Load and Stress of High-Contact-Ratio Spur Gears[END_REF]. By so doing, the following expression of the RMS of transmission error will be used:
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3-1 Cases with reduction in actual contact length or profile contact ratio ( 0 λ > )

The approximate expression of the RMS of transmission error ( 16) can be simplified by introducing [START_REF] Tavakoli | Optimum profile modifications for the minimization of static transmission errors of spur gears[END_REF] (re-written as
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-which is represented in Figure 5. , and E B Γ minimising the timevariations of the quasi-static transmission error under load is therefore the solution of the following two equations:
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After developing the Sinc functions and simplifying, ( 18) is re-formulated as:
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λ , the value of the contact length reduction factor such that ( )
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can be observed, based on Figure 5, that the product

( ) * B β
η ε is a small quantity as long as β ε is not too close to integral values. A solution to [START_REF] Mohamad | Analysis of General Characteristics of Transmission Error of Gears With Convex Modification of Tooth Flank Form Considering Elastic Deformation Under Load[END_REF] can therefore be sought by using the following first order development:
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After some developments, it is found that:
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which, when re-injected into (19) leads to:
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Finally, an explicit form of the set of profile and lead modifications can be obtained considering that
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Interestingly, (29) corresponds to the formula obtained for profile relief in [START_REF] Bruyère | Derivation of optimum profile modifications in narrow-faced spur and helical gears using a perturbation method[END_REF][START_REF] Bruyère | A simplified multi-objective analysis of optimum profile modifications in spur and helical gears[END_REF] multiplied by a lead crown correcting factor ( )
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such that when * 0 B = (no crowning), the equation reduces to the Master Curve equation for profile relief. It can therefore be inferred that the influence of a position-varying mesh stiffness per unit contact length could be introduced, as for profile relief only, via the correcting term introduced in [START_REF] Bruyère | Derivation of optimum profile modifications in narrow-faced spur and helical gears using a perturbation method[END_REF], thus leading to the final equation for optimum tooth profile and lead modifications:
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which corresponds to so-called long relief according to [START_REF] Gregory | Dynamic behaviour of spur gears[END_REF] 

3-2 Cases with no reduction in actual contact length (or profile contact ratio) ( 0 λ = )

Using ( 16) and setting 0 λ = directly lead to the following equation:
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from which, the expression of the optimal tooth modifications is derived as for (30) by introducing a correcting function for position-(time-) varying mesh stiffness per unit contact length [START_REF] Bruyère | Derivation of optimum profile modifications in narrow-faced spur and helical gears using a perturbation method[END_REF] as:
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3-3 Synthesis

The combination of ( 30) and [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF] finally makes it possible to estimate the combinations of profile and lead modifications minimising transmission error over the entire range of profile relief parameters and for crown amplitudes that do not exceed the average mesh deflection. Based on [START_REF] Yildirim | A systematic approach to profile relief design of low and high contact ratio spur gears[END_REF], the respective areas where formulae [START_REF] Guilbert | Modular hybrid models to simulate the static and dynamic behaviour of high-speed thin-rimmed gears[END_REF] or [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF] hold are visualized in the ( ) * , E Γ plane as shown in Figure 6 (remembering that the frontier defined by ( 13) is independent of the crown amplitude). It can be noticed that when

1 1 L α ε Γ = Γ = - ( long 
relief), the solutions from ( 30) and [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF] are identical (the two curves always intersect at this point). The transition between (30) and ( 32) is defined by the condition 0 λ = , which using [START_REF] Yildirim | A systematic approach to profile relief design of low and high contact ratio spur gears[END_REF], is expressed under the form

* 1 1 E Γ = -
and corresponds to the dotted curve in Fig. 6 separating the two solution domains. Continuity between the solutions given by the two equations ( 30) and ( 32) is not ensured and, strictly speaking, the optimum modifications cannot be represented by a unique curve. However, an approximate curve can be defined by keeping the results of (32) for extents of modifications above L Γ (a limit beyond which it is not interesting to go) and solutions from (30) for L Γ < Γ (corresponding to the vast majority of the cases in practice). This approximation is used throughout the paper in what follows. can either be positive or negative depending on β ε (see Figure 5), contrasted results in terms of the influence of lead crown on 'optimal' tooth shape modifications are expected. In particular, the optimum curve can either move towards larger or smaller profile relief amplitudes when a range of face contact ratios is considered.

