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Abstract: This study investigated to which extent the primary auditory cortex of young normal-
hearing and mild hearing-impaired aged animals is able to maintain invariant
representation of critical temporal-modulation features when sounds are submitted to
degradations of fine spectro-temporal acoustic details. This was achieved by recording
ensemble of cortical responses to conspecific vocalizations in guinea pigs with either
normal hearing or mild age-related sensorineural hearing loss. The vocalizations were
degraded using a tone vocoder. The neuronal responses and their discrimination
capacities (estimated by mutual information) were analyzed at single recording and
population levels. For normal-hearing animals, the neuronal responses decreased as a
function of the number of the vocoder frequency bands, so did their discriminative
capacities at the single recording level. However, small neuronal populations were
found to be robust to the degradations induced by the vocoder. Similar robustness was
obtained when broadband noise was added to exacerbate further the spectro-temporal
distortions produced by the vocoder. A comparable pattern of robustness to
degradations in fine spectro-temporal details was found for hearing-impaired animals.
However, the latter showed an overall decrease in neuronal discrimination capacities
between vocalizations in noisy conditions. Consistent with previous studies, these
results demonstrate that the primary auditory cortex maintains robust neural
representation of temporal envelope features for communication sounds under a large
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range of spectro-temporal degradations.
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individuals in the two groups - is this the case? If so, and ABR was indeed part of the 
separating into groups then that criteria should be specified. I would guess that in 
practice they split the groups on age, and there was a group difference in the ABRs. That 
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confound of hearing loss age  - which needs discussing. 
  
If there IS any overlap in the ABRs then it would be interesting if there were guinea-pigs 
of different ages with similar audiograms.  
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as supplementary material. 
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Abstract 

This study investigated to which extent the primary auditory cortex of young normal-hearing and 

mild hearing-impaired aged animals is able to maintain invariant representation of critical temporal-

modulation features when sounds are submitted to degradations of fine spectro-temporal acoustic 

details. This was achieved by recording ensemble of cortical responses to conspecific vocalizations in 

guinea pigs with either normal hearing or mild age-related sensorineural hearing loss. The 

vocalizations were degraded using a tone vocoder. The neuronal responses and their discrimination 

capacities (estimated by mutual information) were analyzed at single recording and population 

levels. For normal-hearing animals, the neuronal responses decreased as a function of the number of 

the vocoder frequency bands, so did their discriminative capacities at the single recording level. 

However, small neuronal populations were found to be robust to the degradations induced by the 

vocoder. Similar robustness was obtained when broadband noise was added to exacerbate further 

the spectro-temporal distortions produced by the vocoder. A comparable pattern of robustness to 

degradations in fine spectro-temporal details was found for hearing-impaired animals. However, the 

latter showed an overall decrease in neuronal discrimination capacities between vocalizations in 

noisy conditions. Consistent with previous studies, these results demonstrate that the primary 

auditory cortex maintains robust neural representation of temporal envelope features for 

communication sounds under a large range of spectro-temporal degradations. 

 

Key words: vocoder, envelope, fine structure, electrophysiology, auditory cortex, neural 
discrimination performance, spike-timing.  
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Introduction 

Over the last few decades, a wealth of psychophysical studies conducted with young and 

older normal-hearing and hearing-impaired human subjects have explored the mechanisms of robust 

speech perception, that is the ability to maintain high levels of speech recognition despite sometimes 

dramatic degradations of the speech signal caused by interfering sound sources such as noise, 

reverberation, or distortions caused by the transmission channel (e.g., the speech processor of a 

cochlear implant). Research efforts have mostly concentrated on the search for the spectro-temporal 

acoustic cues used by human subjects, and the neural codes responsible for maintaining invariant 

neural representations of the speech signal. A large part of this investigation was achieved using 

vocoders (Dudley 1939), that is signal-processing devices designed to degrade selectively specific 

acoustic features of the speech signal (e.g., Drullman 1995; Shannon et al. 1995; Friesen et al. 2001; 

Smith et al. 2002; Nelson et al. 2003; Baskent 2006; Zeng et al. 2005; Lorenzi et al. 2006; Sheft et al. 

2008; for a recent review, see Shamma and Lorenzi 2013). 

Vocoders decompose incoming sounds into frequency bands mimicking the spectral 

decomposition performed by the cochlea. The resulting bandpass filtered signals are - in turn - 

decomposed into a temporal-envelope component (i.e., an amplitude modulator, AM) and a 

temporal-fine-structure component (i.e., a frequency-modulated (FM) sinusoid). For each band, the 

temporal-fine-structure component is degraded (by replacing it by a pure tone or a band of noise) 

and then amplitude modulated by the corresponding (intact or modified) temporal-envelope 

component. The resulting AM carriers are finally added up and presented for discrimination or 

identification to human subjects. 

Overall, these behavioral studies showed repeatedly that relatively slow (< 16 Hz) AM cues 

within a limited number of frequency bands (4 to 8) yield nearly perfect speech identification 

performance in quiet (e.g., Drullman 1995; Shannon et al. 1995; Smith et al. 2002). However, faster 

AM cues, FM cues and fine spectral cues were shown to be required for accurate speech 

identification in steady or fluctuating noise, when speech is presented against a competing speech 

signal or when speech is temporally interrupted (e.g., Friesen et al. 2001; Gnansia et al. 2009, 2010; 

Zeng et al. 2005). These findings have been interpreted as indicating that AM cues (the temporal 

envelope) convey important phonetic information (that is, timbre information) whereas FM and fine 

spectral cues (the acoustic fine structure) convey “grouping” or “segregation” cues, that is cues used 

to separate speech from interfering sound sources and integrate partial speech information (e.g., 

Gnansia et al. 2010; Apoux and Healy 2011; Apoux et al. 2013). One possibility to provide evidence 

for the relative roles of AM cues, FM cues and fine spectral cues in speech intelligibility can be to 
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obtain neural data in conditions where some of these cues are present (AM cues) while others are 

absent (FM cues). As a first attempt, the primary auditory cortex, where neurons are more sensitive 

to slow than to fast AM modulations (Liegeois-Chauvel et al. 2004), appears to be a structure which 

deserves in-depth investigation. 

Very few studies have evaluated the neuronal responses to vocoded stimuli either in human 

or in animal. In human, magnetoencephalographic data indicate that the cortical entrainment is 

robust to natural and vocoded stimuli (up to 4 spectral channels) but it is largely reduced when 

vocoded stimuli are presented in background noise (Ding et al. 2014). In animals, only three 

electrophysiological studies have assessed the neural responses to vocoded speech or animal 

vocalizations (Nagarajan et al. 2002; Ranasinghe et al. 2012; Ter-Mikaelian et al. 2013). Altogether, 

these three studies found that temporal patterns of auditory cortical responses are extremely robust 

to reduction in the number of frequency bands, suggesting that the temporal code plays a critical 

role in the robust representation of communication signals cues. For instance, Nagarajan et al. (2002) 

found that patterns of neural discharges did not differ considerably as a function of number of 

frequency bands when the number of bands was varied between 2 and 16. 

