
HAL Id: hal-02111964
https://hal.science/hal-02111964

Submitted on 8 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foreword
Yannis Haralambous

To cite this version:
Yannis Haralambous. Foreword. Digital Typography Using LaTeX, Springer, 2003, 978-0-387-95217-8.
�hal-02111964�

https://hal.science/hal-02111964
https://hal.archives-ouvertes.fr


Foreword
by
Yannis Haralambous

This book explores a great number of concepts, methods, technologies, and tools–in one
word resources–that apply to various domains of typesetting. These resources have been
developed and are used by the members of a very special community of people, which is
also a community of very special people: the TEX community. To understand the mo-
tivation that led these special people to develop and use these resources, I believe it is
necessary to make a short flashback. Since it is true that the past (uniquely?) determines
the present and the future, I decided to divide this foreword into three parts: The Past, The
Present, and The Future.

At this point, I am asking the readers to excuse my tendency of sometimes becoming
autobiographic. This is very hard to avoid when talking about people and events impor-
tant to one’s life, and, after all, avoiding it could mean betraying the subject I would like
to talk about.

The Past
Back in the eighties, when I started working on my Ph.D. thesis, people in my Department
(the Math Department, University of Lille, France) were using a piece of software called
“ChiWriter”. This DOS program produced a very ugly low-resolution output of text and
mathematical formulas. Others prefered to use IBM’s Selectric II typewriter machines,
spending hours and hours switching balls between Roman, Italic and Symbol characters.
Then came the day when the department finally bought a Macintosh Plus (with 1 Mb of
RAM and a 20 Mb external hard drive!) and installed Textures (a Macintosh implementa-
tion of TEX) on it. That day, my thesis advisor gave me a photocopy of the TEXbook, which
I spent the whole night reading.

The last appendix chapter of that book was called “Joining the TEX community” and
talked aboutTUG(theTEXUsersGroup),TUGboat (thenewsletter ofTUG) and soon. But
the reader must realize that at that time things were quite different from today: computers
were of course unfriendly, expensive, and slow, but the main difference was that there
was as yet no Internet. Without the Internet, distances were more real than today, and
for people like me who had not yet traveled to the States, places such as “Stanford” or
“Princeton” were infinitely far away and seemed to exist only for the privileged few. This
is probably hard to understand today, but at that time, imagining the “TEX community”
for me was like seeing a Star Trek episode or an old Hollywood movie: it was about people
knowing and communicatingwith eachother and acting together, but in a totally different
place, time and context–there could de facto be no interaction between them and myself.

That was in 1986, and then cam the day when, during a stay at the Freie Universität
Berlin, two things happened: I met and became friends with Klaus Thull (one of the Euro-
pean TEX veterans), and I opened my first TUGboat. By a coincidence so strong that one
would be tempted to consider it as paranormal, the first TUGboat page I read was exactly
page 22 of volume 9 (1), namely the one containing Silvio Levy’s examples of Kazantzaki’s
text typeset in Silvio’s Computer Modern Greek. Here is a translation of that text, remi-
niscent of the storm in Beethoven’s sixth symphony:

“

1



At this moment I understand how heavy the mystery of confession is. Until
nownooneknowshowI spentmy twoyears atMountAthos. My friends think I
went there to seeByzantine icons, or because of a secret longing to live a bygone
era. And now, look, I feel embarrassed to speak.
Howshall I put it? I remember a late afternoon in the spring, whena stormover-
tookme as Iwas comingdown MountTaygetos, near Pentavli. Theewhirlwind
was so fierce I fell flat on the ground so I wouldn’t be blown off the mountain.
Lightning encircled me from everywhere and I closed my eyes to keep from
being blinded and waited, face down, on the bare earth. The whole towering
mountain shook and two fir trees next to me snapped in the middle and crashed
to the ground. I felt the thunderbolt’s brimstone in the air, and suddenly the del-
uge broke, the wind died down, and thick warm drops of rain struck the trees
and soil. It pelted the thyme, oregano, and sage, and they shook off their odors
and scented the whole earth.”