-Elements of validation

The proposed formulae [START_REF] Guilbert | Modular hybrid models to simulate the static and dynamic behaviour of high-speed thin-rimmed gears[END_REF] and [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF] rely on a number of hypotheses (the rectangular shape of the contact area in the base plane, negligible higher-order terms in Fourier series and Taylor expansions, etc.) whose influence on the result quality needs to be assessed. To this end, extensive numerical simulations have been performed using: a-A lumped parameter model (VSA) [START_REF] Velex | A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour[END_REF], [START_REF] Maatar | Quasi-static and dynamic analysis of narrow-faced helical gears with profile and lead modifications[END_REF] and a comprehensive hybrid 3D model [START_REF] Guilbert | A Mortar-based mesh interface for hybrid finite element / lumped parameter gear dynamic models -Applications to thin-rimmed geared systems[END_REF], [START_REF] Guilbert | Modular hybrid models to simulate the static and dynamic behaviour of high-speed thin-rimmed gears[END_REF] (Figure 7) combining two condensed sub-structures with 20-node brick FE for the structural parts (pinion and gear bodies, shafts) but with the same mesh interface model using:

• a time-varying, non-linear Winkler foundation model for the mesh interface based on the analytical formulae of Weber and Banaschek [START_REF] Weber | Formänderung und Profilrücknahme bei Geradund Schrägverzahnten Antriebstechnik[END_REF],

• distributed time-varying initial separations to simulate tooth shape deviations [START_REF] Velex | A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour[END_REF] b-The benchmark software code LDP [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF][START_REF] Sundaresan | A Procedure Using Manufacturing Variance to Design Gears With Minimum Transmission Error[END_REF][START_REF] Sundaresan | Design Optimization for Robustness Using Performance Simulation Programs[END_REF] developed at the Ohio State University which is widely used in industry.

The main objective is to compare the optimum tooth modifications obtained by numerical simulations after systematic sweeps over the relief and crown parameters with the results derived from the analytical formulae [START_REF] Guilbert | Modular hybrid models to simulate the static and dynamic behaviour of high-speed thin-rimmed gears[END_REF] and [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF]. Several solid gear sets have been tested whose geometrical characteristics are listed in Table 1. Experimental results over sufficiently broad ranges of profiles and lead modifications have not been found in the literature so that direct comparisons between experimental and numerical master curves are not possible. However, both simulation codes have been validated based on numerous test rig measurements [START_REF] Baud | Static and dynamic tooth loading in spur and helical geared systems -Experiments and model validation[END_REF][START_REF] Houser | A Comparison of Predicted and Measured Dynamic and Static Transmission Error for Spur and Helical Gear Sets[END_REF] and are considered as representative of actual gear behaviour.

4-1 VSA results

Figures 7 and8 show examples of the optimum zones in terms of transmission error (shaded areas) obtained by numerical simulations using VSA when sweeping over a broad range of dimensionless profile depth * E and extentΓ, for no lead crown and a lead crown of maximum amplitude according to the proposed theory ( * 1 B = ). The curves corresponding to the analytical formulae [START_REF] Guilbert | Modular hybrid models to simulate the static and dynamic behaviour of high-speed thin-rimmed gears[END_REF] and [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF] have been superimposed and it can be noticed that they It can be also verified that, depending on gear geometry, the presence of a lead crown displaces the optimum area towards the smaller (Fig. 7) or larger (Fig. 8) relief amplitudes. The analytical formulae capture this effect and it is confirmed that ( ) * B β η ε (and its sign) is crucial with regard to crowning contribution.

Figure 7 -Comparisons between ( 30), ( 32) (the two lines) and the optimum profile reliefs obtained by numerical sweeps using VSA (the shaded areas) for no crown and a crown amplitude equal to the average mesh deflection. Gear A in Table 1.