Elderly persons often experience important difficulties understanding speech in adverse 

listening situations (e.g., Duquesnoy and Plomp 1980; Takahashi and Bacon 1992), sometimes in the 

absence of elevated audiometric thresholds (for recent reviews, see Füllgrabe et al. 2014; Schoof and 

Rosen 2014). One possible explanation for this is that aging per se alters supra-threshold auditory 

processing (for a review, see Fitzgibbons and Gordon-Salant 2010). Consistent with this idea, older 

listeners showed deficits in using complex AM patterns to identify speech accurately (Souza and Kitch 

2001; Souza and Boike 2006; Schvartz et al. 2008; Sheldon et al. 2008). However, in contrast with 

these studies, recent work by Schoof and Rosen (2014) and by Paraouty and Lorenzi (2017) did not 

find any effect of aging on AM sensitivity. Moreover, additional studies have found that sensitivity to 

FM cues (He et al. 2007; Grose and Mamo 2012; Wallaert et al. 2016) and binaural temporal fine 

structure cues decline with increasing age (Ross et al. 2007; Grose and Mamo 2010; Hopkins and 

Moore 2011; Moore et al. 2012a,b; Füllgrabe 2013; King et al. 2014; for a review, see Grose et al. 

2015). On the other hand, several studies indicate that frequency selectivity does not change with 

age provided that audiometric thresholds remain normal (Lutman et al. 1991; Peters et al. 1992; 

Hopkins and Moore 2011). These findings are consistent with neurophysiological data suggesting 

that aging impairs the processing of neural envelope (Frisina and Frisina 1997; Walton et al. 1998) 

and temporal fine structure information (Ross et al. 2007; Clinard et al. 2010) in the auditory 

midbrain and cortex. However, this is at odds with the higher and more precise MEG responses 

obtained in mild age-related hearing loss human subjects (Presacco et al. 2016; Alain et al. 2014), and 
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also with the relatively subtle effects of aging on the spectral and temporal tuning characteristics of 

the cortical neurons of macaques (Engle and Recanzone 2013; Overton and Recanzone 2016). 

 Here, we investigated the cortical representation of unprocessed and vocoded conspecific 

vocalizations in young guinea pigs with normal hearing (NH) and older guinea pigs exhibiting mild 

age-related hearing loss (mARHL). Neuronal responses were recorded in the primary auditory cortex 

(ACx) of these guinea pigs during presentation of whistles (the alarm call for this species) left as such 

(unprocessed) or processed via a tone-excited vocoder using 10, 20 or 38 frequency bands. We opted 

for a tone vocoder rather than a noise vocoder because the latter strongly distort the signal's 

temporal envelope characteristics (Whitmall et al. 2007) and noise carriers introduce (non-

informative) random envelope fluctuations interfering with signal envelopes (Stone et al. 2011).  

The data showed that despite a large decrease in response strength, both the temporal reliability and 

the discrimination performance based on temporal spike patterns were relatively robust to the 

vocoding process. Importantly, this held true irrespective of age and presence of mild hearing loss. 

Still, discrimination performance was more affected for mARHL than for NH animals when 

background noise (added after the spectral degradation) was added to the vocoded stimuli. These 

data may provide neurophysiological bases for the difficulties in understanding speech in adverse 

listening situations typically reported by elderly people. 
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Materials and Methods 

Subjects 

These experiments were performed under the national license A-91-557 (project 2014-25, 

authorization 05202.02) and using the procedures N° 32-2011 and 34-2012 validated by the Ethic 

committee N°59 (CEEA Paris Centre et Sud). All surgical procedures were performed in accordance 

with the guidelines established by the European Communities Council Directive (2010/63/EU Council 

Directive Decree). 

Recordings were obtained in the primary ACx of 16 adult pigmented guinea pigs aged 6 months to 2 

years old. Animals weighting from 450 g to 1230 g came from our own colony housed in a humidity 

(50-55%) and temperature (22-24° C)-controlled facility on a 12 h/12 h light/dark cycle (light on at 

7:30 A.M.) with free access to food and water. None of the animals used here have been exposed to 

noise, except for the noise inherent to the colony room (air conditioning and the animals’ own 

vocalizations; level estimated to 60 dB SPL). 

Two to three days before each experiment, the animal’s audiogram was determined by testing 

auditory brainstem responses (ABR) under isoflurane anaesthesia (2.5 %) as described in Gourévitch 

et al. (2009). The ABR was obtained by differential recordings between two subdermal electrodes 

(SC25-NeuroService) placed at the vertex and behind the mastoid bone. A software (RTLab, Echodia, 

Clermont-Ferrand, France) allowed averaging 500 responses during the presentation of nine pure-

tone frequencies (between 0.5 and 32 kHz) delivered by a speaker (Knowles Electronics) placed in the 

animal right ear. The auditory threshold of each ABR is the lowest intensity where a small ABR wave 

can still be detected (usually wave III). For each frequency, the threshold was determined by 

gradually decreasing the sound intensity (from 80 dB down to -10 dB SPL). 

Based upon ABR and the age of animals, two groups of animals were separated: half of the animals 

(8/16), aged 6 to 9 months were considered to have a normal audiogram which did not differ from 

the one published in previous studies using young guinea pigs (Gourévitch et al. 2009; Gourévitch 

and Edeline 2011). The other half (aged of at least 2 years old) displayed mild, but significant 

(p<0.01), age-related hearing loss which was present across the entire audible bandwidth (the 

“hearing spectrum”) of the guinea pig (see the supplementary figure for more details).  

Surgical procedures 

The animal was anesthetized by an initial injection of urethane (1.2 g/kg, i.p.) supplemented by 

additional doses of urethane (0.5 g/kg, i.p.) when reflex movements were observed after pinching 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 7 

the hind paw (usually 2-4 times during the recording session). A single dose of atropine sulphate 

(0.06mg/kg, s.c.) was given to reduce bronchial secretions and a small dose of buprenorphine was 

administrated (0.05mg/kg, s.c.) as urethane has no antalgic properties. After placing the animal in a 

stereotaxic frame, a craniotomy was performed above the left temporal cortex. A local anesthetic 

(Xylocain 2%) was liberally injected in the wound. The opening was 8 mm wide starting at the 

intersection point between parietal and temporal bones and 8-10 mm height. The dura above the 

auditory cortex was removed under binocular control and the cerebrospinal fluid was drained 

through the cysterna to prevent the occurrence of oedema. After the surgery, a pedestal in dental 

acrylic cement was built to allow an atraumatic fixation of the animal’s head during the recording 

session. The stereotaxic frame supporting the animal was placed in a sound-attenuating chamber 

(IAC, model AC1). At the end of the recording session, a lethal dose of pentobarbital (>200 mg/kg, 

i.p.) was administered to the animal. 

