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Age-related changes in auditory cortex without detectable peripheral 

alterations: a multi-level study in Sprague Dawley rats. 
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Highlights : 

 In female Sprague-Dawley, auditory periphery aged remarkably well: the auditory 

nerve threshold and the number of synapses between IHC and fibers were stable. 

 Signs of aging of the central auditory system, albeit modest, were detectable in 

absence of peripheral alterations 

 At the oldest tested age, behavioral performance was lower. 

 Intrinsic, central aging effects can affect the perception of acoustic stimuli 

independently of the effects of aging on peripheral receptors 
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Abstract  

Aging is often considered to affect both the peripheral (i.e. the cochlea) and central (brainstem 

and thalamus-cortex) auditory systems. We investigated the effects of aging on the cochlea, 

brainstem and cortex of female Sprague Dawley rats. The auditory nerve threshold remained 

stable between the ages of 9 and 21 months, as did distortion product otoacoustic emissions 

and the number of ribbon synapses between inner hair cells and nerve fibers. The first clear 

signs of aging appeared in the brainstem, in which response amplitude decreased, with 

thresholds remaining stable until the age of 15 months, and increasing slightly thereafter. The 

responses of primary auditory cortex neurons revealed specific effects of aging: at 21 months, 

receptive fields were spectrally narrower and the temporal reliability of responses to 

communication sounds was lower. However, aging had a null or even positive effect on 

neuronal responses in the presence of background noise, responses to amplitude-modulated 

sounds, and responses in gap-detection protocols. Overall, inter-animal variability remained 

high relative to the variability across groups of different ages, for all parameters tested. 

Behavioral performance for AM noise modulation depth detection was worse in 21-month-old 

animals than in other animals. Age-related alterations of cortical and behavioral responses 

were thus observed in animals displaying no signs of aging at the peripheral level. These 

results suggest that intrinsic, central aging effects can affect the perception of acoustic stimuli 

independently of the effects of aging on peripheral receptors.  

 

Keywords: central auditory system, synaptic ribbons, behavioral task, multi-unit recordings, 

compound action potential 
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Introduction  

In humans, age-related hearing loss (ARHL), also known as presbycusis, is highly 

prevalent (35-50% of people >65 years old; (Parham et al., 2011)). In addition to repeated 

exposure to loud noises, genetic factors, lifestyle and medical history modulate the occurrence 

and extent of ARHL (Helzner et al., 2005). The increasing life expectancy of the human 

population has rendered the effects of aging more prominent, and it is crucial to improve our 

understanding of presbycusis, which decreases quality of life and is associated with 

depression, anxiety and social isolation (Ciorba et al., 2012).  

Many psychoacoustic studies in humans have described age-related hearing loss 

(Schuknecht, 1955; Schuknecht and Kirchner, 1974; Pearlman, 1982; Humes et al., 2012). 

Threshold elevations are reported on audiograms (Gates and Mills, 2005), and the other 

deficits observed are: (i) a decline in the ability to discriminate between close frequencies 

(Clinard et al., 2010) (ii) a degradation of gap detection in sounds (Harris et al., 2010) and (iii) 

an impairment of the ability to understand speech in noisy environments (Frisina and Frisina, 

1997). Animal studies have described effects of aging on the cochlea, the auditory nerve and 

the lower levels of the auditory system. An initial massive loss of outer hair cells, together 

with a much less severe and more variable loss of inner hair cells, has been described 

(Tarnowski et al., 1991). Together with a loss of auditory nerve fibers (Schmiedt et al., 1996), 

those alterations logically lead to the increases in threshold reported in quantifications of 

auditory brainstem responses (Gratton et al., 2008) and the decrease in frequency selectivity 

of the auditory nerve fibers (Hellstrom and Schmiedt, 1996). Surprisingly, few studies have 

described the effects of aging in the upper levels of the auditory system, including the primary 

auditory cortex (AI). The receptive fields were found to be abnormal in aged (30 months old) 

Fisher 344 rats (Turner et al., 2005). Aged primates with normal audiograms have been 
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reported to lack the sharpening of spatial tuning normally observed in younger animals 

(Juarez-Salinas et al., 2010). These monkeys had stronger cortical evoked responses, 

particularly for onset responses (Engle and Recanzone, 2012). By contrast, in three-year-old 

guinea pigs with a hearing loss of about 30 dB, the receptive fields displayed weaker and 

longer duration responses, higher thresholds and narrower bandwidths (Gourévitch and 

Edeline, 2011). Most biochemical studies of the cortex have reported changes to GABAergic 

neurotransmission (reviewed in (Caspary et al., 2008)). For example, Ling and colleagues 

(Ling et al., 2005) reported that levels of GAD67 protein were lower in old rats (20-30 months 

of age) than in young rats. All these alterations follow a particular timing, which differs from 

strain to strain.  

We describe here the impact of aging on anatomical and physiological measurements 

derived from the cochlea (distortion product otoacoustic emissions, DPOAE; ribbon synapse 

counting), the auditory nerve (compound action potential, CAP), the brainstem (ABR) and AI 

in female Sprague Dawley (SD) rats aged 9, 15 and 21 months. On average, the mean life 

span of normal female Sprague Dawley rats was found to be either 760 days (Davis et al., 

1956) or 680 days (excluding tumor-related deaths) (Durbin et al., 1966), which means that 

our oldest animals were roughly between 80% and 90% of their average lifespan. Sprague 

Dawley rats experience an age-related hearing threshold shift between 20dB and 30dB 

starting after 18 months of age (Stenqvist, 2000; Sanz-Fernández et al., 2015; Costa et al., 

2016) and, up to now, the aging of their central auditory system has not been documented. In 

addition to bandwidth and threshold of tuning curves of AI neurons, we quantified neuronal 

responses to gaps and various depths and rates of amplitude modulation. We also quantified 

the responses to natural communication sounds presented with (and without) different levels 

of background broadband white noise. We evaluated the behavioral consequences of the age-

induced alterations to the auditory system, through a task in which rats were required to 
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discriminate between different depths of amplitude-modulated noise. Finally, we tried to 

identify one of  the neurobiological substrates of potential deficits, by estimating the number 

of GABAergic neurons in the primary auditory cortex. Thus, unlike previous studies, we 

investigated each animal from the most peripheral (DPOAE) to the most central (AI) level, 

with electrophysiological, immunohistochemical and behavioral techniques. We found that 

age-related alterations emerged within the cortex independently of peripheral alterations, 

consistent with the notion of specific “central aging”. Moreover, our results suggest that both 

peripheral and central aging may be very limited in the auditory system of female Sprague 

Dawley rats. 
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Materials and Methods 

 

Subjects 

Recordings were obtained from the primary auditory cortex of adult female Sprague 

Dawley rats. The animals were obtained from Janvier Laboratories at an age of two months, 

and were housed for 6, 12 or 18 months in a facility with controlled humidity (50-55%) and 

temperature (22-24° C) conditions, under a 12 h light/12 h dark cycle (lights on at 7:30 a.m..) 

with free access to food and water. At the end of experiments, animals were 9, 15, 21 months. 

A total of 10 animals were initially used in the group 9 months, 10 others in the group 15 

months and 20 in the group 21 months. Given the well-documented susceptibility of female 

Sprague Dawley rats to mammary tumors (Davis et al., 1956; Freedman et al., 1990; Fay et 

al., 1997; Jowa and Howd, 2011), all aged animals were regularly examined by the staff from 

the animal facility, and any found to have tumors were excluded from the study. The protocol 

was approved by the local ethics committee (Paris-Sud University, CEEA No. 59, project 

2014-25) and used the procedures 32-2011 and 34-2012 of this committee. Each animal was 

subjected to the following protocols, in the following order, as described below: the 

behavioral task for three weeks; extracellular recordings in the primary auditory cortex; two 

weeks of rest; functional peripheral assessments; immunohistochemistry. The final sample 

sizes for the various groups of animals are summarized in Table 1 and are as follows: 9 to 12 

animals per group participated to the behavior, 8 to 9 to the recordings in AI, 5 to 9 to the 

DPOAE/CAP recordings and 4 to 6 to the immunochemistry study. 

 

Behavioral task  

After two sessions of familiarization (lasting 5 min each) with the test apparatus, rats 

were trained to discriminate between an amplitude-modulated white noise (4 Hz, 100% depth 
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modulation; CS+) and an unmodulated white noise (CS-) in a two-compartment shuttle box. 

Both stimuli lasted 5 s and they were presented a mean of 30 s apart (range: 20 s -75 s). The 

rat was required to change compartment on CS+ presentation. A lack of response to the CS+ 

stimulus triggered a 0.3 mA footshock lasting 10 s, which was stopped immediately if the rat 

switched compartment. On presentation of the CS- signal, no change in compartment was 

required. The CS+ and CS- stimuli were presented 40 times per session. The time taken to 

switch compartments after the onset of the CS+ signal was also recorded. 

Performance was estimated by calculating the A’ index (Verde et al., 2006), which is a non-

parametric analog of d’ and quantifies the discrimination between two stimuli, as follows:  

 

   
 

 
 

            

       
  if H≥F 

and  

   
 

 
 

            

       
  if H<F 

where H is the hit rate (the proportion of switches on CS+ presentation) and F is false alarm 

rate (the proportion of switches on CS- presentation). When H=F (same number of responses 

to the CS+ and CS- stimuli in the 40 trials) then A’=0.5. When H=1 and F=0 then A’=1. In 

our experiment, a successful session was defined as a session where H ≥ 0.5 and A’ ≥ 0.75.  

