
HAL Id: hal-02112001
https://hal.science/hal-02112001

Submitted on 26 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-level Devanāgarī Support for Omega - Adapting
devnag

Yannis Haralambous, John Plaice

To cite this version:
Yannis Haralambous, John Plaice. Low-level Devanāgarī Support for Omega - Adapting devnag.
Tugboat, 2002, Proceedings of the 2002 Annual Meeting, 23 (1), pp.50-56. �hal-02112001�

https://hal.science/hal-02112001
https://hal.archives-ouvertes.fr

Low-level Devanāgar̄ı Support for Omega — Adapting devnag

Yannis Haralambous
Département Informatique
École Nationale Supérieure des Télécommunications de Bretagne
BP. 832, 29285 Brest, France
yannis.haralambous@enst-bretagne.fr

http://omega.enstb.org/yannis

John Plaice
School of Computer Science and Engineering
The University of New South Wales
UNSW Sydney NSW 2052, Australia
plaice@cse.unsw.edu.au

http://www.cse.unsw.edu.au/school/people/info/plaice.html

Abstract

This paper presents tools (OTPs and macros) for typesetting languages using
the Devanāgar̄ı script (Hindi, Sanskrit, Marathi). These tools are based on the
Omega typesetting system and are using fonts from devnag, a package developed
by Frans Velthuis in 1991. We are describing these new OTPs in detail, to provide
the reader with insight into Omega techniques and allow him/her to further adapt
these tools to his/her own environment (input method, font), and even to other
Indic languages.

sArA\f
yh l̃K d̃vnAgrF ElEp ko þyog krt̃ h̀e BAqAao\ kF VAIps{EV\g yA l̃KAyojn
k̃ Ele þyog Eke jAñ vAl̃ V́l ko þ-t̀t krtA h{. ỹ V́l aom̃gA VAIps{EV\g pr
aADAErt h{ aOr d̃vnAg k̃ l̃KAzpo ko þyog krtA h{ joEk ČA\s ṽlT̀is ŠArA
1991 m̃ bnAyA gyA p{k̃j h{. hm in ao VF pF ko Ev-t̂t kr rh̃ h{\ tA\Ek p”hñ
vAlo\ ko aom̃gA tknFk kF jAnkArF ho jAe aOr vo apñ aAp ko is V́l
s̃ apñ vAtAvrZ aOr d́srF BArtFy BAqAao k̃ aǹzp bdl sk̃ yA xAl sk̃.

Introduction

One of the first Indic language support packages
for TEX was devnag, developed by Frans Velthuis
in 1991.1 At that time it was necessary to use a
preprocessor for converting Hindi or Sanskrit text
written in a way legible to humans into data legible
by TEX. This preprocessor allowed the use of an
ascii transcription, and performed the contextual
analysis inherent to Devanāgar̄ı script, as well as
pre-hyphenation (by explicitly inserting hyphen-
ation points). The preprocessor was necessary for
two main reasons:

1 A second system for processing Devanāgar̄ı was cre-
ated by Charles Wikner. It has important features lacking
in Velthuis’s devnag system, but unlike the latter it did not
address the setting of Hindi text. The general design of the
system – Metafont plus pre-processor – was identical to that
of Velthuis.

1. A Sanskrit font contains over 300 glyphs, when
ligatures are taken into account.

2. The TFM and VF languages are not powerful
enough to make all the necessary glyphs out of
a font of 256 characters.
Using a preprocessor has many disadvantages,

due mainly to the fact that it has to read not plain
text, but rather LATEX code. It also has to avoid
treating commands and environment names as De-
vanāgar̄ı text. So the preprocessor should be clever
enough to distinguish text from commands, i.e., con-
tent from markup.

It is well known that, in the case of TEX, this
is practically impossible, unless the preprocessor is
TEX itself (there is a notorious saying: “only TEX
can read TEX”).