Recording procedures 

Data were from multiunits recordings collected in the primary auditory cortex (area AI). Extracellular 

recordings were obtained from arrays of 16 tungsten electrodes (ø: 33 µm, <1 MΩ) composed of two 

rows of 8 electrodes separated by 1000 µm (350 µm between electrodes of the same row). A silver 

wire, used as ground, was inserted between the temporal bone and the dura matter on the 

contralateral side. The location of the primary auditory cortex was estimated based on the pattern of 

vasculature observed in previous studies (Edeline and Weinberger 1993; Manunta and Edeline 1999; 

Edeline et al. 2001; Wallace et al. 2000). The raw signal was amplified 10,000 times (TDT Medusa). It 

was then processed by an RX5 multichannel data acquisition system (TDT). The signal collected from 

each electrode was filtered (610-10000 Hz) to extract multi-unit activity (MUA). The trigger level was 

set for each electrode to select the largest action potentials from the signal. On-line and off-line 

examination of the waveforms suggests that the MUA collected here was made of action potentials 

generated by 2 to 6 neurons at the vicinity of the electrode. For each experiment, we set the position 

of the electrode array in such a way that the two rows of eight electrodes sample neurons 

responding from low to high frequency when progressing in the rostro-caudal direction (see 

examples of tonotopic gradients recorded with such arrays in Figure 1 of Gaucher et al. 2012 and in 

Figure 6A of Occelli et al. 2016).  

Acoustic stimuli 

Acoustic stimuli were generated in Matlab, transferred to a RP2.1-based sound delivery system (TDT) 

and sent to a Fostex speaker (FE87E). The speaker was placed at 2 cm from the guinea pig’s right ear, 
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a distance at which the speaker produced a flat spectrum (± 3 dB) between 140 Hz and 36 kHz. 

Calibration of the speaker was made using noise and pure tones recorded by a Bruel & Kjaer 

microphone 4133 coupled to a preamplifier B&K 2169 and a digital recorder Marantz PMD671.  

We first determined spectro-temporal receptive fields (STRFs) using 97 or 129 pure-tones 

frequencies scaled with a gamma function, covering six (0.14-9 kHz or 0.28-18 kHz or 0.56-36 kHz) or 

eight (0.14-36 kHz) octaves respectively, and presented at three levels: 85 or 75 dB, 65 or 55 dB, 45 

or 35 dB SPL. At a given level, each frequency was repeated eight times at a rate of 2.35 Hz in 

pseudorandom order. The duration of these tones over half-peak amplitude was 15 ms and the total 

duration of the tone was 50 ms, so there was no overlap between tones. A set of four conspecific 

vocalizations was used to assess the neuronal response to communication sounds. These 

vocalizations were recorded from animals of our colony. Pairs of animals were placed in the acoustic 

chamber and their vocalizations were recorded by a Bruel & Kjaer microphone 4133 coupled to a 

preamplifier B&K 2169 and a digital recorder Marantz PMD671. A large set of whistle calls was 

loaded in the Audition software (Adobe Audition 3) and four representative examples of whistle 

were selected. As shown in Figure 1A (bottom), despite the fact the maximal energy of the four 

selected whistle was in the same frequency range (typically between 4 and 26 kHz), they displayed 

marked differences in their spectrograms. In addition, their temporal envelopes clearly differed as 

shown on their oscillograms (figure 1A top). The four selected whistles were processed by three tone 

vocoders as previously described (Gnansia et al. 2009, 2010). The three vocoders only differed in 

terms of the number of bands used to decompose (i.e., filter) the whistles (38, 20 or 10 bands). In the 

following, the 38 bands are briefly presented, but the same applies for the 20-bands or the 10-bands 

vocoders. Each digitized signal was passed through a bank of 38 fourth-order Gammatones 

(Patterson 1987) filters with center frequencies uniformly spaced along a Guinea-Pig adapted ERB 

(Equivalent Rectangular Bandwidth) scale (Sayles and Winter 2010) ranging from 50 to 35505 Hz. In 

each frequency band, the temporal envelope was extracted using full-wave rectification and lowpass 

filtering at 64 Hz with a zero-phase, sixth-order Butterworth filter. The resulting envelopes were used 

to amplitude modulate sine-wave carriers with frequencies at the center frequency of the 

Gammatone filters, and with random starting phase. Impulse responses were peak-aligned for the 

envelope (using a group delay of 16 ms) and the temporal fine structure across frequency channels 

(Hohmann 2002). The modulated signals were finally weighted and summed over the 38 frequency 

bands. The weighting compensated for imperfect superposition of the bands’ impulse responses at 

the desired group delay. The weights were optimized numerically to achieve a flat frequency 

response (Hohmann 2002). Figure 1 displays the waveforms (first row) and the spectrograms (second 

row) of the four whistles together with the spectrograms of the 38-bands vocoded (third row), the 

20-bands vocoded (fourth row) and the 10-bands vocoded (fifth row) whistles. In the following 
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figures, the unprocessed whistles will be referred as to the original, and the vocoded versions as to 

Voc38 (Voc20, Voc10 respectively) for the 38-bands (20-bands, 10-bands respectively) vocoded 

whistles. It is important to note that the broadband noise added to the stimuli was not processed 

through the vocoder. Broadband noise was added to the vocoded vocalizations, that is after 

vocoding. Our aim was to introduce additional spectro-temporal distortions and degrade further the 

acoustic differences between vocalizations. Last, in contrast to previous cortical studies that all have 

used noise-vocoders (Nagarajan et al. 2002; Ranasinghe et al. 2012; Ter-Mikaelian et al. 2013), a tone 

vocoder was used here, because noise vocoders were found to introduce random (non-informative) 

intrinsic temporal-envelope fluctuations distorting the signal’s AM features (Stone et al. 2011; 

Shamma and Lorenzi 2013).  

Experimental protocol 

Inserting an array of 16 electrodes in the cortical tissue almost systematically induces a deformation 

of the cortex. A 30-minutes recovering time lap was allowed for the cortex to return to its initial 

shape, then the array was slowly lowered. Tests based on measures of spectro-temporal receptive 

fields (STRFs) were used to assess the quality of our recordings and to adjust electrodes’ depth. The 

recording depth was 500-1000 µm, which corresponds to layer III and the upper part of layer IV 

according to Wallace and Palmer (2008). However, as a result of the convex shape of the guinea-pig 

ACx, it is likely that all the electrodes were not exactly at the same depth. 

When a clear tuning was obtained for at least 8 of the 16 electrodes, the stability of the tuning was 

assessed: we required that the recorded neurons displayed at least three successive similar STRFs 

(each lasting 6 minutes) before starting the protocol. When the stability was satisfying, the protocol 

started by presenting the acoustic stimuli in the following order: We first presented the 4 whistles at 

75 dB SPL in their natural versions, followed by the vocoded versions with 38, 20 and 10 bands. The 

same set of whistle in their natural and vocoded versions were then presented in the presence of 

continuous white noise background set at 65 dB SPL (this white noise was added after the spectral 

degradation produced by the vocoding, and refreshed from trial to trial). In all cases, each 

vocalization was repeated 20 times. Presentation of this entire stimulus set lasted 30 minutes.  