Goethe (and Beethoven) wanted to communicate “von Herzen zu Herzen”; well, this is
exactly what happened to me: altogether the marvelous inebriating contents of this text
whichi I had not read before, its appearance (which at that time I also found marvelous),
and its context were quite a shock. That same day, I was able to communicate with Silvio
(at that time still at Princeton), through e-mail. A few days later Klaus and I had written
our first joint TUGboat paper and submitted it to Barbara Beeton, again through e-mail.
Suddenly, there were no frontiers anymore: the TEX community was quite real, and a
new world opened in front of me. It is obvious that without traveling to Freie Universität
Berlin, without Klaus, without e-mail, without TUGboat, none of these would happen.

In the summer of 1990, just a month after I defended my Ph.D. thesis, Tereza (who
later became my wife) and I went to the TEX Users Group meeting in Cork, Ireland, and
we had the chance to meet there all those mythical people who made TEX—the pioneers of
the TEX community–except Donald Knuth himself, whom I met two years later, in Stock-
holm, in the pure Bergmanian atmosphere of the late Roswitha Graham’s house. The oc-
casion was the ceremony where Donald Knuth was conferred an honorary doctor’s degree
at the Kungl Tekniska Hö̈gskolan. Roswitha cashed in on that opportunity and organized
a small but very interesting Nordic TUG meeting.

In the late 1980s and early 1990s many wonderful things happened (to name only one:
the fall of the Berlin wall while Klaus spent the whole night cycling from East to West
Berlin and back). At the same time, using communication tools such as mailing lists and
ftp, the TEX community was able to communicate more and more and became wider and
more powerful.

But who were these people and where did they come from? The twenty-first century
reader should realize that in the 1980s and early 1990s, when Linux was in the mind of its
creator and GNU software was not widely known, public domain software did not have
the same degree of popularity and reputation as it has today. On the other hand, com-
puters and commercial software were horribly expensive. The psychology of computer
users was different as well: there was a tremendous psychological gap between “users”
and “programmers”; especially, Macintosh and Windows users would be shocked if they
had to type something that even vaguely looked like programming code, and writing TEX
was indeed “programming,” even if learning TEX was far more pleasant than learning,
for example, Fortran IV or 8086 Assembler–not to mention the frightening task of imple-
menting TEX on different platforms, which was, at that time, sometimes still unavoidable
for people who simply wanted to use TEX for their documents. In France, in the early
1980s, there were Ph.D.s written on the process of implementing TEX on specific plat-
forms!

It is not surprising that most members of the TEX community were students or sci-
entists from computer science, mathematics, or physics departments. Because they had a
reason touseTEX(writing their reports andpublications), andbecause theyhad themeans

2



to communicate with each other, many of them contributed to TEX by writing code, and
surprisingly enough, the TEX code that they wrote was very often not connected to the
subject of their studies and research. Some projects were linguistic (extending TEX’s ca-
pabilities to other languages and scripts), others typographical (facing the challenges of
book typesetting), others artistic, ludic, or educational. In fact, what happened was, on a
smaller scale, the same phenomenon as with Web pages some years later: students and sci-
entists suddenly had the possibility to include their private life and hobbies in their work
context and to share them with the community. The human dimension of TEX (and later
of the Web) was flexible enough to allow input from various areas of human activities and
interests. TUGboat was a wonderful mirror of that activity.

There was also the human needs of creativity and commitment: many TEX users wrote
some code for their own needs, realized that that code could be useful to others, extended
it and wrapped it into a nice package with documentation and examples, and finally com-
mited themselfs into supporting it. By doing that, others became interested and commu-
nicated with them to express gratitude and suggestions for further development, which
in turn resulted in reinforcing that commitment even more, and so on. Years before the
widespread use of the Internet, the TEX community was already what we call now avirtual
community, providing a positive and creative identity to people.

That identity was–and still is–one of the most charming aspects of TEX.

The Present
In the years that followed, the emergence of the Web brought big changes to the TEX
community and to the perception of TEX by computer users in general. Thanks to HTML,
it is quite natural today for everybody to be able to read and write “code.” On the other
hand, Adobe’s PDF file format has bridged the gap between TEX output and electronic
documents (and there is indeed a version of TEX producing PDF output directly). DVI
was defined as a “device-independent” and “typographically correct” file format: it was
abstract enough to be usable on any platform and at the same time precise enough to be
able to describe a printed page without loss of information. This was, more or less, also
the case for the PDF format, which has the enormous advantage of being self-contained
in the sense that it contains all resources (images, fonts, etc.) necessary for displaying and
printing the document.