Figure 8 -Comparisons between ( 30), (32) (the two lines) and the optimum profile reliefs obtained by numerical sweeps using VSA (the shaded areas) for no crown and a crown amplitude equal to the average mesh deflection. Gear B in Table 1.

4-2 Hydrid model results:

The pinion and gear shaft geometry are described in Figure 9-a whereas gear data can be found in Table 1 (gear C). Three-dimensional brick finite elements are used to simulate the structural parts (Figure 9-b) and lumped stiffness elements represent the bearings (shaded on the FE grid). The finite element models of the pinion and gear shafts are condensed and connected by a time-varying non-linear Winkler foundation along with two mortar interfaces in order to avoid compatibility problems between the continuous and discrete models at play [START_REF] Guilbert | Modular hybrid models to simulate the static and dynamic behaviour of high-speed thin-rimmed gears[END_REF]. A first series of simulations similar to those with VSA has been performed and the corresponding transmission error level curves are plotted in Figure 10. The curves representing the analytical formulae are superimposed and, here again, a good agreement is observed. Some complementary results are shown in Figure 11 where the length of profile modification Γ is kept constant while the lead crown and relief amplitudes are varied.

Examining the structure of ( 30) and [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF], it is found that the optimum set of parameters should lie along a straight line in the ( ) * * , E B plane. This finding is confirmed in Figure 11 where the minimum RMS zones derived from numerical sweeps are reasonably centred on the straight line deduced from ( 30) and [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF]. Similar results have already been found in [START_REF] Maatar | Quasi-static and dynamic analysis of narrow-faced helical gears with profile and lead modifications[END_REF]. Gear C in Table 1. 1.

4-3 Comparisons with LDP results:

The main interest of this final set of comparisons stems from the elastic mesh interface model used in LDP, which is totally different from that in VSA and the Hybrid Model. A variable thickness plate model is employed for the structural deflections of the teeth and the contact algorithm is based on influence coefficients instead of distributed lumped stiffness elements, as is the case in VSA but also in the analytical approach in this paper. Two different gear geometries have been considered and results in line with those in the previous sections are presented. Figures 12 and13 display the level curves of the RMS of transmission error as calculated by LDP along with the curves for the optimum tooth modifications based on [START_REF] Guilbert | Modular hybrid models to simulate the static and dynamic behaviour of high-speed thin-rimmed gears[END_REF] and [START_REF] Houser | A multivariable approach to determining the 'best' gear design[END_REF]. It can be observed that, here too, the analytical curves are near the numerical optimum. The comparisons are extended by keeping the extents of profile modifications constant and varying the relief and lead crown amplitudes (as in section 4-2). The results in Figures 14 and15 clearly show that a very good agreement is obtained for a broad range of tooth modification parameters and that the analytical results are able to predict that no optimum shape modifications can be found for certain gear geometries. 1.