During the first 10 sessions, each rat was required to complete three sessions in a row 

successfully, otherwise the training was stopped. Once the animal had reached this level of 

performance, the second phase of the task began, in which we determined the smallest 

modulation depth for which the rat discriminated between CS+ and CS-. Each session was 

split into two parts: an initial “recall phase” during which the animal had to discriminate 

between 0% vs. 100% modulated white noise for 20 random presentations, followed by a test 

phase during which the animal had to discriminate between 0% and a particular modulation 

depth, 80%, 60%, 40% or 20%. Only one value of modulation depth was used in this second 
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part of the session, the highest modulation depth for which the animal did not perform well at 

the previous session. The animal had a maximum of three sessions to perform successfully at 

a given modulation depth before a lower modulation depth was selected. If the animal 

satisfied this criterion, a lower modulation depth was tested at the next session. If the animal 

did not satisfy the criterion after three sessions, or it satisfied this criterion only at the lowest 

modulation depth (20%), training was stopped. 

Extracellular recordings in the primary auditory cortex 

Acoustic stimuli   

Acoustic stimuli were generated in Matlab, transferred to an RP2.1-based sound 

delivery system (TDT) and sent to a Fostex speaker (FE87E). The speaker was placed 2 cm 

away from the right ear of the rat. At this distance, the speaker produced a flat spectrum (± 3 

dB) between 140 Hz and 36 kHz after calibration. The speaker was calibrated with a Brüel & 

Kjaer (B&K) 4133 microphone, also placed 2 cm away from the speaker and coupled to a 

B&K 2169 preamplifier and a Marantz PMD671 digital recorder. The transfer function of the 

speaker was estimated with noise and pure tones, then inverted and fitted with a sixth-order 

IIR filter. This filter was applied to all sounds sent to the speaker. Spectrotemporal receptive 

fields (STRFs) were determined with 97 gamma-tone frequencies (the product of a gamma 

distribution and sinusoidal tone, (Lyon et al., 2010)), covering eight octaves (0.14-36 kHz), 

presented in a random order at a rate of 4.15 Hz and at 75 dB SPL. The frequency response 

area (FRA) was determined with the same set of tones presented from 75 to 5 dB SPL (5 dB 

steps, random order) at a rate of 2 Hz. Each tone was presented eight times at each intensity. 

The responses to a set of natural stimuli were tested. We first tested responses to 

heterospecific guinea pig vocalizations, corresponding to three representative examples of a 

whistle call used in a previous study (Gaucher et al., 2013), concatenated into a one-second 

stimulus presented 25 times. We also used a one-second snatch of bird song from this 
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previous study. The vocalizations were presented with and without various levels of white 

noise (60, 65 and 70 dB SPL). We did not use rat vocalizations here, because pilot studies 

reported that the typical 22 kHz alarm call (Portfors, 2007; Brudzynski, 2009) had a limited 

spectral content and actually evoked poor responses of little use for auditory cortex neuron 

characterization. We then used a gap detection protocol, involving a 300 ms guinea pig 

whistle (the first call from the set of three used above), split into two halves separated by a 

gap of 2, 4, 8, 16, 32 or 64 ms of silence. A 1 ms ramp was used as the transition between 

vocalization and the silent gap, on both sides of the gap. We used 25 repetitions of the 

stimulus for each of the six gap values. 

Responses to amplitude-modulated white noise were tested with 15 presentations of 

100% modulated white noise, at 2 Hz to 50 Hz. Responses to modulation depth were assessed 

with 20 presentations of one second of white noise at 4 Hz, with a modulation depth ranging 

from 0% to 100%.  

 

Surgical procedure 

The animal received an initial dose of ketamine and xylazine (100mg/kg i.p. and 

15mg/kg i.p. respectively) supplemented by lower doses of ketamine (20 mg/kg) and xylazine 

(4 mg/kg) until reflex movements were no longer observed when the hind paw was pinched. 

Liberal amounts of a local anesthetic (2% xylocaine) were injected subcutaneously into the 

skin above the skull and the temporal muscles. The animal was placed in a stereotaxic frame, 

a craniotomy was performed above the left temporal cortex, and the temporal bone was placed 

in sterile saline. The opening was 9 mm wide and began at the point of intersection between 

the parietal and temporal bones, at a height of 5 mm (Manunta and Edeline, 1997, 1998, 

2004). The dura above the auditory cortex was carefully removed under binocular control 

without damaging the blood vessels. At the end of surgery, a pedestal was created with dental 
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acrylic cement, to make it possible to fix the animal’s head in place without trauma during the 

recording session. The stereotaxic frame supporting the animal was placed in a sound-

attenuating chamber (IAC, model AC1).  

 

 

Recording procedure 

Data were collected from multiunit recordings in the primary auditory cortex (area 

AI). Extracellular recordings were obtained from arrays of 16 tungsten electrodes (ø: 33 µm, 

<1 MΩ) composed of two rows of eight electrodes separated by 1000 µm (350 µm between 

electrodes of the same row). A silver wire, used as the ground electrode, was inserted between 

the temporal bone and the dura matter on the contralateral side. The estimated location of AI 

was 4-7 mm posterior to bregma and 3 mm ventral to the superior suture of the temporal bone 

(corresponding to area AI as defined by (Paxinos and Watson, 2005). The raw signal was 

amplified by a factor of 10,000 (TDT Medusa) and processed by a multichannel data 

acquisition system (TDT RX5). The signal collected from each electrode was filtered (610-

10,000 Hz) to extract multi-unit activity (MUA). The trigger level was carefully set for each 

electrode so as to select the largest action potentials from the signal. Online and offline 

examinations of the waveforms suggested that the MUA collected here consisted of action 

potentials generated by three to six neurons close to the electrode. At the beginning of each 

recording session, we set the position of the electrode array such that the two rows of eight 

electrodes could sample neurons responding from low to high frequencies in the rostro-caudal 

direction. 

Recording session 

The insertion of an array of 16 electrodes into the cortical tissue almost systematically 

induced a deformation of the cortex. The cortex was allowed to return to its initial shape over 
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a recovery period of at least a 30 minutes, and the array was then slowly lowered. STRFs 

were used to assess the quality of our recordings and to adjust electrode depth. The recording 

depth was 300-700 µm, corresponding to layer III/IV and the upper part of layer V, according 

to Roger and Arnault (Roger and Arnault, 1989). Once clear tuning was obtained for at least 

12 of the 16 electrodes, and the stability of the recordings was satisfactory, the protocol was 

initiated, with the presentation of acoustic stimuli in the following order: gamma-tones to 

determine the STRF (5 min), followed by the FRA (12 min), followed by the different sets of 

vocalizations at 75 dB SPL without noise (3 min) and with increasing noise levels (60, 65 and 

70 dB SPL, 3 min each). The gap detection protocol was then performed (3 min), followed by 

3 min of spontaneous activity, and then depth-modulated noise at 75 dB SPL (4 min), 

amplitude-modulated noise at 75 dB SPL (7 min) and a final period of three minutes of 

constant white noise at 75 dB SPL. The presentation of this entire series of stimuli lasted 49 

minutes. This set of stimuli was used with the electrode array positioned at two to five 

locations per animal, in the primary auditory cortex. 

 

Quantification of responses to pure tones 

The STRFs derived from MUA were obtained by constructing post-stimulus time 

histograms (PSTHs) for each frequency, with 1 ms time bins. All spikes falling in the 

averaging time window (starting at stimulus onset and lasting 100 ms) were counted. Thus, 

STRFs are matrices of 100 abscissa (time) bins multiplied by 97 ordinates (frequency) bins. 

All STRFs were smoothed with a uniform 5x5 bin window.  

For each STRF, at a given intensity, the best frequency (BF) was defined as the 

frequency at which the highest firing rate was recorded. At each intensity, peaks of significant 

response were automatically identified as follows: A positive peak in the MU-based STRF 

was defined as a firing rate contour above the mean level of baseline activity (estimated from 
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the first 10 milliseconds of STRFs at all intensities) plus six times the standard deviation of 

the baseline activity. For a given site and a given intensity, three measurements were 

extracted from the peaks: “total bandwidth”, defined as the sum of all peak widths in octaves; 

the latency of the first spike of the significant peaks (the time taken to reach this spike); and 

“response duration”, the time interval between the first and last spikes of the significant 

peaks.  

 

Responses to vocalizations 

Many previous studies have stressed that the temporal spike patterns of the neuronal 

discharges observed when communication sounds are presented are crucial for the 

discrimination performance of cortical neurons (Schnupp et al., 2006; Engineer et al., 2008; 

Huetz et al., 2009; Shetake et al., 2011). We quantified the between-trial reliability of 

neuronal responses to vocalizations, by calculating the spike-timing reliability coefficient 

(CorrCoef). This index corresponds to the normalized covariance between each pair of action 

potential trains recorded on the presentation of a given vocalization and was calculated as 

follows:  

 

where N is the number of trials and σxixj is the normalized covariance for a time lag of 

0 between spike trains xi and xj, where i and j are the trial numbers. Spike trains xi and xj were 

previously convolved with a 10 ms-wide Gaussian window. This value of temporal precision 

was chosen because it maximized mutual information (Huetz et al., 2009). It was shown that 

the CorrCoef was not influenced by fluctuations of firing rate (Gaucher et al., 2013). These 

simulations also made it possible to calculate the probability of the CorrCoef value: 0.026 for 

a 0.01 confidence interval (Gaucher et al., 2013). 
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Gap detection analysis   

We first constructed post-stimulus time histograms (PSTHs) of the responses to the 

vocalizations including a gap with a 2 ms time bin and a 5 ms uniform smoothing window. 

We considered the neural response to be modulated by the presence of the gap if an onset 

peak appeared in the PSTH, typically at the beginning of the second half of the vocalization, 

immediately after the gap. The peak was considered significant if its maximum amplitude was 

above the mean + 4 STD of the PSTH values over a time interval of 50 ms immediately 

before the gap. We chose a gap-in-vocalization rather than a gap-in-noise sound for several 

reasons: this is a more realistic sound than a noise, the vocalization induced very strong 

evoked responses in our neurons population, the vocalization was broadband and finally its 

spectral content was stationary in time at the gap location, avoiding any across-channel gap 

detection.    

 

Analyses of temporal tMTF and depth-MTF.   