Finally, thanks to Linux and GNU, public domain software is nowadays very well re-
puted, and, quite naturally, TEX is still part of every public domain operating system.That
iswhy it gainedpopularity among computer guruswhoused it to prepare their documents
with other tools.

For every new TEX user, the contact with the TEX community (which has been such
a big deal for me) has become instantaneous, since nowadays almost everybody is con-
nected to theWeb. TEXcode canbedistributed to thewhole community–and this includes
people in places unimaginable ten years ago–in a few minutes or hours. Even better, col-
laborative development tools such as sourceforge.net allowpeople towork simultaneously
on an arbitrary number of different versions of the same software, however extensive and
complicated this software may be.

The Web was very profitable for TEX for a number of reasons. Besides providing the
TEX community with the means to be a true virtual community, it also made the principle
of the dual nature of a document (source code versus compiled result) to become com-
pletely natural: when you write HTML code and preview it in your browser, you see two
different representations of the same document. In other words, the “WYSIWYG” princi-
ple (which in the 1980s was quite an annoyance to TEX) has, at last, lost its supremacy.

Also, thanks to the Web and to political changes, there are no frontiers anymore, and
standards such as Unicode have emerged to allow communication in all languages. TEX
has always been a pioneer in multilingual typesetting, a feature that becomes more and

3



more important today. As we will see in a while, a successor to TEX is one of the few (if
not the only) software packages nowadays allowing true multilingual typesetting.

But are all things really well in the best of all possible worlds?
Talking of free software, let us return to one of the biggest achievements in the public

domain, namely the Linux operating system, developed by hundreds of people all around
the world. The obvious question to ask is: can TEX be compared to Linux? Unfortunately
not, for several reasons.

First of all, is the absence of a Linus Torvalds for TEX: in fact, the author of TEX, Donald
Knuth, one of the biggest computer scientists of the twentieth century and indeed a fab-
ulous person with interests far beyond computer science, unfortunately decided to stop
working on TEX once a certain number of goals were achieved. This happened in 1992,
when version 3 of TEX was released. New versions after that were just bug fix releases.
There are some small groups of people working on specific TEX-related projects (such as
the LATEX group, the Ω group, the NTS group, etc.) and some institutions maintaining
specific TEX packages (such as the AMS). But outside of these, there is no coordination of
the individual programming efforts.

Secondly, the goal to be reached in further developing TEX is not quite clear. TEX is a
program dedicated to typography, a craft that very few people actually have studied, some
people have learned by themselves–mainly by actually making books–and most people
are generally unaware of. To continue our comparison with Linux, the latter is an oper-
ating system and hence deals with the global use of the computer: it is easy to imagine
improvements, and if you lack imagination, you can always look into commercial operat-
ing systems to get ideas. TEX is the only piece of software dedicated to typography, and
it does a very good job. Some people even believe that TEX is already perfect and hence
there is no need for further improvement. But what is the ultimate goal of TEX, its raison
d’être?

For years now, pessimists have been predicting TEX’s extinction, but TEX is still alive
and kicking! Maybe the most important reason for that is that TEX bridges the gap be-
tween the cultural heritage of the precomputer era and us today. Typography is both
a craft and an art 500 years old, and Donald Knuth actually learned it and encoded his
knowledge to TEX so that TEX is a “typographer-in-your-machine.” Using just standard
LATEX, people unaware of typography can produce decent documents by including in their
text some markup reminiscent of XML. With a little more effort, and using a little more
than standard LATEX, people aware of typography can produce brilliant documents. This
degree of proficiency at attaining the sublime is cruelly missing from contemporary com-
mercial software where the goal is not really commitment to our cultural heritage. TEX is
a craftsman’s tool like in the good old days: using such a tool, a novice can produce decent
results and a master can make works of art. And, as always with Donald Knuth, a work of
art in the context of TEX is both beautiful typesetting and efficient programming.