So much for computing in the 20th century.
Nowadays we have other means of processing infor-
mation, and the concept of (external) preprocessor

50 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

Low-level Devanāgar̄ı Support for Omega— Adapting devnag

is obsolete. In fact, the same operations are done
inside Omega, a successor of TEX. Processing text
internally has the crucial advantage of allowing the
processor to distinguish precisely what is content
and what markup (at least as precisely as TEX itself
does it).

This makes it much easier to treat properties
inherent to writing systems: one only needs to con-
centrate on the linguistic and typographical prop-
erties of the script, and one doesn’t need to think
of what to “do with LATEX commands” in the data
stream.

Furthermore, there is an efficiency issue: using
Omega there is only one source file, namely the TEX
file (and not a pre-TEX file and a TEX file); one
doesn’t need to care about preprocessor directives;
the system will not fail because of a new LATEX envi-
ronment which is not known to devnag; mathemat-
ics and other similar constructions do not interfere
with Devanāgar̄ı preprocessing.

Contextual analysis of Devanāgar̄ı script has, at
last, become a fundamental property of the system,
independent of macros and packages.

Unicode and Devanāgar̄ı

The 20-bit information interchange encoding Uni-
code (www.unicode.org) has tables for all Indic
writing systems, based on a common scheme (so
that phonetically equivalent letters are placed on the
same relative positions in each table). The first of
these tables (positions 0900-097F, see Table 1) cov-
ers Devanāgar̄ı.

For historical reasons (compatibility with lega-
cy encodings) the Unicode approach to Devanāgar̄ı
is quite awkward: it is partly logical and partly
graphical. For example, there are separate posi-
tions for independent and dependent versions of vo-
wels: when encoding text one has to choose if a
given vowel is dependent or independent, although
this clearly derives from contextual analysis, as in
Velthuis’ transcription where both versions of vo-
wels have the same excellent input transcription.

On the other hand, this method is not applied
to consonant ra; indeed, placing a ra before a clus-
ter of consonants is graphically represented by a
mark on the last of the consonants (compare Ä-
kta and Ä‚ rkta)— this mark is not provided in the
Unicode table, and hence application of this feature
is left to the rendering engine.

Nevertheless, despite its weaknesses, Unicode is
very important because it ensures compatibility be-
tween devices all around the world: a text written
in Devanāgar̄ı and encoded in Unicode can be pro-

cessed (read, printed, analyzed) on every machine
or software that is Unicode compliant.

Omega fullfils Unicode compliance, and the sys-
tem we are describing in this paper is designed in
such a way that Unicode-encoded texts can be pro-
cessed equally well as texts encoded in Velthuis’
transcription.

Installation and Usage

The Omega low-level support2 of Devanāgar̄ı con-
sists of eight OTPs (Omega Translation Processes)
and a small file with macros:

velthuis2unicode.otp
hindi-uni2cuni.otp
hindi-uni2cuni2.otp
hindi-cuni2font.otp
hindi-cuni2font2.otp
hindi-cuni2font3.otp
sanskrit-uni2cuni.otp
sanskrit-cuni2font.otp
odev.sty

OTP files have to be converted to binary form
(*.ocp) and placed in a directory where Omega ex-
pects to find them.

To typeset text in Devanāgar̄ı, use the com-
mands \hindi or \sanskrit (depending on the lan-
guage of your choice) inside a group, and keyboard
the text in Velthuis’ transcription (see Table 1,
taken from Velthuis’ devnag documentation3). For
example, {\hindi kulluu, acaanak, \sanskrit
kulluu, acaanak} will produce k̀Sĺ , acAnk ,
k̀ě́ , acAnk̂.

Description of the OTPs

This description is a bit technical and demands both
some knowledge of Omega and of Devanāgar̄ı script.
The reader can find more information on the former,
on the Omega Web site4 and on the latter in books
about Devanāgar̄ı script. In particular, there is a
very nice introduction to the contextual features of
the script in the Unicode book5 (Section 9.1).