We first constructed PSTHs for each amplitude- or depth-modulated sound, with a 5 

ms time bin. For each modulation frequency or depth modulation, we then calculated vector 

strength (VS), defined by (Goldberg and Brown, 1969) as a measurement of the degree of 

phase-locking (or synchronization) of the spikes with the stimulus envelope. The VS is a 

coefficient that varies between 0 and 1. 

 

End of the recording session  

After three to six hours of recording, the skull covering the temporal bone was 

carefully placed back over the auditory cortex and secured in place with a very thin layer of 

dental cement. The skin was cleaned and sutured to close the wound and an analgesic 
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(buprenorphine, 0.05 mg/kg, s.c.) and an antibiotic (Convenia, 0.8 mg/kg, s.c.) were injected 

into the animal. The animal’s health was monitored every six hours for 24 h, and the animal 

was kept in a separate cage for a few days before being returned to the colony room. After 

two to three weeks of recovery, the animals were sent to the INM (Montpellier) via a 

specialist transporter (Sanitrans, France), for peripheral assessment. 

 

Peripheral assessments (DPOAEs, CAPs, ABRs) 

Distortion product otoacoustic emissions (DPOAEs) 

DPOAEs were used as a measure of the functional integrity of outer hair cells. 

DPOAEs were collected under anesthesia (a mixture of Zoletil 50 (tiletamine, 40 mg/kg) and 

Rompun (xylazine, 3 mg/kg)). They were recorded in the external auditory canal with an ER-

10C S/N 2525 probe (Etymotic Research Inc. Elk Grove Village, IL, USA) consisting of two 

emitters and one microphone. The two primary tones were generated, and the distortion was 

processed by the Cubdis HID 40133DP system (Mimosa Acoustics, Champaign, IL, USA). 

The two tones were presented simultaneously, with f2 sweeping from 0.5 kHz to 16 kHz in 

quarter-octave steps, and maintenance of the f2/f1 ratio constant at 1.2. The primary intensities 

of f2 and f1 were set at 60 and 55 dB SPL, respectively. For each frequency, the cubic 

distortion product 2f1-f2 and the neighboring noise magnitudes were measured and expressed 

as a function of f2. 

 

Functional hearing assessments (ABR and CAP) 

 These recordings were also carried out under anesthesia (Zoletil 50 (tiletamine, 40 

mg/kg) and Rompun (xylazine, 3 mg/kg)) in a Faraday-shielded anechoic sound-proof cage. 

Rectal temperature was measured with a thermistor probe, and maintained at 38°C ± 1°C with 

a heated blanket placed underneath the animal. Signals were generated, acquired and 
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processed with an NI PXI-4461 signal generator (National Instruments) controlled with 

LabVIEW software. Bursts of pure tones (1 ms rise/fall, 10 ms duration, 11 bursts/s, 500 or 

200 presentations per level for ABRs and CAP, respectively, alternating polarity) were 

delivered by a JBL 075 loudspeaker (James B. Lansing Sound) positioned 10 cm away from 

the ear tested, in calibrated free-field conditions. Electrophysiological signals (×20,000) were 

amplified with a Grass P511 differential amplifier with a 300 Hz to 3.5 kHz bandpass. 

 ABRs were recorded from three subcutaneous needle electrodes placed on the vertex 

(active), near the bulla of the tested ear, and in the neck muscles (ground). The CAP of the 

auditory nerve was recorded from an electrode located in the round window niche (active) and 

two subcutaneous needle electrodes placed on the pinna of the ear tested and in the neck 

muscles (ground). Intensity-amplitude functions were obtained for ABRs and CAPs, at each 

frequency tested (1, 2, 4, 8, 16, 24, 32 kHz), by varying the intensity of the tone burst from 0 

to 80 dB SPL, in 5 dB increments. The ABR threshold was defined as the minimum sound 

intensity required to elicit a well-defined and reproducible wave II from the cochlear nucleus 

(Chen and Chen, 1991). CAP amplitude was measured between N1 and P1, with CAP 

threshold defined as the dB SPL required to elicit a measurable response of greater magnitude 

than the noise level.  

 

Immunohistochemistry 

Quantification of GAD67 labeling 

GAD67 labeling was studied as a measure of possible changes in GABAergic 

inhibition. To this aim, at the end of the CAP recording session, the rats were deeply 

anesthetized with a mixture of ketamine and xylazine (200 mg/kg body weight and 15 mg/kg, 

respectively, i.p.) and transcardially perfused with 150 ml of saline and 1,000 ml of a fixative 

solution consisting of 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH 7.4). The 
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brains were collected and fixed in 4% PFA; they were then incubated in incremental 

concentrations of sucrose (10, 20 and 30%). Each brain was sliced (40 µm sections) on a 

cryostat (HM55O, Microm, Thermo Scientific), from stereotaxic coordinates -4 mm to -6 mm 

relative to bregma (Paxinos and Watson 2009, 6
th

 edition). One in every four slices was 

stained with Nissl stain and three co-authors (JME, FO, ND) examined the stained coronal 

sections to select the anterior-posterior level corresponding to the center of AI. One adjacent 

section (immediately before or after the Nissl-stained slice) was used for GAD67 labeling. 

The brain slices were rinsed in 1 x PBS and endogenous peroxidases were inactivated by 

incubation in 1 x PBS supplemented with 10% methanol and 10% H2O2. The coronal sections 

were then washed and permeabilized in 2.5% Triton in 1 x PBS (PBST). Nonspecific antigen 

sites were blocked by incubation with 5% normal goat serum and 1% BSA in PBST. The 

sections were then incubated overnight at 4°C with the primary anti-GAD67 antibody 

(Euromedex, GeneTex) diluted 1:500 in the same blocking solution. The sections were 

washed in PBST then incubated with a secondary antibody (biotinylated anti-rabbit IgG 

antibody, EuroBio) for two hours at room temperature. Staining was detected with an ABC kit 

(EuroBio), in accordance with the manufacturer’s instructions. Sections were then mounted 

on glass slides (Fisher) in 0.3% PB gelatin. On the third day, slides were dehydrated and 

mounted in Eukitt (Fisher). Photomicrographs were taken with an upright optical microscope 

(Olympus microscope, BX60) equipped with mapping software (MercatorPro; ExploraNova, 

France). Immunolabeling was assessed in two predefined areas (800x300 µm) manually 

delimited in the center of AI, in the supragranular and infragranular layers. The 

immunolabeled cells were counted by an experimenter blind to the age of the animal. 

 

Number of ribbon synapses per inner hair cell along the tonotopic axis 
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The immunohistochemical method for assessing the number of synapses per inner hair 

cell (IHC) has been described in detail elsewhere (Bourien et al., 2014; Batrel et al., 2017). 

Briefly, the presynaptic IHC ribbons were identified with a mouse anti-CtBP2 antibody 

(1:500; BD Biosciences, San Diego, CA). Glutamate receptors were labeled with a mouse 

antibody raised against the C-terminus of the GluA2 subunit, IgG2a (1:200, Millipore, 

Billerica, MA). A 3D, custom algorithm was used to detect the juxtaposition of pre- and post-

synaptic structures in stacked confocal images. Once the ribbons had been counted, the 

corresponding coding frequency of each ribbon was inferred from the rat cochlear place 

frequency map (Müller, 1991). A second-order polynomial was then fitted to synapse count as 

a function of position relative to the cochlea apex (Meyer et al., 2009).  

Statistical analysis 

We mainly used ANOVA tests (one-way, two-way, three-way) to look for effects in 

our data, followed by post-hoc unpaired t-tests with Bonferroni correction. We tested for and 

found normal distributions of residuals (using QQ plots) and equal variances (Levene’s test, 

Levene, 1960) in the great majority of our sampled distributions. Deviations from normality, 

when found, were moderate. Robustness of ANOVA tests to such deviations (Lix et al., 1996; 

Blanca et al., 2017) as well as the large sample size in our groups (see Table 2) confirm 

ANOVA as a valid option, in addition to the fact that no satisfying non parametric solution 

currently exists for two-way and three-way tests.  
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Results 

 

The results presented below were obtained from three groups of adult female Sprague 

Dawley rats aged 9 (n=10), 15 (n=9) and 21 (n=12; see Table 1) months raised in a 

standardized animal facility with ad libitum access to food and water. The sample sizes for the 

various groups of animals are summarized in Table 1. Once an animal reached the age for 

testing, it underwent behavioral training for three weeks. For each animal, we obtained 

cortical recordings under ketamine/xylazine anesthesia 24 to 48 hours after the last training 

session; between 431 and 297 neuronal recordings were collected from AI. The compound 

action potential (CAP) of the auditory nerve, the auditory brainstem responses (ABRs) and 

the distortion products of the acoustic emissions (DPOAEs) were collected in a separate 

session under tiletamine/xylazine anesthesia. Functional quantifications, such as the 

determination of auditory thresholds, were thus possible in the periphery, brainstem and 

cortex of the same animal, as illustrated in Figure 1. The data for this animal highlight the 

similarity of the thresholds at the peripheral, brainstem and cortical level, except around 16 

kHz. The brain of the animal was then collected for immunolabeling. For the sake of 

readability, only the p values (each indexed by a letter) are reported in the text; the details of 

each statistical test are provided in appendix. 

 

Cochlear evaluations 

For the DPOAEs obtained from rats aged 9, 15 and 21 months (Figure 2A), over the 

whole frequency range above the noise level (3-16 kHz, noise represented by the gray line), 

the amplitudes of the distortion products were similar for all three groups of animals (age 

effect p
a
=0.55 alone or p

b
=0.49 in interaction with frequency). This indicates that outer hair 

cell functioning did not appear to change with aging. 
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There were also no obvious changes in the numbers of ribbon synapses between the inner hair 

cells (IHC) and auditory nerve fibers. We labeled presynaptic IHC ribbons and post-synaptic 

glutamate receptors (Figure 2B and Methods). Based on a custom-developed algorithm, the 

juxtaposition of pre- and post-synaptic structures was quantified from stacked confocal 

images. The number of synapses per IHC was plotted as a function of position from the 

cochlea apex in the 9- and 21-month-old animals (n=4 and n=5 respectively; Figure 2C). The 

number of synapses per IHC depended on the frequency (p
c
=8e-4), increasing from fewer 

than 10 synapses to almost 20 synapses in the middle of the cochlea, and then decreasing 

again towards the base of the cochlea. The two curves that fitted the changes in the number of 

synapses as a function of position in the cochlea (p
d
=0.93, interaction age and frequency 

p
e
=0.72) are superimposed, indicating that numbers of synapses obtained for these two groups 

of animals were similar. 

 

Auditory nerve and brainstem evaluations: CAP and ABRs 

The mean CAP threshold of the auditory nerve did not change between the ages of 

nine and 21 months (Figure 3A, age effect p
f
=0.54 alone or p

g
=0.25 in interaction with 

frequency). At all suprathreshold levels (80 dB SPL, 60 dB SPL, 40 dB SPL), modest but 

nonsignificant decreases in CAP amplitude were observed for low frequencies after 15 

months (interaction age and frequency, 80 dB: p
h
=0.98; 60 dB p

h2
=0.99; 40 dB  p

h3
=0.98, 

Figure 3B). Surprisingly, latency was slightly shorter at 21 months (age effect p
i
=0.04 alone, 

21 months vs. 15 months at 4 kHz p
j
=3e-4, Figure 3C) and the effect was still visible at 60 dB 

SPL and 40 dB SPL, albeit not significant (age effect alone, 60 dB p
i2

=0.46; 40 dB p
i3

=0.06). 

 

ABRs were quantified at visible wave II, typically associated with the cochlear 

nucleus responses (Chen and Chen, 1991). Contrasting with the relative stability of peripheral 
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thresholds, the ABR thresholds progressively changed (Figure 3D). At 15 months and at 21 

months, there was a general increase in thresholds of maximum 15dB (age effect p
k
<1e-10 

alone and p
l
=0.94 in interaction with frequency). For ABRs, we also observed a progressive, 

slight, decrease in amplitude for frequencies below 16 kHz (age effect alone 80 dB: p
m
<1e-10; 

60 dB: p
m2

<1e-10; 40 dB: p
m3

<1e-10; age effect in interaction with frequency 80 dB: p
n
=0.13; 

60 dB: p
n2

=0.02; 40 dB: p
n3

=5e-3). The ABR also confirmed the information provided by 

CAPs, indicating that latencies were unaffected (except at 60 dB where one p value is close to 

threshold) in the oldest animals (Figure 3F, Gi, Gii; age effect alone 80 dB: p
o
=0.22; 60 dB: 

p
o2

=0.04; 40 dB: p
o3

=0.54, age effect in interaction with frequency p
p
=0.31; 60 dB: p

p2
=0.25; 

40 dB: p
p3

=0.78). Overall, we detected nonsignificant signs of aging for auditory nerve 

thresholds and amplitude values, and a more pronounced effect in the brainstem response 

(potentially corresponding to the cochlear nucleus). 

 

Primary auditory cortex evaluation 

Auditory thresholds 

The mean cortical thresholds obtained for the three groups of animals are presented on 

Figure 4A. Cortical thresholds were slightly lower in the low- and high-frequencies than for 

ABRs, probably because different systems were used to collect these two sets of data (see 

Methods). In any case, there was no obvious difference in cortical thresholds between nine 

and 15 months of age (age effect p
q
=0.8 alone and p

r
=0.84 in interaction with frequency). By 

contrast, in 21-month-old animals, there was a pronounced general increase in thresholds (age 

effect p
s
<1e-10 alone and p

t
=0.38 in interaction with frequency). This increase was about 15-

25 dB, except at 8 and 16 kHz. 
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Receptive field parameters 

As shown in Figure 4B, from each spectro-temporal receptive fields (STRFs) collected 

at 75 dB SPL, several parameters were extracted, such as the value of the best frequency (BF), 

the 1
st
 spike latency and duration of responses, tuning bandwidth and the ratio of maximal 

evoked firing rate to spontaneous activity (Figure 4B). Since the effects of aging on cortical 

thresholds and CAP/ABR parameters were not necessarily uniform across the hearing range, 

we split the analysis into three frequency bands, as a function of the BF of each recording: 

low frequency (LF, <8 kHz), mid-range frequency (MF, 8-20 kHz) and high frequency (HF, 

>20 kHz, see grey scale on bottom of Figure 4A). The number of cortical site recordings for 

each frequency band and each age group always exceeded 90 (Table 2).  

We assessed the effect of aging on STRF parameters (Figures 4C-G). Multiple two-way 

ANOVAs were performed on age and BF group with interactions, for the five parameters 

shown in Figure 4C-G. We therefore applied Bonferroni correction to the significance 

threshold of the ANOVA tests, and the corrected threshold was 0.05/(5 x 3)=3.3e-3. The first 

spike latency was unaffected by aging (Figure 4C, p
u,v

≥0.01 with or without interaction, note 

that latencies were again shorter, although not significantly so, for mid-range frequencies in 

the oldest animals, as for CAP and ABRs).. The response duration decreased for mid-range 

and high frequencies with aging, but this decrease was not statistically significant (Figure 4D, 

p
y,z

≥0.01, with or without interaction. Tuning bandwidth at 75dB was narrower for oldest 

animals (Figures 4E; p
w
<1e-10), with no significant interaction with frequency range (both 

p
x
=0.26). Aging had no effect on the maximal evoked firing rate divided by baseline activity 

(Figure 4F, p
A,B

≥5.5e-3 with or without interaction), and on the Q20dB value, a measurement 

obtained from the frequency response area (FRA, Figure 4G, p
C,D

≥0.1 with or without 

interaction). 
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These quantifications thus reveal modest and non-significant effects of aging on the 

maximum firing rate and duration, mostly at high frequencies. Aging significantly decreased 

tuning curve bandwidth at 75 dB SPL, probably due to the increase in cortical thresholds, but 

did not induce major changes in the overall shape of the tuning curves, as indicated by the 

lack of effect on the Q20dB parameter.  

 

Processing of communication sounds in the presence of noise 

Communication sounds (such as the guinea-pig whistle and birdsong in our study) 

usually elicit neuronal discharges with very precise temporal spike patterns. Individual 

examples of evoked responses for these two types of vocalizations, in the presence and 

absence of three levels of background noise (at 60, 65 and 70 dB SPL) are displayed in Figure 

5A. The example on the left illustrates tonic responses somewhat robust to noise, occurring in 

the presence of a high spontaneous discharge rate; the example on the right illustrates a phasic 

response that rapidly disappears in the presence of more noise. CorrCoef (an index of 

temporal precision, see Methods) was typically between 0.2 and 0.4 for both types of 

vocalization in the absence of noise. Age was associated with significantly lower CorrCoef 

values for both stimuli (p
E,F

≤7 x 10
-4

) but this effect was observed only at 21 months, for both 

types of vocalization, and did not differ significantly across the frequency range of neurons 

(interaction age and frequency, p
G,H

>0.28). 

  At all ages, the CorrCoef values obtained for the two vocalizations were strongly 

decreased by additional noise, even at 60 dB SPL. LF neurons were more robust to additional 

noise than MF and HF neurons. However, the effect of aging disappeared when background 

noise was added (age effect alone or in interaction with frequency, p
I,J,K,L,M,N,O,P

>0.04, 

Bonferroni corrected threshold=0.05/(4 x 3)=4.2e-3). 
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To summarize, the temporal reliability of neuronal responses to natural stimuli were 

lower in 21-month-old animals in quiet conditions, but not in the presence of noise 

(potentially because the noise already produced a strong decrease in temporal reliability).  

 

Gap detection 

In both humans and animals, aging is known to alter the detection of small gaps 

inserted into acoustic signals (reviewed by (Walton, 2010). We investigated whether the 

auditory cortex neurons detected small gaps inserted into a natural stimulus (a guinea pig 

whistle) and whether aging impaired this detection. A whistle temporal envelope with the 

longest gap duration (64 ms, in green) is shown in Figure 6A. The post-stimulus time 

histograms (PSTHs)displayed below it correspond to a cortical recording, with responses to 

whistles containing gaps of 2 ms to 64 ms. A cortical site was considered to detect a gap if the 

firing rate in the 50 ms following the end of the gap increased to a level significantly above 

that immediately before the gap (red stars on Figure 6A), i.e., if the neuron had detected the 

second part of the stimulus after the gap. We determined the percentage of neurons detecting 

the different gap durations as a function of age (Figure 6B). For all gap durations, the neurons 

from all groups performed similarly (Figure 6B), and three-way ANOVA (age, gap duration, 

frequency band) confirmed that effect of age alone was not significant (p
Q
=0.92). However, 

the interaction of aging with frequency was significant (p
R
<1e-10). Indeed, we found that for 

gap durations≥16 ms, the oldest animals had a significantly higher gap detection percentage 

for LF neurons than the other groups (post-hoc 21 months vs. 9 months, p
S
<2e-3, as well as 

gap duration 32ms, 21 months vs 15 months, p=6e-4). A smaller gap detection percentage 

was obtained for HF neurons, but this difference was not significant after Bonferroni 

correction (post-hoc 21 months vs. 9 or 15 months, 0.01<p
T
<0.71, except gap duration 8ms, 
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21 months vs 15 months, p=4e-4). Surprisingly, the effect of aging detected here seems to be 

a small facilitation in gap detection for the LF neurons. 

 

Temporal envelope processing  

Figure 7A (left) displays neuronal responses to the presentation of amplitude-

modulated white noise (100% modulation depth) at rates ranging from 2 to 50 Hz. This multi-

unit recording generated clear onset responses up to 18 Hz, yielding vector strength (VS) 

values above 0.4 until this frequency. As classically observed in the auditory cortex (reviewed 

by (Joris et al., 2004), the vector strength value then decreased with increasing rate of 

amplitude modulation. The group results (Figure 7C) revealed that tMTFs were generally 

slightly better for the oldest animals (age effect alone p
U
<1e-10), especially for high 

modulation frequencies.  