Data analysis 

Quantification of responses to pure tones 

The STRFs derived from MUA were obtained by constructing post-stimulus time histograms for each 

frequency with 1 ms time bins. The firing rate evoked by each frequency was quantified by summing 

all the action potentials from the tone onset up to 100 ms after this onset. Thus, STRFs are matrices 
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of 100 bins in abscissa (time) multiplied by 97 or 129 bins in ordinate (frequency). All STRFs were 

smoothed with a uniform 5x5 bin window.  

For each STRF, the Best Frequency (BF) was defined as the frequency where the highest firing rate 

was recorded. Peaks of significant response were automatically identified using the following 

procedure: A positive peak in the MU-based STRF was defined as a contour of firing rate above the 

average level of the baseline activity (estimated from the ten first milliseconds of STRFs at all 

intensity levels) plus six times the standard deviation of the baseline activity. For each electrode, to 

determine the Q20dB and Q40dB, we estimated the lowest intensity for which significant STRFs were 

observed. At this intensity, the BF was considered to be the Characteristic Frequency (CF). At 20 dB 

and 40 dB above this intensity, the low and high frequency limits of the STRFs were determined to 

compute the Q20dB and Q40dB. 

The upper and lower frequency bounds of the STRF were also used to count the number of 

frequency bands of the vocoding stimuli that were falling within the STRF. For this analysis, only the 

10-bands vocoder was considered. The possible values ranged from 0 to 4 bands falling into the 

neurons’ STRF. 

Quantification of responses evoked by vocalizations 

The responses to vocalizations were quantified using two parameters: (i) The firing rate of the 

evoked response, which corresponds to the total number of action potentials occurring during the 

presentation of the stimulus, divided by its duration; (ii) the spike-timing reliability coefficient 

(CorrCoef) which quantifies the trial-to-trial reliability of the response. This index was computed for 

each vocalization: it corresponds to the normalized covariance between each pair of spike trains 

recorded at presentation of this vocalization and was calculated as follows:  

 

where N is the number of trials and σxixj is the normalized covariance at zero lag between spike trains 

xi and xj where i and j are the trial numbers. Spike trains xi and xj were previously convolved with a 

10-msec width Gaussian window. Based upon computer simulations, we have previously shown that 

this CorrCoef index is not a function of the neurons’ firing rate (see Gaucher et al. 2013a). 

As in previous studies (e.g. Gaucher and Edeline 2015), we set up a criterion of an evoked firing rate 

of at least 1.5 spike.sec-1 and a CorrCoef of at least 0.15 to discard recordings that did not respond to 

any vocalization. A systematic and meticulous examination of our database has shown that 

recordings exhibiting only a phasic onset response generated a CorrCoef of at least 0.15, and that 

cells responding by tonic responses lacking of temporal organization generated at least a firing rate 
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of 1.5 spikes.sec-1. Only the recordings that matched this criterion for all four whistles in their original 

and vocoded versions were classified as “responsive” and were included in the present study.  

Quantification of mutual information from the responses to vocalizations.  

The method developed by Schnupp et al. (2006) was used to quantify the amount of information 

(Shannon 1948) contained in the responses to vocalizations obtained with natural and vocoded 

stimuli. This method allows quantifying how well the vocalization’s identity can be inferred from 

neuronal responses. Here, “neuronal responses” refers either to (i) the spike trains obtained from a 

small group of neurons below one electrode (for the computation of the individual Mutual 

Information, MI), or to (ii) a concatenation of spike trains simultaneously recorded under several 

electrodes (for the computation of the population MI). In both cases, the following computation 

steps were the same. Neuronal responses were represented using different time scales ranging from 

the duration of the whole response (firing rate) to a 1-ms precision (precise temporal patterns), 

which allows analyzing how much the spike timing contributes to the information. As this method is 

exhaustively described in Schnupp et al. (2006) and in Gaucher et al. (2013a), we present below the 

main principles only. 

The method relies on a pattern-recognition algorithm that is designed to “guess which stimulus 

evoked a particular response pattern” by going through the following steps: From all the responses 

of a cortical site to the different stimuli, a single response (test pattern) is extracted and represented 

as a PSTH with a given bin size (different sizes were considered as discussed further below). Then, a 

mean response pattern is computed from the remaining responses (training set) for each stimulus 

class. The test pattern is then assigned to the stimulus class of the closest mean response pattern. 

This operation is repeated for all the responses, generating a confusion matrix where each response 

is assigned to a given stimulus class. From this confusion matrix, the Mutual Information (MI) is given 

by Shannon’s formula:   

 

where x and y are the rows and columns of the confusion matrix, or in other words, the values taken 

by the random variables “presented stimulus class” and “assigned stimulus class”. 

In our case, we used responses to the 4 whistles and selected the first 264 ms of these responses to 

work on spike trains of exactly the same duration (the shortest whistle being 264-msec long). In a 

scenario where the responses do not carry information, the assignments of each response to a mean 

response pattern is equivalent to chance level (here 0.25 because we used 4 different stimuli and 

each stimulus was presented the same number of times) and the MI would be close to zero. In the 

opposite case, when responses are very different between stimulus classes and very similar within a 
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stimulus class, the confusion matrix would be diagonal and the mutual information would tend to 

log2(4) =2 bits. 

As already mentioned, this algorithm was applied with different bin sizes ranging from 264 ms to 1 

ms. For each cortical site, two parameters were extracted from this analysis. First, the value of MI for 

the largest bin size (264 ms) which represents the MI value when only the firing rate is considered 

(MIFiring Rate). Second, the MI value obtained for a bin of 8ms, MIPatterns, which is a temporal resolution 

leading to the highest values of information in previous studies (Schnupp et al. 2006; Huetz et al. 

2009). 

The MI estimates are subject to non-negligible positive sampling biases. Therefore, as in Schnupp et 

al. (2006), we estimated the expected size of this bias by calculating MI values for “shuffled” data, in 

which the response patterns were randomly reassigned to stimulus classes. The shuffling was 

repeated 100 times, resulting in 100 MI estimates of the bias (MIbias). These MIbias estimates are then 

used as estimators for the computation of the statistical significance of the MI estimate for the real 

(unshuffled) datasets: the real estimate is considered as significant if its value is statistically different 

from the distribution of MIbias shuffled estimates. Significant MI estimates were computed for MI 

calculated from neuronal responses under one electrode. 

The information carried out by a group of recording was estimated by the population MI (MIPopulation), 

using the same method as for the MIPatterns: responses of several simultaneous recordings were 

grouped together and considered as a single pattern. To assess the influence of the group size of 

simultaneous recordings on the information carried by that group (MIPopulation), the number of sites 

used for computing MIPopulation varied from 2 to the maximal possible size (which is equal to 16 minus 

the non-responsive sites). As the number of possible combinations could be extremely large (Cn
k, 

where k is the group size and n the number of responsive sites in a recording session), a threshold 

was fixed to spare computation time: when the number of possible combinations exceeded one 

hundred, 100 combinations were randomly chosen, and the mean of all combinations was taken as 

the MIPopulation for this group size. 