This bookpresents someof the achievements of theTEXcommunity in the last twodecades.
For reasons inherent to the TEX users community, the tools presented are of various de-
grees of quality, efficiency and compatibility. There are so many tools (or packages, in
LATEX parlance) available from the Comprehensive TEX Archive Network that there are
strong chances you will find a package for any of your potential needs.

But how efficient will that package be, or how compatible with other packages written
by other authors? This is an important question because improvements or resolutions of
conflicts require a good knowledge of LATEX. Often, there is a high level of support by the
author of the package. But what happens when the author is hard to reach, or even un-
known? Others in the TEX community may help you, but, as always in the public domain,
there is no guarantee that you will get the help you need precisely when you need it.

This situation may seem frightening to people who expect absolute efficiency and im-
mediate compatibility from software they use. There is a working scheme that is better

4



fit to TEX and LATEX, namely that of small groups of people sharing the same computer
resources and being assisted by a “system administrator” (or “guru”). The “guru” is sup-
posed to know TEX and LATEX sufficiently well and to have the necessary time and energy
to solve problems for the rest of the group, which can then smoothly use the software. Un-
fortunately, this organizational scheme does not fit individual personal computer users,
who have to be simultaneously users and administrators.

So,how does one deal with problems in LATEX packages? Well, experience shows that
if you are a convinced LATEX/TEX user, then you always manage to get by the problems,
either by searching in literature (and books such as this one are very important for that
very reason) by diving into the code and trying to “make it work,” or, finally, by contacting
other members in the community, even if the developers of the package are unreachable.
A combination of these three methods actually works best. What is important is to realize
that you are extremely lucky tobe able todo all three: youhave valuable books (such as this
one and others), you can indeed dive into the code since it is open and freely distributed,
and you can indeed contact others since there is a virtual–and furthermore friendly and
united–community. Commercial software does not offer these opportunities.

The reader may have noticed that this book often mentions Ω and Λ. Where do these mys-
terious names come from and how do they fit in the “TEX and friends” context?

Ω, one of the major current TEX projects, is an effort by two people (John Plaice and
myself) to develop a successor to TEX. It started two years after Donald Knuth’s decision
to freeze TEX. The philosophy of Ω is to take TEX as a starting point and to progressively
add techniques and tools allowing the resolution of specific typesetting problems one at a
time. The first major goal was to achieve typesetting in all languages of the world in the
most natural and efficient way. In particular, one of the tasks that Ω seeks to accomplish
is Unicode compliance (as explained in the book, Unicode is a standard 21-bit encoding
for information interchange).

But Ω has other goals as well and is in fact an open platform for enhancements and
additions to TEX. The name Ω has been chosen because traditionally the last letter of the
Greek alphabet stands for ultimacy, “the ultimate tool,” and also probably because 50% of
Ω’s development team is Greek. Finally, because choosing a Greek letter as the invariable
and nontranslatable name and logo of a program is an additional argument for using the
Unicode encoding (just as the fact of lowering the letter ‘E’ in the TEX logo was a very
clever way to show the absolute need of using TEX to typeset even its own name).

Contrarily to Ω, which is existing, and quite extensive software, Λ is just a nickname, a
kind of parody of the LATEX name: In fact, the “La” in LATEX comes from “Lamport”, as in
Leslie Lamport, the author of pre-1992 LATEX. The word “Lambda” also starts with “La”,
but has no relationship whatsoever with “Lamport” and is a Greek letter just like “Omega.”
Λ stands (as explained in this book) for the current LATEX (an achievement of the LATEX
team, headed by Frank Mittelbach) when used in conjunction with the Ω engine.

It is quite probable that future versions of LATEX (for instance, version 3) will either
be entirely written for Ω or at least have parts dedicated to Ω, in which case the Λ nick-
name will be useless. Also, due to the fact that the greatest part of Ω resources has not yet
been released publicly, and that the Ω team still has to make a certain number of impor-
tant global decisions, some information on Ω contained in this book may undergo minor
changes in the future. In particular, there is (at the time this text is being written in March
2002) still no standard user-level LATEX interface for Ω. Nevertheless, the basics of Ω will
not change, and this book has the merit of being the first one to describe some of the very
fundamental aspects of Ω, such as Ω translation processes, Ω virtual property lists, and so
on and to illustrate them by examples.