2 We call it “low-level,” because there is no standard
LATEX3-compliant high-level language support interface yet.
We don’t know yet how languages and their properties will
be managed in LATEX3 and therefore do not attempt to in-
troduce yet another syntax for switching to Hindi or Sanskrit
or Marathi. Instead, we—temporarily— use a devnag-like
syntax: simple commands \hindi and \sanskrit which have
to be placed inside groups, as in the good old days of plain

TEX. . .
3 To be found on CTAN, language/devanagari/distrib/

manual.tex.
4 http://omega.enstb.org
5 The Unicode Standard, Version 3.0, Addison Wesley,

Reading Massachusetts, 2000.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 51

Yannis Haralambous and John Plaice

velthuis2unicode.otp In this OTP we convert
Velthuis’ input transcription into Unicode. It is a
quite short OTP (about 80 lines), with lines of the
type
`z' => @"095B @"094D ;

`a'`a' => @"0906 ;

On the second line, the pair of letters aa of
Velthuis’ transcription is sent to Unicode character
@"0906 (independent vowel “aa”). On the first line,
letter z is sent to Unicode characters @"095B (letter
“za”) and @"094D (virama).

This may seem strange, but indeed the plan is
to convert in a later step independent vowels into
dependent ones, and to use the virama as a way to
find out if a given consonant is part of a consonantic
cluster or not. This will be done in the forthcoming
OTPs.

(sanskrit|hindi)-uni2cuni.otp In this OTP we
deal with virama and dependent vowels. First of
all, in the case of Hindi, we remove the (possible)
final virama of the word:
{CONSONANT} {VIRAMA} end: => \1 ;

{CONSONANT} {VIRAMA} {NONHINDI} =>

\1 <= \3 ;

In these two lines, we remove virama which may
be either at the end of the input buffer, or before a
non-Hindi character. In the latter case, the non-
Hindi character is put back in the stream. The code
above is for Hindi. In the case of Sanskrit, we add
a (fake) Unicode character which will represent in-
ternally the final virama:
{CONSONANT} {VIRAMA} end: => \1 @"097F ;

{CONSONANT} {VIRAMA} {NONHINDI} =>

\1 @"097F <= \3 ;

Follow lines of the type:
{CONSONANT} {VIRAMA} {INITA} => \1 @"097D ;

{CONSONANT} {VIRAMA} {INITAA} =>

\1 @"093E @"097D ;

Indeed, by placing a virama systematically af-
ter each consonant, we have also added viramas be-
tween consonants and vowels, which makes no sense.
On the first line, the ‘short a’ vowel is removed to-
gether with the (spurious) virama. On the second
line, the ‘long a’ vowel is replaced by Unicode char-
acter "@"093E, which is the dependent version of
vowel ‘long a’, and the virama is removed. There
are such lines for each vowel.

Notice the presence of “fake” Unicode character
@"097D. This character will be replaced by a soft
hyphen at the very last step of our OTP chain.

A special case is the vowel ‘short i’, where the
glyph representing it has to be placed in front of

the consonantic cluster. This is done by lines of the
type:
{CONSONANT} {VIRAMA} {INITI} =>

@"093F \1 \2 @"097D ;

where we have a consonant and virama followed by
a ‘short i’ vowel. In this case we place Unicode char-
acter @"093F followed by the consonant. On similar
lines, we have n-uplets (n ≤ 7) of consonants and vi-
ramas followed by a ‘short i’ vowel; we replace them
by @"093F followed by the group of consonants and
viramas, except for the last virama.

hindi-uni2cuni2.otp One thing that has not been
covered by the previous OTPs is the case of con-
sonantic clusters starting with an ‘r’ consonant: in
this case, a mark is placed on the last consonant
ofthe cluster. This mark is not part of the Unicode
encoding, and hence we have to use a fake Unicode
character. This file contains lines of the type:
{RA} {VIRAMA} {CONSONANT} => \3 @"097E @"097D ;

On this line we replace a consonant preceded by
a ‘ra’ and a virama, by the same consonant but fol-
lowed by the fake Unicode character @"097E which
will be replaced in the next OTP by the TEX code
producing the mark we need.