Since our electrode arrays can only achieve up to 16 simultaneous recordings (but often less than 12 

recordings responding to vocalizations), pseudo-populations (population of neurons which were not 

simultaneously recorded) were generated as described in the method developed by Ince et al (2013). 

Briefly, we sampled responsive recordings from our database to generate pseudo-populations of 2-

25 recordings and compute the MIpopulation for 500 random samplings. These values of MIpseudo-population 

were computed for the original and vocoded versions of the vocalizations (38, 20 and 10). 
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Statistics 

To assess the significance of the multiple comparisons (vocoding process: four levels; the groups of 

animals: NH vs. mARHL; two conditions: quiet vs. background noise), we used an analysis of variance 

(ANOVA) for multiple factors to analyze the whole data set. Follow-up tests were corrected for 

multiple comparisons using Bonferroni corrections and were considered as significant if their p value 

was below 0.05. All data are presented as mean values ± standard error (s.e.m.).  
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Results 

Initially, 880 stable multiunit recordings were obtained from sixteen guinea pigs tested with the 

original and vocoded whistles. Out of them, 581 recordings were classified as “responsive” (see 

Methods) and used in the subsequent analyses. As explained in the Methods, half of the animals 

(8/16, 6-9 months old) had normal audiograms (Figure 2A, NH, black line) which did not differ from 

the one published in previous studies for guinea pigs of the same age (Gourévitch et al. 2009; 

Gourévitch and Edeline 2011). The other half (about 2 years old) displayed mild, but significant 

(F(1,14)= 3.12; p<0.01), age-related hearing loss (Figure 2A, mARHL, red line), which was present for 

across the entire hearing spectrum. Analyzing the cortical STRF obtained from normal-hearing (NH) 

and mild age-related hearing loss (mARHL) animals revealed that the Q20dB and Q40dB values were 

lowered in the mARHL animals compared to the NH animals (Fig 2B, respectively F(1,157)=1.76 and 

F(1,105)=1.37  p<0.05 in both cases), indicating that hearing loss impacted on the width of frequency 

tuning in auditory cortex. In the following, we will first focus on the effect of vocoding on the cortical 

responses in NH animals (n=285 recordings). Then, the influence of background noise on the 

processing of original and vocoded vocalizations will be presented for both the 285 recordings 

obtained on NH and also for a set of 296 recordings obtained in mARHL animals. 

Effect of vocoding on the responses in the ACx of normal-hearing (NH) animals 

Figure 3 shows the responses of 6 simultaneous recordings at presentation of the original and 

vocoded whistles. Compared with the responses to the original whistles (top row), a strong decrease 

in response strength (for the four whistles) was observed as the number of frequency bands in the 

vocoder was reduced. For this set of recordings, the temporal reproducibility (as measured by the 

CorrCoef) also decreased (from 0.45 for the original vocalization to 0.32 for the 10-band 

vocalizations). 

Over the set of 285 recordings obtained on these animals, vocoding reduced the evoked firing rate 

and the temporal reliability (Figure 4A and 4B, one way-ANOVA, F(3,1136)=3.36 for firing rate and 

F(3,1136)=2.91 for CorrCoef, p<0.05 for both). Interestingly, post-hoc pairwise comparisons showed 

that only the 10-bands vocoded whistles elicited significantly lower responses than the original 

whistles (Fig 4A, Bonferroni corrected pairwise t-test, p=0.02). To assess how the reduction in the 

number of frequency bands altered the neural discrimination, Mutual Information (MI) was 

computed either from the firing rate or from the temporal patterns (see Methods). As shown in 

previous studies (Schnupp et al. 2006; Gaucher et al. 2013a; Liu and Schreiner 2007; Engineer et al. 

2008), temporal spike patterns allowed a much better discrimination between stimuli than the firing 
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rate did: the MIPatterns values (Figure 4D) are about twice the one of MIFiring Rate (Figure 4C). These two 

measures were impacted by the vocoding (ANOVA, F(3,515)=3.11, p=0.03 for MIFiring Rate, 

F(3,865)=5.24, p=0.001 for MIPatterns). However, the vocoding process only induced a small 

impairment of the neurons coding abilities: the MI computed on temporal patterns was only reduced 

by ~0.2 bits for the vocoded 10 bands stimuli compared to the original stimuli (Fig 4D; note that a 

perfect discrimination between the four whistles would result in a MI equals to 2 bits). 

Vocoding affected the cortical responses independently of the neurons’ receptive field 

To determine if the vocoding process impacts similarly cortical neurons independently of their Best 

Frequency (BF), the recordings were split in four groups according to their BF: BF below 5 kHz 

(n=100), between 5 kHz and 10 kHz (n=61), between 10 kHz and 15 kHz (n=26), and above 15 kHz (n= 

52; note that 46 recordings had no clear BF but responded to vocalizations). A two-way ANOVA 

showed that there was no interaction between the BF factor and the vocoding factor for the 3 

parameters quantifying the neuronal responses (the firing rate, the temporal reliability and the 

mutual information; p>0.9 in all cases), indicating that the vocoding did not differentially impact 

neurons with low, middle and high frequency BF. This was not totally surprising given that our 

vocoded stimuli still contained energy in a wide range of frequencies. However, it could be expected 

that recordings whose frequency receptive field (RF) spanned none of the vocoder’s frequency bands 

would be more impacted by the vocoding process. To investigate this issue, the recordings were 

classified according to the number of bands of the vocoded stimuli that fell into their RFs at 75dB. A 

global ANOVA indicated that all measures of neuronal activity (firing rate, temporal reliability and 

mutual information) were impacted by the number of bands falling into the recording’s RF (number 

of bands factor, p<0.001 for Firing Rate, CorrCoef, MIPatterns). However, there was no interaction 

between the “number of bands in RF” factor and the vocoding factor (two-way ANOVA interaction 

vocoding*number of bands, p>0.7 for Firing rate, CorrCoef and MIPatterns), indicating that the 

recordings were similarly impacted by the spectral degradation of the stimulus. 

Robust coding of vocalizations by small neuronal populations in ACx for normal-hearing animals 

As shown above, the parameters quantifying the responses of individual recordings were impacted 

by the stimulus spectral degradations generated by the vocoder. The next objective was to 

determine if this effect also impacted the coding abilities at the population level. To explore this 

issue, mutual information was computed based on the temporal patterns obtained from two to 

sixteen simultaneously recordings. Computed on a population, the MI quantifies how well the four 

whistles can be discriminated based on temporal patterns expressed by this population. Figure 5A 
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presents the value of the MIPopulation as a function of the number of recordings. Each line represents a 

given set of simultaneous recordings, from which N recordings (N varying from 2 to 16) were selected 

using a bootstrap procedure to compute a mean MI value for N recordings (see Methods). During 

most of the recording sessions, not all 16 electrodes gave significant responses, and, as a 

consequence, most of the lines do not reach the right side of figure 5A (corresponding to 16 

simultaneous recordings). Strikingly, for the original and vocoded stimuli, the maximum value of 

information (2 bits) was reached by many populations of 16 simultaneous recordings. Therefore, 

when MI values were computed for populations of 12 individual recordings (figure 5B, pink line), the 

mean value was close to maximum and there was no difference between the four groups of stimuli 

(ANOVA, F(3,35)=0.9, p=0.4), indicating that even when the stimuli were strongly degraded, 

populations of 12 simultaneous recordings were, on average, sufficient to discriminate between the 

four whistles. However, when populations of only 8 simultaneous neurons were considered, the 

vocoding process resulted in a significant decrease of the MI carried by the neuronal responses (fig 

5B, orange line, ANOVA, F(3,81)=2.82, p<0.05).   

