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Abstract
Psychoacoustic studies revealed that speech intelligibility can be preserved in conditions of severe acoustic degradations such as those induced by the presence of 
masking noise or by the processing of speech by a vocoder which removes the temporal fine structure and preserves partially the temporal envelope. At the neuronal 
level, many studies have pointed out that auditory cortex neurons display robust discrimination, but it seems crucial to investigate how subcortical auditory neurons 
respond in adverse conditions.
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Introduction
Our ears are constantly bombarded by a complex sound mixture, 

which often generates challenging acoustic conditions for understanding 
speech. These acoustic conditions can be the presence of background 
noise, with the particular case of the ‟cocktail partyˮ noise» (requiring 
segregating a sound source from a mixture of different sources), the 
internal room acoustics which can potentially cause reverberation 
phenomena, but also the environmental conditions for example 
the attenuations of some frequencies by the environment [1-3] and 
spectro-temporal masking by other competing sounds [4]. In human, 
partial eliminations of acoustic features crucial for speech perception 
such as the temporal fine structure (TFS) or the slow temporal envelope 
(E) are also adverse acoustic situations [5-8]. As a consequence, they 
make it increasingly difficult perceiving target sounds such as speech, 
communication sounds and music in normal-hearing subjects. In 
addition, these acoustic conditions impair speech understanding for 
subjects with mild to moderate hearing loss and are very penalizing 
for subjects with cochlear implants (neuroprosthetic which restores 
hearing in people suffering from profound deafness).

Understanding what are the spectro-temporal acoustic cues used 
by human subjects in adverse conditions and the neuronal mechanisms 
allowing the auditory system to extract relevant cues for discriminating 
sounds in these acoustic conditions are major aims in psychoacoustic 
and auditory neuroscience.

Psychoacoustical studies: impact of acoustic 
degradations on speech intelligibility

A large number of studies have used vocoders [9] that is signal- 
processing devices designed to selectively alter specific acoustic 
features in speech signal [5-7,10,11]. Vocoders decompose incoming 

sounds into frequency bands mimicking the spectral decomposition 
performed by the cochlea. For each band, the temporal-fine-structure 
component (i.e., a frequency-modulated signal) is degraded (replaced 
either by a pure tone or by a broadband noise) and then amplitude 
modulated by the corresponding temporal-envelope component 
(i.e., an amplitude modulator, AM). The resulting AM carriers are 
finally added up and presented for discrimination or identification 
to human subjects. This literature has largely documented that slow 
AM fluctuations (<16 Hz) in a limited number of frequency bands 
(4-8) are sufficient to maintain an almost perfect identification of 
speech in quiet [6,7]. Despite the fact that vocoding reduced the 
spectral content and the harmonic structure of speech (leading to the 
loss of pitch and timbre information), slow temporal cues (16Hz) are 
sufficient to produce 90% correct recognition of consonants, vowels 
and words [6].

On the other hand, elderly persons often experience important 
difficulties in understanding speech in adverse listening situations, 
sometimes in the absence of elevated audiometric thresholds [12,13]. 
Potentially, this can result from an alteration of supra-threshold 
auditory processing [14-17], which can be explained if high-
threshold auditory-nerve fibers are the first to be impacted during 
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aging [18]. Initially, it was found that older listeners showed deficits 
in using complex amplitude modulation (AM) patterns to identify 
speech accurately [19,20]. This is possibly due to reduced sensitivity to 
AM cues, or reduced central ability to make optimal use of AM cues 
[12,21]. However, several studies did not find any effect of aging on AM 
sensitivity [13,22,23], suggesting that the processing of AM information 
is roughly comparable for younger and older listeners exhibiting similar 
audiometric thresholds. 

When elderly subjects exhibit sensorineural hearing loss, AM 
sensitivity is generally improved compared to normal [24], presumably 
because of the loss in the fast-acting amplitude compression applied by 
outer hair cells in the cochlea [25]. Thus, the potentially detrimental 
effects of aging on AM processing may be confounded with (and 
counter-balanced by) the loss of compression associated with mild 
hearing loss. 