We therefore averaged VS values over two ranges of temporal modulation frequencies 

[8-14] Hz and [20-32] Hz, splitting the results for each frequency band (LF, MF, HF, Figure 

7D). The better tMTF values obtained for the [20-32] Hz modulation frequency range resulted 

from MF and HF neurons (age effect alone p
V
<1e-10, post-hoc tests 21 months vs. 9 months, 

p
W

<1e-4). 

We then calculated VS values as a function of the depth of amplitude modulation (at 4 

Hz) (Figure 7B). VS values typically decreased at lower depth modulation percentages 

(Figure 7E). As for tMTFs, we observed higher depth-MTFs for the oldest animals (Figure 

7E), mostly for high modulation depths and MF neurons (Figure 7F). However, the overall 

age effect was not significant here (age alone p
X
=0.05, in interaction with modulation 

frequency p
Y
=0.33 or with frequency band of neurons p

Z
=0.34). In any case, there was no 

steady, progressive degradation of dMTFs between the ages of nine and 21 months. 
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Principal component analysis for the cortical results 

In the neurobiology of aging, a large interindividual variability is often reported for 

parameters quantified in aged subjects (e.g. see (Gleich et al., 2007; Getzmann et al., 2015) 

for hearing). We looked at 16 parameters derived from STRFs, responses to vocalizations, or 

amplitude-modulated sounds, and we analyzed the variability of these parameters in each age 

group. We first standardized each parameter, and we then plotted its variability for a given 

age (Figure 8A); the dashed lines on the plot indicate the confidence intervals. The oldest 

animals (21 months) did not display greater variability for any of the parameters tested. These 

findings were consistent with the mean inter-animal variability (averaged across all 

parameters), which was even smaller for the 21-month-old rats than for the other groups 

(Figure 8B, p

=9e-4, post hoc 9 or 15 months vs. 21 months p


<0.01).  

Principal component analysis (PCA) can be used to describe the data when a large 

number of observations are coupled to a large number of variables, a situation in which it is 

not possible to present scatter plots for all the observations and variables. PCA creates new 

axes (called principal components, PCs) to represent the observations and the variables, 

accounting for as much of the variance as possible, with each PC orthogonal to the others. 

The contribution of each PC to the total variance can be used as a criterion to reduce the 

number of PCs involved in the new representation of the data (Figure 8C). PCA can also be 

used to visualize particular structures within observations or particular relationships between 

variables. We found that age had a significant effect mainly on components 2 and 4 (Figure 

8D). Those two components are represented in Figure 8E. The age effect is illustrated by the 

distance between the clusters of points (in colors). This analysis shows that some groups of 

variables displayed similar patterns of change in relation with aging (and therefore parallel to 

the direction of the age effect). This was the case for tMTF and Depth-MTF quantified with 

vector strength, for which aging led to somewhat better results. In the opposite direction, one 
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can find CorrCoef (the index used to quantify the temporal reliability at presentation of 

vocalizations presented in silence or in the presence of white noise) bandwidth and duration 

of STRFs, all of them rather showing lower performance of neurons for the oldest animals. In 

addition, results extracted from STRFs, gap detection and responses to vocalizations were 

orthogonal (i.e. not correlated) to those related to temporal processing (tMTFs, depth-MTFs). 

Those results are therefore consistent with the previous studies and did not reveal hidden 

correlations between studies variables. However, one striking feature that emerged from the 

PCA analysis was the considerable overlap between the clusters of points corresponding to 

the different age groups. Age did not have a significant effect on the first component 

(p

=0.92), which accounted for 22% of the variability and mainly had a significant effect on 

the second and fourth components (p

<1.1e-6), which accounted only for 24% of the 

variability. Even on the components 2 and 4, the group centers could be found within 1 SD of 

other groups as shown in Figure 8E. PCA showed that the variability of measurements within 

groups was very high with respect to that between groups. Consistent with many of the 

studies cited above, aging had an effect on the parameters extracted from the responses of 

auditory cortex neurons, but it was not massive and was limited to the 21-month-old rat 

group.  

GABAergic inhibitory neurotransmission  

During aging, neurochemical changes take place in the central auditory system, including a 

downregulation of glycinergic and GABAergic inhibitory neurotransmission from the 

brainstem to the cortex (Caspary et al., 2008). These changes can affect the functional 

properties of cortical cells in either the spectral (Wang et al., 2000) or temporal domain (Kurt 

et al., 2006). We quantified GAD67 labeling (one of the two enzymes responsible for GABA 

synthesis) in the primary auditory cortex of animals at 9, 15 and 21 months of age (n = 4-6 in 

the different groups) (Figure 9). We analyzed the numbers of labeled cells in the 
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supragranular (II-III, labeled Sup) and infragranular layers (V-VI, labeled Deep). We 

observed a small, but non-significant, decrease in GAD labeling with aging (p

=0.09; Figure 

7B). There was no significant effect of the factor “layer” (p

=0.59) and no interaction between 

age and layer (p

=0.47), suggesting that the small, but non-significant decrease in the number 

of GABAergic neurons occurred in all layers of the cortex. GAD 67 labeling was highly 

variable in the 21-month-old animals and variability differed significantly between ages 

(p

=0.02). 

 

 

Performance in a task involving discrimination between different modulation depths 

As we recorded neural responses to amplitude-modulated noise with various levels of 

modulation depth (see Figure 7), we also tested the ability of animals to distinguish between 

such stimuli in a behavioral task (Figure 10A). We assessed the ability of animals aged 9, 15 

and 21 months to discriminate between constant white noise and different levels of amplitude-

modulated white noise (Figure 10A, same levels of modulation as in Figure 7). The last point 

on the left of Figure 10B indicates the percentage of animals failing to achieve three 

successive sessions with values of A’ > 0.75, even in the easiest conditions (a constant white 

noise vs. a 100% depth modulated-white noise). The other points indicate the percentage of 

animals reaching this criterion for depths of amplitude modulation ranging from 100% 

(second point from left) to 20% (last point on the right). Our animals did not perform as well 

as in another study testing the same amplitude modulation thresholds (Kelly et al., 2006) 

which used an appetitive conditioning as well as a longer training duration, but this did not 

prevent us to observe effects of aging. Indeed, failure (i.e. the percentage of animals unable to 

learn the task) increased with aging. A few nine- and 15-month-old animals were able to 

achieve the most difficult level of differentiation, discriminating between a 20% depth 
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amplitude-modulated white noise and constant white noise. By contrast, none of the 21-

month-old animals was able to do this, and only one of the animals of this group was able to 

achieve a satisfactory performance with a 60% depth of amplitude modulation. We checked 

for significant differences between the distributions corresponding to the different groups and 

compensated for the small numbers of animals in each category by grouping together, for 

each age, the performances obtained for 100% and 80% modulation depths and those obtained 

for 60, 40 and 20% modulation depths. The distributions did not differ significantly between 

the nine- and 15-month-old animals (p

 =0.35) but performance distributions differed 

significantly between the nine- and 21-month-old animals (p

=0.01), suggesting that the 

oldest animals had the poorest discrimination performances.  

The lower performance of the oldest animals may have resulted from a perceptual 

deficit, a cognitive deficit, or motor alterations, because our task required that the animals to 

move into the other compartment of the shuttle box within five seconds. We investigated 

possible impairment of motor responses even when correctly responding, by analyzing the 10 

shortest latencies per animal in response to the CS+ (the amplitude modulated white noise) 

signal when the animals had learnt to discriminate between constant white noise and 100% 

depth of amplitude modulation (after 3 successful sessions). Response latency differed 

between age groups (p

=9e-4): response latencies were similar (about 2 s) in the nine- and 15-

month-old animals (p

=0.52), but the 21-month-old animals took significantly longer to move 

to the safe compartment (p


≤9e-3) (Figure 10C). These findings suggest that the aged 

animals may have also displayed a motor, cognitive, or behavioral impairment.  
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Discussion  

Based on ABRs and cortical recordings, we detected modest, late, effects of aging on 

auditory thresholds, whereas peripheral measurements (CAP, DPOAE and the number of 

ribbon synapses) revealed no effect of aging. ABR and cortical thresholds were partially 

preserved at 8 and 16 kHz, whereas thresholds increased by up to 30 dB at lower and higher 

frequencies. These threshold shifts were accompanied by modest alterations to receptive field 

parameters (bandwidth). At 21 months of age (estimated to represent 80-90% of the lifespan 

for Sprague-Dawley rats), changes in cortical responses to heterospecific communication 

sounds were observed. When these vocalizations were presented in the presence of 

background noise, there was no global effect of aging. Surprisingly, aging appeared to have 

no deleterious effect on temporal processing (gap detection, temporal and depth modulation 

transfer functions). A PCA performed on a large number of parameters indicated that the 

inter-animal variability was large relative to the variability across groups of ages. An 

immunohistochemical study revealed a non-significant decrease in GAD67
+
 labeling in all 

cortical layers. Finally, the performance of aged rats was lower than younger rats in a 

behavioral task (detection of modulation depths in the signal envelope). Most of our results, 

from peripheral measurements to behavioral evaluations, showed no difference between nine- 

and 15-month-old rats, suggesting that aging has no effect before the age of 15 months at the 

earliest in this rat strain. 

Methodological issues 

Many previous studies have used multi-unit recordings to characterize the functional 

properties of auditory cortex neurons (e.g., (Brosch and Schreiner, 1997; Escabí and Read, 

2003; Noreña and Eggermont, 2005; Tillein et al., 2016), including the temporal properties of 

cortical neurons (Cotillon and Edeline, 2000; Cotillon et al., 2000; Cotillon-Williams and 
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Edeline, 2003; Imaizumi et al., 2010; Johnson et al., 2012). It could be argued that this type of 

recording prevented us from detecting small age-related alterations. However, we were able, 

with this type of recording, to dissociate the cortical effects of different noradrenergic 

agonists (Gaucher and Edeline, 2015) and to detect discrimination between vowels of very 

brief durations (Occelli et al., 2016), suggesting that subtle differences are detectable even 

with MUA recordings.    