As only a few simultaneous recordings were available for 12 neurons, a pseudo-population analysis 

was performed (see Methods). Pseudo-populations were constructed from all responsive neurons, 

regardless of whether or not they were simultaneously recorded (Ince et al., 2013). This analysis 

allowed creating populations up to 25 neurons. Figure 5C shows the values of MIPseudo-population for 

original (black), 38-band vocoded (blue), 20-band vocoded (green) and 10-band vocoded (red) 

responses as a function of the number of neurons included in the pseudo-population. It is obvious 

from Figure 5C that, for populations made of small numbers of neurons (less than 12), the MIPseudo-

population decreases as a function of the vocoder’s number of bands. Strikingly, when 25 neurons are 

included in the population (shaded grey area on Figure 5C), all curves almost reach 2 bits (the 

maximum possible MI value, see grey line on Figure 5D). This suggests that, even with the 10 band 

vocoded stimuli, 25 neurons are sufficient to perfectly discriminate the four whistles (but see 

Discussion for the limitations). 

Impact of mild age-related hearing loss on neural responses to vocoded stimuli in quiet and noisy 
conditions 

The results presented above show that the discrimination between vocalizations performed by ACx 

neurons is relatively robust to the vocoding process: Despite a significant decrease in evoked activity, 

temporal reliability and mutual information (figure 4), the decrease in neural performance is modest 

considering how important stimulus degradations are. Moreover, a perfect discrimination between 

stimuli can still be achieved at the population level (figure 5). The following section now explores to 

which extent the above conclusions also hold for hearing-impaired animals and in noisy conditions. 
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As explained at the beginning of the Results section, the ABRs for eight animals (two years old aged) 

revealed a mild but significant Age-Related Hearing Loss (mARHL, figure 2). The cortical neurons 

obtained from these animals (which displayed slightly broader frequency tuning curves) were tested 

with the same set of stimuli (original and vocoded whistles). The results are displayed in Figure 6A, in 

red lines for mARHL animals, and in black lines for NH animals. Recordings from mARHL animals 

showed higher firing rate and temporal reliability compared to the recordings obtained for NH 

animals (three-way ANOVA, F(1,4447)=11 for firing rate, F(1,4447)=14.6 for CorrCoef, p<0.001). Also, 

recordings obtained from mARHL animals showed discriminative abilities at the level of individual 

recordings or neuronal populations comparable to those observed for NH animals (F(1,3358)=0.41, 

p=0.5 for MIPatterns, F(1,161)=1.86, p=0.18 for MIPopulation).  

To further test the robustness of cortical coding in NH and mARHL animals, a broadband background 

noise was added to the original and vocoded whistles (see Methods). The same parameters 

quantifying neural activity (firing rate, temporal reliability, MIPatterns and MIPopulation) were measured in 

the noisy condition. Figure 6B shows the difference between noisy and quiet conditions for NH (grey 

lines) and mARHL (light red lines) animals. As expected, all points are below zero, showing that the 

addition of background noise reduced the magnitude of all these parameters: the firing rate and 

temporal reliability decreased (three-way ANOVA, F(1,4447)=14 for firing rate, F(1,4447)=349 for 

CorrCoef, p<0.001), as well as the MI computed at the individual and population level (three-way 

ANOVA, F(1,3358)=152 for MIPatterns, F(1,161)=37 for MIPopulation, p<0.001). However, for all the 

measures derived from the neuronal responses, there was no interaction between noise and 

vocoding (noise * vocoding, p>0.6 for all measures) suggesting that for NH subjects, the vocoder and 

background noise did not alter differentially the cortical responses. Interestingly, the effect of 

background noise was stronger in the recordings collected from mARHL animals compared to those 

collected in NH animals (red lines are often below the grey ones) both for the temporal reliability and 

the MIPatterns (three-way ANOVA, interaction noise * hearing loss, F(1,4447)=5 for CorrCoef, 

F(1,3358)=16 for MIPatterns, p<0.03). It was not the case for the MIPopulation when computed with 12-

neuron populations, but when computed with 8 neurons, the interaction became significant (three-

way ANOVA, interaction noise * hearing loss, F(1,161)=3, p=0.08 for MIPopulation(#neurons=12) ; F(1,327)=7, 

p<0.01 for MIPopulation(#neurons=8)). However, as in NH animals, there was no interaction between noise 

and vocoding for the mARHL animals (noise * vocoding, p>0.6 for all measures, R²<1.6e-4). Together, 

these last two results suggest that hearing loss amplifies the impact of noise on cortical responses to 

whistles whereas it has no influence on the impact of vocoding.  
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Discussion 

Brief overview of the results 

The responses of auditory-cortex neurons were found to be altered when tested with spectrally 

degraded vocalizations (in comparison with responses obtained with the original vocalizations). 

Nevertheless, these alterations were not drastic and were prominent only when the vocoding 

process was applied to 10 broad frequency bands. For normal-hearing animals, the firing rate and the 

spike timing reliability decreased, which in turn reduced the discrimination ability of cortical cells at 

the single recording level. However, when at least 12 neurons were considered, an almost perfect 

discrimination between the four vocalizations was reached and stayed unaffected by the vocoding 

process. Data collected on animals exhibiting mild age-related hearing loss showed similar patterns 

in quiet conditions. In the presence of background noise, the discriminative abilities of cortical cells 

were more reduced in mild age-related hearing loss animals than in normal-hearing animals, 

suggesting that the noise impacted more the cortical processing of vocoded vocalizations for the mild 

age-related hearing loss than for the normal hearing animals. Before discussing the functional 

implications of these results, several methodological points should be discussed. 

Methodological considerations 

First, the data presented here are based on the responses of small groups of neurons (2-5) located at 

the vicinity of each recording electrodes and we did not perform spike sorting analyses to separate 

the different units. We consider that this do not invalidate our findings because our recordings 

technique and conditions allowed detecting relatively subtle effects in previous studies when 

manipulating either the acoustic properties of the stimuli (Occelli et al. 2016) or pharmacological 

agents (Gaucher et al. 2013a; Gaucher and Edeline 2015).  

Second, it could be argued that the use of anesthetics can impact the potential effect induced by the 

vocoding process on cortical responses. Some studies have reported important differences between 

anesthetized and unanesthetized animals: for example, the maximum rate of click trains that primary 

ACx neuron is able to follow (Rennaker et al. 2007), the percentage of bursts in the evoked responses 

(Massaux et al. 2003, 2004) and the evoked oscillations triggered by acoustic stimuli (Cotillon-

Williams and Edeline 2003). However, other studies have reported comparable responses in awake 

and anesthetized rats for consonant sounds (Engineer et al. 2008) and conspecific vocalizations in 

guinea pig (Huetz et al. 2009).  