(sanskrit|hindi)-cuni2font.otp In this OTP,
which is quite long (328 lines), we start switch-
ing from Unicode to font encoding: this spe-
cific file —as well as files cuni2font2.otp and
cuni2font3.otp—deals with devnag font encod-
ing, but the user can write his/her own files for a
different font encoding6.

First of all we define aliases for all consonants,
to make the writing of ligature expressions easier:
aliases:

BA = (@"092C) ;

BHA = (@"092D) ;

...

VIRAMA = (@"094D) ;

Then we write the ligature expressions, using
expressions like the following:
{SSA} {VIRAMA} {TTA} {VIRAMA} {YA} => @"00F7 ;

{SSA} {VIRAMA} {TTA} {VIRAMA} {VA} => @"00AB ;

{SSA} {VIRAMA} {TTA} {VIRAMA} {RA}

{VIRAMA} {YA} => @"00AA ;

{SSA} {VIRAMA} {TTA} {VIRAMA} {RA} => @"0104 ;

As the reader can see, the virama is used to
ensure that these consonants are indeed part of the

6 For example for the prestigious Monotype Devanagari
(http://www.agfamonotype.com) which is, IOHO, one of the
most beautiful existing fonts, and has even pre-designed
glyphs for consonants with dependent short and long ‘u’ vo-
wels.

52 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

Low-level Devanāgar̄ı Support for Omega— Adapting devnag

same consonantic cluster. Since in OTP files order
of precedence is based on order of expressions in the
expression list, the fact that line 3 is before line 4 en-
sures that the consonantic cluster .s.try is indeed
detected instead of .s.tr, which will be matched
only if the last letter is not a y.

Notice that our right-hand expressions are al-
ready in the devnag font positions, except for the
one of the last line (@"0104), which is a ‘fake’
glyph position — like we had previously ‘fake’ Uni-
code characters— i.e., a byte which will be detected
by a forthcoming OTP and converted into something
that makes sense.

The devnag system allows preprocessor direc-
tives activating and de-activating individual liga-
tures; we do not have an equivalent feature in our
system because we do not consider it to be crucial.
Instead, the user has the possibility to add or re-
move lines as the ones above in the OTP file, save
the OTP under a different name and use it as a re-
placement of the standard one, or in a new OCP list.
In the latter case, one can switch on-the-fly from one
ligature setup to another.

After the ligature expressions, follow the conso-
nants followed by virama:
{BA} {VIRAMA} => @"004E ;

{BHA} {VIRAMA} => @"003C ;

{CA} {VIRAMA} => @"0051 ;

{CHA} {VIRAMA} => "\qq{" @"0043 "}" ;

{DA} {VIRAMA} => "\qq{" @"0064 "}" ;

...

If one of these patterns is matched, this means
that (a) we are inside a consonantic cluster and
(b) all ligatures have been matched. Two options re-
main: either there is a special half-form of the glyph
of the consonant, or an explicit virama is placed un-
der the normal version of the consonant glyph.

Using “halfed” glyphs is, in a sense, interme-
diate between predefined ligature glyphs and the
placement of individual “independent” glyphs next
to each other. It is a method to construct arbi-
trary ligatures using the basic letter part: compare,
for example, for the same consonantic cluster “vva,”
ĺ (Sanskrit ligature), &v (Hindi ligature, where the
first v is half-form) and v̂v (two individual conso-
nants, the first having a virama).

In the code above, macro \qq inserts the vi-
rama. In version 2 of Omega this macro will be
made obsolete, since placement of diacritics will be
handled by µ-engines; until then, we use macros, like
\qq, taken from the devnag package.

Follow two special lines:
{RA} {DEPU} => @"007A ;

{RA} {DEPUU} => @"0021 ;

where DEPU and DEPUU stand for “dependent short
u” and “dependent long u.” These cover the special
glyphs for consonant ‘ra’ with these vowels: r + u
→ z , r + U → !.