Neurophysiological studies: impact of acoustic 
degradations on neuronal responses in the auditory 
pathway

The auditory system successfully maintains a detailed and precise 
neuronal representation of target acoustic stimuli such as speech, 
communication sounds and music, in the presence of important 
acoustic alterations. Many studies describing consequences of acoustic 
degradations have been performed in the primary auditory cortex (AI) 
with stimuli that differ in length, spectral content, and other acoustic 
parameters. All the studies using vocoded vocalizations showed little 
changes in AI responses: in several species, cortical responses were 
not drastically reduced even when the number of frequency bands 
was reduced down to two bands [26-29]. At the level of the secondary 
auditory cortex (SRAF area), Carruthers et al. [30] showed that neuronal 
populations code invariant representations of conspecific vocalizations 
despite important spectro-temporal degradations. In the only study 
performed at the subcortical level with vocoded stimuli, it was reported 
that, in terms of firing rate, the responses of IC neurons were resistant 
to drastic spectral degradations [31].

Acoustically, the vocoded stimuli become spectrally more similar 
as the number of frequency bands decreases, whereas their temporal 
envelopes remain quite different but are partially degraded. The auditory 
neurons remain thus sensitive to temporal envelope fluctuations still 
present in the vocoded stimuli. If this interpretation is correct, masking 
the amplitude modulations of natural stimuli by noise addition, should 
largely reduce the neuronal discriminative abilities of auditory neurons. 
In fact, this might be the best adverse condition to evaluate the abilities 
of auditory neurons to discriminate communication sounds.

Most of the studies describing the consequences of background 
noise on neuronal responses to target stimuli have been also performed 
at the level of the primary auditory cortex. Initially, Nagarajan et al. 
[26] reported that white noise addition reduced neuronal responses to 
communication sounds only at a 0dB SNR. In bird field L (homologous 
to AI), neuronal responses to song motifs were strongly reduced by 
three different types of masking noises [4]. However, recent results 
revealed a more complex picture [32]. The responses of cortical neurons 
can be classified in four classes named robust, balanced, insensitive 
or brittle when vocalizations were embedded in a broadband white 
or a babble noise. However, a given neuron can fall into a class or 
another depending on the type of noise, demonstrating the existence 
of contextual effects. In fact, the initial results of Bar-Yosef et al. [33] 
in the cat primary auditory cortex have already pointed out that some 
cortical neurons are more sensitive to the noise background than to the 

actual communication sounds. In the bird homologous of a secondary 
auditory area (area NCM), cortical inhibitory microcircuits, which 
contributes to sparsify the evoked discharges of pyramidal cells, allows 
the emergence of invariant neural representations of communication 
sounds in noise conditions [34]. In a quite interesting study, Shetake 
et al. [35] quantified neuronal discriminative abilities of AI responses 
to similar speech sounds with and without noise addition and found 
that the discrimination abilities of cortical cells can closely match the 
behavioral performance. The discrimination performance of neuronal 
populations was not affected at a SNR of +12dB, but the performance 
felt close to the chance level with a SNR of -12dB [35]. This resistance of 
cortical discrimination is at variance with the strong impact of the noise 
observed in auditory thalamus. Indeed, a massive reduction in evoked 
firing rate and temporal reliability of evoked responses was observed in 
auditory thalamus in the easier noise condition (SNR of +10dB; [36]).  

A direct comparison between the consequences of acoustic 
degradation in different structures is the more straightforward way 
for dissecting where invariant representations are generated. When 
measuring how different levels of noise alter neuronal coding in the 
auditory system, it was found that from the auditory nerve to the IC 
and to AI, the neural representation of natural sounds became more 
and more independent of the level of background noise [37]. At the 
population level, this tolerance to background noise was proposed to 
result from an adaptation to the noise statistics, which is much more 
pronounced at the cortical than at the subcortical level [37].

Conclusion
Both in the field of psychoacoustics and auditory neurosciences, 

the way by which robust representations of communication sounds are 
generated and allow humans and animals to react rapidly and efficiently 
in adverse acoustic conditions has become an intense research area. At 
the present time, most studies confirm that cortical neurons contribute 
to the invariant representation of speech-like stimuli despite very 
severe acoustic degradations. Almost no study has been performed so 
far at the subcortical level but clarifying processing mechanisms at the 
early stages of the auditory pathway may be crucial for understanding 
how these invariant features and representations emerged within the 
auditory system. Electrophysiological explorations combining state-of-
the-art signal processing analyses and large-scale neuronal recordings 
at different levels of the auditory system are necessary for progressing 
in this field.
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