Third, the hearing loss displayed by our mild age-related hearing loss animals (20 dB) is modest and 

not comparable with what was reported in a previous study (Gourévitch and Edeline 2011). Most 
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likely, this is the direct consequence of the fact that animals used in our previous study were much 

older (3.5 to 4 years in Gourévitch and Edeline 2011 vs. 2 years here). As a consequence, the cortical 

responses obtained here in our mild age-related hearing loss animals are similar to the responses 

obtained in normal-hearing animals, which can explain why the vocoding process impacts similarly 

the two groups of animals. 

MI was used here as a metric to quantify the differences between neuronal responses to the four 

original, or the four vocoded vocalizations. It provides an objective measure to quantify to what 

extent neuronal responses differ between each other. The MI value can be interpreted as a way to 

evaluate the discrimination ability of auditory cortical neurons when tested with the original, then 

with the vocoded stimuli. Obviously, our use of the term “discrimination” does not refer to 

perceptual abilities. Only behavioral experiments, in humans or animals, can give access to 

perceptual abilities. To what extent the discriminative abilities of neurons recorded in a given cortical 

area have causal relationships with the whole perceptual ability is the subject of a vast literature, and 

is clearly out of the scoop of the present study. 

Here, the values of MI obtained with the original vocalizations on single recordings are relatively low 

(below 1bit) even when computed in terms of spike patterns (the values of MIfiring rate were more than 

twice lower than the values of MIpatterns). This can be explained by the fact we used four versions of 

the same type of vocalization which had roughly the same spectrograms (even if they were 

acoustically different). It is only when computing the MI values on populations of simultaneous 

recordings that an almost perfect discrimination could be achieved (MI value close to 2 in our case). 

However, our population analysis was suffering from small data sets, due to the fact that only a few 

numbers of simultaneous recording sets were available. To increase the number of neuronal 

populations, analyses were performed following the same method as in Ince et al. (2013). A large 

number of pseudo-populations (500) was generated from our data set (population of neurons not 

simultaneously recorded) and simulations were conducted to investigate the impact of vocoding on 

the discriminative abilities of theses pseudo-populations. These analyses confirmed that when 25 

neurons are considered, an almost perfect discrimination is possible by ACx neurons, thus suggesting 

that the discriminative capabilities of cortical cells are robust to the spectral degradations produced 

on our stimuli set. 

One of the main limitations of our study is the small number of stimuli used to test the discriminative 

performance. Previous studies using larger sets of stimuli have found lower MI values (Gaucher et al. 

2013a, 2015; Chechik et al. 2006). Thus, one can wonder whether using a larger set of stimuli should 

allow us to reach similar conclusions. The parametric study performed by Ince et al. (2013) indicates 

that even with larger set of stimuli (up to 50), it is still possible to reach the maximal value of MI 

(indexing an almost perfect discrimination) with large neuronal populations. In our experimental 
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conditions, if a larger set of stimuli is used, the effects of the vocoding process on the cortical 

discrimination remain unknown. 

Relationship with human studies  

 Vocoders have long been used to characterize the key acoustic features responsible for robust 

speech perception (Dudley 1939). This literature has largely documented that slow AM fluctuations 

(<16 Hz) in a limited number of frequency bands (4-8) is sufficient to maintain an almost perfect 

identification of speech in quiet (Shannon et al. 1995; Smith et al. 2002). By showing here that 

auditory-cortex neurons are very robust in discriminating between vocoded communication sounds, 

our results clearly point out that the primary auditory cortex can send relevant (i.e., invariant) cues 

to downstream brain areas more specialized in speech identification (Belin et al. 2000; Romanski and 

Averbeck 2009).   

Elderly persons often experience important difficulties understanding speech in adverse 

listening situations sometimes in the absence of elevated audiometric thresholds (for recent reviews, 

see Füllgrabe et al. 2014; Schoof and Rosen 2014). Potentially, this can result from an alteration of 

supra-threshold auditory processing (for a review, see Fitzgibbons and Gordon-Salant 2010), which 

can be explained if high-threshold auditory-nerve fibers are the first to be impacted during aging 

(Sergeyenko et al. 2013). Initially, it was found that older listeners showed deficits in using complex 

AM patterns to identify speech accurately (Souza and Kitch 2001; Souza and Boike 2006; Schvartz et 

al. 2008; Sheldon et al. 2008). This is possibly due to reduced sensitivity to AM cues or reduced 

central ability to make optimal use of AM cues (e.g. Takahashi and Bacon 1992; He et al. 2008; 

Füllgrabe et al. 2015). However, several studies did not find any effect of aging on AM sensitivity 

(Schoof and Rosen 2014; Paraouty et al. 2016; Paraouty and Lorenzi 2017), suggesting that the 

processing of AM information is roughly comparable for younger and older listeners exhibiting 

similar audiometric thresholds. When elderly subjects show sensorineural hearing loss, AM 

sensitivity is generally improved compared to normal (Wallaert et al. 2017), presumably because of 

the loss in the fast-acting amplitude compression applied by outer hair cells in the cochlea (Moore et 

al. 1996). Thus, the potentially detrimental effects of aging on AM processing may be confounded 

with (and counter-balanced by) the loss of compression associated with mild hearing loss. This may 

explain why previous MEG studies found enhanced cortical responses to speech for older subjects 

with mild hearing loss compared to young and older subjects with normal hearing (Soros et al. 2009; 

Alain et al. 2014; Presacco et al. 2016). More specifically, the synchronization of MEG responses with 

the speech envelope was more precise for older subjects both in quiet and in noise (Presacco et al. 

2016). Other studies found higher amplitude for the waves P1 (Heschl's gyrus) and N1 (Planum 
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temporale) in hearing impaired older subjects than in normal hearing subjects (Alain et al. 2014; 

Soros et al. 2009). This may also explain the increase in evoked firing rate and temporal reliability 

observed in our cortical recordings from animals with mild aged-related hearing loss. 

 

Relationship with previous electrophysiological studies at the cortical level 

As a general rule, previous cortical studies reported that the responses of cortical neurons to 

communication sounds are particularly robust to spectral alterations produced by vocoders, even 

when the vocoders only incorporated 4 or 2 bands. This was the case in the marmoset (Nagarajan et 

al. 2002) and gerbil (Ter-Mikaelian et al. 2013) auditory cortex at presentation of conspecific 

vocalizations; this was also the case in the rat auditory cortex at presentation of vocoded consonants 

and vowels (Ranasinghe et al. 2012). Consistent with these findings, the present study showed that 

the degradation produced by the vocoder had little impact on cortical responses. Even when 10-band 

vocoded stimuli were presented, the decrease in MI at the level of individual recordings was modest 

(0.2 bit on average, see Fig 4). Only one of the previous studies (Nagarajan et al. 2002) has evaluated 

the addition of broadband noise on the conspecific vocalizations and found little effect of masking 

noise up to a signal-to-noise ratio of +10 dB (but note that the vocoded vocalizations were not 

presented in the background noise in their study). This is consistent with other findings showing 

robust representation of speech in the primary auditory cortex in the presence of white/pink noise 

and in the presence of convolutive reverberations (Mesgarani et al. 2014).  