Finally, follow lines of the type:
{BA} => @"0062 ;

{BHA} => @"0042 ;

{CA} => @"0063 ;

...

which simply match consonants (with inherent
“short a” vowel) and glyph positions, as well as lines
like
{CANDRABINDU} =>

"\llap{{\clearocplists\char32}}" ;

{ANUSVARA} =>

"\llap{{\clearocplists\char92}}" ;

{DEPAI} =>

"\llap{{\clearocplists\char123}}" ;

...

which map characters candrabindu, anusvāra, de-
pendent “ai” vowel and similar signs with the nec-
essary TEX code to obtain their glyphs. Once again
this code will be obsolete in Omega v.2.

hindi-cuni2font2.otp This OTP, as well as the
next one, are provided to deal with cases which could
not be handled simultaneously with the previous
one. The present file deals with dependent vowels
“short u,” “long u,” “short r,” “short l,” “English
o,” which have the common property of being cen-
tered under the letter. Until Omega 2 arrives, we
need to use macros to place them, and these macros
have to be placed before the consonant which car-
ries the vowel, so that this consonant can be their
argument:
(@"0000-@"00FF) {DEPU} => "\qqqa{" \1 "}" ;

(@"0000-@"00FF) {DEPUU} => "\qqqb{" \1 "}" ;

(@"0000-@"00FF) {DEPR} => "\qqqc{" \1 "}" ;

(@"0000-@"00FF) {DEPRR} => "\qx{" \1 "}" ;

(@"0000-@"00FF) {DEPL} => "\qy{" \1 "}" ;

(@"0000-@"00FF) {DEPLL} => "\qz{" \1 "}" ;

(@"0000-@"00FF) {DEPOO} => "\qzz{" \1 "}" ;

We could not obtain them in the previous OTP,
since that file matched the Unicode characters of
consonants and replaced them with font positions.
Of course we could include in that file combinations
of consonants and vowels, but this would make the
file unnecessary long: it is easier to match first the
consonants and, at a second stage, the vowels.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 53

Yannis Haralambous and John Plaice

Since we are now matching font positions, the
left-hand expressions use (@"0000-@"00FF). This
works only because dependent vowels always follow
consonants. Nevertheless it is not very elegant, and
this code will return to non-existence as soon as µ-
engines are available.

hindi-cuni2font3.otp This very short file (25
lines), deals with the final virama and with some
special cases of clusters: combinations of various
consonants and consonant “ra.” The final virama
is used in Sanskrit only (according to Velthuis’ con-
vention) and has to be dealt with separately because
in our OTP system we have used the (regular) vi-
rama as a marker of consonants inside consonantic
clusters. If we had used a “regular” virama also at
the end of the word, then we would obtain conso-
nantic clusters with only half-forms of consonants
and no full-form at the end. Instead, we have used
a fake Unicode character (@"097F) for the final vi-
rama and are replacing it by its TEX code only at
the very last step, as follows:
(@"0000-@"00FF) @"097F => "\qq{" \1 "}";

It can happen that the last consonant, although
it has no vowel, carries a special sign because the
consonantic cluster starts with consonant “ra;” to
handle that case we have two extra lines:
(@"0000-@"00FF) @"097E @"097F => "\qq{"

\1 "}\llap{\clearocplists\char13}" ;

(@"0000-@"00FF) @"097F @"097E => "\qq{"

\1 "}\llap{\clearocplists\char13}" ;

which send the two combinations of fake Unicode
characters to the same TEX code producing both
the “ra” mark and the virama.