We used Sprague Dawley rats rather than the rat model classically used for aging studies, the 

Fisher 344 rat, because the Sprague Dawley rat strain is the most widely used for behavioral 

studies. Furthermore, we used only female rats, raising questions about the likelihood of 

obtaining similar results for male animals (e.g. see (Costa et al., 2016). This is clearly an 

important issue, but it should not attenuate the main message of this study: in the absence of 

peripheral alterations, only modest effects were observed in the brainstem and cortex.  

 

Electrophysiological correlates of aging in the auditory system 

Only modest effects of aging on the auditory system were detected here: hearing loss 

ranged from 20 dB in the cortex, to 15 dB in the brainstem level and zero in the periphery 

(based on CAP and DPOAEs). We also detected no decrease in the number of synapses per 

inner hair cell, suggesting that these animals had unimpaired afferent innervation, contrary to 

old mice (Stamataki et al., 2006). Here, the brainstem and cortical thresholds remained stable 

until the age of 15 months, and marked hearing loss was observed only at 21 months. 

In contrast, major age-related modifications have been described in the lower levels of 

the auditory system (review in (Boettcher, 2002). Increases in ABR thresholds and response 

latencies, and decreases in response magnitude are the most classically reported effects of 

aging (Dum, 1983; Boettcher et al., 1993a, 1993b; Walton et al., 1995; Turner and Willott, 
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1998; Gourévitch and Edeline, 2011; Ng et al., 2015). Threshold increases have also been 

detected in the cortex (Gourévitch and Edeline, 2011). Temporal processing also seems to be 

altered in the brainstem, as shown by a deficit in gap detection according to ABRs 

(Williamson et al., 2015) and by changes in the response to amplitude-modulated sounds in 

the inferior colliculus (Palombi and Caspary, 1996a, 1996b; Walton et al., 2002). Alterations 

in evoked responses have suggested a possible decrease in inhibition during aging (review in 

(Caspary et al., 2008): in the colliculus, the age-related decrease in response latency to AM 

stimuli (Simon et al., 2004) and the attenuation of direction selectivity (Costa et al., 2016) 

may also stem from reduced inhibition. Similarly, the increase in response duration observed 

in the auditory cortex of aged guinea pigs may result from a decrease in intracortical 

feedforward inhibition (Gourévitch and Edeline, 2011). This hypothesis is supported by the 

findings of several studies reporting an increase in spontaneous activity with aging, from the 

cochlear nucleus (Frisina and Walton, 2006) and inferior colliculus (Willott et al., 1988) to the 

auditory cortex (Hughes et al., 2010). The alteration of receptive field structure (Turner et al., 

2005) and the apparent lack of response suppression around the CF (Caspary et al., 2005) may 

also be accounted for by a decrease in inhibition. 

Other studies have reported only modest effects of aging on physiological responses. Willot 

and colleagues observed considerable variability in the age-related hearing loss measured by 

ABR evaluations, depending on the mouse strain (Turner and Willott, 1998; Willott and 

Turner, 1999; Willott et al., 2000). In some mouse strains (C57Bl/6), animals can be partially 

deaf by the time they are a few weeks old, whereas in other strains (CBA/j), hearing seems to 

remain unimpaired for many months. Furthermore, only modest hearing loss has been 

detected by ABR measurements in geriatric macaque monkeys (Ng et al., 2015). Subtle 

effects on direction selectivity were observed in the cortex of aged monkeys (Juarez-Salinas et 
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al., 2010). In addition, Fischer brown Norway rats display no effect of aging on thalamic 

responses in a stimulus-specific adaptation protocol (Richardson et al., 2013).   

The receptive field alterations described here (decrease in bandwidth) may be 

explained by the increase in auditory cortical thresholds. By contrast, the stability or 

improvement in temporal processing observed here in the gap detection protocol and for 

tMTF and Depth-MTF determinations seems to contradict the results of previous studies 

(Mendelson and Ricketts, 2001; Lee et al., 2002; Mendelson and Lui, 2004). However, these 

and other studies (Turner et al., 2005; Hughes et al., 2010) described cortical alterations 

without documenting peripheral hearing loss in the animals concerned (or at least the effects 

on the brainstem). In fact, old male Sprague Dawley rats displaying peripheral alterations (a 

decrease in DPOAE amplitude) also displayed broader orientation and spectral selectivity in 

the superior colliculus (Costa et al., 2016, 2017). In these studies, 22-month-old rats displayed 

a larger increase in ABR threshold (15-30 dB) than in our study, possibly due to differences 

between the sexes or housing conditions (our animals were aged in our own animal facilities 

with a known low level of background noise). Thus, the lack of prominent cortical effects in 

our study may be a direct consequence of the stability of our peripheral thresholds. In our 

study, CAP and DPOAE measurements were quite stable, and the late emergence of 

alterations to the brainstem and cortex should therefore be seen as a signature of the central 

effects of aging, and not as a combination of central aging and hearing loss. Modest changes 

in cortical physiology in oldest animals could be attributed to the non-significantly diminished 

CAP or significantly diminished ABR wave II amplitudes documented in Figure 3B and 3E. 

Fifteen-month-old rats also displayed diminished ABR wave II amplitudes but their cortical 

activity was not altered. This discrepancy could be explained by a similar mechanism to that 

found in Möhrle et al., (2016) where it was suggested that young to middle-aged animals 

(unlike old ones) could centrally compensate for a decrease of auditory fiber activity related 
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to inner hair cell synaptopathy. In any case, latencies or firing rates measured in the primary 

auditory cortex were shown to be orthogonal to aging effects (Figure 8E) according to the 

PCA performed on our cortical data. This PCA revealed a significant difference between old 

and young animals (only for the 2
nd

 and 4
th

 components), but inter-animal and inter-neuron 

variability remained very high relative to the difference between groups. Surprisingly, this 

analysis also indicated that inter-individual variability decreased with aging, whereas studies 

in humans have reported an increase in inter-individual variability with aging (review in 

(Füllgrabe et al., 2014), see also (Paraouty and Lorenzi, 2017). However, human subjects 

have heterogeneous genetic backgrounds, whereas we worked on rats with a homogeneous 

genetic background, potentially accounting for the differences between our results and those 

for humans.  

 

Relationship with psychoacoustic data 

Our analyses of tMTF and depth-MTF revealed an absence of deleterious effects of 

aging on temporal processing. This is in line with Paraouty and Lorenzi (2017) who found no 

effect of aging on the detection of amplitude-modulated sound in a large cohort of subjects. 

However, we should bear in mind that in the results of psychoacoustic studies depend not 

only on auditory system performance, but also on processing steps, such as attention and 

decision-making, which are also affected by aging (Füllgrabe et al., 2014; Huang et al., 2015; 

Strough et al., 2015). The deficits in psychoacoustic tasks observed in humans may be due to 

a decline of attentional and cognitive abilities (review in Fullgrabe et al. 2014). Similarly, the 

decrease in behavioral performance observed here in the 21-month-old animals may result 

from a decline of attentional and cognitive abilities, rather than from a loss of hearing. Indeed, 

response latencies in the task increased with aging (Figure 10C), whereas cortical recordings 
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showed no decrease in depth-modulated noise processing (Figure 7D-F), suggesting an 

impairment of motor or cognitive abilities. 

 

In the past, psychophysical results have suggested that aging is associated with hearing 

impairment and with deficits in the processing of the temporal parameters of sound. In 

addition, elderly subjects often experience major difficulties understanding speech in adverse 

listening situations, sometimes even in the absence of high audiometric thresholds (for 

review, see (Füllgrabe et al., 2014; Schoof and Rosen, 2014). This situation may result from 

changes in suprathreshold auditory processing (for review, see (Fitzgibbons and Gordon-

Salant, 2010), which could be explained by high-threshold auditory nerve fibers being the first 

to be affected during aging (Sergeyenko et al., 2013). However, several studies have indicated 

that frequency selectivity does not change with age provided that audiometric thresholds 

remain normal (Lutman et al., 1991; Moore et al., 1992; Hopkins and Moore, 2011), 

suggesting that modulated signal processing should be similar in younger and older listeners 

with similar thresholds.  

Immunohistochemical markers of age-related changes and conclusion 

Here, we detected a small decrease in GAD67 labeling with aging, consistent with the 

findings of previous studies (Ling et al., 2005; Burianova et al., 2009). However, this decrease 

was not statistically significant. It also remains unclear whether such changes are specific to 

the GABAergic system. Several GABAergic subpopulations have been characterized in the 

auditory cortex. In aged rats, cortical neurons expressing GABAA receptors tend to have 

lower levels of α1, β1, β2, γ1, γ2s, and γ2L subunit protein and mRNA (Caspary et al., 2013). 

Age-related changes in parvalbumin-positive neuron levels may be species-dependent or even 

strain-dependent: their number seems to increase with age in Long Evans rats, whereas they 
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seem to decrease with age in the auditory cortex of Fischer F344 rats (Ouda et al., 2008) and 

in the brainstem of non-human primates (Engle et al., 2014; Gray et al., 2014). The neuronal 

expression of GAD65 and GAD67 has been reported to decrease during aging (Ling et al., 

2005; Burianova et al., 2009). In addition, the numbers of neurons positive for somatostatin, 

calbindin and calretinin decrease with aging throughout the central auditory system in rats and 

primates (Gray et al., 2014; Ouda et al., 2012, 2008; Ouellet and de Villers-Sidani, 2014). 

One recent study showed that age-related synaptic response alterations in the auditory 

thalamus involved both a decrease in the total number of nicotinic receptors (nACh), and a 

switch from high- to low-affinity nACh receptors (Sottile et al., 2017). Thus, future studies 

may reveal that aging affects not only inhibitory neurotransmission, but also many other 

neurotransmitters. 

 

To conclude, and based on functional and anatomical data, we show here that the 

peripheral auditory system of female Sprague Dawley rats changes little, if at all, with aging. 

These findings are consistent with observations indicating that the effect of aging is strain-

dependent and that not all aging scenarios lead to major changes. As a simplification, the 

peripheral system acts essentially as a signal detector, whereas the central system processes 

complex acoustic features. Animal models in which aging does not affect the signal detector 

provide us with a unique opportunity to dissect the consequences of “central aging” in 

isolation (i.e., the effects of aging on the extraction of acoustic features by central networks). 

Here, we show that, when peripheral processing is little affected, intrinsic central aging of the 

auditory system exists but is modest, at least in female Sprague-Dawley rats. Obviously, 

aging in the central nervous system involves a myriad of mechanisms ranging from the 

molecular (Lenaz et al., 2002; Mattson and Liu, 2002; Penney and Tsai, 2014; Deibel et al., 

2015) to the synaptic (Villanueva-Castillo et al., 2017) level. Potential changes in the 
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functions of the microglia (reviewed in (Colonna and Butovsky, 2017) and extracellular 

matrix (Sethi and Zaia, 2017; Song and Dityatev, 2017) should also be taken into account. If 

we wish to understand the effects of aging on auditory function, we will need to study 

different levels of auditory information processing in the same animals, with different 

techniques. This study can serve as a starting point.  
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Appendix 

Details of each statistical test 

Index of 
pvalues 

Type of test df1,df2 Statistics pvalue 

a ANOVA two-way age x frequency with interaction, age effect 1,882 F=0.36 0.55 

b ANOVA two-way age x frequency with interaction, age x frequency effect 20,882 F=0.98 0.49 

c ANOVA two-way age x frequency with interaction, frequency effect 1,49 F=12.67 8.10-4 

d ANOVA two-way age x frequency with interaction, age effect 1,49 F=0.01 0.93 

e ANOVA two-way age x frequency with interaction, age x frequency effect 1,49 F=0.13 0.72 

f ANOVA two-way age x frequency with interaction, age effect 1,113 F=0.38 0.54 

g ANOVA two-way age x frequency with interaction, age x frequency effect 6,113 F=1.33 0.25 

h ANOVA two-way age x frequency with interaction, age x frequency effect 6,109 F=0.16 0.98 

h2 ANOVA two-way age x frequency with interaction, age x frequency effect 6,109 F=0.08 0.99 

h3 ANOVA two-way age x frequency with interaction, age x frequency effect 6,109 F=0.18 0.98 

i ANOVA two-way age x frequency with interaction, age effect 1,113 F=4.21 0.04 

i2 ANOVA two-way age x frequency with interaction, age effect 1,113 F=0.56 0.46 

i3 ANOVA two-way age x frequency with interaction, age effect 1,113 F=3.71 0.06 

j Unpaired t-test, Tukey-Kramer correction, 15 m vs. 21 m 11 T=-5.15 3.10-4 

k ANOVA two-way age x frequency with interaction, age effect 1,133 F=27.05 <1e-10 

l ANOVA two-way age x frequency with interaction, age x frequency effect 6,133 F=0.3 0.94 

m ANOVA two-ways age * frequency with interaction, age effect 1,133 F=79.74 <1e-10 

n ANOVA two-way age x frequency with interaction, age x frequency effect 6,133 F=1.7 0.13 

m2 ANOVA two-ways age * frequency with interaction, age effect 1,133 F=74.88 <1e-10 

n2 ANOVA two-way age x frequency with interaction, age x frequency effect 6,133 F=2.7 0.02 

m3 ANOVA two-ways age * frequency with interaction, age effect 1,133 F=55.1 <1e-10 

n3 ANOVA two-way age x frequency with interaction, age x frequency effect 6,133 F=3.2 5e-3 

o ANOVA two-way age x frequency with interaction, age effect 1,133 F=1.51 0.22 

p ANOVA two-way age x frequency with interaction, age x frequency effect 6,133 F=1.2 0.31 

o2 ANOVA two-way age x frequency with interaction, age effect 1,126 F=4.43 0.04 

p2 ANOVA two-way age x frequency with interaction, age x frequency effect 6,126 F=1.32 0.25 

o3 ANOVA two-way age x frequency with interaction, age effect 1,129 F=0.37 0.54 

p3 ANOVA two-way age x frequency with interaction, age x frequency effect 6,129 F=0.53 0.78 

q ANOVA two-way age x frequency with interaction, age effect (only 9 and 15 months) 1,361 F=0.06 0.8 

r ANOVA two-way age x frequency with interaction, age x frequency effect (only 9 and 15 months) 24,361 F=0.72 0.84 
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s ANOVA two-way age x frequency with interaction, age effect 1,552 F=105.8 <1e-10 

t ANOVA two-way age x frequency with interaction, age x frequency effect 24,552 F=1.06 0.38 

u ANOVA two-way age x BF group with interaction, age effect 1,1165 F=0.13 0.72 

v ANOVA two-way age x BF group with interaction, age x BF group effect 2,1165 F=4.28 0.01 

w ANOVA two-way age x BF group with interaction, age effect 1,1165 F=82.12 <1e-10 

x ANOVA two-way age x BF group with interaction, age x BF group effect 2,1165 F=1.34 0.26 

y ANOVA two-way age x BF group with interaction, age effect 1,1165 F=6.08 0.01 

z ANOVA two-way age x BF group with interaction, age x BF group effect 2,1165 F=2.58 0.08 

A ANOVA two-way age x BF group with interaction, age effect 1,1165 F=0.56 0.45 

B ANOVA two-way age x BF group with interaction, age x BF group effect 2,1165 F=5.23 5.5e-3 

C ANOVA two-way age x BF group with interaction, age effect 1,1120 F=2.7 0.1 

D ANOVA two-way age x BF group with interaction, age x BF group effect 2,1120 F=0.01 0.99 

E ANOVA two-way age x BF group with interaction, age effect 1,772 F=11.49 7e-4 

F ANOVA two-way age x BF group with interaction, age effect 1,569 F=17.57 <1e-10 

G ANOVA two-way age x BF group with interaction, age effect 2,772 F=0.24 0.79 

H ANOVA two-way age x BF group with interaction, age effect 2,569 F=1.27 0.28 

I ANOVA two-way age x BF group with interaction, age effect (Whistle, 60 dB Noise) 1,760 F=1.97 0.16 

J ANOVA two-way age x BF group with interaction, age x BF group effect (Whistle, 60 dB Noise) 2,760 F=0.83 0.43 

K ANOVA two-way age x BF group with interaction, age effect (Whistle, 70 dB Noise) 1,755 F=0.08 0.78 

L ANOVA two-way age x BF group with interaction, age x BF group effect (Whistle, 70 dB Noise) 2,755 F=0.17 0.84 

M ANOVA two-way age x BF group with interaction, age effect (Birdsong, 60 dB Noise) 1,561 F=3.9 0.05 

N ANOVA two-way age x BF group with interaction, age x BF group effect (Birdsong, 60 dB Noise) 2,561 F=0.98 0.38 

O ANOVA two-way age x BF group with interaction, age effect (Birdsong, 70 dB Noise) 1,554 F=4.19 0.04 

P ANOVA two-way age * BF group with interaction, age x BF group effect (Birdsong, 70 dB Noise) 2,554 F=0.92 0.4 

Q ANOVA three-way age x gap duration x BF group with pair interactions, age effect 1,7178 F=0.1 0.92 

R ANOVA three-way age x gap duration x BF group with pair interactions, age x BF group effect 2,7178 F=22.82 <1e-10 

S Unpaired t-test, Bonferroni correction, 9 m vs. 21 m, gap durations≥16 ms >189 T>3.11 <2e-3 

T Unpaired t-test, Bonferroni correction, 9 m vs. 21 m or 15 m vs. 21 m, all gap durations (except gap 
duration 8ms, 21 m vs 15 m) 

>246 -2.45>T>-
0.38 

0.01<p<0
.71 

U ANOVA three-way age x TMF x BF group with pair interactions, age effect 1,13014 F=30.93 <1e-10 

V ANOVA two-way age x BF group with interaction, age effect 1,808 F=23.18 <1e-10 

W Unpaired t-test, Bonferroni correction, 9 m vs. 21 m, modulation frequency range [20-32] Hz >205 T>4.08 <1e-4 

X ANOVA three-way age x DMF x BF group with pair interactions, age effect 1,7574 F=4.01 0.05 

Y ANOVA three-way age x DMF x BF group with pair interactions, age x DMF effect 1,7574 F=0.95 0.33 

Z ANOVA three-way age x DMF x BF group with pair interactions, age x BF effect 2,7574 F=1.09 0.34 

 ANOVA one-way age effect 2,45 F=8.17 9e-4 

 Unpaired t-test, 9 or 15 m vs. 21 m 30 T>2.61 <0.01 
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 ANOVA one-way age effect 2,585 F>14 <1.1e-6 

 ANOVA one-way age effect 2,585 F=0.08 0.92 

 ANOVA two-way age x layer depth with interactions, age effect 1,28 F=3.12 0.09 

 ANOVA two-way age x layer depth with interactions, layer effect 1,28 F=0.35 0.56 

 ANOVA two-way age x layer depth with interactions, age effect 1,28 F=0.53 0.47 

 LEVENE test, depth layers pooled, age effect 2,29 F=4.23 0.02 

 Chi² 2 C=2.09 0.35 

 Chi² test 2 C=8.58 0.01 

 ANOVA one way, age effect 3,107 F=5.92 8.10-4 

 Unpaired t-test, Tukey-Kramer correction, 9 m vs. 15 m 3,107 T=0.21 0.52 

 Unpaired t-test, Tukey-Kramer correction, 9 m vs. 21 m 3,107 T=-0.59 9e-3 

 Unpaired t-test, Tukey-Kramer correction, 15 m vs. 21 m 3,107 T=-0.8 1e-3 
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Figure Legends 

Figure 1: Example of CAP, ABR and cortical thresholds for a 15-month-old rat (#261).  

CAP (A) and ABR (B) recordings in response to a short pure tone of 8 kHz for sound pressure 

levels (SPL) of 0 to 80dB. The response amplitude is quantified by the N1-P1 amplitude 

difference for CAP and by the wave II amplitude for ABRs. C. In the cortex, the maximum 

firing rate of a cortical site is shown in response to tones varying in frequency (abcissa) and 

SPL (ordinate). The dashed line is the contour at 6 SD above spontaneous activity and 

determines the threshold of the cortical site. D. Each cortical site sampled on this animal 

generated a threshold tuning curve (blue lines) and the pink line indicates the lowest cortical 

thresholds as a function of frequency. Note that, except at 16 kHz, there is a good match 

between ABR and the lowest cortical threshold. E. Simplified cheme summarizing the 

different stages of auditory pathways at which recordings were acquired. 

 

Figure 2: In the cochlea, DPOAEs and synaptic ribbons are normal in old animals 

A. Amplitude of DPOAEs as a function of frequency for animals aged 9, 15 and 21 months, 

with the gray line indicating the noise level. 

B. Simultaneous labeling of presynaptic inner hair cell (IHC) ribbons with a mouse anti-

CtBP2 antibody (green) and of postsynaptic glutamate receptors (GluA2 subunit, red). The 

three lower panels show a magnification of labeling at the synaptic level.  

C. Number of synapses per IHC as a function of the position of the ribbon synapse along the 

cochlea (abscissa). The frequencies corresponding to cochlear locations are indicated on the 

top axis (red). Each dot represents the average over 6 consecutive IHCs (Bourien et al., 2014). 

Solid curves are second-order polynomial fits (9 months, f(x) = -0.005x
2
+0.466x+8.9, r

2
 > 0.9; 

21 months, f(x) = -0.0054x
2
+0.5x+8.7, r

2
 > 0.9, with x the position from the apex in percent). 
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Figure 3: Aging has deleterious effects on ABRs, but not CAPs. 

Mean values of CAP thresholds (A), N1-P1 amplitude (B) and N1 latency (C) as a function of 

frequency for the different ages. B-C, E-F: for amplitude and latencies for both CAP and 

ABRs, the curves at 80 dB SPL, 60 dB SPL and 40 dB SPL are displayed on the same plot 

(CAP) or on three different plots (ABRs). Otherwise, D-F are similar to A-C for ABR 

thresholds, wave II amplitude and wave II latency, respectively. Gi, Gii Individual CAP (Gi) 

and ABR (Gii) at a frequency of 8 kHz and for two animals of aged 9 and 21 months, 

respectively, illustrating the unexpected lack of increase in latency with aging. 

 

Figure 4. Cortex: the response to pure tones  

A. Mean cortical thresholds as a function of frequency for the different ages.  

B. Example of a spectrotemporal receptive field (STRF) obtained for a 21-month-old animal. 

The STRF shows the mean firing rate (color scale) obtained at a cortical site in response to 

pure tones (frequency, ordinate) and as a function of the time after tone onset (abscissa). 

Significant peaks (6 SD above spontaneous activity) are shown as a white contour.  

C-G. The mean values of parameters extracted from STRFs (duration, bandwidth and first 

spike latency) are presented for three ranges of best frequency (the best frequency was 

defined as the frequency eliciting the maximum firing rate for the cortical site). The first spike 

latency (C), duration (D), bandwidth (E), maximum firing rate over baseline activity (F) and 

Q20dB coefficient (G) are plotted as a function of animal age (abscissa) and for three ranges of 

best frequencies (low frequencies, LF: <8 kHz; mid-range frequencies, MF: 8-20 kHz; high 

frequencies, HF: >20 kHz).  

 

Figure 5. Cortex: response to communication sounds 
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A. Examples of cortical responses to a guinea pig whistle (left) and a bird song (right). The 

temporal envelopes of sounds are represented on the top and the raster plots below present the 

neuronal responses for 25 presentations of each vocalization (at 75 dB SPL) without noise (0 

dB) and with three levels of background noise (60 dB, 65 dB, 70 dB). The responses to the 25 

trials are aligned vertically, with each line corresponding to one presentation. The values of 

the CorrCoeff index (quantifying the temporal reliability of neuronal response across trials) 

are indicated to the right of the neuronal responses.  

B. Mean values of CorrCoef as a function of age for the responses to a guinea pig whistle for 

the 3 groups of best frequencies defined in Figure 4, in absence of noise (left) or with noise at 

60 dB SPL or 70 dB SPL (center and right, respectively).  

C. As for B, for the responses to birdsong.  

 

Figure 6: Cortex: gap detection  

A. Example of cortical responses to a guinea pig whistle including gaps of various durations. 

The temporal envelope of the guinea pig whistle is represented at the top, with a gap 

symbolized by a green rectangle. The peri-stimulus time histograms (PSTHs) displayed below 

correspond to neuronal responses to whistles with gaps ranging from 2 ms (bottom) to 64 ms 

(top). Each stimulus was presented 25 times. A red star indicates the observation of a 

significant peak in the PSTH within 50 ms of the gap.  

B. Percentage of neurons responding to the presence of the gap as a function of gap duration 

(abcissa) for the three ages considered (colored lines).  

C. Percentage of neurons responding to the presence of a 2 ms gap as a function of age 

(colored lines), for the 3 groups of best frequencies defined in Figure 4 (low, mid-range and 

high frequencies). 

D. As for C, but for a gap of 8 ms. 
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E. As for C, but for a gap of 32 ms. 

 

 

Figure 7: Cortex: temporal envelope  

A-B. Examples of cortical responses to amplitude-modulated noise with a range of 

modulation rates between 2 Hz and 50 Hz, and a modulation depth of 100% (A), a modulation 

rate of 4 Hz and a range of modulation depths between 0 and 100% (B). The temporal 

envelope of an amplitude-modulated noise is represented at the top. For both types of stimuli, 

the peri-stimulus time histograms (PSTH) of neuronal responses are presented for 20 

presentations of each stimulus. On the left of the PSTHs, the vector strength (VS) value 

(abscissa) is plotted as a function of modulation rate (left) or modulation depth (right).  

C. Group data for the VS values for the temporal modulation transfer function (tMTF).  

D. Averaged VS values for two sets of modulation rates (8-14 Hz, left; 20-32 Hz, right) as a 

function of animal age (colored lines) and for the 3 groups of best frequencies defined in 

Figure 4 (low, mid-range and high frequencies).  

E-F. As for C and D, respectively, for modulation depth rather than modulation rate.  

 

Figure 8: Cortex: Multidimensional analysis  

A. Standard deviation (SD) of each parameter, split according to animal age. The parameters 

are those described in Figures 4-7, sometimes averaged across a subset of parameter values. 

For instance, Gaps (2-8) corresponds to the percentage of neurons detecting the presence of 

the gap for gap durations between 2 and 8 ms. SD values displayed here are across individuals 

of each age, normalized by the SD of each parameter with data pooled across all animals. The 

dashed horizontal lines are confidence intervals for SD values across all parameters at each 

age. Circled dots are those outside the confidence interval for each age. 
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B. Interanimal variability calculated as the variance across animals of all parameters, after the 

standardization of each parameter. 

C-E. Principal component analysis of the parameter values. C. Inertia (variance) of the 

principal components. D. Age effect on each principal component: log-pvalue of ANOVA 

one-way test. E. Projections of values and the parameters of the principal components 2 and 4. 

Each point is associated with a cortical site. Each parameter is represented as a vector with a 

projected length on a given axis proportional to the correlation of this parameter with the axis. 

The centers (“+” signs) and the borders indicating the SD (colored circles) for the points 

associated with each group of animals age are superimposed in color. 

 

Figure 9: GAD67 labeling of neurons in the primary auditory cortex  

A. Example of immunostaining for GAD67 in the primary auditory cortex (40 x 

magnification; scale bar: 50 µm).  

B. Density of GAD67-positive cells in the auditory cortex as a function of animal age 

(abscissa). Quantification was performed in the supragranular (II-III, labeled Sup) and 

infragranular (V-VI, labeled Deep) layers. 

 

Figure 10: Modulation depth discrimination task  

A. The behavioral task was an aversive Go-NoGo protocol in a shuttle box. The animal 

should discriminate between noise with (SC+, Go) and without (SC-, NoGo) amplitude 

modulation at 4 Hz, the level of depth modulation varying between 20 and 100%. For details, 

see methods.  

B. Performance of animals as a function of age (colored lines). The percentage of animals 

achieving correct discrimination is represented as a function of the smallest depth modulation 
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that the animals can discriminate from non-modulated white noise. The percentage of animals 

failing to achieve the criteria for correct discrimination is indicated on the left.   

C. Latency of motor responses to CS+ presentations, as a function of animal age (abscissa). 

This latency was the time interval between the onset of the tone and the movement of the 

animal into the other compartment. We recorded the 10 shortest latencies per animal in 

response to CS+ stimuli when the animals had mastered the discrimination between the 

constant white noise and the 100% depth of amplitude modulation (after 3 successful 

sessions). 
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Table 1: Number of animals of the different ages used 

Age Behavior AI CAP/ABRs
 

(free field) 

DPOAEs
 
 Immunochemistry

 
 

9 months n=10 9 7 8 4 

15 months n=9 8 8 9 6 

21 months n=12
 a
 8 5  5  5  

a
 Four 21-month-old animals were used in the behavioral task but died before the electrophysiological recording 

session (at the beginning or in the middle of surgery). 

Table 2: Number of cortical sites recorded for the different groups of age as a function of the 

Best Frequency (BF) value. 

Age Low frequency 

(BF<8 kHz) 

Medium frequency 

(8<BF<20kHz) 

High frequency 

(BF<8 kHz) 

6 months 125 142 169 

9 months 102 131 193 

15 months 126 91 157 

21 months 90 216 92 
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