5



The Future
The “future of TEX” (including the question of whether there is a future for it at all) has
been a popular discussion subject for years in the TEX community. In fact, TEX is the sum
of a big variety of different things, and for each one of them one can more or less predict
its destiny, but one can hardly do this for the sum of them.

For example, TEX is both a programming language and a program (a “compiler” for
that language): one could imagine that the program survives (for example as a typeset-
ting or “rendering” engine inside a bigger system, and rumors circulate that this is already
the case in Adobe InDesign); on the other hand, one could imagine Ω or some other suc-
cessor to TEX becoming more and more different from TEX but–for reasons of upward
compatibility–keeping the same programming language for input.

Besides being a programming language and a program, TEX is also a popular notation
for mathematical formulas: mathematicians worldwide use TEX notation when writing
formulas in, for example, e-mail messages: x^2 + y^2 < 1 with or without dollars is a nat-
ural choice for expressing the formula x2 + y2 < 1 in a text-only context. For writing
mathematical formulas, TEX is exhaustive, clear, unambiguous, and short enough–all of
the qualities of a good notation.

In recent years, the computer industry has become more and more involved in typeset-
ting engine projects: the context in which source code of some kind has to produce more
or less rigid formatted output becomes more and more important. After the first enthu-
siastic years of explosion of the Web, people realized that HTML (even combined with
CCS) was definitely not sufficient for formatting documents. XML provided the neces-
sary standard for structuring documents in an arbitrarily fine way, but still there was no
“standard” way to represent an XML document. In October 2001, a new standard filled that
gap: XSL-FO. The tools provided by XSL-FO for formatting documents are a quite seri-
ous challenge, and a new generation of XSL-FO-compliant typesetting engines is slowly
emerging.

More generally, the current trend is to use XML as the basis of every kind of file format.
For example, the SVG standard is, in some sense, an “XML-ized version of PostScript.”
One could very well imagine all file formats involved in TEX becoming XML-compliant:
the input file could be pure XML “processing instructions” for including code in the TEX
language theDVI file format could be replacedbySVG, the fontmetrics could be expressed
in XML, illustrations could be in SVG instead of EPS, and so on. In that case, TEX (or Ω, or
some other successor to TEX) would simply transform one XML document into another
one. The fact that XML document transformation is nowadays an increasingly popular
and important concept is by no means a coincidence.

Another areawhereΩcanbe applied to revolutionize the electronic document is that of
adaptive documents. A research project in that area deals with vario-documents, namely
documents that contain a big number of page descriptions and display the right one ac-
cording to context parameters, just as HTML browsers reflow text when their display
window is resized. Only here each page description of the document has been compiled
in advance by a “super-Ω,” always with the same high typesetting quality standards.

Yet another area of drastic improvement of Ω’s capabilities would be an on-the-fly in-
teraction between typesetting and dynamic fonts. Already, in VectorTEX (a commercial
TEX for Windows platform), Dimitri Vulis has included METAFONT capabilities into
TEX. By using more modern font formats, such as OpenType, one could obtain a dia-
log between the font and TEX’s typesetting engine so that each one instructs the other on
constraints and context parameters and so that the final result is optimal for both.

There is also the more global, operating system-oriented point of view: Ω could very
well become a server, and arbitrary client applications could send requests with text ex-
tracts and macros or parameters and receive in return small parts of page descriptions.

All of these “mutation” scenarios could be compared with the common skeleton of
many science-fiction stories, where humans mutate to become less and less organic. Usu-

6



ally sci-fi authors want to express the fact that despite and beyond the changes of the hu-
man body (including an artificial brain), a core of humanity will always emerge as a fun-
damental quality of mankind. This is exactly the case for TEX: I am convinced that how-
ever drastically TEX (and its successors) will change in the future, its fundamental quality,
which is the love of one man–and not just any man!—for good typography and good pro-
gramming will always prevail and will always be the ultimate guarantee for the survival
of this magnificent tool.

If this book succeeds in transmitting the fundamentally human quality of TEX and its
successors, due to the love, sweat, and tears of Don Knuth and the hundreds of members
of the active TEX community, then it will have reached its goal. I sincerely hope it does.

Yannis Haralambous
Brest, France

*
March, 2002

7