Finally there is a line replacing the fake Unicode
character @"097D used to temporarily stand for the
soft hyphen, with the adequate \discretionary:
@"097D => "\discretionary{\hyph}{}{}" ;

If the user does not wish hyphenation, he/she
can replace this line by a simpler one, which will
“absorb” all @"097D characters:
@"097D => "" ;

Conclusion

The purpose of the previous sections was to illus-
trate the processing of a given script (Devanāgar̄ı)
by Omega Translation Processes. Omega 2 will
make these even more efficient since code used to
center diacritics under consonants will be replaced
by µ-engines. We believe that these methods can be
applied to other Indic scripts. Furthermore the fact
of having three kinds of files:

1. OTPs for converting input transcription into
Unicode;

2. OTPs for handling contextual analysis of Indic
scripts;

3. OTPs for converting real or fake Unicode char-
acters into glyphs for a given font,

make this system easily adaptable to any combina-
tion of input method and font.

We invite Omega users around the world to
write the necessary code and make it available to
other through CTAN servers. We hope that these
tools will make processing of Indic languages easier
and more efficient and will allow production of high
quality documents.

Availability and Thanks

All resources described in this document are free
software and are available on CTAN. The OTP and
macro files described in this paper can be found on
CTAN in language/devanagari/omega

We invite users writing software for Omega
typesetting of Indic languages into similar omega di-
rectories inside the corresponding Indic language di-
rectories.

The authors would like to thank Anish Mehta
and Gagan Sharma, stagiaires at ENST Bretagne at
the time this paper was written, for their valuable
help.

Figure 1 on page 55 reproduced by kind per-
mission of the Unicode Consortium.

54 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

Low-level Devanāgar̄ı Support for Omega— Adapting devnag

The Unicode Standard 3.0, Copyright © 1991-2000, Unicode, Inc. All rights reserved 401

097FDevanagari0900

090 091 092 093 094 095 096 097

��

��

��

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

�9

:

�;

�<

�=

�>

�?

�@

�A

�B

�C

�D

�E

�F

�G

�H

�I

�J

K

�L

�M

�N

�O

P

Q

R

S

T

U

V

W

X

Y

�Z

�[

\

]

^

_

`

a

b

c

d

e

f

g

h

0901

0902

0903

0905

0906

0907

0908

0909

090A

090B

090C

090D

090E

090F

0910

0911

0912

0913

0914

0915

0916

0917

0918

0919

091A

091B

091C

091D

091E

091F

0920

0921

0922

0923

0924

0925

0926

0927

0928

0929

092A

092B

092C

092D

092E

092F

0930

0931

0932

0933

0934

0935

0936

0937

0938

0939

093C

093D

093E

093F

0940

0941

0942

0943

0944

0945

0946

0947

0948

0949

094A

094B

094C

094D

0950

0951

0952

0953

0954

0958

0959

095A

095B

095C

095D

095E

095F

0960

0961

0962

0963

0964

0965

0966

0967

0968

0969

096A

096B

096C

096D

096E

096F

0970

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Figure 1: Unicode Table for Devanāgar̄ı Script

Reproduced by permission of the Unicode Consortium

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 55

Yannis Haralambous and John Plaice

Vowels

a a — aa, A aA A i i E ii, I I F
u u ` uu, U U ´ .r ff ˆ .R ” ‹
.l ‰ ffl .L ı | e e ˜ ai ẽ {

o ao o au aO O aM a\ \ aH a, ,

Consonants

ka k kha K ga g gha G "na R
ca c cha C ja j jha J ~na

.ta V .tha W .da X .dha Y .na Z
ta t tha T da d dha D na n
pa p pha P ba b bha B ma m

Semi-Vowels

ya y ra r la l va v

Sibilants

"sa f .sa q sa s

Aspirate

ha h

Supplementary Consonants

qa * .kh, .K ˛ .ga ¸ za) Ra w Rha x fa ’ La ›

Numerals

0 0 1 1 2 2 3 3 4 4
5 5 6 6 7 7 8 8 9 9

Special Characters

.o : AUM .m, M – anusvāra / candrabindu .h, H , visarga

.a _ avagraha @ continuation * – elliptical dot ~r fl Marathi ra

~a ¨ English a ~o aÄ English o | . dan. d. ā .. » period

Table 1: The Velthuis Transliteration Scheme

56 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