Conclusion

An original analytical approach has been presented which leads to closed-form expressions for the optimum tooth shape modifications minimising transmission error in narrow-faced helical gears. The theory is limited to symmetric linear profile relief combined with parabolic lead crown of moderate amplitude, i.e., such that the actual contact width remains close to the theoretical one. The analytical results are consistent with the previous formulae derived for profile relief only [START_REF] Velex | Some analytical results on transmission errors in narrow-faced spur and helical gears -Influence of profile modifications[END_REF][START_REF] Bruyère | Derivation of optimum profile modifications in narrow-faced spur and helical gears using a perturbation method[END_REF][START_REF] Bruyère | A simplified multi-objective analysis of optimum profile modifications in spur and helical gears[END_REF] since they have similar structures and only differ by a correcting term proportional to lead crown amplitude. Extensive comparisons with several software code results based on various mesh interface models show that the proposed formulae agree well with numerical predictions over a broad range of gear geometry and load, thus validating the proposed analytical findings. From a fundamental viewpoint, it is found that the contribution of lead crown is largely controlled by a particular function of the face contact ratio (Figure 5), which can be positive, negative or nil depending on gear geometry. The corresponding optimum shape modifications therefore exhibit contrasted sensitivity to lead crown and, in some cases, can be virtually independent of it. Interestingly, the analytical results point to a simple linear relationship between the optimum relief and crown amplitudes if the extent of profile modification is kept constant. The numerical results by two different models confirm this finding. It is also confirmed that, for errorless gears with integral face contact ratios, the introduction of lead crown can only be detrimental with regard to transmission error. Because of their general character, it is believed that the analytical results presented in this paper might help shed light on the definition of the influential geometrical parameters on transmission error and therefore be useful at the early design stage. The proposed formulae can also generate initial solutions for more advanced numerical simulations, which can be required for thin-webbed or wide-faced gears for instance. Developments are currently under way to introduce parabolic profile modifications and investigate further the shape modifications minimising transmission error in relation to the notion of equivalent contact ratio as suggested in [START_REF] Mohamad | Analysis of General Characteristics of Transmission Error of Gears With Convex Modification of Tooth Flank Form Considering Elastic Deformation Under Load[END_REF] for instance. Finally, beyond transmission error and load distribution, tooth shape modifications are known to have an impact on gear efficiency [START_REF] Velex | An Analytical Approach to Tooth Friction Losses in Spur and Helical Gears-Influence of Profile Modifications[END_REF][START_REF] Diez-Ibarbia | Frictional power losses on spur gears with tip reliefs. The load sharing role[END_REF][START_REF] Diez-Ibarbia | Frictional power losses on spur gears with tip reliefs. The friction coefficient role[END_REF] and wear [START_REF] Karpat | Influence of tip relief modification on the wear of spur gears with asymmetric teeth[END_REF][START_REF] Osman | Static and dynamic simulations of mild abrasive wear in wide-faced solid spur and helical gears[END_REF]; analytical investigations in these areas (in line with [START_REF] Bruyère | A simplified multi-objective analysis of optimum profile modifications in spur and helical gears[END_REF] for instance) on the specific contributions of combined profile and lead modifications would therefore be interesting extensions of the present work.

Annex 1

It has been demonstrated [START_REF] Bruyère | Derivation of optimum profile modifications in narrow-faced spur and helical gears using a perturbation method[END_REF] that the quasi-static force on one tooth at any potential point of contact can be expressed as: Introducing the analytical expressions of the profile and lead modifications (1) and ( 2) and assuming that λ < Γ give:

( )

* * * cos 1 0 3 b S B TE E λ β τ ∆   - --   Γ    (I-4)
Injecting in (I-4) the following main order approximation of transmission error ( )

( ) ( ) 2 * * * 0 0 0 1 cos 1 2 3 kE kB b S k E I I B TE I λ β τ λ ∆ Γ + Γ - - - = + Γ -  (I-5)
leads to the following quadratic equation:

( ) ( )( ) 2 * * 1 2 0 E E λ λ λ Γ + Γ - + -Γ -  (I-6)
whose only physically acceptable solution in terms of contact length reduction ( )

0.5 λ < is : ( ) * 1 1 4 1 1 / 2 E λ --Γ -Γ -  (I-7)
which gives an approximate analytical expression of the contact length reduction.

Annex 2:

Consider two 1-periodic functions of the form:

( ) ( ) ( ) ( ) 0 0 f f f g g g τ τ τ τ = + ∆ = + ∆ (II-1) with ( ) ( ) ( ) ( ) ( ) ( ) cos 2 cos 2 k k k k f a k g b k α β α β τ π τ ε ε τ π τ ε ε ∆ = -- ∆ = -- ∑ ∑
The following equalities can be derived ( ( ) 

0 0 0 0 0 E f f E g g E f g f g E f E g τ τ τ τ τ τ = = + = + ∆ = ∆ = (II-2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
Using Parseval's theorem, one obtains: From which, the variances of functions f, g and f+g can be derived as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
f g f g f g f g f g f g f f g g g ρ τ ρ τ ρ τ ρ τ τ τ τ τ ∂ ∂     + ∆ + ∆         ∂ ∂     ∆ ∆ + -   (II-5)
the variance can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
E E f g f E g g f f E f E g E f g g g g ρ τ ρ τ ρ τ τ τ τ τ τ τ = -   ∆ ∆     -         ∆ + ∆ - ∆ ∆   (II-6)
The following relationships are used:

( Considering the case of transmission error, Eq. ( 5)-( 10) lead to the following closed-form expressions: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( ) ( ) ( ) 2 * 

b:

  face width of pinion, of gear * B : dimensionless lead crown amplitude (normalized with respect to the average static mesh deflection m δ ).