So far, none of the previous cortical studies have evaluated to what extend age-related hearing loss 

can potentiate the degradation produced by the vocoding process. In the present study, we found 

that in the case of mild age-related hearing loss (about 20 dB), this hearing loss did not contribute 

much to the alterations of responses produced by the vocoder (Fig 6A). However, it seems that in 

noisy conditions, the discrimination capabilities of cortex neurons were slightly lower in mild age-

related hearing loss animals compared with normal ones (Fig 6B). Obviously this effect should be 

confirmed by investigating more in depth the effects of other types of background noise and testing 

several levels of signal-to-noise ratio.  

 

What are the acoustic features triggering cortical responses to original and vocoded vocalizations? 

As shown here, populations of cortical neurons are able to discriminate between vocalizations that 

have been severely degraded by vocoding. What are the acoustic cues allowing for this robust 

discrimination? As a matter of fact, it is now well documented that auditory cortex neurons do not 
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respond to vocalizations based on their spectral content. Several studies have clearly showed that 

the cortical responses to natural stimuli cannot be predicted based upon the spectral content of the 

vocalizations (e.g. Machens et al. 2004; Laudanski et al. 2012; Bitterman et al. 2008; Chechik & 

Nelken 2012; review in Huetz et al. 2011; Gaucher et al. 2013b); even responses from inferior 

colliculus neurons cannot be predicted from spectral content (Woolley et al. 2006). In contrast, 

auditory cortex neurons are highly sensitive to the slope of changes in sound level (Fishbach et al. 

2001; Heil 1997a,b) and as a consequence are sensitive to the temporal envelope of natural stimuli. 

Thus, one explanation for the present results is that despite the severe degradations in fine spectro-

temporal details produced by vocoding, auditory cortex neurons can still discriminate between the 4 

whistles based upon the differences in gross temporal envelope cues in each frequency band. One 

can envision that even if a much larger set of stimuli was used, a good cortical discrimination 

between vocoded stimuli is still possible provided that these stimuli differ in terms of gross temporal-

envelope cues. 

Conclusions and perspectives  

The present study shows that both for normal-hearing and hearing-impaired animals, auditory cortex 

neurons can discriminate between spectrally similar communication sounds in the absence of 

relevant temporal fine-structure cues (i.e. FM cues and fine spectral details). These results suggest 

that the critical cue for discriminating such sounds corresponds to the relatively slow temporal-

envelope fluctuations (AM) of these sounds within a limited number of frequency bands. More 

severe conditions of stimuli presentation and degree of hearing loss should be tested in future work 

before generalizing these results. Also, it will be of great interest to study other cortical areas to 

determine to which extent the effects reported in AI impact neuronal responses in belt, parabelt and 

downstream cortical areas. 
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Figure legends 

 

Figure 1: Original and vocoded whistles. 

A. First row shows the time-waveform of the four whistle stimuli. Their spectrogram is plotted on the 

second row. 

B. The three rows represent the spectrogram of the vocoded version of the four whistle stimuli for 

each vocoder processing. The first row uses 38 bands, the second 20 bands, the third 10 bands. 

 

Figure 2: Brainstem and cortical thresholds for normal and mild age-related hearing loss animals. 

A. Thresholds (in dB SPL) for the Auditory Brainstem Responses (ABRs) of the Normal Hearing 

(NH, in dark) and mild Age-Related Hearing Loss (mARHL, in red) animals.  For each group, 

the group data are represented by the thick line with the SEM and the data from each animal 

are represented by the thin lighter lines. 

B. Mean values (±sem) of the Q20dB and Q40dB of cortical neurons estimated in NH and mARHL 

animals. The number of recordings in each group is indicated on the bars. 

 

Figure 3: Rasterplots for 6-neuron recordings in response to reference and vocoded versions of 

each whistle. 

First row show the 6-neuron recordings in response to the original whistles (different whistles on 

each column). For each subplot, individual neuron’s APs are either in red or blue to distinguish 

between different neurons (1 to 6). Shaded area corresponds to spontaneous activity before stimulus 

presentation. Second to fourth row show the responses to the vocoded whistles (38 to 10 bands). 

Last row shows the waveforms of the whistles. 

Mean values of Firing rate (Fr) and CorrCoef (averaged over the 6 neurons and the 4 stimuli) are 

presented at the end of each row. 

 

Figure 4: group data for normal-hearing animals.  

Each subplot represents the mean (and standard error of the mean) value of a measure of neuronal 

activity for original whistles and vocoded versions (Vocoded 38, 20, 10 bands). A. Firing rate, B. 

CorrCoef,  C. MIFiring Rate , D. MIPatterns  

Stars represent a significant difference between original and vocoded (38,20 or 10), as computed 

with post-hoc pairwise tests corrected for multiple comparisons with the Bonferroni method. 

 

Figure 5: MutuaI Information (MI) computed for a population of recordings. 
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A. MI as a function of the size of the population. X-axis represents the number of recordings in the 

population. Each curve is a given recording (maximum 16 simultaneous recordings). A MI value of 2 

corresponds to perfect discrimination of whistles. Shaded colored bars (orange and pink) refer to 

populations of 8 or 12 simultaneous recordings (see B.). 

B. Mean values of MIPopulation computed with 12 (pink line) or 8 (orange line) recordings for each set of 

stimuli (original and vocoded whistles with 38, 20, and 10 bands). 

C. MIpseudo-population as a function of the size of the population. Same axes as in A. Red, green, blue and 

black curves represent the different stimuli (Original, Voc38, Voc20, Voc10). MIPseudo-population values 

for 8 (orange), 12 (pink) and 25 (grey) recordings were extracted to be plotted in D. 

D. Mean values of MIPseudo-population computed with 8 (orange line), 12 (pink line), or 25 (grey line) 

recordings for each set of stimuli (original whistles, vocoded 38, 20, 10 bands). 

 

 

Figure 6: Effects of mild Age-Related hearing loss and background noise on vocoding 

A. Average neural activity measure (from left to right: firing rate, CorrCoef, MIPattern, MIPopulation) 

computed from the responses to original whistles and vocoded versions (Vocoded 38, 20, 10 bands) 

for normal hearing animals (NH, black lines), and mild Age-Related Hearing Loss animals (mARHL, red 

lines).  

B. Mean differences between responses to noisy and quiet whistles. For each recording, the neural 

activity measure (from left to right: firing rate, CorrCoef, MIPattern,MIPopulation) evoked in the 

quiet condition is subtracted from its value evoked by the noisy condition. Means of the differences 

are plotted in grey for NH animals, and in light red for mARHL animals.  

Bars represent the standard error of the mean. 
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