F 0 L τ ) . 0 kX:,F

 00 dimensionless profile relief (sum of the pinion and gear normal deviations with respect to ideal flanks at any generic contact point M )(normalized with respect to the average static mesh deflection m δ ) dimensionless lead crown modification (sum of the pinion and gear normal deviations with respect to ideal flanks at any generic contact point M )(normalized with respect to the average static mesh deflection m δ ) * E : dimensionless depth of profile relief at tooth tips (normalized with respect to the average static mesh deflection m δ ) . N ; total normal mesh force. average mesh stiffness in the absence of tooth shape deviations and errors (integrated over the theoretical contact length ( ) : constant or average mesh stiffness per unit of contact length. ( ) k M , mesh stiffness per unit of contact length at M .( ) k M , dimensionless mesh stiffness per unit of contact length at M (normalized with respect to the average mesh stiffness m , dimensionless time-varying, non-linear mesh stiffness function (normalized with respect to the average mesh stiffness 0 varying (possibly non-linear) contact length, theoretical contact length. 0 m : module 00 M : point at the entry of the contact zone at 0 = τ (Figure 4).n : outward unit normal vector with respect to pinion flanks. ( ) NLTE τ : no-load transmission error. bt P : apparent base pitch. and dimensionless quasi-static transmission error under load (normalized with respect to the average static mesh deflection m δ ) static mesh deflection with average mesh stiffness for ideal gears α ε : theoretical profile contact ratio (with no contact length reduction) dimensionless extent of profile modification where r l is the length (or extent) of relief measured in the base plane dimensionless extent of modification for the so-called long relief λ , contact length reduction factor (accounts for delayed engagement and premature end of recess) any generic variable A; normalization with respect to the nominal average mesh stiffness in the absence of tooth shape deviations and errors. is the normal mesh force)
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 1 Figure 1 -Definition of tooth profile modifications (linear symmetric relief)

ΓF

  is the dimensionless extent of modification measured on the line of action, * m E E δ= , E is the actual depth of modification at tooth tip and is the normal mesh force and m k , the average mesh stiffness for perfect, unmodified tooth flanks).The trace of the parabolic crown shown in Fig.2is expressed in terms of the dimensionless axial coordinate * z and dimensionless crowning amplitude *
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 2 Figure 2 -Lead modification (parabolic crown)
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 322 Figure 3 -Composite tooth shape deviations (superposition of profile and lead modifications)

Figure 4 :

 4 Figure 4: a) Nominal meshing window and b) effective meshing window
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  dimensionless transmission error function * S TE depend on a limited number of parameters, which are: a) and α β ε ε characterising gear geometry and, b) the dimensionless profile and lead modifications parameters * *

≥

  , so that the first order approximation ( 1 k = ) is already a good estimate of the RMS of transmission error. In these conditions, the actual minimisation of the time-variations of * S
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 5 Figure 5: Function ( ) β η ε versus β ε
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 6 Figure 6 -Solution domains for optimum tooth shape modifications.
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 9 Figure 9: Hybrid model: a) pinion and gear geometry, b) FE model and bearing locations.
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 10 Figure 10: Comparisons between the
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 11 Figure 11: Comparisons between the
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 12 Figure 12 -Comparisons between the
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 13 Figure 13 -Comparisons between the
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 1415 Figure 14 -Comparisons between the

  τ is the quasi-static transmission error and ( ) to an actual point of contact M whereas a negative value of this function implies that there is no contact at M. The problem of finding the reduction in contact length is formulated as to find the particular position on the line of action α τ λ ε ∆ = such that the average tooth force in the face width direction is nil, hence:

  expressions for function g, along with:

  with (II-9), finally gives the variance of transmission error as defined in (4) under the form: